Validation of neural spike sorting algorithms without ground-truth information

•We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in the data.•A standardized interface assesses any algorithm, independent of its internal workings.•We illustrate and test the metrics on in vivo...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 264; pp. 65 - 77
Main Authors Barnett, Alex H., Magland, Jeremy F., Greengard, Leslie F.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2016
Subjects
Online AccessGet full text
ISSN0165-0270
1872-678X
1872-678X
DOI10.1016/j.jneumeth.2016.02.022

Cover

Abstract •We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in the data.•A standardized interface assesses any algorithm, independent of its internal workings.•We illustrate and test the metrics on in vivo and ex vivo recordings with overlapping spikes. The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.
AbstractList •We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in the data.•A standardized interface assesses any algorithm, independent of its internal workings.•We illustrate and test the metrics on in vivo and ex vivo recordings with overlapping spikes. The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.
The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.
The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms.BACKGROUNDThe throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms.We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise.NEW METHODWe introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise.We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation.RESULTSWe illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation.Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria.COMPARISON WITH EXISTING METHODSMetrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria.Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.CONCLUSIONSStability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.
Background: The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. New method: We introduce a suite of validation metrics that assess the credibility of a given automatic spike sorting algorithm applied to a given dataset. By rerunning the spike sorter two or more times, the metrics measure stability under various perturbations consistent with variations in the data itself, making no assumptions about the internal workings of the algorithm, and minimal assumptions about the noise. Results: We illustrate the new metrics on standard sorting algorithms applied to both in vivo and ex vivo recordings, including a time series with overlapping spikes. We compare the metrics to existing quality measures, and to ground-truth accuracy in simulated time series. We provide a software implementation. Comparison with existing methods: Metrics have until now relied on ground-truth, simulated data, internal algorithm variables (e.g. cluster separation), or refractory violations. By contrast, by standardizing the interface, our metrics assess the reliability of any automatic algorithm without reference to internal variables (e.g. feature space) or physiological criteria. Conclusions: Stability is a prerequisite for reproducibility of results. Such metrics could reduce the significant human labor currently spent on validation, and should form an essential part of large-scale automated spike sorting and systematic benchmarking of algorithms.
Author Greengard, Leslie F.
Magland, Jeremy F.
Barnett, Alex H.
Author_xml – sequence: 1
  givenname: Alex H.
  surname: Barnett
  fullname: Barnett, Alex H.
  email: ahb@math.dartmouth.edu
  organization: Simons Center for Data Analysis, and Department of Mathematics, Dartmouth College, United States
– sequence: 2
  givenname: Jeremy F.
  surname: Magland
  fullname: Magland, Jeremy F.
  organization: Simons Center for Data Analysis, and Department of Radiology, University of Pennsylvania, United States
– sequence: 3
  givenname: Leslie F.
  surname: Greengard
  fullname: Greengard, Leslie F.
  organization: Simons Center for Data Analysis, and Courant Institute, New York University, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26930629$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtLAzEUhYMoWh9_QWbpZurNo5kJuFDEF4huVNyFNJNpU2eSmmQU_73R2o0bhQuXkHO-kHN20abzziB0iGGMAfPjxXjhzNCbNB-TfB4DyUM20AjXFSl5VT9volG-mJRAKthBuzEuAIAJ4Ntoh3BBgRMxQndPqrONSta7wrdFZgbVFXFpX0wRfUjWzQrVzXywad7H4j0vP6RiFvzgmjKFIc0L61of-m_GPtpqVRfNwc_eQ4-XFw_n1-Xt_dXN-dltqRngVDZUsxaEYJqIiuEJAVa1jE8VxQ3XVGjV1KYGrkWFMdAWQNHpVNd8gmtOmaJ76GjFXQb_OpiYZG-jNl2nnPFDlLgSkMk5mn9IazyhlEGdpYc_0mHam0Yug-1V-JDruLLgZCXQwccYTCu1Td8fT0HZTmKQX-3IhVy3I7_akUDykGznv-zrF_40nq6MJmf6Zk2QUVvjtGlsMDrJxtu_EJ_u6a2s
CitedBy_id crossref_primary_10_1016_j_neuron_2019_08_011
crossref_primary_10_1016_j_neuron_2017_08_030
crossref_primary_10_7554_eLife_79545
crossref_primary_10_1016_j_conb_2018_01_009
crossref_primary_10_1088_1741_2552_acc7cc
crossref_primary_10_1016_j_neuron_2019_05_003
crossref_primary_10_1371_journal_pcbi_1005842
crossref_primary_10_1093_cercor_bhy141
crossref_primary_10_7554_eLife_61834
crossref_primary_10_1523_ENEURO_0554_23_2024
crossref_primary_10_1016_j_jneumeth_2019_108479
crossref_primary_10_1088_1741_2552_aab383
crossref_primary_10_1109_TBCAS_2023_3278531
crossref_primary_10_1088_1741_2552_ab6cb8
crossref_primary_10_1016_j_conb_2019_02_007
crossref_primary_10_1371_journal_pone_0160494
crossref_primary_10_1088_1741_2552_ad228f
crossref_primary_10_1016_j_jneumeth_2016_06_006
crossref_primary_10_1038_s41467_021_25443_4
crossref_primary_10_1088_2516_1091_ac6b96
crossref_primary_10_7554_eLife_55167
crossref_primary_10_3389_fninf_2022_851024
crossref_primary_10_1038_nn_4365
crossref_primary_10_1088_1741_2552_accece
crossref_primary_10_1088_1741_2552_adaa1c
crossref_primary_10_1038_s41467_021_21151_1
crossref_primary_10_1016_j_neuroscience_2019_07_005
crossref_primary_10_1088_1741_2552_ab0bfb
crossref_primary_10_1088_1741_2552_ad647d
Cites_doi 10.1007/s10827-015-0547-7
10.1371/journal.pone.0019884
10.1016/j.neuroscience.2004.09.066
10.1016/j.cub.2011.11.005
10.1080/01621459.1971.10482356
10.1016/j.jneumeth.2013.10.001
10.1523/JNEUROSCI.4053-11.2011
10.1016/j.jneumeth.2005.12.031
10.1016/j.conb.2011.10.001
10.1038/nrn3241
10.1016/S0925-2312(02)00528-3
10.1523/JNEUROSCI.0723-12.2012
10.1016/S0165-0270(96)00050-7
10.1152/jn.00993.2014
10.1523/JNEUROSCI.3675-14.2015
10.1016/j.jneumeth.2015.01.029
10.1109/JSSC.2003.819174
10.1007/s10827-009-0163-5
10.1523/JNEUROSCI.0971-11.2011
10.1088/1741-2560/6/5/056001
10.3150/13-BEJSP14
10.1152/jn.2000.84.1.401
10.1162/NECO_a_00433
10.1088/0954-898X_9_4_001
10.1007/BF02294300
10.1016/S0165-0270(02)00276-5
10.1371/journal.pone.0062123
10.1186/1471-2202-15-S1-P122
10.4249/scholarpedia.3583
10.1016/j.csda.2006.11.025
10.1109/TNS.2004.832706
10.1039/C5LC00133A
10.1162/089976604773717621
10.1016/j.jneumeth.2008.04.030
10.1002/nav.3800020109
10.1039/b907394a
10.1016/j.jneumeth.2011.10.013
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.jneumeth.2016.02.022
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 77
ExternalDocumentID 26930629
10_1016_j_jneumeth_2016_02_022
S0165027016300036
Genre Validation Studies
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
WUQ
X7M
ZGI
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7TK
ID FETCH-LOGICAL-c401t-d3c4f0994c2974152047f46ba31d6c39cad8e806c971103f00a3bbc86518634a3
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Sun Sep 28 11:02:22 EDT 2025
Sun Sep 28 07:07:33 EDT 2025
Mon Jul 21 05:45:07 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Thu Oct 02 04:27:14 EDT 2025
Fri Feb 23 02:33:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Validation
Spike sorting
Algorithms
Stability
Automatic
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-d3c4f0994c2974152047f46ba31d6c39cad8e806c971103f00a3bbc86518634a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 26930629
PQID 1781533408
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_1790974201
proquest_miscellaneous_1781533408
pubmed_primary_26930629
crossref_citationtrail_10_1016_j_jneumeth_2016_02_022
crossref_primary_10_1016_j_jneumeth_2016_02_022
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2016_02_022
PublicationCentury 2000
PublicationDate 2016-05-01
2016-05-00
2016-May-01
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References von Luxburg (bib0210) 2009; 2
Arthur, Vassilvitskii (bib0005) 2007
Gibson, Judy, Marković (bib0070) 2012 January
Shamir, Tishby (bib0195) 2009
Einevoll, Franke, Hagen, Pouzat, Harris (bib0035) 2012; 22
Rand (bib0180) 1971; 66
Franke, Pröpper, Alle, Meier, Geiger, Obermayer, Munk (bib0060) 2015; 114
Ekanadham, Tranchina, Simoncelli (bib0040) 2013; 222
Krieger, Green (bib0095) 1999; 64
Hagen, Ness, Khosrowshahi, Sørensen, Fyhn, Hafting, Franke, Einevoll (bib0075) 2015; 245
(bib0150) 2010
Wood, Black (bib0225) 2008; 173
Kuhn (bib0100) 1955; 2
Moore-Kochlacs, Scholvin, Kinney, Bernstein, Yoon, Arfin, Kopell, Boyden (bib0135) 2014; 15
Buzsáki, Anastassiou, Koch (bib0020) 2012; 13
Hill, Mehta, Kleinfeld (bib0090) 2011; 31
Berdondini, Imfeld, Maccione, Tedesco, Neukom, Koudelka-Hep, Martinoia (bib0010) 2009; 9
Quiroga (bib0170) 2007; 2
Zaki, Meira (bib0235) 2014
Neymotin, Lytton, Olypher, Fenton (bib0145) 2011; 31
Wild, Prekopcsak, Sieger, Novak, Jech (bib0220) 2012; 203
MacKay (bib0125) 1998
Lewicki (bib0110) 1998; 9
Schmitzer-Torbert, Jackson, Henze, Harris, Redish (bib0190) 2005; 131
Fee, Mitra, Kleinfeld (bib0050) 1996; 69
Tankus, Yeshurun, Fried (bib0205) 2009; 6
Watson, Buzsáki (bib0215) 2015
Pillow, Shlens, Chichilnisky, Simoncelli (bib0155) 2013; 8
Blanche, Swindale (bib0015) 2006; 155
Quiroga (bib0175) 2012; 22
Eversmann, Jenkner, Hofmann, Paulus, Brederlow, Holzapfl, Fromherz, Merz, Brenner, Schreiter, Gabl, Plehnert, Steinhauser, Eckstein, Schmitt-Landsiedel, Thewes (bib0045) 2003; 38
Franke, Natora, Boucsein, Munk, Obermayer (bib0055) 2010; 29
Franke, Quiroga, Hierlemann, Obermayer (bib0065) 2015; 38
Litke, Bezayiff, Chichilnisky, Cunningham, Dabrowski, Grillo, Grivich, Grybos, Hottowy, Kachiguine, Kalmar, Mathieson, D.P. D., Rahman, Sher (bib0120) 2004; 51
Takahashi, Sakurai, Tsukada, Anzai (bib0200) 2002; 49
Marre, Amodei, Deshmukh, Sadeghi, Soo, Holy, M.J.B. (bib0130) 2012; 32
Hennig (bib0085) 2007; 52
Rossant, Kadir, Goodman, Schulman, Belluscio, Buzsaki, Harris (bib0185) 2015
Harris, H.D.A., Csicsvari, Hirase, Buzsaki (bib0080) 2000; 84
Müller, Ballini, Livi, Chen, Radivojevic, Shadmani, Viswam, Jones, Fiscella, Diggelmann, Stettler, Frey, Bakkuma, Hierlemann (bib0140) 2015; 15
Camuñas-Mesa, Quiroga (bib0025) 2013; 25
Pouzat, Mazor, Laurent (bib0160) 2002; 122
Lange, Roth, Braun, Buhmann (bib0105) 2004; 16
Prentice, Homann, Simmons, Tkačik, Balasubramanian, Nelson (bib0165) 2011; 6
Yu (bib0230) 2013; 19
Li, Gauthier, Schiff, Sher, Ahn, Field, Greschner, Callaway, Litke, Chichilnisky (bib0115) 2015; 35
Carlson, Vogelstein, Wu, Lian, Zhou, Stoetzner, Kipke, Weber, Dunson, Carin (bib0030) 2013
Tankus (10.1016/j.jneumeth.2016.02.022_bib0205) 2009; 6
Schmitzer-Torbert (10.1016/j.jneumeth.2016.02.022_bib0190) 2005; 131
Lange (10.1016/j.jneumeth.2016.02.022_bib0105) 2004; 16
Marre (10.1016/j.jneumeth.2016.02.022_bib0130) 2012; 32
Hill (10.1016/j.jneumeth.2016.02.022_bib0090) 2011; 31
Franke (10.1016/j.jneumeth.2016.02.022_bib0055) 2010; 29
Neymotin (10.1016/j.jneumeth.2016.02.022_bib0145) 2011; 31
Yu (10.1016/j.jneumeth.2016.02.022_bib0230) 2013; 19
Einevoll (10.1016/j.jneumeth.2016.02.022_bib0035) 2012; 22
Krieger (10.1016/j.jneumeth.2016.02.022_bib0095) 1999; 64
Franke (10.1016/j.jneumeth.2016.02.022_bib0065) 2015; 38
Pillow (10.1016/j.jneumeth.2016.02.022_bib0155) 2013; 8
Ekanadham (10.1016/j.jneumeth.2016.02.022_bib0040) 2013; 222
Buzsáki (10.1016/j.jneumeth.2016.02.022_bib0020) 2012; 13
Rand (10.1016/j.jneumeth.2016.02.022_bib0180) 1971; 66
Fee (10.1016/j.jneumeth.2016.02.022_bib0050) 1996; 69
Arthur (10.1016/j.jneumeth.2016.02.022_bib0005) 2007
Li (10.1016/j.jneumeth.2016.02.022_bib0115) 2015; 35
Camuñas-Mesa (10.1016/j.jneumeth.2016.02.022_bib0025) 2013; 25
von Luxburg (10.1016/j.jneumeth.2016.02.022_bib0210) 2009; 2
Zaki (10.1016/j.jneumeth.2016.02.022_bib0235) 2014
Berdondini (10.1016/j.jneumeth.2016.02.022_bib0010) 2009; 9
Eversmann (10.1016/j.jneumeth.2016.02.022_bib0045) 2003; 38
Litke (10.1016/j.jneumeth.2016.02.022_bib0120) 2004; 51
Franke (10.1016/j.jneumeth.2016.02.022_bib0060) 2015; 114
Rossant (10.1016/j.jneumeth.2016.02.022_bib0185) 2015
(10.1016/j.jneumeth.2016.02.022_bib0150) 2010
Lewicki (10.1016/j.jneumeth.2016.02.022_bib0110) 1998; 9
Takahashi (10.1016/j.jneumeth.2016.02.022_bib0200) 2002; 49
Carlson (10.1016/j.jneumeth.2016.02.022_bib0030) 2013
Quiroga (10.1016/j.jneumeth.2016.02.022_bib0175) 2012; 22
Harris (10.1016/j.jneumeth.2016.02.022_bib0080) 2000; 84
Hagen (10.1016/j.jneumeth.2016.02.022_bib0075) 2015; 245
Wood (10.1016/j.jneumeth.2016.02.022_bib0225) 2008; 173
Moore-Kochlacs (10.1016/j.jneumeth.2016.02.022_bib0135) 2014; 15
Shamir (10.1016/j.jneumeth.2016.02.022_bib0195) 2009
MacKay (10.1016/j.jneumeth.2016.02.022_bib0125) 1998
Watson (10.1016/j.jneumeth.2016.02.022_bib0215) 2015
Prentice (10.1016/j.jneumeth.2016.02.022_bib0165) 2011; 6
Kuhn (10.1016/j.jneumeth.2016.02.022_bib0100) 1955; 2
Gibson (10.1016/j.jneumeth.2016.02.022_bib0070) 2012
Pouzat (10.1016/j.jneumeth.2016.02.022_bib0160) 2002; 122
Quiroga (10.1016/j.jneumeth.2016.02.022_bib0170) 2007; 2
Hennig (10.1016/j.jneumeth.2016.02.022_bib0085) 2007; 52
Blanche (10.1016/j.jneumeth.2016.02.022_bib0015) 2006; 155
Müller (10.1016/j.jneumeth.2016.02.022_bib0140) 2015; 15
Wild (10.1016/j.jneumeth.2016.02.022_bib0220) 2012; 203
References_xml – volume: 173
  start-page: 1
  year: 2008
  end-page: 12
  ident: bib0225
  article-title: A non-parametric Bayesian alternative to spike sorting
  publication-title: J. Neurosci. Methods
– volume: 84
  start-page: 401
  year: 2000
  end-page: 414
  ident: bib0080
  article-title: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements
  publication-title: J. Neurophysiol.
– volume: 38
  start-page: 439
  year: 2015
  end-page: 459
  ident: bib0065
  article-title: Bayes optimal template matching for spike sorting – combining Fisher discriminant analysis with optimal filtering
  publication-title: J. Comput. Neurosci.
– volume: 203
  start-page: 369
  year: 2012
  end-page: 376
  ident: bib0220
  article-title: Performance comparison of extracellular spike sorting algorithms for single-channel recordings
  publication-title: J. Neurosci. Methods
– start-page: 124
  year: 2012 January
  end-page: 143
  ident: bib0070
  article-title: Spike sorting: the first step in decoding the brain
  publication-title: IEEE Signal Proc. Mag.
– volume: 69
  start-page: 175
  year: 1996
  end-page: 188
  ident: bib0050
  article-title: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability
  publication-title: J. Neurosci. Methods
– volume: 9
  start-page: 2644
  year: 2009
  end-page: 2651
  ident: bib0010
  article-title: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks
  publication-title: Lab Chip
– volume: 22
  start-page: R45
  year: 2012
  end-page: R46
  ident: bib0175
  article-title: Spike sorting
  publication-title: Curr. Biol.
– volume: 52
  start-page: 258
  year: 2007
  end-page: 271
  ident: bib0085
  article-title: Cluster-wise assessment of cluster stability
  publication-title: Comput. Stat. Data An.
– year: 2007
  ident: bib0005
  article-title: : the advantages of careful seeding
  publication-title: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms
– year: 2015
  ident: bib0185
  article-title: Spike sorting for large, dense electrode arrays
– volume: 31
  start-page: 16398
  year: 2011
  end-page: 16409
  ident: bib0145
  article-title: Measuring the quality of neuronal identification in ensemble recordings
  publication-title: J. Neurosci.
– year: 2015
  ident: bib0215
  article-title: Personal communication
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  ident: bib0100
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Res. Logist. Quart.
– volume: 155
  start-page: 81
  year: 2006
  end-page: 91
  ident: bib0015
  article-title: Nyquist interpolation improves neuron yield in multiunit recordings
  publication-title: J. Neurosci. Methods
– volume: 35
  start-page: 4663
  year: 2015
  end-page: 4675
  ident: bib0115
  article-title: Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings
  publication-title: J. Neurosci.
– volume: 32
  start-page: 14859
  year: 2012
  end-page: 14873
  ident: bib0130
  article-title: Mapping a complete neural population in the retina
  publication-title: J. Neurosci.
– volume: 15
  start-page: P122
  year: 2014
  ident: bib0135
  article-title: Principles of high-fidelity, high-density 3-d neural recording
  publication-title: BMC Neurosci.
– volume: 6
  start-page: e19884
  year: 2011
  ident: bib0165
  article-title: Fast, scalable, Bayesian spike identification and multi-electrode arrays
  publication-title: PLoS ONE
– volume: 29
  start-page: 127
  year: 2010
  end-page: 148
  ident: bib0055
  article-title: An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes
  publication-title: J. Comput. Neurosci.
– year: 2014
  ident: bib0235
  article-title: Data Mining and Analysis: Fundamental Concepts and Algorithms
– volume: 25
  start-page: 1191
  year: 2013
  end-page: 1212
  ident: bib0025
  article-title: A detailed and fast model of extracellular recordings
  publication-title: Neural Comput.
– volume: 131
  start-page: 1
  year: 2005
  end-page: 11
  ident: bib0190
  article-title: Quantitative measures of cluster quality for use in extracellular recordings
  publication-title: Neuroscience
– year: 2013
  ident: bib0030
  article-title: Multichannel electrophysiology spike sorting via joint dictionary learning & mixture modeling
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: R53
  year: 1998
  end-page: R78
  ident: bib0110
  article-title: A review of methods for spike sorting: the detection and classification of neural action potentials
  publication-title: Netw. Comput. Neural Syst.
– volume: 2
  start-page: 3583
  year: 2007
  ident: bib0170
  article-title: Spike sorting
  publication-title: Scholarpedia
– volume: 38
  start-page: 2306
  year: 2003
  end-page: 2317
  ident: bib0045
  article-title: A 128
  publication-title: IEEE J. Solid-State Circuits
– year: 2010
  ident: bib0150
  publication-title: NIST Handbook of Mathematical Functions
– volume: 222
  start-page: 47
  year: 2013
  end-page: 55
  ident: bib0040
  article-title: A unified framework and method for automatic neural spike identification
  publication-title: J. Neurosci. Methods
– volume: 66
  start-page: 846
  year: 1971
  end-page: 850
  ident: bib0180
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
– start-page: 175
  year: 1998
  end-page: 204
  ident: bib0125
  article-title: Introduction to Monte Carlo methods
  publication-title: Learning in Graphical Models, NATO Science Series
– volume: 2
  start-page: 235
  year: 2009
  end-page: 274
  ident: bib0210
  article-title: Clustering stability: an overview
  publication-title: Found. Trends Mach. Learn.
– volume: 22
  start-page: 11
  year: 2012
  end-page: 17
  ident: bib0035
  article-title: Towards reliable spike-train recordings from thousands of neurons with multielectrodes
  publication-title: Curr. Opin. Neurobiol.
– volume: 122
  start-page: 43
  year: 2002
  end-page: 57
  ident: bib0160
  article-title: Using noise signature to optimize spike-sorting and to assess neuronal classification quality
  publication-title: J. Neurosci. Methods
– volume: 6
  start-page: 056001
  year: 2009
  ident: bib0205
  article-title: An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits
  publication-title: J. Neural. Eng.
– volume: 16
  start-page: 1299
  year: 2004
  end-page: 1323
  ident: bib0105
  article-title: Stability-based validation of clustering solutions
  publication-title: Neural Comput.
– volume: 8
  start-page: e62123
  year: 2013
  ident: bib0155
  article-title: A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings
  publication-title: PLoS ONE
– volume: 51
  start-page: 1434
  year: 2004
  end-page: 1440
  ident: bib0120
  article-title: What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity
  publication-title: IEEE Trans. Nucl. Sci.
– volume: 15
  start-page: 2767
  year: 2015
  end-page: 2780
  ident: bib0140
  article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels
  publication-title: Lab Chip
– volume: 13
  start-page: 407
  year: 2012
  end-page: 420
  ident: bib0020
  article-title: The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
– volume: 114
  start-page: 2535
  year: 2015
  end-page: 2549
  ident: bib0060
  article-title: Spike sorting of synchronous spikes from local neuron ensembles
  publication-title: J. Neurophysiol.
– volume: 64
  start-page: 341
  year: 1999
  end-page: 353
  ident: bib0095
  article-title: A cautionary note on using internal cross validation to select the number of clusters
  publication-title: Psychometrika
– volume: 31
  start-page: 8699
  year: 2011
  end-page: 8705
  ident: bib0090
  article-title: Quality metrics to accompany spike sorting of extracellular signals
  publication-title: J. Neurosci.
– volume: 245
  start-page: 182
  year: 2015
  end-page: 204
  ident: bib0075
  article-title: ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms
  publication-title: J. Neurosci. Methods
– start-page: 1465
  year: 2009
  end-page: 1472
  ident: bib0195
  article-title: On the reliability of clustering stability in the large sample regime. Advances in neural information processing systems (NIPS)
– volume: 49
  start-page: 289
  year: 2002
  end-page: 298
  ident: bib0200
  article-title: Classification of neuronal activities from tetrode recordings using independent component analysis
  publication-title: Neurocomputing
– volume: 19
  start-page: 1484
  year: 2013
  end-page: 1500
  ident: bib0230
  article-title: Stability
  publication-title: Bernoulli
– volume: 38
  start-page: 439
  year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0065
  article-title: Bayes optimal template matching for spike sorting – combining Fisher discriminant analysis with optimal filtering
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-015-0547-7
– volume: 6
  start-page: e19884
  issue: 7
  year: 2011
  ident: 10.1016/j.jneumeth.2016.02.022_bib0165
  article-title: Fast, scalable, Bayesian spike identification and multi-electrode arrays
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019884
– volume: 131
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.jneumeth.2016.02.022_bib0190
  article-title: Quantitative measures of cluster quality for use in extracellular recordings
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.09.066
– start-page: 124
  year: 2012
  ident: 10.1016/j.jneumeth.2016.02.022_bib0070
  article-title: Spike sorting: the first step in decoding the brain
– volume: 22
  start-page: R45
  issue: 2
  year: 2012
  ident: 10.1016/j.jneumeth.2016.02.022_bib0175
  article-title: Spike sorting
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.11.005
– volume: 66
  start-page: 846
  year: 1971
  ident: 10.1016/j.jneumeth.2016.02.022_bib0180
  article-title: Objective criteria for the evaluation of clustering methods
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1971.10482356
– volume: 222
  start-page: 47
  year: 2013
  ident: 10.1016/j.jneumeth.2016.02.022_bib0040
  article-title: A unified framework and method for automatic neural spike identification
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.10.001
– volume: 31
  start-page: 16398
  issue: 45
  year: 2011
  ident: 10.1016/j.jneumeth.2016.02.022_bib0145
  article-title: Measuring the quality of neuronal identification in ensemble recordings
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4053-11.2011
– volume: 155
  start-page: 81
  year: 2006
  ident: 10.1016/j.jneumeth.2016.02.022_bib0015
  article-title: Nyquist interpolation improves neuron yield in multiunit recordings
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.12.031
– volume: 22
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.jneumeth.2016.02.022_bib0035
  article-title: Towards reliable spike-train recordings from thousands of neurons with multielectrodes
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.10.001
– volume: 13
  start-page: 407
  year: 2012
  ident: 10.1016/j.jneumeth.2016.02.022_bib0020
  article-title: The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3241
– year: 2010
  ident: 10.1016/j.jneumeth.2016.02.022_bib0150
– volume: 49
  start-page: 289
  year: 2002
  ident: 10.1016/j.jneumeth.2016.02.022_bib0200
  article-title: Classification of neuronal activities from tetrode recordings using independent component analysis
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00528-3
– volume: 32
  start-page: 14859
  issue: 43
  year: 2012
  ident: 10.1016/j.jneumeth.2016.02.022_bib0130
  article-title: Mapping a complete neural population in the retina
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0723-12.2012
– volume: 69
  start-page: 175
  year: 1996
  ident: 10.1016/j.jneumeth.2016.02.022_bib0050
  article-title: Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(96)00050-7
– volume: 114
  start-page: 2535
  year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0060
  article-title: Spike sorting of synchronous spikes from local neuron ensembles
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00993.2014
– volume: 35
  start-page: 4663
  issue: 11
  year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0115
  article-title: Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3675-14.2015
– volume: 245
  start-page: 182
  year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0075
  article-title: ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.029
– volume: 2
  start-page: 235
  issue: 3
  year: 2009
  ident: 10.1016/j.jneumeth.2016.02.022_bib0210
  article-title: Clustering stability: an overview
  publication-title: Found. Trends Mach. Learn.
– volume: 38
  start-page: 2306
  issue: 12
  year: 2003
  ident: 10.1016/j.jneumeth.2016.02.022_bib0045
  article-title: A 128×128 CMOS biosensor array for extracellular recording of neural activity
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2003.819174
– volume: 29
  start-page: 127
  year: 2010
  ident: 10.1016/j.jneumeth.2016.02.022_bib0055
  article-title: An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-009-0163-5
– volume: 31
  start-page: 8699
  issue: 24
  year: 2011
  ident: 10.1016/j.jneumeth.2016.02.022_bib0090
  article-title: Quality metrics to accompany spike sorting of extracellular signals
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0971-11.2011
– year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0215
– volume: 6
  start-page: 056001
  issue: 5
  year: 2009
  ident: 10.1016/j.jneumeth.2016.02.022_bib0205
  article-title: An automatic measure for classifying clusters of suspected spikes into single cells versus multiunits
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/6/5/056001
– year: 2014
  ident: 10.1016/j.jneumeth.2016.02.022_bib0235
– year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0185
– volume: 19
  start-page: 1484
  year: 2013
  ident: 10.1016/j.jneumeth.2016.02.022_bib0230
  article-title: Stability
  publication-title: Bernoulli
  doi: 10.3150/13-BEJSP14
– volume: 84
  start-page: 401
  year: 2000
  ident: 10.1016/j.jneumeth.2016.02.022_bib0080
  article-title: Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.1.401
– year: 2007
  ident: 10.1016/j.jneumeth.2016.02.022_bib0005
  article-title: k-means++: the advantages of careful seeding
– volume: 25
  start-page: 1191
  year: 2013
  ident: 10.1016/j.jneumeth.2016.02.022_bib0025
  article-title: A detailed and fast model of extracellular recordings
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00433
– volume: 9
  start-page: R53
  year: 1998
  ident: 10.1016/j.jneumeth.2016.02.022_bib0110
  article-title: A review of methods for spike sorting: the detection and classification of neural action potentials
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_9_4_001
– volume: 64
  start-page: 341
  issue: 3
  year: 1999
  ident: 10.1016/j.jneumeth.2016.02.022_bib0095
  article-title: A cautionary note on using internal cross validation to select the number of clusters
  publication-title: Psychometrika
  doi: 10.1007/BF02294300
– volume: 122
  start-page: 43
  year: 2002
  ident: 10.1016/j.jneumeth.2016.02.022_bib0160
  article-title: Using noise signature to optimize spike-sorting and to assess neuronal classification quality
  publication-title: J. Neurosci. Methods
  doi: 10.1016/S0165-0270(02)00276-5
– year: 2013
  ident: 10.1016/j.jneumeth.2016.02.022_bib0030
  article-title: Multichannel electrophysiology spike sorting via joint dictionary learning & mixture modeling
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1465
  year: 2009
  ident: 10.1016/j.jneumeth.2016.02.022_bib0195
– volume: 8
  start-page: e62123
  issue: 5
  year: 2013
  ident: 10.1016/j.jneumeth.2016.02.022_bib0155
  article-title: A model-based spike sorting algorithm for removing correlation artifacts in multi-neuron recordings
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0062123
– volume: 15
  start-page: P122
  issue: Suppl 1
  year: 2014
  ident: 10.1016/j.jneumeth.2016.02.022_bib0135
  article-title: Principles of high-fidelity, high-density 3-d neural recording
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-15-S1-P122
– volume: 2
  start-page: 3583
  issue: 12
  year: 2007
  ident: 10.1016/j.jneumeth.2016.02.022_bib0170
  article-title: Spike sorting
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.3583
– start-page: 175
  year: 1998
  ident: 10.1016/j.jneumeth.2016.02.022_bib0125
  article-title: Introduction to Monte Carlo methods
– volume: 52
  start-page: 258
  issue: 1
  year: 2007
  ident: 10.1016/j.jneumeth.2016.02.022_bib0085
  article-title: Cluster-wise assessment of cluster stability
  publication-title: Comput. Stat. Data An.
  doi: 10.1016/j.csda.2006.11.025
– volume: 51
  start-page: 1434
  issue: 4
  year: 2004
  ident: 10.1016/j.jneumeth.2016.02.022_bib0120
  article-title: What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.832706
– volume: 15
  start-page: 2767
  year: 2015
  ident: 10.1016/j.jneumeth.2016.02.022_bib0140
  article-title: High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels
  publication-title: Lab Chip
  doi: 10.1039/C5LC00133A
– volume: 16
  start-page: 1299
  issue: 6
  year: 2004
  ident: 10.1016/j.jneumeth.2016.02.022_bib0105
  article-title: Stability-based validation of clustering solutions
  publication-title: Neural Comput.
  doi: 10.1162/089976604773717621
– volume: 173
  start-page: 1
  year: 2008
  ident: 10.1016/j.jneumeth.2016.02.022_bib0225
  article-title: A non-parametric Bayesian alternative to spike sorting
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.04.030
– volume: 2
  start-page: 83
  year: 1955
  ident: 10.1016/j.jneumeth.2016.02.022_bib0100
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Res. Logist. Quart.
  doi: 10.1002/nav.3800020109
– volume: 9
  start-page: 2644
  year: 2009
  ident: 10.1016/j.jneumeth.2016.02.022_bib0010
  article-title: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks
  publication-title: Lab Chip
  doi: 10.1039/b907394a
– volume: 203
  start-page: 369
  issue: 2
  year: 2012
  ident: 10.1016/j.jneumeth.2016.02.022_bib0220
  article-title: Performance comparison of extracellular spike sorting algorithms for single-channel recordings
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.10.013
SSID ssj0004906
Score 2.3591328
Snippet •We present per-neuron validation metrics for automatic spike sorting algorithms.•The metrics measure stability under perturbations consistent with those in...
The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike...
Background: The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Algorithms
Animals
Automatic
Electrophysiological Phenomena - physiology
Models, Theoretical
Neurons - physiology
Signal Processing, Computer-Assisted
Spike sorting
Stability
Validation
Title Validation of neural spike sorting algorithms without ground-truth information
URI https://dx.doi.org/10.1016/j.jneumeth.2016.02.022
https://www.ncbi.nlm.nih.gov/pubmed/26930629
https://www.proquest.com/docview/1781533408
https://www.proquest.com/docview/1790974201
Volume 264
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQlapeKgq0XdoiV6p6C-vYjmMfV6hoC2IvLYib5TgO7ALJis0eeum3d8ZJKBwoh0qRoli2ZY0dzxt7Zh4hX0AjKhOcAzNVVYksdJXoSockLVLng3IVi7EwpzM1PZPHF9nFBjkcYmHQrbLf-7s9Pe7Wfcm4l-Z4OZ-Pf2AgDhhV8BIxrQpGsMscWQwOfv9185Am8mtiZbyvZA-ihBcHizqskakZXbxUzN3J-VMK6ikAGhXR0RZ53SNIOukG-YZshHqb7ExqsJ5vf9GvNPp0xsPybfLytL863yGzc0DcHYESbSqKeSyhl9Vyfh3oqsFcApfU3Vw2d_P26nZF8Xy2WbcUoz7qMmnv1u0V7bOsYh-75Ozo28_DadKTKSQeTKg2KYWXFcBB6blBFMGZzCupCifSUnlhvCt10Ex5kwMiEBVjThSF1ypLtRLSibdks27q8J7QLORSBu2E06UMPjNay9SUAC09d5nJRiQbJGh9n2kcCS9u7OBStrCD5C1K3jIODx-R8X27ZZdr49kWZpgg-2jVWFAIz7b9PMyohV8K70lcHZr1yqa5RhQsmf5XHcNAjtDfiLzrlsP9mDnSSypu9v5jdB_IK_zqXCs_kk2Y5vAJ4E9b7Mf1vU9eTL6fTGd_AKTwBOU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIgEXVFoeCwWMhLil69iOYx-rqtUC3b3Qot4sx3HaXdpk1c0euPDb8ThJoYfSA1KkSPFD1tjxfGPPfAPwMWhEqb21wUyVVSIKVSWqUj5Ji9Q6L21FYyzMdCYnp-LLWXa2AQdDLAy6VfZ7f7enx926_zLupTlezufjbxiIE4yq8OKRVuUBPBQZy9EC2_v1x89D6JhgE2vjhSX9K0x4sbeo_RpTNaOPl4zknYzdpaHuQqBREx1twdMeQpL9bpTPYMPX27CzXwfz-eon-USiU2c8Ld-GR9P-7nwHZt8D5O4yKJGmIkhkGXpZLec_PFk1SCZwTuzleXM9by-uVgQPaJt1SzDsoy6T9nrdXpCeZhX7eA6nR4cnB5Okz6aQuGBDtUnJnagCHhSOaYQRjIq8ErKwPC2l49rZUnlFpdN5gAS8otTyonBKZqmSXFj-AjbrpvavgGQ-F8Iry60qhXeZVkqkugzY0jGb6WwE2SBB43qqccx4cWkGn7KFGSRvUPKGsvCwEYxv2i07so17W-hhgsytZWOCRri37YdhRk34p_CixNa-Wa9MmiuEwYKqf9XRNMgx9DeCl91yuBkzw_ySkunX_zG69_B4cjI9NsefZ1_fwBMs6fwsd2EzTLl_G7BQW7yLa_03mmAGeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+neural+spike+sorting+algorithms+without+ground-truth+information&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Barnetta%2C+Alex+H&rft.au=Maglandb%2C+Jeremy+F&rft.au=Greengardc%2C+Leslie+F&rft.date=2016-05-01&rft.issn=0165-0270&rft.volume=264&rft.spage=65&rft.epage=77&rft_id=info:doi/10.1016%2Fj.jneumeth.2016.02.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon