RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics

Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 233; p. 104750
Main Author Attallah, Omneya
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2023
Subjects
Online AccessGet full text
ISSN0169-7439
1873-3239
1873-3239
0169-7439
DOI10.1016/j.chemolab.2022.104750

Cover

Abstract Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy. •The paper proposed an automated tool for COVID-19 diagnosis called RADIC.•RADIC is based on multiple deep learning models.•Instead of directly learning such models via CT and X-Ray images, RADIC uses four radiomics methods to transform these images into textural images.•RADIC combines time-frequency data with information obtained via multiple radiomics to improve diagnostic performance.
AbstractList Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy. •The paper proposed an automated tool for COVID-19 diagnosis called RADIC.•RADIC is based on multiple deep learning models.•Instead of directly learning such models via CT and X-Ray images, RADIC uses four radiomics methods to transform these images into textural images.•RADIC combines time-frequency data with information obtained via multiple radiomics to improve diagnostic performance.
Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.
Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.
ArticleNumber 104750
Author Attallah, Omneya
Author_xml – sequence: 1
  givenname: Omneya
  orcidid: 0000-0002-2657-2264
  surname: Attallah
  fullname: Attallah, Omneya
  email: o.attallah@aast.edu
  organization: Department of Electronics and Communications Engineering, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36619376$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFv1B5ySaDH4k9RggxSimMVKkSKoid5fgx9Sixp3ZSNP-epGl5bcrKuvZ3zpHPPQFHIQYLwBlGS4wwe7Nb6hvbxVY1S4IIGS9LXqFnYIFXnBaUUHEEFiMoCl5ScQxOct6haS7xC3BMGcOCcrYA_sv6fFO_XcM-xha6mKDxahti9mEL66tvm_MCC-hS7OAYmHtYX0MVDPxeJHWAWauQ4XAPG2v3sLUqhWmamNtBmREzPnZe55fguVNttq8ezlPw9eLjdf25uLz6tKnXl4UuEe6LhlnEtHAYC40xJrohzjlONXPGVBWtVMU5YrhBonRcNIitaEMZpyuqjGpKegr47DuEvTr8UG0r98l3Kh0kRnIqT-7kY3lyKk_O5Y3K97NyPzSdNdqGPqnf6qi8_Psl-Bu5jXdSrBAnfDJ4_WCQ4u0wtiU7n7VtWxVsHLIknJEVwZzQET37M-tXyONmRuDdDOgUc07WSe171fs4Rfv26b-wf-T_XcKHWWjHHd15m2TW3gZtjU9W99JE_5TFTxkYzw0
CitedBy_id crossref_primary_10_3390_bioengineering10020203
crossref_primary_10_3390_biomimetics9030188
crossref_primary_10_3390_healthcare11101367
crossref_primary_10_3390_horticulturae9020149
crossref_primary_10_55195_jscai_1467768
crossref_primary_10_3390_diagnostics13081484
crossref_primary_10_1016_j_compbiomed_2024_108798
crossref_primary_10_3390_diagnostics14101017
crossref_primary_10_1038_s41598_024_56820_w
crossref_primary_10_3390_chemosensors11070364
crossref_primary_10_3390_technologies12020017
crossref_primary_10_1007_s11042_024_20392_8
crossref_primary_10_1007_s13755_024_00330_6
crossref_primary_10_1016_j_asoc_2024_112500
crossref_primary_10_3390_app13031916
crossref_primary_10_7717_peerj_cs_2517
crossref_primary_10_23939_ujit2024_01_095
crossref_primary_10_3390_biomimetics8050417
crossref_primary_10_3390_technologies12100190
crossref_primary_10_1007_s12194_024_00803_z
crossref_primary_10_3390_diagnostics13111954
crossref_primary_10_1038_s41598_024_69954_8
crossref_primary_10_1177_20552076231180054
Cites_doi 10.1016/j.bea.2022.100041
10.1016/j.compbiomed.2021.104306
10.1007/s11042-021-11158-7
10.1016/j.ejrad.2020.109272
10.3390/jpm12020309
10.1007/s10916-018-1088-1
10.1016/j.compbiomed.2022.105233
10.3390/ijerph18031117
10.7717/peerj-cs.306
10.3390/diagnostics11112034
10.1016/j.imu.2020.100427
10.1016/j.ijid.2020.04.023
10.1016/j.radi.2022.03.011
10.1016/j.bspc.2021.103182
10.7717/peerj-cs.423
10.1016/j.bspc.2022.104273
10.3389/fninf.2021.663592
10.1007/s13246-020-00865-4
10.1007/s11390-020-0679-8
10.1007/s11042-021-11787-y
10.1109/ACCESS.2018.2890743
10.1007/s00521-020-05636-6
10.3390/s21217286
10.1016/j.envres.2021.111785
10.1016/j.bspc.2021.102622
10.3390/healthcare10020343
10.1155/2022/7672196
10.1186/s40537-019-0197-0
10.1186/s13244-020-00887-2
10.1016/j.patcog.2009.11.001
10.1177/20552076221124432
10.1177/20552076221092543
10.3390/brainsci10110864
10.1080/07391102.2020.1788642
10.1016/j.chemolab.2022.104539
10.3390/s20174952
10.1148/radiol.2020200343
10.3390/tomography8020071
10.1371/journal.pone.0129024
10.1002/ima.22659
10.3390/diagnostics11020359
10.1016/j.bspc.2022.103778
10.1016/j.compbiomed.2022.105213
10.1016/j.chemolab.2022.104534
10.3390/app11199023
10.3390/s21175813
10.1016/j.asoc.2022.109401
10.1148/radiol.2020200230
10.3390/sym12020299
10.7717/peerj-cs.493
10.1016/j.measurement.2021.109185
10.1016/j.protcy.2012.05.036
10.1007/s11548-020-02305-w
10.3390/life12020232
10.1016/j.compbiomed.2022.105210
10.1016/j.compbiomed.2021.104320
10.1016/j.cmpb.2020.105581
10.7717/peerj.10086
10.1016/j.asoc.2020.106885
10.1007/s11042-021-11319-8
10.3390/diagnostics12122926
10.1109/LGRS.2020.3042199
10.1016/j.ipm.2022.103025
10.1016/j.inffus.2022.09.023
10.1002/cpe.5553
10.1016/j.asoc.2021.107102
10.1016/j.neucom.2016.12.038
10.1155/2016/9794723
10.1007/s11042-019-08453-9
10.1016/j.eswa.2022.116942
10.1145/3341095
10.1186/s12890-020-01286-5
10.3390/bios12050299
ContentType Journal Article
Copyright 2023 Elsevier B.V.
2023 Elsevier B.V. All rights reserved.
2023 Elsevier B.V. All rights reserved. 2022
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: 2023 Elsevier B.V. All rights reserved.
– notice: 2023 Elsevier B.V. All rights reserved. 2022
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.chemolab.2022.104750
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
0169-7439
ExternalDocumentID oai:pubmedcentral.nih.gov:9807270
PMC9807270
36619376
10_1016_j_chemolab_2022_104750
S0169743922002611
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
NPM
SSH
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c401t-b6e06c9f119c1112cb2fff73c6fdd5535a577061b094f79b0683b367383adab43
IEDL.DBID .~1
ISSN 0169-7439
1873-3239
IngestDate Sun Oct 26 04:10:14 EDT 2025
Tue Sep 30 17:17:20 EDT 2025
Sat Sep 27 17:03:30 EDT 2025
Mon Jul 21 06:04:19 EDT 2025
Thu Oct 02 04:27:18 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Fri Feb 23 02:37:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
COVID-19
Texture analysis
Convolution neural networks (CNN)
Discrete wavelet transform
Dual-tree complex wavelet transform
Language English
License 2023 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-b6e06c9f119c1112cb2fff73c6fdd5535a577061b094f79b0683b367383adab43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2657-2264
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9807270
PMID 36619376
PQID 2762821723
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_chemolab_2022_104750
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9807270
proquest_miscellaneous_2762821723
pubmed_primary_36619376
crossref_citationtrail_10_1016_j_chemolab_2022_104750
crossref_primary_10_1016_j_chemolab_2022_104750
elsevier_sciencedirect_doi_10_1016_j_chemolab_2022_104750
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationTitleAlternate Chemometr Intell Lab Syst
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Attallah, Ragab (bib13) 2023; 80
Attallah, Aslan, Sabanci (bib18) 2022; 12
Mishra, Majhi, Sa (bib65) 2018
Jalali, Ahmadian, Ahmadian, Hedjam, Khosravi, Nahavandi (bib37) 2022; 201
Kogilavani (bib43) 2022; 2022
Attallah, Ragab, Sharkas (bib52) 2020; 8
Dabbaghchian, Ghaemmaghami, Aghagolzadeh (bib86) 2010; 43
Khan (bib56) 2021; 21
Sundararajan (bib67) 2016
Ming, Noor, Rijal, Kassim, Yunus (bib66) 2018; 10
Hertel, Benlamri (bib25) 2022
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib71) 2017; 234
Haghanifar, Majdabadi, Choi, Deivalakshmi, Ko (bib33) 2022
Ragab, Attallah (bib48) 2020; 6
Zheng, Zhu, Shi, Yang, Shao, Xu (bib91) 2022
Cozzi (bib5) 2020; 132
Singh, Kolekar (bib41) 2022; 81
Attallah, Sharkas (bib15) 2021; vol. 2021
Bhattacharyya, Bhaik, Kumar, Thakur, Sharma, Pachori (bib49) 2022; 71
.
Rousan, Elobeid, Karrar, Khader (bib6) 2020; 20
Sharma, Singh, Koundal (bib60) 2022
Attallah, Sharkas (bib19) 2021; 7
Alafif, Tehame, Bajaba, Barnawi, Zia (bib28) 2021; 18
Singh, Pandey, Babu (bib35) 2021; 33
Vermaak, Nsengiyumva, Luwes (bib69) 2016; 2016
Garbin, Zhu, Marques (bib87) 2020; 79
Silva (bib58) 2020; 20
Shorten, Khoshgoftaar (bib88) 2019; 6
Vaswani (bib96) 2017; 30
Xing, Jia (bib72) 2021; 176
Wang, Lin, Wong (bib93) 2020; 10
Ahmed, Bons (bib80) 2020
Attallah (bib22) 2022
Nasiri, Hasani (bib38) 2022; 28
Arumugam, Sangaiah (bib20) 2020; 32
Soares, Angelov, Biaso, Froes, Abe (bib81) 2020
Attallah, Ai-His (bib14) 2021; 11
Xie, Zhong, Zhao, Zheng, Wang, Liu (bib8) 2020
Attallah (bib21) 2022; 12
Panwar, Gupta, Siddiqui, Morales-Menendez, Bhardwaj, Singh (bib42) 2020
Khan, Shah, Bhat (bib95) 2020; 196
Oğuz, Yağanoğlu (bib44) 2022; 59
van Timmeren, Cester, Tanadini-Lang, Alkadhi, Baessler (bib26) 2020; 11
A. Sharma, K. Singh, and K. Koundal, “Dataset for COVDC-net.” Accessed: January. 4, 2022. [Online]. Available
Zhang (bib45) 2022; 37
Attallah (bib3) 2022
Islam, Shuvo (bib76) 2019
Subathra, Mohammed, Maashi, Garcia-Zapirain, Sairamya, George (bib84) 2020; 20
Anwar, Majid, Qayyum, Awais, Alnowami, Khan (bib70) 2018; 42
Cai, He, Han (bib98) 2008
Raj, Venkateswarlu (bib68) 2012; 4
Umair (bib89) 2021; 21
Attallah, Anwar, Ghanem, Ismail (bib17) 2021; 7
Das (bib55) 2022; 81
Serte, Demirel (bib31) 2021; 132
Domingo (bib1) 2021; 200
Jaiswal, Gianchandani, Singh, Kumar, Kaur (bib40) 2021; 39
Attallah, Abougharbia, Tamazin, Nasser (bib10) 2020; 10
Apostolopoulos, Mpesiana (bib92) 2020; 43
Chung (bib4) 2020; 295
Mohanty, Beberta, Lenka (bib64) 2011; 1
Yang, Wang, Zhang (bib57) 2022; 8
Redmon, Farhadi (bib73) 2018
Aydoğdu, Ekinci (bib85) 2020; 12
Younes, Alameh, Ibrahim, Rizk, Valle (bib97) 2022
Showkat, Qureshi (bib46) 2022; 224
Subramanian, Elharrouss, Al-Maadeed, Chowdhury (bib30) 2022
Howard (bib79) 2017
Alyasseri (bib9) 2021
Le, Hung, Do, Lam, Dang, Huynh (bib27) 2021; 132
Karthikesalingam (bib12) 2015; 10
Shan, Wang (bib77) 2021; 19
Wang (bib2) 2020; 94
Attallah (bib24) 2022; 8
Gouda, Almurafeh, Humayun, Jhanjhi (bib59) 2022; 10
Ahmed, Rao (bib83) 2012
Zhou, Lu, Yang, Qiu, Huo, Dong (bib32) 2021; 98
Attallah (bib39) 2022; 8
Serrano (bib7) 2020; 131
Cengil, Çınar (bib94) 2022; 32
Allioui (bib47) 2022; 12
Kundu, Singh, Ferrara, Ahmadian, Sarkar (bib90) 2022; 81
Attallah, Zaghlool (bib62) 2022; 12
Huang, Liu, Van Der Maaten, Weinberger (bib75) 2017
Sharifrazi (bib34) 2021; 68
Humeau-Heurtier (bib63) 2019; 7
Wang, Zhang (bib78) 2020; 16
Loey, El-Sappagh, Mirjalili (bib36) 2022
Attallah (bib23) 2021; 11
Qi, Brown, Foran, Nosher, Hacihaliloglu (bib54) 2021; 16
Zhang (bib29) 2022; 37
Rehman (bib61) 2021; 11
Aslan, Koca, Kobat, Dogan (bib51) 2022; 224
Bohr, Memarzadeh (bib11) 2020
Attallah, Samir (bib53) 2022
Attallah (bib16) 2021; 15
Ullah, Muhammad, Ding, Palade, Haq, Baik (bib74) 2021; 103
Abdar (bib50) 2022; 90
Ming (10.1016/j.chemolab.2022.104750_bib66) 2018; 10
Panwar (10.1016/j.chemolab.2022.104750_bib42) 2020
Alafif (10.1016/j.chemolab.2022.104750_bib28) 2021; 18
van Timmeren (10.1016/j.chemolab.2022.104750_bib26) 2020; 11
Bhattacharyya (10.1016/j.chemolab.2022.104750_bib49) 2022; 71
Chung (10.1016/j.chemolab.2022.104750_bib4) 2020; 295
Singh (10.1016/j.chemolab.2022.104750_bib35) 2021; 33
Attallah (10.1016/j.chemolab.2022.104750_bib53) 2022
Soares (10.1016/j.chemolab.2022.104750_bib81) 2020
Attallah (10.1016/j.chemolab.2022.104750_bib17) 2021; 7
Liu (10.1016/j.chemolab.2022.104750_bib71) 2017; 234
Raj (10.1016/j.chemolab.2022.104750_bib68) 2012; 4
Cengil (10.1016/j.chemolab.2022.104750_bib94) 2022; 32
Attallah (10.1016/j.chemolab.2022.104750_bib3) 2022
Vaswani (10.1016/j.chemolab.2022.104750_bib96) 2017; 30
Vermaak (10.1016/j.chemolab.2022.104750_bib69) 2016; 2016
Le (10.1016/j.chemolab.2022.104750_bib27) 2021; 132
Karthikesalingam (10.1016/j.chemolab.2022.104750_bib12) 2015; 10
Islam (10.1016/j.chemolab.2022.104750_bib76) 2019
Attallah (10.1016/j.chemolab.2022.104750_bib16) 2021; 15
Attallah (10.1016/j.chemolab.2022.104750_bib21) 2022; 12
Allioui (10.1016/j.chemolab.2022.104750_bib47) 2022; 12
Domingo (10.1016/j.chemolab.2022.104750_bib1) 2021; 200
Das (10.1016/j.chemolab.2022.104750_bib55) 2022; 81
Cai (10.1016/j.chemolab.2022.104750_bib98) 2008
Ahmed (10.1016/j.chemolab.2022.104750_bib80) 2020
Showkat (10.1016/j.chemolab.2022.104750_bib46) 2022; 224
Singh (10.1016/j.chemolab.2022.104750_bib41) 2022; 81
Humeau-Heurtier (10.1016/j.chemolab.2022.104750_bib63) 2019; 7
Attallah (10.1016/j.chemolab.2022.104750_bib13) 2023; 80
Mohanty (10.1016/j.chemolab.2022.104750_bib64) 2011; 1
Howard (10.1016/j.chemolab.2022.104750_bib79) 2017
Attallah (10.1016/j.chemolab.2022.104750_bib23) 2021; 11
Yang (10.1016/j.chemolab.2022.104750_bib57) 2022; 8
Ullah (10.1016/j.chemolab.2022.104750_bib74) 2021; 103
Apostolopoulos (10.1016/j.chemolab.2022.104750_bib92) 2020; 43
Subramanian (10.1016/j.chemolab.2022.104750_bib30) 2022
Attallah (10.1016/j.chemolab.2022.104750_bib39) 2022; 8
Hertel (10.1016/j.chemolab.2022.104750_bib25) 2022
Bohr (10.1016/j.chemolab.2022.104750_bib11) 2020
Redmon (10.1016/j.chemolab.2022.104750_bib73) 2018
Wang (10.1016/j.chemolab.2022.104750_bib93) 2020; 10
Cozzi (10.1016/j.chemolab.2022.104750_bib5) 2020; 132
Garbin (10.1016/j.chemolab.2022.104750_bib87) 2020; 79
Wang (10.1016/j.chemolab.2022.104750_bib78) 2020; 16
Sharma (10.1016/j.chemolab.2022.104750_bib60) 2022
Wang (10.1016/j.chemolab.2022.104750_bib2) 2020; 94
Xie (10.1016/j.chemolab.2022.104750_bib8) 2020
Dabbaghchian (10.1016/j.chemolab.2022.104750_bib86) 2010; 43
Aydoğdu (10.1016/j.chemolab.2022.104750_bib85) 2020; 12
Haghanifar (10.1016/j.chemolab.2022.104750_bib33) 2022
Serte (10.1016/j.chemolab.2022.104750_bib31) 2021; 132
Attallah (10.1016/j.chemolab.2022.104750_bib62) 2022; 12
Attallah (10.1016/j.chemolab.2022.104750_bib10) 2020; 10
Silva (10.1016/j.chemolab.2022.104750_bib58) 2020; 20
Nasiri (10.1016/j.chemolab.2022.104750_bib38) 2022; 28
Zhang (10.1016/j.chemolab.2022.104750_bib45) 2022; 37
Sharifrazi (10.1016/j.chemolab.2022.104750_bib34) 2021; 68
Kundu (10.1016/j.chemolab.2022.104750_bib90) 2022; 81
Zhang (10.1016/j.chemolab.2022.104750_bib29) 2022; 37
10.1016/j.chemolab.2022.104750_bib82
Jalali (10.1016/j.chemolab.2022.104750_bib37) 2022; 201
Arumugam (10.1016/j.chemolab.2022.104750_bib20) 2020; 32
Gouda (10.1016/j.chemolab.2022.104750_bib59) 2022; 10
Shan (10.1016/j.chemolab.2022.104750_bib77) 2021; 19
Attallah (10.1016/j.chemolab.2022.104750_bib24) 2022; 8
Zheng (10.1016/j.chemolab.2022.104750_bib91) 2022
Younes (10.1016/j.chemolab.2022.104750_bib97) 2022
Huang (10.1016/j.chemolab.2022.104750_bib75) 2017
Attallah (10.1016/j.chemolab.2022.104750_bib19) 2021; 7
Shorten (10.1016/j.chemolab.2022.104750_bib88) 2019; 6
Sundararajan (10.1016/j.chemolab.2022.104750_bib67) 2016
Attallah (10.1016/j.chemolab.2022.104750_bib22) 2022
Aslan (10.1016/j.chemolab.2022.104750_bib51) 2022; 224
Kogilavani (10.1016/j.chemolab.2022.104750_bib43) 2022; 2022
Attallah (10.1016/j.chemolab.2022.104750_bib18) 2022; 12
Subathra (10.1016/j.chemolab.2022.104750_bib84) 2020; 20
Attallah (10.1016/j.chemolab.2022.104750_bib52) 2020; 8
Mishra (10.1016/j.chemolab.2022.104750_bib65) 2018
Anwar (10.1016/j.chemolab.2022.104750_bib70) 2018; 42
Loey (10.1016/j.chemolab.2022.104750_bib36) 2022
Ahmed (10.1016/j.chemolab.2022.104750_bib83) 2012
Rehman (10.1016/j.chemolab.2022.104750_bib61) 2021; 11
Khan (10.1016/j.chemolab.2022.104750_bib56) 2021; 21
Attallah (10.1016/j.chemolab.2022.104750_bib14) 2021; 11
Jaiswal (10.1016/j.chemolab.2022.104750_bib40) 2021; 39
Serrano (10.1016/j.chemolab.2022.104750_bib7) 2020; 131
Alyasseri (10.1016/j.chemolab.2022.104750_bib9) 2021
Attallah (10.1016/j.chemolab.2022.104750_bib15) 2021; vol. 2021
Oğuz (10.1016/j.chemolab.2022.104750_bib44) 2022; 59
Zhou (10.1016/j.chemolab.2022.104750_bib32) 2021; 98
Rousan (10.1016/j.chemolab.2022.104750_bib6) 2020; 20
Umair (10.1016/j.chemolab.2022.104750_bib89) 2021; 21
Xing (10.1016/j.chemolab.2022.104750_bib72) 2021; 176
Khan (10.1016/j.chemolab.2022.104750_bib95) 2020; 196
Ragab (10.1016/j.chemolab.2022.104750_bib48) 2020; 6
Abdar (10.1016/j.chemolab.2022.104750_bib50) 2022; 90
Qi (10.1016/j.chemolab.2022.104750_bib54) 2021; 16
References_xml – volume: 8
  year: 2020
  ident: bib52
  article-title: MULTI-DEEP: a novel CAD system for coronavirus (COVID-19) diagnosis from CT images using multiple convolution neural networks
  publication-title: PeerJ
– year: 2012
  ident: bib83
  article-title: Orthogonal Transforms for Digital Signal Processing
– volume: 10
  year: 2015
  ident: bib12
  article-title: An artificial neural network stratifies the risks of Reintervention and mortality after endovascular aneurysm repair; a retrospective observational study
  publication-title: PLoS One
– volume: 2016
  year: 2016
  ident: bib69
  article-title: Using the dual-tree complex wavelet transform for improved fabric defect detection
  publication-title: J. Sens.
– volume: 7
  start-page: e423
  year: 2021
  ident: bib19
  article-title: GASTRO-CADx: a three stages framework for diagnosing gastrointestinal diseases
  publication-title: PeerJ Computer Science
– volume: 132
  year: 2021
  ident: bib31
  article-title: Deep learning for diagnosis of COVID-19 using 3D CT scans
  publication-title: Comput. Biol. Med.
– volume: 15
  year: 2021
  ident: bib16
  article-title: CoMB-deep: composite deep learning-based pipeline for classifying childhood medulloblastoma and its classes
  publication-title: Front. Neuroinf.
– start-page: 399
  year: 2018
  end-page: 407
  ident: bib65
  article-title: Glrlm-based feature extraction for acute lymphoblastic leukemia (all) detection
  publication-title: Recent Findings in Intelligent Computing Techniques
– volume: 132
  year: 2021
  ident: bib27
  article-title: Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI
  publication-title: Comput. Biol. Med.
– volume: 42
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib70
  article-title: Medical image analysis using convolutional neural networks: a review
  publication-title: J. Med. Syst.
– volume: 79
  start-page: 12777
  year: 2020
  end-page: 12815
  ident: bib87
  article-title: Dropout vs. batch normalization: an empirical study of their impact to deep learning
  publication-title: Multimed. Tool. Appl.
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib75
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 299
  year: 2020
  ident: bib85
  article-title: An approach for streaming data feature extraction based on discrete cosine transform and particle swarm optimization
  publication-title: Symmetry
– volume: 11
  start-page: 2034
  year: 2021
  ident: bib23
  article-title: DIAROP: automated deep learning-based diagnostic tool for retinopathy of prematurity
  publication-title: Diagnostics
– volume: 59
  year: 2022
  ident: bib44
  article-title: Detection of COVID-19 using deep learning techniques and classification methods
  publication-title: Inf. Process. Manag.
– volume: 37
  start-page: 330
  year: 2022
  end-page: 343
  ident: bib45
  article-title: Diagnosis of COVID-19 pneumonia via a novel deep learning architecture
  publication-title: J. Comput. Sci. Technol.
– volume: 20
  start-page: 4952
  year: 2020
  ident: bib84
  article-title: Detection of focal and non-focal electroencephalogram signals using fast walsh-hadamard transform and artificial neural network
  publication-title: Sensors
– start-page: 44
  year: 2020
  end-page: 48
  ident: bib80
  article-title: Edge computed NILM: a phone-based implementation using MobileNet compressed by tensorflow lite
  publication-title: Proceedings of the 5th International Workshop on Non-intrusive Load Monitoring
– year: 2020
  ident: bib42
  article-title: A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-scan images
  publication-title: Chaos, Solit. Fractals
– volume: 7
  start-page: 8975
  year: 2019
  end-page: 9000
  ident: bib63
  article-title: Texture feature extraction methods: a survey
  publication-title: IEEE Access
– year: 2022
  ident: bib53
  article-title: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices
  publication-title: Appl. Soft Comput.
– volume: 71
  year: 2022
  ident: bib49
  article-title: A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images
  publication-title: Biomed. Signal Process Control
– volume: 4
  start-page: 238
  year: 2012
  end-page: 244
  ident: bib68
  article-title: Denoising of medical images using dual tree complex wavelet transform
  publication-title: Procedia Technology
– year: 2021
  ident: bib9
  article-title: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
  publication-title: Expet Syst.
– year: 2020
  ident: bib81
  article-title: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification
  publication-title: medRxiv
– volume: 90
  start-page: 364
  year: 2022
  end-page: 381
  ident: bib50
  article-title: UncertaintyFuseNet: robust uncertainty-aware hierarchical feature fusion model with ensemble Monte Carlo dropout for COVID-19 detection
  publication-title: Inf. Fusion
– year: 2022
  ident: bib25
  article-title: A deep learning segmentation-classification pipeline for x-ray-based covid-19 diagnosis
  publication-title: Biomedical Engineering Advances
– volume: 11
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib26
  article-title: Radiomics in medical imaging—‘how-to’ guide and critical reflection
  publication-title: Insights into imaging
– volume: 18
  start-page: 1117
  year: 2021
  ident: bib28
  article-title: Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 20
  year: 2020
  ident: bib58
  article-title: COVID-19 detection in CT images with deep learning: a voting-based scheme and cross-datasets analysis
  publication-title: Inform. Med. Unlocked
– volume: 81
  start-page: 3
  year: 2022
  end-page: 30
  ident: bib41
  article-title: Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform
  publication-title: Multimed. Tool. Appl.
– volume: 295
  start-page: 202
  year: 2020
  end-page: 207
  ident: bib4
  article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV)
  publication-title: Radiology
– volume: 176
  year: 2021
  ident: bib72
  article-title: A convolutional neural network-based method for workpiece surface defect detection
  publication-title: Measurement
– volume: 94
  start-page: 107
  year: 2020
  end-page: 109
  ident: bib2
  article-title: Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously
  publication-title: Int. J. Infect. Dis.
– volume: 131
  year: 2020
  ident: bib7
  article-title: Pediatric chest x-ray in covid-19 infection
  publication-title: Eur. J. Radiol.
– year: 2020
  ident: bib8
  article-title: Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing
  publication-title: Radiology
– volume: 81
  start-page: 31
  year: 2022
  end-page: 50
  ident: bib90
  article-title: ET-NET: an ensemble of transfer learning models for prediction of COVID-19 infection through chest CT-scan images
  publication-title: Multimed. Tool. Appl.
– start-page: 1
  year: 2022
  end-page: 16
  ident: bib91
  article-title: MA-Net: mutex attention network for COVID-19 diagnosis on CT images
  publication-title: Appl. Intell.
– volume: 12
  start-page: 2926
  year: 2022
  ident: bib18
  article-title: A framework for lung and colon cancer diagnosis via lightweight deep learning models and transformation methods
  publication-title: Diagnostics
– volume: 12
  start-page: 232
  year: 2022
  ident: bib62
  article-title: AI-based pipeline for classifying pediatric medulloblastoma using histopathological and textural images
  publication-title: Life
– volume: 98
  year: 2021
  ident: bib32
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Appl. Soft Comput.
– year: 2022
  ident: bib30
  article-title: A review of deep learning-based detection methods for COVID-19
  publication-title: Comput. Biol. Med.
– volume: 68
  year: 2021
  ident: bib34
  article-title: Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images
  publication-title: Biomed. Signal Process Control
– volume: 103
  year: 2021
  ident: bib74
  article-title: Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications
  publication-title: Appl. Soft Comput.
– volume: 201
  year: 2022
  ident: bib37
  article-title: X-ray image based COVID-19 detection using evolutionary deep learning approach
  publication-title: Expert Syst. Appl.
– year: 2022
  ident: bib36
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Comput. Biol. Med.
– volume: 12
  start-page: 309
  year: 2022
  ident: bib47
  article-title: A multi-agent deep reinforcement learning approach for enhancement of COVID-19 CT image segmentation
  publication-title: J. Personalized Med.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: bib88
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of Big Data
– volume: 1
  start-page: 687
  year: 2011
  end-page: 693
  ident: bib64
  article-title: Classifying benign and malignant mass using GLCM and GLRLM based texture features from mammogram
  publication-title: Int. J. Eng. Res. Afr.
– volume: 80
  year: 2023
  ident: bib13
  article-title: Auto-MyIn: automatic diagnosis of myocardial infarction via multiple GLCMs, CNNs, and SVMs
  publication-title: Biomed. Signal Process Control
– volume: 33
  start-page: 8871
  year: 2021
  end-page: 8892
  ident: bib35
  article-title: COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays
  publication-title: Neural Comput. Appl.
– volume: 200
  year: 2021
  ident: bib1
  article-title: What we know and what we need to know about the origin of SARS-CoV-2
  publication-title: Environ. Res.
– volume: 10
  year: 2018
  ident: bib66
  article-title: Lung disease classification using GLCM and deep features from different deep learning architectures with principal component analysis
  publication-title: International Journal of Integrated Engineering
– volume: 11
  start-page: 9023
  year: 2021
  ident: bib61
  article-title: A self-activated cnn approach for multi-class chest-related COVID-19 detection
  publication-title: Appl. Sci.
– volume: 6
  start-page: e306
  year: 2020
  ident: bib48
  article-title: FUSI-CAD: coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features
  publication-title: PeerJ Computer Science
– volume: 8
  year: 2022
  ident: bib24
  article-title: A deep learning-based diagnostic tool for identifying various diseases via facial images
  publication-title: Digital Health
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  ident: bib77
  article-title: DenseNet-based land cover classification network with deep fusion
  publication-title: Geosci. Rem. Sens. Lett. IEEE
– volume: 16
  start-page: 1
  year: 2020
  end-page: 19
  ident: bib78
  article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification
  publication-title: ACM Trans. Multimed Comput. Commun. Appl
– start-page: 209
  year: 2008
  end-page: 217
  ident: bib98
  article-title: Training linear discriminant analysis in linear time
  publication-title: 2008 IEEE 24th International Conference on Data Engineering
– year: 2017
  ident: bib79
  article-title: Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications
– volume: 12
  start-page: 299
  year: 2022
  ident: bib21
  article-title: An intelligent ECG-based tool for diagnosing COVID-19 via ensemble deep learning techniques
  publication-title: Biosensors
– volume: 16
  start-page: 197
  year: 2021
  end-page: 206
  ident: bib54
  article-title: Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib93
  article-title: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images
  publication-title: Sci. Rep.
– volume: 7
  start-page: e493
  year: 2021
  ident: bib17
  article-title: Histo-CADx: duo cascaded fusion stages for breast cancer diagnosis from histopathological images
  publication-title: PeerJ Computer Science
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: bib71
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– start-page: 25
  year: 2022
  end-page: 33
  ident: bib22
  article-title: Deep learning-based CAD system for COVID-19 diagnosis via spectral-temporal images
  publication-title: 2022 the 12th International Conference on Information Communication and Management
– volume: 32
  start-page: e5553
  year: 2020
  ident: bib20
  article-title: Arrhythmia identification and classification using wavelet centered methodology in ECG signals
  publication-title: Concurrency Comput. Pract. Ex.
– volume: vol. 2021
  year: 2021
  ident: bib15
  publication-title: Intelligent Dermatologist Tool for Classifying Multiple Skin Cancer Subtypes by Incorporating Manifold Radiomics Features Categories
– year: 2022
  ident: bib3
  article-title: ECG-BiCoNet: an ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration
  publication-title: Comput. Biol. Med.
– volume: 30
  year: 2017
  ident: bib96
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 196
  year: 2020
  ident: bib95
  article-title: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
  publication-title: Comput. Methods Progr. Biomed.
– volume: 28
  start-page: 732
  year: 2022
  end-page: 738
  ident: bib38
  article-title: Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost
  publication-title: Radiography
– volume: 21
  start-page: 5813
  year: 2021
  ident: bib89
  article-title: Detection of COVID-19 using transfer learning and grad-CAM visualization on indigenously collected X-ray dataset
  publication-title: Sensors
– volume: 81
  start-page: 5407
  year: 2022
  end-page: 5441
  ident: bib55
  article-title: Adaptive UNet-based lung segmentation and ensemble learning with CNN-based deep features for automated COVID-19 diagnosis
  publication-title: Multimed. Tool. Appl.
– start-page: 113
  year: 2022
  end-page: 138
  ident: bib97
  article-title: Efficient algorithms for embedded tactile data processing
  publication-title: Electronic Skin
– volume: 224
  year: 2022
  ident: bib46
  article-title: Efficacy of transfer learning-based ResNet models in chest X-ray image classification for detecting COVID-19 pneumonia
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 8
  start-page: 869
  year: 2022
  end-page: 890
  ident: bib57
  article-title: Ednc: ensemble deep neural network for covid-19 recognition
  publication-title: Tomography
– volume: 11
  start-page: 359
  year: 2021
  end-page: 384
  ident: bib14
  article-title: Histopathological diagnosis of pediatric medulloblastoma and its subtypes via AI
  publication-title: Diagnostics
– volume: 43
  start-page: 1431
  year: 2010
  end-page: 1440
  ident: bib86
  article-title: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology
  publication-title: Pattern Recogn.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 9
  ident: bib6
  article-title: Chest x-ray findings and temporal lung changes in patients with COVID-19 pneumonia
  publication-title: BMC Pulm. Med.
– volume: 8
  year: 2022
  ident: bib39
  article-title: A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images
  publication-title: Digital Health
– volume: 132
  year: 2020
  ident: bib5
  article-title: Chest x-ray in the COVID-19 pandemic: radiologists' real-world reader performance
  publication-title: Eur. J. Radiol.
– start-page: 25
  year: 2020
  end-page: 60
  ident: bib11
  article-title: The rise of artificial intelligence in healthcare applications
  publication-title: Artificial Intelligence in Healthcare
– start-page: 149
  year: 2019
  end-page: 154
  ident: bib76
  article-title: DenseNet based speech imagery EEG signal classification using gramian angular field
  publication-title: 2019 5th International Conference on Advances in Electrical Engineering
– volume: 37
  start-page: 330
  year: 2022
  end-page: 343
  ident: bib29
  article-title: Diagnosis of COVID-19 pneumonia via a novel deep learning architecture
  publication-title: J. Comput. Sci. Technol.
– volume: 10
  start-page: 343
  year: 2022
  ident: bib59
  article-title: Detection of COVID-19 based on chest X-rays using deep learning
  publication-title: Healthcare
– year: 2018
  ident: bib73
  article-title: Yolov3: an Incremental Improvement
– volume: 43
  start-page: 635
  year: 2020
  end-page: 640
  ident: bib92
  article-title: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Physical and engineering sciences in medicine
– year: 2016
  ident: bib67
  article-title: Discrete Wavelet Transform: a Signal Processing Approach
– volume: 2022
  year: 2022
  ident: bib43
  article-title: COVID-19 detection based on lung CT scan using deep learning techniques
  publication-title: Comput. Math. Methods Med.
– volume: 10
  start-page: 864
  year: 2020
  end-page: 888
  ident: bib10
  article-title: A BCI system based on motor imagery for assisting people with motor deficiencies in the limbs
  publication-title: Brain Sci.
– reference: A. Sharma, K. Singh, and K. Koundal, “Dataset for COVDC-net.” Accessed: January. 4, 2022. [Online]. Available:
– start-page: 1
  year: 2022
  end-page: 31
  ident: bib33
  article-title: Covid-cxnet: detecting covid-19 in frontal chest x-ray images using deep learning
  publication-title: Multimed. Tool. Appl.
– volume: 32
  start-page: 26
  year: 2022
  end-page: 40
  ident: bib94
  article-title: The effect of deep feature concatenation in the classification problem: an approach on COVID-19 disease detection
  publication-title: Int. J. Imag. Syst. Technol.
– volume: 224
  year: 2022
  ident: bib51
  article-title: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2022
  ident: bib60
  article-title: A novel fusion based convolutional neural network approach for classification of COVID-19 from chest X-ray images
  publication-title: Biomed. Signal Process Control
– reference: .
– volume: 39
  start-page: 5682
  year: 2021
  end-page: 5689
  ident: bib40
  article-title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning
  publication-title: J. Biomol. Struct. Dyn.
– volume: 21
  start-page: 7286
  year: 2021
  ident: bib56
  article-title: COVID-19 case recognition from chest CT images by deep learning, entropy-controlled firefly optimization, and parallel feature fusion
  publication-title: Sensors
– volume: 1
  start-page: 687
  issue: 3
  year: 2011
  ident: 10.1016/j.chemolab.2022.104750_bib64
  article-title: Classifying benign and malignant mass using GLCM and GLRLM based texture features from mammogram
  publication-title: Int. J. Eng. Res. Afr.
– year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib25
  article-title: A deep learning segmentation-classification pipeline for x-ray-based covid-19 diagnosis
  publication-title: Biomedical Engineering Advances
  doi: 10.1016/j.bea.2022.100041
– year: 2016
  ident: 10.1016/j.chemolab.2022.104750_bib67
– volume: 132
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib31
  article-title: Deep learning for diagnosis of COVID-19 using 3D CT scans
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104306
– volume: 81
  start-page: 3
  issue: 1
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib41
  article-title: Deep learning empowered COVID-19 diagnosis using chest CT scan images for collaborative edge-cloud computing platform
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-021-11158-7
– volume: 132
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib5
  article-title: Chest x-ray in the COVID-19 pandemic: radiologists' real-world reader performance
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109272
– volume: 12
  start-page: 309
  issue: 2
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib47
  article-title: A multi-agent deep reinforcement learning approach for enhancement of COVID-19 CT image segmentation
  publication-title: J. Personalized Med.
  doi: 10.3390/jpm12020309
– year: 2018
  ident: 10.1016/j.chemolab.2022.104750_bib73
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  ident: 10.1016/j.chemolab.2022.104750_bib70
  article-title: Medical image analysis using convolutional neural networks: a review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1088-1
– ident: 10.1016/j.chemolab.2022.104750_bib82
– volume: vol. 2021
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib15
– start-page: 1
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib91
  article-title: MA-Net: mutex attention network for COVID-19 diagnosis on CT images
  publication-title: Appl. Intell.
– year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib30
  article-title: A review of deep learning-based detection methods for COVID-19
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105233
– volume: 18
  start-page: 1117
  issue: 3
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib28
  article-title: Machine and deep learning towards COVID-19 diagnosis and treatment: survey, challenges, and future directions
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph18031117
– volume: 6
  start-page: e306
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib48
  article-title: FUSI-CAD: coronavirus (COVID-19) diagnosis based on the fusion of CNNs and handcrafted features
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.306
– year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib81
  article-title: SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification
  publication-title: medRxiv
– volume: 11
  start-page: 2034
  issue: 11
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib23
  article-title: DIAROP: automated deep learning-based diagnostic tool for retinopathy of prematurity
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11112034
– volume: 20
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib58
  article-title: COVID-19 detection in CT images with deep learning: a voting-based scheme and cross-datasets analysis
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100427
– start-page: 4700
  year: 2017
  ident: 10.1016/j.chemolab.2022.104750_bib75
  article-title: Densely connected convolutional networks
– year: 2017
  ident: 10.1016/j.chemolab.2022.104750_bib79
– volume: 94
  start-page: 107
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib2
  article-title: Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.04.023
– volume: 28
  start-page: 732
  issue: 3
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib38
  article-title: Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost
  publication-title: Radiography
  doi: 10.1016/j.radi.2022.03.011
– year: 2012
  ident: 10.1016/j.chemolab.2022.104750_bib83
– volume: 71
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib49
  article-title: A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.103182
– volume: 7
  start-page: e423
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib19
  article-title: GASTRO-CADx: a three stages framework for diagnosing gastrointestinal diseases
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.423
– volume: 80
  year: 2023
  ident: 10.1016/j.chemolab.2022.104750_bib13
  article-title: Auto-MyIn: automatic diagnosis of myocardial infarction via multiple GLCMs, CNNs, and SVMs
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2022.104273
– volume: 15
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib16
  article-title: CoMB-deep: composite deep learning-based pipeline for classifying childhood medulloblastoma and its classes
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2021.663592
– volume: 43
  start-page: 635
  issue: 2
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib92
  article-title: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Physical and engineering sciences in medicine
  doi: 10.1007/s13246-020-00865-4
– volume: 37
  start-page: 330
  issue: 2
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib29
  article-title: Diagnosis of COVID-19 pneumonia via a novel deep learning architecture
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-020-0679-8
– year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib9
  article-title: Review on COVID-19 diagnosis models based on machine learning and deep learning approaches
  publication-title: Expet Syst.
– volume: 81
  start-page: 5407
  issue: 4
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib55
  article-title: Adaptive UNet-based lung segmentation and ensemble learning with CNN-based deep features for automated COVID-19 diagnosis
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-021-11787-y
– volume: 7
  start-page: 8975
  year: 2019
  ident: 10.1016/j.chemolab.2022.104750_bib63
  article-title: Texture feature extraction methods: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890743
– volume: 33
  start-page: 8871
  issue: 14
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib35
  article-title: COVIDScreen: explainable deep learning framework for differential diagnosis of COVID-19 using chest X-rays
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05636-6
– volume: 21
  start-page: 7286
  issue: 21
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib56
  article-title: COVID-19 case recognition from chest CT images by deep learning, entropy-controlled firefly optimization, and parallel feature fusion
  publication-title: Sensors
  doi: 10.3390/s21217286
– volume: 200
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib1
  article-title: What we know and what we need to know about the origin of SARS-CoV-2
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111785
– volume: 68
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib34
  article-title: Fusion of convolution neural network, support vector machine and Sobel filter for accurate detection of COVID-19 patients using X-ray images
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102622
– volume: 10
  start-page: 343
  issue: 2
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib59
  article-title: Detection of COVID-19 based on chest X-rays using deep learning
  publication-title: Healthcare
  doi: 10.3390/healthcare10020343
– volume: 2022
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib43
  article-title: COVID-19 detection based on lung CT scan using deep learning techniques
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2022/7672196
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.chemolab.2022.104750_bib88
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib26
  article-title: Radiomics in medical imaging—‘how-to’ guide and critical reflection
  publication-title: Insights into imaging
  doi: 10.1186/s13244-020-00887-2
– volume: 43
  start-page: 1431
  issue: 4
  year: 2010
  ident: 10.1016/j.chemolab.2022.104750_bib86
  article-title: Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.11.001
– start-page: 1
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib33
  article-title: Covid-cxnet: detecting covid-19 in frontal chest x-ray images using deep learning
  publication-title: Multimed. Tool. Appl.
– volume: 8
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib24
  article-title: A deep learning-based diagnostic tool for identifying various diseases via facial images
  publication-title: Digital Health
  doi: 10.1177/20552076221124432
– volume: 8
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib39
  article-title: A computer-aided diagnostic framework for coronavirus diagnosis using texture-based radiomics images
  publication-title: Digital Health
  doi: 10.1177/20552076221092543
– volume: 10
  start-page: 864
  issue: 11
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib10
  article-title: A BCI system based on motor imagery for assisting people with motor deficiencies in the limbs
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10110864
– volume: 39
  start-page: 5682
  issue: 15
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib40
  article-title: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2020.1788642
– start-page: 113
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib97
  article-title: Efficient algorithms for embedded tactile data processing
– volume: 224
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib51
  article-title: Multi-classification deep CNN model for diagnosing COVID-19 using iterative neighborhood component analysis and iterative ReliefF feature selection techniques with X-ray images
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104539
– volume: 20
  start-page: 4952
  issue: 17
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib84
  article-title: Detection of focal and non-focal electroencephalogram signals using fast walsh-hadamard transform and artificial neural network
  publication-title: Sensors
  doi: 10.3390/s20174952
– year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib8
  article-title: Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– volume: 8
  start-page: 869
  issue: 2
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib57
  article-title: Ednc: ensemble deep neural network for covid-19 recognition
  publication-title: Tomography
  doi: 10.3390/tomography8020071
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.chemolab.2022.104750_bib12
  article-title: An artificial neural network stratifies the risks of Reintervention and mortality after endovascular aneurysm repair; a retrospective observational study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129024
– volume: 30
  year: 2017
  ident: 10.1016/j.chemolab.2022.104750_bib96
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 32
  start-page: 26
  issue: 1
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib94
  article-title: The effect of deep feature concatenation in the classification problem: an approach on COVID-19 disease detection
  publication-title: Int. J. Imag. Syst. Technol.
  doi: 10.1002/ima.22659
– volume: 11
  start-page: 359
  issue: 2
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib14
  article-title: Histopathological diagnosis of pediatric medulloblastoma and its subtypes via AI
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11020359
– year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib60
  article-title: A novel fusion based convolutional neural network approach for classification of COVID-19 from chest X-ray images
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2022.103778
– year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib36
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105213
– volume: 224
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib46
  article-title: Efficacy of transfer learning-based ResNet models in chest X-ray image classification for detecting COVID-19 pneumonia
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2022.104534
– volume: 11
  start-page: 9023
  issue: 19
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib61
  article-title: A self-activated cnn approach for multi-class chest-related COVID-19 detection
  publication-title: Appl. Sci.
  doi: 10.3390/app11199023
– volume: 21
  start-page: 5813
  issue: 17
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib89
  article-title: Detection of COVID-19 using transfer learning and grad-CAM visualization on indigenously collected X-ray dataset
  publication-title: Sensors
  doi: 10.3390/s21175813
– year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib42
  article-title: A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-scan images
  publication-title: Chaos, Solit. Fractals
– year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib53
  article-title: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109401
– volume: 295
  start-page: 202
  issue: 1
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib4
  article-title: CT imaging features of 2019 novel coronavirus (2019-nCoV)
  publication-title: Radiology
  doi: 10.1148/radiol.2020200230
– volume: 12
  start-page: 299
  issue: 2
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib85
  article-title: An approach for streaming data feature extraction based on discrete cosine transform and particle swarm optimization
  publication-title: Symmetry
  doi: 10.3390/sym12020299
– volume: 7
  start-page: e493
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib17
  article-title: Histo-CADx: duo cascaded fusion stages for breast cancer diagnosis from histopathological images
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.493
– start-page: 44
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib80
  article-title: Edge computed NILM: a phone-based implementation using MobileNet compressed by tensorflow lite
– volume: 176
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib72
  article-title: A convolutional neural network-based method for workpiece surface defect detection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109185
– volume: 4
  start-page: 238
  year: 2012
  ident: 10.1016/j.chemolab.2022.104750_bib68
  article-title: Denoising of medical images using dual tree complex wavelet transform
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2012.05.036
– volume: 16
  start-page: 197
  issue: 2
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib54
  article-title: Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02305-w
– volume: 12
  start-page: 232
  issue: 2
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib62
  article-title: AI-based pipeline for classifying pediatric medulloblastoma using histopathological and textural images
  publication-title: Life
  doi: 10.3390/life12020232
– start-page: 399
  year: 2018
  ident: 10.1016/j.chemolab.2022.104750_bib65
  article-title: Glrlm-based feature extraction for acute lymphoblastic leukemia (all) detection
– start-page: 149
  year: 2019
  ident: 10.1016/j.chemolab.2022.104750_bib76
  article-title: DenseNet based speech imagery EEG signal classification using gramian angular field
– year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib3
  article-title: ECG-BiCoNet: an ECG-based pipeline for COVID-19 diagnosis using Bi-Layers of deep features integration
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105210
– start-page: 25
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib11
  article-title: The rise of artificial intelligence in healthcare applications
– volume: 10
  issue: 7
  year: 2018
  ident: 10.1016/j.chemolab.2022.104750_bib66
  article-title: Lung disease classification using GLCM and deep features from different deep learning architectures with principal component analysis
  publication-title: International Journal of Integrated Engineering
– volume: 132
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib27
  article-title: Radiomics-based machine learning model for efficiently classifying transcriptome subtypes in glioblastoma patients from MRI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104320
– volume: 196
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib95
  article-title: CoroNet: a deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105581
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib93
  article-title: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images
  publication-title: Sci. Rep.
– volume: 8
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib52
  article-title: MULTI-DEEP: a novel CAD system for coronavirus (COVID-19) diagnosis from CT images using multiple convolution neural networks
  publication-title: PeerJ
  doi: 10.7717/peerj.10086
– volume: 98
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib32
  article-title: The ensemble deep learning model for novel COVID-19 on CT images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106885
– volume: 81
  start-page: 31
  issue: 1
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib90
  article-title: ET-NET: an ensemble of transfer learning models for prediction of COVID-19 infection through chest CT-scan images
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-021-11319-8
– volume: 12
  start-page: 2926
  issue: 12
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib18
  article-title: A framework for lung and colon cancer diagnosis via lightweight deep learning models and transformation methods
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12122926
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib77
  article-title: DenseNet-based land cover classification network with deep fusion
  publication-title: Geosci. Rem. Sens. Lett. IEEE
  doi: 10.1109/LGRS.2020.3042199
– volume: 59
  issue: 5
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib44
  article-title: Detection of COVID-19 using deep learning techniques and classification methods
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2022.103025
– volume: 90
  start-page: 364
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib50
  article-title: UncertaintyFuseNet: robust uncertainty-aware hierarchical feature fusion model with ensemble Monte Carlo dropout for COVID-19 detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.09.023
– volume: 32
  start-page: e5553
  issue: 17
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib20
  article-title: Arrhythmia identification and classification using wavelet centered methodology in ECG signals
  publication-title: Concurrency Comput. Pract. Ex.
  doi: 10.1002/cpe.5553
– volume: 131
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib7
  article-title: Pediatric chest x-ray in covid-19 infection
  publication-title: Eur. J. Radiol.
– volume: 103
  year: 2021
  ident: 10.1016/j.chemolab.2022.104750_bib74
  article-title: Efficient activity recognition using lightweight CNN and DS-GRU network for surveillance applications
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107102
– start-page: 25
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib22
  article-title: Deep learning-based CAD system for COVID-19 diagnosis via spectral-temporal images
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.chemolab.2022.104750_bib71
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 37
  start-page: 330
  issue: 2
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib45
  article-title: Diagnosis of COVID-19 pneumonia via a novel deep learning architecture
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-020-0679-8
– volume: 2016
  year: 2016
  ident: 10.1016/j.chemolab.2022.104750_bib69
  article-title: Using the dual-tree complex wavelet transform for improved fabric defect detection
  publication-title: J. Sens.
  doi: 10.1155/2016/9794723
– volume: 79
  start-page: 12777
  issue: 19
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib87
  article-title: Dropout vs. batch normalization: an empirical study of their impact to deep learning
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-019-08453-9
– start-page: 209
  year: 2008
  ident: 10.1016/j.chemolab.2022.104750_bib98
  article-title: Training linear discriminant analysis in linear time
– volume: 201
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib37
  article-title: X-ray image based COVID-19 detection using evolutionary deep learning approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116942
– volume: 16
  start-page: 1
  issue: 2s
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib78
  article-title: DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification
  publication-title: ACM Trans. Multimed Comput. Commun. Appl
  doi: 10.1145/3341095
– volume: 20
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.chemolab.2022.104750_bib6
  article-title: Chest x-ray findings and temporal lung changes in patients with COVID-19 pneumonia
  publication-title: BMC Pulm. Med.
  doi: 10.1186/s12890-020-01286-5
– volume: 12
  start-page: 299
  issue: 5
  year: 2022
  ident: 10.1016/j.chemolab.2022.104750_bib21
  article-title: An intelligent ECG-based tool for diagnosing COVID-19 via ensemble deep learning techniques
  publication-title: Biosensors
  doi: 10.3390/bios12050299
SSID ssj0016941
Score 2.5066297
Snippet Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104750
SubjectTerms Convolution neural networks (CNN)
COVID-19
Deep learning
Discrete wavelet transform
Dual-tree complex wavelet transform
Texture analysis
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWq7aFc-IYGKDISV2eTOI5tbqu0VYtEQVUXLafIdhzYNptduolQ-fWM87FqKVLpMbJHijOTvDfKmxmE3usisQCUnFgmIEHhoSEqSiRhBZWxCkRh22ETn06So2n8ccZmWygcamFa0b7Rc78qF341_9FqK1cLMx50YmMpAsBcyNK3Ewb0e4S2pydfJt-6Ht6SOILtkizBKaERldeqgs99eA4LyBg15IVR5H5vcldv_29Auk04b-smd5pqpa5-qbK8BkqHj9DpcJxOi3LhN7X2ze-_Oj3e67yP0cOeouJJt_QEbdnqKdpJh8lwz9D8dLJ_nH6Y4Hq5LDGwXpx3gj2AQZx-_nq8T0KJXeEKbsdx4fQMqyrHM3KprvAanLnGTbs5t3aF-8EV39s9PxuVw7Z87qql18_R9PDgLD0i_cgGYiBRq4lObJAYWYShNPAVjYyOiqLg1CRFnjNGmWKcA4XQkFUWXOogEVRTN3mUqlzpmL5Ao2pZ2V2EAVOVBdNQCB0bJpRmQisVcwOkNKfSQ2zwW2b6fuZurEaZDcK182zwd-b8nXX-9tB4Y7fqOnrcaSGHsMh6XtLxjQxg507bd0McZeAl9zdGVXbZrLMIYEi48WDUQy-7uNrcDwXWBLwx8RC_EXGbDa4p-M0ViJ22OXgfLh4KNrH5n8d8dX-T1-gBXDkhAAnZGzSqLxu7BySt1m_71_IPOJA6Jw
  priority: 102
  providerName: Unpaywall
Title RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics
URI https://dx.doi.org/10.1016/j.chemolab.2022.104750
https://www.ncbi.nlm.nih.gov/pubmed/36619376
https://www.proquest.com/docview/2762821723
https://pubmed.ncbi.nlm.nih.gov/PMC9807270
https://www.ncbi.nlm.nih.gov/pmc/articles/9807270
UnpaywallVersion submittedVersion
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 1873-3239
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELem8TBeEIyv8jEZiVevSRzHMW9RxtQOURCsqDxZ_gpkKmlZG6G98LdzzpdWDWlIPFVpzkrsu_h-J9_dD6HXukgcOEpOHEshQOGhISpKBGEFFbEK0sI1ZBPvZ8lkHp8t2GIP5X0tjE-r7Pb-dk9vduvun3G3muN1WY4_-z4iHk5HURNINBXsMfcsBse_hzSP0Bdqtv29BfHS16qEL45hXX5ABKkhTowif9zJff393x3UTQB6M4_yoK7W6uqXWi6vOanT--hehy5x1k7gAdpz1SE6yHtSt4eo_JSdTPM3Gd6uVksMgBXbNtcOPBjOP3yZnpBQYF9zghsmLZyfY1VZvCCX6gpvQA8bXDfC1rk17jgnvjUyP2tlQcyWvtB58wjNT9-e5xPSsS0QAzHWlujEBYkRRRgKAxtgZHRUFAWnJimsZYwyxTgH768hICy40EGSUk09aShVVumYPkb71apyTxEGd6gcDA3TVMeGpUqzVCsVcwN40lIxQqxfYmm6VuSeEWMp-5yzC9mrRnrVyFY1IzQexq3bZhy3jhC9BuWOWUnwGLeOfdWrXIKW_EGKqtyq3sgIPEjqmb3oCD1pTWB4HwqAByBfMkJ8xzgGAd_Pe_dOVX5v-nqLNAA0Cc8NBjP6x2k--49pPkd34cof5pOQvUD728vavQSgtdVHzZd0hO5k03eTGfzOZx-zr38A2AQoHw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELem8VBeEN-Uj2EkXr0mdhzHvFXZpha2IUGH-mbZjjMylbSsjaa97G_nnC-tGtKQeI3vlNh3ufudfB8IfTR57MBRCuJ4AgGKCC3RNJaE50xGOkhyVw-bODmNJ2fR5zmf76C0q4XxaZWt7W9sem2t2yej9jRHq6IYffd9RDycprQOJCAEehBxKnwEtn_T53mEvlKzafAtiSe_VSZ8sQ8H8wtCSAOBIqX-vlP4Avy_e6i7CPRuIuWgKlf6-kovFre81NFj9KiFl3jc7OAJ2nHlUzRIu6luz1DxbXwwTT-N8Wa5XGBArDhrku3AheH064_pAQkl9kUnuB6lhdMZ1mWG5-RSX-M1CGKNq5o4c26F26ET5zXN70pnQJYVvtJ5_RydHR3O0glpxy0QC0HWhpjYBbGVeRhKCxaQWkPzPBfMxnmWcc645kKA-zcQEeZCmiBOmGF-aijTmTYRe4F2y2XpXiEM_lA7YA2TxESWJ9rwxGgdCQuAMmNyiHh3xMq2vcj9SIyF6pLOLlQnGuVFoxrRDNGo51s13Tju5ZCdBNWWXilwGffyfuhErkBK_iZFl25ZrRUFF5L40V5siF42KtB_DwPEA5gvHiKxpRw9gW_ovb1SFj_rxt4yCQBOwnuDXo3-cZuv_2Ob79FgMjs5VsfT0y9v0ENY8Tf7JORv0e7msnLvAHVtzF79V_0BMVooBA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWq7aFc-IYGKDISV2eTOI5tbqu0VYtEQVUXLafIdhzYNptduolQ-fWM87FqKVLpMbJHijOTvDfKmxmE3usisQCUnFgmIEHhoSEqSiRhBZWxCkRh22ETn06So2n8ccZmWygcamFa0b7Rc78qF341_9FqK1cLMx50YmMpAsBcyNK3Ewb0e4S2pydfJt-6Ht6SOILtkizBKaERldeqgs99eA4LyBg15IVR5H5vcldv_29Auk04b-smd5pqpa5-qbK8BkqHj9DpcJxOi3LhN7X2ze-_Oj3e67yP0cOeouJJt_QEbdnqKdpJh8lwz9D8dLJ_nH6Y4Hq5LDGwXpx3gj2AQZx-_nq8T0KJXeEKbsdx4fQMqyrHM3KprvAanLnGTbs5t3aF-8EV39s9PxuVw7Z87qql18_R9PDgLD0i_cgGYiBRq4lObJAYWYShNPAVjYyOiqLg1CRFnjNGmWKcA4XQkFUWXOogEVRTN3mUqlzpmL5Ao2pZ2V2EAVOVBdNQCB0bJpRmQisVcwOkNKfSQ2zwW2b6fuZurEaZDcK182zwd-b8nXX-9tB4Y7fqOnrcaSGHsMh6XtLxjQxg507bd0McZeAl9zdGVXbZrLMIYEi48WDUQy-7uNrcDwXWBLwx8RC_EXGbDa4p-M0ViJ22OXgfLh4KNrH5n8d8dX-T1-gBXDkhAAnZGzSqLxu7BySt1m_71_IPOJA6Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RADIC%3AA+tool+for+diagnosing+COVID-19+from+chest+CT+and+X-ray+scans+using+deep+learning+and+quad-radiomics&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Attallah%2C+Omneya&rft.date=2023-02-15&rft.issn=0169-7439&rft.volume=233&rft.spage=104750&rft_id=info:doi/10.1016%2Fj.chemolab.2022.104750&rft_id=info%3Apmid%2F36619376&rft.externalDocID=36619376
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon