Validation of neural spike sorting algorithms without ground-truth information
•We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in the data.•A standardized interface assesses any algorithm, independent of its internal workings.•We illustrate and test the metrics on in vivo...
        Saved in:
      
    
          | Published in | Journal of neuroscience methods Vol. 264; pp. 65 - 77 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        01.05.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0165-0270 1872-678X 1872-678X  | 
| DOI | 10.1016/j.jneumeth.2016.02.022 | 
Cover
| Abstract | •We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in the data.•A standardized interface assesses any algorithm, independent of its internal workings.•We illustrate and test the metrics on in vivo and ex vivo recordings with overlapping spikes.
The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms.
We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise.
We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation.
Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria.
Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. | 
    
|---|---|
| AbstractList | •We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in the data.•A standardized interface assesses any algorithm, independent of its internal workings.•We illustrate and test the metrics on in vivo and ex vivo recordings with overlapping spikes.
The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms.
We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise.
We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation.
Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria.
Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms.BACKGROUNDThe throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms.We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise.NEW METHODWe introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise.We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation.RESULTSWe illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation.Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria.COMPARISON WITH EXISTING METHODSMetrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria.Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.CONCLUSIONSStability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms. Background: The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. New method: We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. Results: We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Comparison with existing methods: Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Conclusions: Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.  | 
    
| Author | Greengard, Leslie F. Magland, Jeremy F. Barnett, Alex H.  | 
    
| Author_xml | – sequence: 1 givenname: Alex H. surname: Barnett fullname: Barnett, Alex H. email: ahb@math.dartmouth.edu organization: Simons Center for Data Analysis, and Department of Mathematics, Dartmouth College, United States – sequence: 2 givenname: Jeremy F. surname: Magland fullname: Magland, Jeremy F. organization: Simons Center for Data Analysis, and Department of Radiology, University of Pennsylvania, United States – sequence: 3 givenname: Leslie F. surname: Greengard fullname: Greengard, Leslie F. organization: Simons Center for Data Analysis, and Courant Institute, New York University, United States  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26930629$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtLAzEUhYMoWh9_QWbpZurNo5kJuFDEF4huVNyFNJNpU2eSmmQU_73R2o0bhQuXkHO-kHN20abzziB0iGGMAfPjxXjhzNCbNB-TfB4DyUM20AjXFSl5VT9volG-mJRAKthBuzEuAIAJ4Ntoh3BBgRMxQndPqrONSta7wrdFZgbVFXFpX0wRfUjWzQrVzXywad7H4j0vP6RiFvzgmjKFIc0L61of-m_GPtpqVRfNwc_eQ4-XFw_n1-Xt_dXN-dltqRngVDZUsxaEYJqIiuEJAVa1jE8VxQ3XVGjV1KYGrkWFMdAWQNHpVNd8gmtOmaJ76GjFXQb_OpiYZG-jNl2nnPFDlLgSkMk5mn9IazyhlEGdpYc_0mHam0Yug-1V-JDruLLgZCXQwccYTCu1Td8fT0HZTmKQX-3IhVy3I7_akUDykGznv-zrF_40nq6MJmf6Zk2QUVvjtGlsMDrJxtu_EJ_u6a2s | 
    
| CitedBy_id | crossref_primary_10_1016_j_neuron_2019_08_011 crossref_primary_10_1016_j_neuron_2017_08_030 crossref_primary_10_7554_eLife_79545 crossref_primary_10_1016_j_conb_2018_01_009 crossref_primary_10_1088_1741_2552_acc7cc crossref_primary_10_1016_j_neuron_2019_05_003 crossref_primary_10_1371_journal_pcbi_1005842 crossref_primary_10_1093_cercor_bhy141 crossref_primary_10_7554_eLife_61834 crossref_primary_10_1523_ENEURO_0554_23_2024 crossref_primary_10_1016_j_jneumeth_2019_108479 crossref_primary_10_1088_1741_2552_aab383 crossref_primary_10_1109_TBCAS_2023_3278531 crossref_primary_10_1088_1741_2552_ab6cb8 crossref_primary_10_1016_j_conb_2019_02_007 crossref_primary_10_1371_journal_pone_0160494 crossref_primary_10_1088_1741_2552_ad228f crossref_primary_10_1016_j_jneumeth_2016_06_006 crossref_primary_10_1038_s41467_021_25443_4 crossref_primary_10_1088_2516_1091_ac6b96 crossref_primary_10_7554_eLife_55167 crossref_primary_10_3389_fninf_2022_851024 crossref_primary_10_1038_nn_4365 crossref_primary_10_1088_1741_2552_accece crossref_primary_10_1088_1741_2552_adaa1c crossref_primary_10_1038_s41467_021_21151_1 crossref_primary_10_1016_j_neuroscience_2019_07_005 crossref_primary_10_1088_1741_2552_ab0bfb crossref_primary_10_1088_1741_2552_ad647d  | 
    
| Cites_doi | 10.1007/s10827-015-0547-7 10.1371/journal.pone.0019884 10.1016/j.neuroscience.2004.09.066 10.1016/j.cub.2011.11.005 10.1080/01621459.1971.10482356 10.1016/j.jneumeth.2013.10.001 10.1523/JNEUROSCI.4053-11.2011 10.1016/j.jneumeth.2005.12.031 10.1016/j.conb.2011.10.001 10.1038/nrn3241 10.1016/S0925-2312(02)00528-3 10.1523/JNEUROSCI.0723-12.2012 10.1016/S0165-0270(96)00050-7 10.1152/jn.00993.2014 10.1523/JNEUROSCI.3675-14.2015 10.1016/j.jneumeth.2015.01.029 10.1109/JSSC.2003.819174 10.1007/s10827-009-0163-5 10.1523/JNEUROSCI.0971-11.2011 10.1088/1741-2560/6/5/056001 10.3150/13-BEJSP14 10.1152/jn.2000.84.1.401 10.1162/NECO_a_00433 10.1088/0954-898X_9_4_001 10.1007/BF02294300 10.1016/S0165-0270(02)00276-5 10.1371/journal.pone.0062123 10.1186/1471-2202-15-S1-P122 10.4249/scholarpedia.3583 10.1016/j.csda.2006.11.025 10.1109/TNS.2004.832706 10.1039/C5LC00133A 10.1162/089976604773717621 10.1016/j.jneumeth.2008.04.030 10.1002/nav.3800020109 10.1039/b907394a 10.1016/j.jneumeth.2011.10.013  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK  | 
    
| DOI | 10.1016/j.jneumeth.2016.02.022 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| EISSN | 1872-678X | 
    
| EndPage | 77 | 
    
| ExternalDocumentID | 26930629 10_1016_j_jneumeth_2016_02_022 S0165027016300036  | 
    
| Genre | Validation Studies Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS WUQ X7M ZGI ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 7TK  | 
    
| ID | FETCH-LOGICAL-c401t-d3c4f0994c2974152047f46ba31d6c39cad8e806c971103f00a3bbc86518634a3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0165-0270 1872-678X  | 
    
| IngestDate | Sun Sep 28 11:02:22 EDT 2025 Sun Sep 28 07:07:33 EDT 2025 Mon Jul 21 05:45:07 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Thu Oct 02 04:27:14 EDT 2025 Fri Feb 23 02:33:09 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Validation Spike sorting Algorithms Stability Automatic  | 
    
| Language | English | 
    
| License | Copyright © 2016 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c401t-d3c4f0994c2974152047f46ba31d6c39cad8e806c971103f00a3bbc86518634a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3  | 
    
| PMID | 26930629 | 
    
| PQID | 1781533408 | 
    
| PQPubID | 23479 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_1790974201 proquest_miscellaneous_1781533408 pubmed_primary_26930629 crossref_citationtrail_10_1016_j_jneumeth_2016_02_022 crossref_primary_10_1016_j_jneumeth_2016_02_022 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2016_02_022  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-05-01 2016-05-00 2016-May-01 20160501  | 
    
| PublicationDateYYYYMMDD | 2016-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Journal of neuroscience methods | 
    
| PublicationTitleAlternate | J Neurosci Methods | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | von Luxburg (bib0210) 2009; 2 Arthur, Vassilvitskii (bib0005) 2007 Gibson, Judy, Marković (bib0070) 2012 January Shamir, Tishby (bib0195) 2009 Einevoll, Franke, Hagen, Pouzat, Harris (bib0035) 2012; 22 Rand (bib0180) 1971; 66 Franke, Pröpper, Alle, Meier, Geiger, Obermayer, Munk (bib0060) 2015; 114 Ekanadham, Tranchina, Simoncelli (bib0040) 2013; 222 Krieger, Green (bib0095) 1999; 64 Hagen, Ness, Khosrowshahi, Sørensen, Fyhn, Hafting, Franke, Einevoll (bib0075) 2015; 245 (bib0150) 2010 Wood, Black (bib0225) 2008; 173 Kuhn (bib0100) 1955; 2 Moore-Kochlacs, Scholvin, Kinney, Bernstein, Yoon, Arfin, Kopell, Boyden (bib0135) 2014; 15 Buzsáki, Anastassiou, Koch (bib0020) 2012; 13 Hill, Mehta, Kleinfeld (bib0090) 2011; 31 Berdondini, Imfeld, Maccione, Tedesco, Neukom, Koudelka-Hep, Martinoia (bib0010) 2009; 9 Quiroga (bib0170) 2007; 2 Zaki, Meira (bib0235) 2014 Neymotin, Lytton, Olypher, Fenton (bib0145) 2011; 31 Wild, Prekopcsak, Sieger, Novak, Jech (bib0220) 2012; 203 MacKay (bib0125) 1998 Lewicki (bib0110) 1998; 9 Schmitzer-Torbert, Jackson, Henze, Harris, Redish (bib0190) 2005; 131 Fee, Mitra, Kleinfeld (bib0050) 1996; 69 Tankus, Yeshurun, Fried (bib0205) 2009; 6 Watson, Buzsáki (bib0215) 2015 Pillow, Shlens, Chichilnisky, Simoncelli (bib0155) 2013; 8 Blanche, Swindale (bib0015) 2006; 155 Quiroga (bib0175) 2012; 22 Eversmann, Jenkner, Hofmann, Paulus, Brederlow, Holzapfl, Fromherz, Merz, Brenner, Schreiter, Gabl, Plehnert, Steinhauser, Eckstein, Schmitt-Landsiedel, Thewes (bib0045) 2003; 38 Franke, Natora, Boucsein, Munk, Obermayer (bib0055) 2010; 29 Franke, Quiroga, Hierlemann, Obermayer (bib0065) 2015; 38 Litke, Bezayiff, Chichilnisky, Cunningham, Dabrowski, Grillo, Grivich, Grybos, Hottowy, Kachiguine, Kalmar, Mathieson, D.P. D., Rahman, Sher (bib0120) 2004; 51 Takahashi, Sakurai, Tsukada, Anzai (bib0200) 2002; 49 Marre, Amodei, Deshmukh, Sadeghi, Soo, Holy, M.J.B. (bib0130) 2012; 32 Hennig (bib0085) 2007; 52 Rossant, Kadir, Goodman, Schulman, Belluscio, Buzsaki, Harris (bib0185) 2015 Harris, H.D.A., Csicsvari, Hirase, Buzsaki (bib0080) 2000; 84 Müller, Ballini, Livi, Chen, Radivojevic, Shadmani, Viswam, Jones, Fiscella, Diggelmann, Stettler, Frey, Bakkuma, Hierlemann (bib0140) 2015; 15 Camuñas-Mesa, Quiroga (bib0025) 2013; 25 Pouzat, Mazor, Laurent (bib0160) 2002; 122 Lange, Roth, Braun, Buhmann (bib0105) 2004; 16 Prentice, Homann, Simmons, Tkačik, Balasubramanian, Nelson (bib0165) 2011; 6 Yu (bib0230) 2013; 19 Li, Gauthier, Schiff, Sher, Ahn, Field, Greschner, Callaway, Litke, Chichilnisky (bib0115) 2015; 35 Carlson, Vogelstein, Wu, Lian, Zhou, Stoetzner, Kipke, Weber, Dunson, Carin (bib0030) 2013 Tankus (10.1016/j.jneumeth.2016.02.022_bib0205) 2009; 6 Schmitzer-Torbert (10.1016/j.jneumeth.2016.02.022_bib0190) 2005; 131 Lange (10.1016/j.jneumeth.2016.02.022_bib0105) 2004; 16 Marre (10.1016/j.jneumeth.2016.02.022_bib0130) 2012; 32 Hill (10.1016/j.jneumeth.2016.02.022_bib0090) 2011; 31 Franke (10.1016/j.jneumeth.2016.02.022_bib0055) 2010; 29 Neymotin (10.1016/j.jneumeth.2016.02.022_bib0145) 2011; 31 Yu (10.1016/j.jneumeth.2016.02.022_bib0230) 2013; 19 Einevoll (10.1016/j.jneumeth.2016.02.022_bib0035) 2012; 22 Krieger (10.1016/j.jneumeth.2016.02.022_bib0095) 1999; 64 Franke (10.1016/j.jneumeth.2016.02.022_bib0065) 2015; 38 Pillow (10.1016/j.jneumeth.2016.02.022_bib0155) 2013; 8 Ekanadham (10.1016/j.jneumeth.2016.02.022_bib0040) 2013; 222 Buzsáki (10.1016/j.jneumeth.2016.02.022_bib0020) 2012; 13 Rand (10.1016/j.jneumeth.2016.02.022_bib0180) 1971; 66 Fee (10.1016/j.jneumeth.2016.02.022_bib0050) 1996; 69 Arthur (10.1016/j.jneumeth.2016.02.022_bib0005) 2007 Li (10.1016/j.jneumeth.2016.02.022_bib0115) 2015; 35 Camuñas-Mesa (10.1016/j.jneumeth.2016.02.022_bib0025) 2013; 25 von Luxburg (10.1016/j.jneumeth.2016.02.022_bib0210) 2009; 2 Zaki (10.1016/j.jneumeth.2016.02.022_bib0235) 2014 Berdondini (10.1016/j.jneumeth.2016.02.022_bib0010) 2009; 9 Eversmann (10.1016/j.jneumeth.2016.02.022_bib0045) 2003; 38 Litke (10.1016/j.jneumeth.2016.02.022_bib0120) 2004; 51 Franke (10.1016/j.jneumeth.2016.02.022_bib0060) 2015; 114 Rossant (10.1016/j.jneumeth.2016.02.022_bib0185) 2015 (10.1016/j.jneumeth.2016.02.022_bib0150) 2010 Lewicki (10.1016/j.jneumeth.2016.02.022_bib0110) 1998; 9 Takahashi (10.1016/j.jneumeth.2016.02.022_bib0200) 2002; 49 Carlson (10.1016/j.jneumeth.2016.02.022_bib0030) 2013 Quiroga (10.1016/j.jneumeth.2016.02.022_bib0175) 2012; 22 Harris (10.1016/j.jneumeth.2016.02.022_bib0080) 2000; 84 Hagen (10.1016/j.jneumeth.2016.02.022_bib0075) 2015; 245 Wood (10.1016/j.jneumeth.2016.02.022_bib0225) 2008; 173 Moore-Kochlacs (10.1016/j.jneumeth.2016.02.022_bib0135) 2014; 15 Shamir (10.1016/j.jneumeth.2016.02.022_bib0195) 2009 MacKay (10.1016/j.jneumeth.2016.02.022_bib0125) 1998 Watson (10.1016/j.jneumeth.2016.02.022_bib0215) 2015 Prentice (10.1016/j.jneumeth.2016.02.022_bib0165) 2011; 6 Kuhn (10.1016/j.jneumeth.2016.02.022_bib0100) 1955; 2 Gibson (10.1016/j.jneumeth.2016.02.022_bib0070) 2012 Pouzat (10.1016/j.jneumeth.2016.02.022_bib0160) 2002; 122 Quiroga (10.1016/j.jneumeth.2016.02.022_bib0170) 2007; 2 Hennig (10.1016/j.jneumeth.2016.02.022_bib0085) 2007; 52 Blanche (10.1016/j.jneumeth.2016.02.022_bib0015) 2006; 155 Müller (10.1016/j.jneumeth.2016.02.022_bib0140) 2015; 15 Wild (10.1016/j.jneumeth.2016.02.022_bib0220) 2012; 203  | 
    
| References_xml | – volume: 173 start-page: 1 year: 2008 end-page: 12 ident: bib0225 article-title: A non-parametric Bayesian alternative to spike sorting publication-title: J. Neurosci. Methods – volume: 84 start-page: 401 year: 2000 end-page: 414 ident: bib0080 article-title: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements publication-title: J. Neurophysiol. – volume: 38 start-page: 439 year: 2015 end-page: 459 ident: bib0065 article-title: Bayes optimal template matching for spike sorting – combining Fisher discriminant analysis with optimal filtering publication-title: J. Comput. Neurosci. – volume: 203 start-page: 369 year: 2012 end-page: 376 ident: bib0220 article-title: Performance comparison of extracellular spike sorting algorithms for single-channel recordings publication-title: J. Neurosci. Methods – start-page: 124 year: 2012 January end-page: 143 ident: bib0070 article-title: Spike sorting: the first step in decoding the brain publication-title: IEEE Signal Proc. Mag. – volume: 69 start-page: 175 year: 1996 end-page: 188 ident: bib0050 article-title: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability publication-title: J. Neurosci. Methods – volume: 9 start-page: 2644 year: 2009 end-page: 2651 ident: bib0010 article-title: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks publication-title: Lab Chip – volume: 22 start-page: R45 year: 2012 end-page: R46 ident: bib0175 article-title: Spike sorting publication-title: Curr. Biol. – volume: 52 start-page: 258 year: 2007 end-page: 271 ident: bib0085 article-title: Cluster-wise assessment of cluster stability publication-title: Comput. Stat. Data An. – year: 2007 ident: bib0005 article-title: : the advantages of careful seeding publication-title: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms – year: 2015 ident: bib0185 article-title: Spike sorting for large, dense electrode arrays – volume: 31 start-page: 16398 year: 2011 end-page: 16409 ident: bib0145 article-title: Measuring the quality of neuronal identification in ensemble recordings publication-title: J. Neurosci. – year: 2015 ident: bib0215 article-title: Personal communication – volume: 2 start-page: 83 year: 1955 end-page: 97 ident: bib0100 article-title: The Hungarian method for the assignment problem publication-title: Naval Res. Logist. Quart. – volume: 155 start-page: 81 year: 2006 end-page: 91 ident: bib0015 article-title: Nyquist interpolation improves neuron yield in multiunit recordings publication-title: J. Neurosci. Methods – volume: 35 start-page: 4663 year: 2015 end-page: 4675 ident: bib0115 article-title: Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings publication-title: J. Neurosci. – volume: 32 start-page: 14859 year: 2012 end-page: 14873 ident: bib0130 article-title: Mapping a complete neural population in the retina publication-title: J. Neurosci. – volume: 15 start-page: P122 year: 2014 ident: bib0135 article-title: Principles of high-fidelity, high-density 3-d neural recording publication-title: BMC Neurosci. – volume: 6 start-page: e19884 year: 2011 ident: bib0165 article-title: Fast, scalable, Bayesian spike identification and multi-electrode arrays publication-title: PLoS ONE – volume: 29 start-page: 127 year: 2010 end-page: 148 ident: bib0055 article-title: An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes publication-title: J. Comput. Neurosci. – year: 2014 ident: bib0235 article-title: Data Mining and Analysis: Fundamental Concepts and Algorithms – volume: 25 start-page: 1191 year: 2013 end-page: 1212 ident: bib0025 article-title: A detailed and fast model of extracellular recordings publication-title: Neural Comput. – volume: 131 start-page: 1 year: 2005 end-page: 11 ident: bib0190 article-title: Quantitative measures of cluster quality for use in extracellular recordings publication-title: Neuroscience – year: 2013 ident: bib0030 article-title: Multichannel electrophysiology spike sorting via joint dictionary learning & mixture modeling publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: R53 year: 1998 end-page: R78 ident: bib0110 article-title: A review of methods for spike sorting: the detection and classification of neural action potentials publication-title: Netw. Comput. Neural Syst. – volume: 2 start-page: 3583 year: 2007 ident: bib0170 article-title: Spike sorting publication-title: Scholarpedia – volume: 38 start-page: 2306 year: 2003 end-page: 2317 ident: bib0045 article-title: A 128 publication-title: IEEE J. Solid-State Circuits – year: 2010 ident: bib0150 publication-title: NIST Handbook of Mathematical Functions – volume: 222 start-page: 47 year: 2013 end-page: 55 ident: bib0040 article-title: A unified framework and method for automatic neural spike identification publication-title: J. Neurosci. Methods – volume: 66 start-page: 846 year: 1971 end-page: 850 ident: bib0180 article-title: Objective criteria for the evaluation of clustering methods publication-title: J. Am. Stat. Assoc. – start-page: 175 year: 1998 end-page: 204 ident: bib0125 article-title: Introduction to Monte Carlo methods publication-title: Learning in Graphical Models, NATO Science Series – volume: 2 start-page: 235 year: 2009 end-page: 274 ident: bib0210 article-title: Clustering stability: an overview publication-title: Found. Trends Mach. Learn. – volume: 22 start-page: 11 year: 2012 end-page: 17 ident: bib0035 article-title: Towards reliable spike-train recordings from thousands of neurons with multielectrodes publication-title: Curr. Opin. Neurobiol. – volume: 122 start-page: 43 year: 2002 end-page: 57 ident: bib0160 article-title: Using noise signature to optimize spike-sorting and to assess neuronal classification quality publication-title: J. Neurosci. Methods – volume: 6 start-page: 056001 year: 2009 ident: bib0205 article-title: An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits publication-title: J. Neural. Eng. – volume: 16 start-page: 1299 year: 2004 end-page: 1323 ident: bib0105 article-title: Stability-based validation of clustering solutions publication-title: Neural Comput. – volume: 8 start-page: e62123 year: 2013 ident: bib0155 article-title: A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings publication-title: PLoS ONE – volume: 51 start-page: 1434 year: 2004 end-page: 1440 ident: bib0120 article-title: What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity publication-title: IEEE Trans. Nucl. Sci. – volume: 15 start-page: 2767 year: 2015 end-page: 2780 ident: bib0140 article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels publication-title: Lab Chip – volume: 13 start-page: 407 year: 2012 end-page: 420 ident: bib0020 article-title: The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. – volume: 114 start-page: 2535 year: 2015 end-page: 2549 ident: bib0060 article-title: Spike sorting of synchronous spikes from local neuron ensembles publication-title: J. Neurophysiol. – volume: 64 start-page: 341 year: 1999 end-page: 353 ident: bib0095 article-title: A cautionary note on using internal cross validation to select the number of clusters publication-title: Psychometrika – volume: 31 start-page: 8699 year: 2011 end-page: 8705 ident: bib0090 article-title: Quality metrics to accompany spike sorting of extracellular signals publication-title: J. Neurosci. – volume: 245 start-page: 182 year: 2015 end-page: 204 ident: bib0075 article-title: ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms publication-title: J. Neurosci. Methods – start-page: 1465 year: 2009 end-page: 1472 ident: bib0195 article-title: On the reliability of clustering stability in the large sample regime. Advances in neural information processing systems (NIPS) – volume: 49 start-page: 289 year: 2002 end-page: 298 ident: bib0200 article-title: Classification of neuronal activities from tetrode recordings using independent component analysis publication-title: Neurocomputing – volume: 19 start-page: 1484 year: 2013 end-page: 1500 ident: bib0230 article-title: Stability publication-title: Bernoulli – volume: 38 start-page: 439 year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0065 article-title: Bayes optimal template matching for spike sorting – combining Fisher discriminant analysis with optimal filtering publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-015-0547-7 – volume: 6 start-page: e19884 issue: 7 year: 2011 ident: 10.1016/j.jneumeth.2016.02.022_bib0165 article-title: Fast, scalable, Bayesian spike identification and multi-electrode arrays publication-title: PLoS ONE doi: 10.1371/journal.pone.0019884 – volume: 131 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.jneumeth.2016.02.022_bib0190 article-title: Quantitative measures of cluster quality for use in extracellular recordings publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.09.066 – start-page: 124 year: 2012 ident: 10.1016/j.jneumeth.2016.02.022_bib0070 article-title: Spike sorting: the first step in decoding the brain – volume: 22 start-page: R45 issue: 2 year: 2012 ident: 10.1016/j.jneumeth.2016.02.022_bib0175 article-title: Spike sorting publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.11.005 – volume: 66 start-page: 846 year: 1971 ident: 10.1016/j.jneumeth.2016.02.022_bib0180 article-title: Objective criteria for the evaluation of clustering methods publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1971.10482356 – volume: 222 start-page: 47 year: 2013 ident: 10.1016/j.jneumeth.2016.02.022_bib0040 article-title: A unified framework and method for automatic neural spike identification publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.10.001 – volume: 31 start-page: 16398 issue: 45 year: 2011 ident: 10.1016/j.jneumeth.2016.02.022_bib0145 article-title: Measuring the quality of neuronal identification in ensemble recordings publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4053-11.2011 – volume: 155 start-page: 81 year: 2006 ident: 10.1016/j.jneumeth.2016.02.022_bib0015 article-title: Nyquist interpolation improves neuron yield in multiunit recordings publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.12.031 – volume: 22 start-page: 11 issue: 1 year: 2012 ident: 10.1016/j.jneumeth.2016.02.022_bib0035 article-title: Towards reliable spike-train recordings from thousands of neurons with multielectrodes publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.10.001 – volume: 13 start-page: 407 year: 2012 ident: 10.1016/j.jneumeth.2016.02.022_bib0020 article-title: The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3241 – year: 2010 ident: 10.1016/j.jneumeth.2016.02.022_bib0150 – volume: 49 start-page: 289 year: 2002 ident: 10.1016/j.jneumeth.2016.02.022_bib0200 article-title: Classification of neuronal activities from tetrode recordings using independent component analysis publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00528-3 – volume: 32 start-page: 14859 issue: 43 year: 2012 ident: 10.1016/j.jneumeth.2016.02.022_bib0130 article-title: Mapping a complete neural population in the retina publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0723-12.2012 – volume: 69 start-page: 175 year: 1996 ident: 10.1016/j.jneumeth.2016.02.022_bib0050 article-title: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(96)00050-7 – volume: 114 start-page: 2535 year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0060 article-title: Spike sorting of synchronous spikes from local neuron ensembles publication-title: J. Neurophysiol. doi: 10.1152/jn.00993.2014 – volume: 35 start-page: 4663 issue: 11 year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0115 article-title: Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3675-14.2015 – volume: 245 start-page: 182 year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0075 article-title: ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.029 – volume: 2 start-page: 235 issue: 3 year: 2009 ident: 10.1016/j.jneumeth.2016.02.022_bib0210 article-title: Clustering stability: an overview publication-title: Found. Trends Mach. Learn. – volume: 38 start-page: 2306 issue: 12 year: 2003 ident: 10.1016/j.jneumeth.2016.02.022_bib0045 article-title: A 128×128 CMOS biosensor array for extracellular recording of neural activity publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2003.819174 – volume: 29 start-page: 127 year: 2010 ident: 10.1016/j.jneumeth.2016.02.022_bib0055 article-title: An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0163-5 – volume: 31 start-page: 8699 issue: 24 year: 2011 ident: 10.1016/j.jneumeth.2016.02.022_bib0090 article-title: Quality metrics to accompany spike sorting of extracellular signals publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0971-11.2011 – year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0215 – volume: 6 start-page: 056001 issue: 5 year: 2009 ident: 10.1016/j.jneumeth.2016.02.022_bib0205 article-title: An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/6/5/056001 – year: 2014 ident: 10.1016/j.jneumeth.2016.02.022_bib0235 – year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0185 – volume: 19 start-page: 1484 year: 2013 ident: 10.1016/j.jneumeth.2016.02.022_bib0230 article-title: Stability publication-title: Bernoulli doi: 10.3150/13-BEJSP14 – volume: 84 start-page: 401 year: 2000 ident: 10.1016/j.jneumeth.2016.02.022_bib0080 article-title: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.1.401 – year: 2007 ident: 10.1016/j.jneumeth.2016.02.022_bib0005 article-title: k-means++: the advantages of careful seeding – volume: 25 start-page: 1191 year: 2013 ident: 10.1016/j.jneumeth.2016.02.022_bib0025 article-title: A detailed and fast model of extracellular recordings publication-title: Neural Comput. doi: 10.1162/NECO_a_00433 – volume: 9 start-page: R53 year: 1998 ident: 10.1016/j.jneumeth.2016.02.022_bib0110 article-title: A review of methods for spike sorting: the detection and classification of neural action potentials publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_9_4_001 – volume: 64 start-page: 341 issue: 3 year: 1999 ident: 10.1016/j.jneumeth.2016.02.022_bib0095 article-title: A cautionary note on using internal cross validation to select the number of clusters publication-title: Psychometrika doi: 10.1007/BF02294300 – volume: 122 start-page: 43 year: 2002 ident: 10.1016/j.jneumeth.2016.02.022_bib0160 article-title: Using noise signature to optimize spike-sorting and to assess neuronal classification quality publication-title: J. Neurosci. Methods doi: 10.1016/S0165-0270(02)00276-5 – year: 2013 ident: 10.1016/j.jneumeth.2016.02.022_bib0030 article-title: Multichannel electrophysiology spike sorting via joint dictionary learning & mixture modeling publication-title: IEEE Trans. Biomed. Eng. – start-page: 1465 year: 2009 ident: 10.1016/j.jneumeth.2016.02.022_bib0195 – volume: 8 start-page: e62123 issue: 5 year: 2013 ident: 10.1016/j.jneumeth.2016.02.022_bib0155 article-title: A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings publication-title: PLoS ONE doi: 10.1371/journal.pone.0062123 – volume: 15 start-page: P122 issue: Suppl 1 year: 2014 ident: 10.1016/j.jneumeth.2016.02.022_bib0135 article-title: Principles of high-fidelity, high-density 3-d neural recording publication-title: BMC Neurosci. doi: 10.1186/1471-2202-15-S1-P122 – volume: 2 start-page: 3583 issue: 12 year: 2007 ident: 10.1016/j.jneumeth.2016.02.022_bib0170 article-title: Spike sorting publication-title: Scholarpedia doi: 10.4249/scholarpedia.3583 – start-page: 175 year: 1998 ident: 10.1016/j.jneumeth.2016.02.022_bib0125 article-title: Introduction to Monte Carlo methods – volume: 52 start-page: 258 issue: 1 year: 2007 ident: 10.1016/j.jneumeth.2016.02.022_bib0085 article-title: Cluster-wise assessment of cluster stability publication-title: Comput. Stat. Data An. doi: 10.1016/j.csda.2006.11.025 – volume: 51 start-page: 1434 issue: 4 year: 2004 ident: 10.1016/j.jneumeth.2016.02.022_bib0120 article-title: What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2004.832706 – volume: 15 start-page: 2767 year: 2015 ident: 10.1016/j.jneumeth.2016.02.022_bib0140 article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels publication-title: Lab Chip doi: 10.1039/C5LC00133A – volume: 16 start-page: 1299 issue: 6 year: 2004 ident: 10.1016/j.jneumeth.2016.02.022_bib0105 article-title: Stability-based validation of clustering solutions publication-title: Neural Comput. doi: 10.1162/089976604773717621 – volume: 173 start-page: 1 year: 2008 ident: 10.1016/j.jneumeth.2016.02.022_bib0225 article-title: A non-parametric Bayesian alternative to spike sorting publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.04.030 – volume: 2 start-page: 83 year: 1955 ident: 10.1016/j.jneumeth.2016.02.022_bib0100 article-title: The Hungarian method for the assignment problem publication-title: Naval Res. Logist. Quart. doi: 10.1002/nav.3800020109 – volume: 9 start-page: 2644 year: 2009 ident: 10.1016/j.jneumeth.2016.02.022_bib0010 article-title: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks publication-title: Lab Chip doi: 10.1039/b907394a – volume: 203 start-page: 369 issue: 2 year: 2012 ident: 10.1016/j.jneumeth.2016.02.022_bib0220 article-title: Performance comparison of extracellular spike sorting algorithms for single-channel recordings publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.10.013  | 
    
| SSID | ssj0004906 | 
    
| Score | 2.3591328 | 
    
| Snippet | •We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in... The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike... Background: The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 65 | 
    
| SubjectTerms | Algorithms Animals Automatic Electrophysiological Phenomena - physiology Models, Theoretical Neurons - physiology Signal Processing, Computer-Assisted Spike sorting Stability Validation  | 
    
| Title | Validation of neural spike sorting algorithms without ground-truth information | 
    
| URI | https://dx.doi.org/10.1016/j.jneumeth.2016.02.022 https://www.ncbi.nlm.nih.gov/pubmed/26930629 https://www.proquest.com/docview/1781533408 https://www.proquest.com/docview/1790974201  | 
    
| Volume | 264 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-678X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004906 issn: 0165-0270 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQlapeKgq0XdoiV6p6C-vYjmMfV6hoC2IvLYib5TgO7ALJis0eeum3d8ZJKBwoh0qRoli2ZY0dzxt7Zh4hX0AjKhOcAzNVVYksdJXoSockLVLng3IVi7EwpzM1PZPHF9nFBjkcYmHQrbLf-7s9Pe7Wfcm4l-Z4OZ-Pf2AgDhhV8BIxrQpGsMscWQwOfv9185Am8mtiZbyvZA-ihBcHizqskakZXbxUzN3J-VMK6ikAGhXR0RZ53SNIOukG-YZshHqb7ExqsJ5vf9GvNPp0xsPybfLytL863yGzc0DcHYESbSqKeSyhl9Vyfh3oqsFcApfU3Vw2d_P26nZF8Xy2WbcUoz7qMmnv1u0V7bOsYh-75Ozo28_DadKTKSQeTKg2KYWXFcBB6blBFMGZzCupCifSUnlhvCt10Ex5kwMiEBVjThSF1ypLtRLSibdks27q8J7QLORSBu2E06UMPjNay9SUAC09d5nJRiQbJGh9n2kcCS9u7OBStrCD5C1K3jIODx-R8X27ZZdr49kWZpgg-2jVWFAIz7b9PMyohV8K70lcHZr1yqa5RhQsmf5XHcNAjtDfiLzrlsP9mDnSSypu9v5jdB_IK_zqXCs_kk2Y5vAJ4E9b7Mf1vU9eTL6fTGd_AKTwBOU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXVFoeCwWMhLil69iOYx-rqtUC3b3Qot4sx3HaXdpk1c0euPDb8ThJoYfSA1KkSPFD1tjxfGPPfAPwMWhEqb21wUyVVSIKVSWqUj5Ji9Q6L21FYyzMdCYnp-LLWXa2AQdDLAy6VfZ7f7enx926_zLupTlezufjbxiIE4yq8OKRVuUBPBQZy9EC2_v1x89D6JhgE2vjhSX9K0x4sbeo_RpTNaOPl4zknYzdpaHuQqBREx1twdMeQpL9bpTPYMPX27CzXwfz-eon-USiU2c8Ld-GR9P-7nwHZt8D5O4yKJGmIkhkGXpZLec_PFk1SCZwTuzleXM9by-uVgQPaJt1SzDsoy6T9nrdXpCeZhX7eA6nR4cnB5Okz6aQuGBDtUnJnagCHhSOaYQRjIq8ErKwPC2l49rZUnlFpdN5gAS8otTyonBKZqmSXFj-AjbrpvavgGQ-F8Iry60qhXeZVkqkugzY0jGb6WwE2SBB43qqccx4cWkGn7KFGSRvUPKGsvCwEYxv2i07so17W-hhgsytZWOCRri37YdhRk34p_CixNa-Wa9MmiuEwYKqf9XRNMgx9DeCl91yuBkzw_ySkunX_zG69_B4cjI9NsefZ1_fwBMs6fwsd2EzTLl_G7BQW7yLa_03mmAGeg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+neural+spike+sorting+algorithms+without+ground-truth+information&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Barnetta%2C+Alex+H&rft.au=Maglandb%2C+Jeremy+F&rft.au=Greengardc%2C+Leslie+F&rft.date=2016-05-01&rft.issn=0165-0270&rft.volume=264&rft.spage=65&rft.epage=77&rft_id=info:doi/10.1016%2Fj.jneumeth.2016.02.022&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |