Phase Transition Analysis Based Quality Prediction for Multi-phase Batch Processes

Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignora...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemical engineering Vol. 20; no. 6; pp. 1191 - 1197
Main Author 赵露平 赵春晖 高福荣
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2012
Subjects
Online AccessGet full text
ISSN1004-9541
2210-321X
DOI10.1016/S1004-9541(12)60607-7

Cover

Abstract Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
AbstractList Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
Author 赵露平 赵春晖 高福荣
AuthorAffiliation State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Author_xml – sequence: 1
  fullname: 赵露平 赵春晖 高福荣
BookMark eNqFkE1PGzEQQK0KpIbQn1Bpe4PDtmOv7XXUAwJEPySq0pZKvVkT7yxxtdjBdpDy79kkiAOXnHyY92asd8QOQgzE2HsOHzlw_ekPB5D1TEl-wsWpBg1t3b5hEyE41I3g_w7Y5AV5y45y_g8gwHAzYb9vFpipuk0Ysi8-huo84LDOPlcX46Crfq1w8GVd3STqvNsSfUzVj9VQfL3cyhdY3GIEoqOcKR-zwx6HTO-e3yn7--Xq9vJbff3z6_fL8-vaSeClRgVNO-u7FiSpGXeixTkCtu28A9MhR1LSdRIaNxfaaNMYSZrL3hkwqFTfTNnJbu8yxYcV5WLvfXY0DBgorrLlCrQEyUHtR4VptJ6J8dqUqR3qUsw5UW-Xyd9jWlsOdpPbbnPbTcvRs9vcth29z6885wtuepWEfthrn-1sGoM9eko2O0_Bjc0TuWK76Pdu-PB8fxHD3YMPdy8fl7JRBoRqngAmkqXT
CitedBy_id crossref_primary_10_1016_j_cjche_2015_09_004
crossref_primary_10_3182_20131218_3_IN_2045_00032
crossref_primary_10_1109_ACCESS_2017_2778095
crossref_primary_10_1021_acs_iecr_5b01425
crossref_primary_10_1021_ie500548a
crossref_primary_10_1016_j_chemolab_2014_03_018
crossref_primary_10_1088_1361_6501_ad5ab8
crossref_primary_10_1016_j_jprocont_2023_103088
crossref_primary_10_1016_j_chemolab_2013_04_006
crossref_primary_10_3390_s22062235
crossref_primary_10_1016_j_chemolab_2014_08_007
crossref_primary_10_3182_20140824_6_ZA_1003_00256
Cites_doi 10.1016/0169-7439(95)00043-7
10.1016/j.arcontrol.2009.08.001
10.1002/aic.690400809
10.1016/j.jprocont.2004.06.010
10.1016/j.jprocont.2008.11.001
10.1016/S0169-7439(00)00064-2
10.1002/cem.1009
10.1021/ie048852l
10.1002/(SICI)1099-128X(199609)10:5/6<463::AID-CEM445>3.0.CO;2-L
10.1109/MCS.2002.1035216
10.1021/ie0707063
10.1016/j.jprocont.2007.02.005
10.1002/aic.11405
10.1002/pen.11597
10.1021/ie050887d
10.1002/aic.10024
10.1021/ie0341552
10.1016/S0967-0661(00)00060-5
10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
10.1016/S0098-1354(02)00162-X
ContentType Journal Article
Copyright 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
Copyright_xml – notice: 2012 Chemical Industry and Engineering Society of China (CIESC) and Chemical Industry Press (CIP)
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/S1004-9541(12)60607-7
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Phase Transition Analysis Based Quality Prediction for Multi-phase Batch Processes
EISSN 2210-321X
EndPage 1197
ExternalDocumentID 10_1016_S1004_9541_12_60607_7
S1004954112606077
44358025
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: (2012QNA5012)
– fundername: Project of Education Department of Zhejiang Province
  grantid: (Y201223159)
– fundername: Technology Foundation for Selected Overseas Chinese Scholar of Zhejiang Province
  grantid: (J20120561)
– fundername: Guangzhou Nansha District Bureau of Economy & Trade, Science & Technology, Information, Project
  grantid: (201103003)
GroupedDBID --K
--M
.~1
0R~
188
1B1
1~.
1~5
29B
2B.
2C0
2RA
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDC
SDF
SDG
SDH
SES
SPC
SPCBC
SSG
SSZ
T5K
TCJ
TGT
UGNYK
W92
~G-
~WA
-SB
-S~
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CAJEB
CITATION
EFKBS
Q--
U1G
U5L
~HD
7U5
8FD
L7M
ID FETCH-LOGICAL-c401t-a50379fd704e591c27aba0a77bd08da1ae54cd403cb26868384e614fc808a55f3
IEDL.DBID .~1
ISSN 1004-9541
IngestDate Sun Sep 28 07:33:23 EDT 2025
Sun Sep 28 08:34:42 EDT 2025
Wed Oct 01 03:37:07 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Fri Feb 23 02:37:36 EST 2024
Wed Feb 14 10:44:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords quality prediction
multi-phase
partial least squares
batch process
transition
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-a50379fd704e591c27aba0a77bd08da1ae54cd403cb26868384e614fc808a55f3
Notes ZHAO Luping 1,2 , ZHAO Chunhui 1, ** and GAO Furong 1,2 1 State Key Laboratory of Industrial Control Technology, Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China 2 Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been done using phase information. However, few of them consider phase transitions, though they exit widely in batch processes and have non-ignorable impacts on product qualities. In the present work, a phase-based partial least squares (PLS) method utilizing transition information is proposed to give both online and offline quality predictions. First, batch processes are divided into several phases using regression parameters other than prior process knowledge. Then both steady phases and transitions which have great influences on qualities are identified as critical-to-quality phases using statistical methods. Finally, based on the analysis of different characteristics of transitions and steady phases, an integrated algorithm is developed for quality prediction. The application to an injection molding process shows the effectiveness of the proposed algorithm in comparison with the traditional MPLS method and the phase-based PLS method.
11-3270/TQ
multi-phase; transition; partial least squares; quality prediction; batch process
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283669240
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1506404105
proquest_miscellaneous_1283669240
crossref_primary_10_1016_S1004_9541_12_60607_7
crossref_citationtrail_10_1016_S1004_9541_12_60607_7
elsevier_sciencedirect_doi_10_1016_S1004_9541_12_60607_7
chongqing_primary_44358025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese journal of chemical engineering
PublicationTitleAlternate Chinese Journal of Chemical Engineering
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lu, Gao (bib10) 2005; 44
Yang, Gao (bib21) 2000; 8
Wold, Kettaneh, Tjessem (bib4) 1996; 10
Choi, Lee (bib6) 2005; 15
Gabrielsson, Jonsson, Airiau, Schmidt, Escott, Trygg (bib12) 2006; 20
Nomikos, MacGregor (bib1) 1994; 40
Montgomery, Peck, Vining (bib19) 2004
Yang, Gao (bib20) 1999; 39
Zhao, Lu, Wang, Jia (bib15) 2007; 17
Venkatasubramanian, Rengaswamy, Kavuri, Yin (bib3) 2003; 27
Zhao, Wang, Gao, Lu, Jia (bib13) 2008; 47
Yang, Y., “Injection molding: from process to quality control”, Ph.D. Thesis, The Hong Kong University of Science & Technology, Hong Kong (2004).
Ündey, Cinar (bib11) 2002; 22
Zhao, Wang, Mao, Lu, Jia (bib14) 2008; 54
Yao, Gao (bib17) 2009; 33
Chu, Lee, Han (bib8) 2004; 43
Johnson, Wichern (bib18) 2002
Lu, Gao (bib22) 2006; 45
Westerhuis, Kourti, MacGregor (bib5) 1998; 12
Lu, Wang, Gao (bib9) 2004; 50
Yao, Gao (bib16) 2009; 19
Nomikos, MacGregor (bib2) 1995; 30
Duchesne, MacGregor (bib7) 2000; 5
Zhao (10.1016/S1004-9541(12)60607-7_bib14) 2008; 54
Johnson (10.1016/S1004-9541(12)60607-7_bib18) 2002
Montgomery (10.1016/S1004-9541(12)60607-7_bib19) 2004
Chu (10.1016/S1004-9541(12)60607-7_bib8) 2004; 43
Yao (10.1016/S1004-9541(12)60607-7_bib16) 2009; 19
Ündey (10.1016/S1004-9541(12)60607-7_bib11) 2002; 22
Zhao (10.1016/S1004-9541(12)60607-7_bib15) 2007; 17
Lu (10.1016/S1004-9541(12)60607-7_bib22) 2006; 45
Yao (10.1016/S1004-9541(12)60607-7_bib17) 2009; 33
Yang (10.1016/S1004-9541(12)60607-7_bib20) 1999; 39
Venkatasubramanian (10.1016/S1004-9541(12)60607-7_bib3) 2003; 27
Duchesne (10.1016/S1004-9541(12)60607-7_bib7) 2000; 5
Zhao (10.1016/S1004-9541(12)60607-7_bib13) 2008; 47
Choi (10.1016/S1004-9541(12)60607-7_bib6) 2005; 15
Lu (10.1016/S1004-9541(12)60607-7_bib9) 2004; 50
Nomikos (10.1016/S1004-9541(12)60607-7_bib1) 1994; 40
Lu (10.1016/S1004-9541(12)60607-7_bib10) 2005; 44
Westerhuis (10.1016/S1004-9541(12)60607-7_bib5) 1998; 12
Nomikos (10.1016/S1004-9541(12)60607-7_bib2) 1995; 30
Yang (10.1016/S1004-9541(12)60607-7_bib21) 2000; 8
10.1016/S1004-9541(12)60607-7_bib23
Gabrielsson (10.1016/S1004-9541(12)60607-7_bib12) 2006; 20
Wold (10.1016/S1004-9541(12)60607-7_bib4) 1996; 10
References_xml – volume: 22
  start-page: 40
  year: 2002
  end-page: 52
  ident: bib11
  article-title: “Statistical monitoring of multistage, multiphase batch processes”
  publication-title: IEEE Control Syst. Mag.
– reference: Yang, Y., “Injection molding: from process to quality control”, Ph.D. Thesis, The Hong Kong University of Science & Technology, Hong Kong (2004).
– volume: 10
  start-page: 463
  year: 1996
  end-page: 482
  ident: bib4
  article-title: “Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection”
  publication-title: J. Chemom.
– volume: 43
  start-page: 2680
  year: 2004
  end-page: 2690
  ident: bib8
  article-title: “Improved quality estimation and knowledge extraction in a batch process by bootstrapping-based generalized variable selection”
  publication-title: Ind. Eng. Chem. Res.
– volume: 45
  start-page: 2272
  year: 2006
  end-page: 2280
  ident: bib22
  article-title: “Stage-based online quality control for batch processes”
  publication-title: Ind. Eng. Chem. Res.
– volume: 27
  start-page: 327
  year: 2003
  end-page: 346
  ident: bib3
  article-title: “A review of process fault detection and diagnosis Part III: Process history based methods”
  publication-title: Comput. Chem. Eng.
– volume: 47
  start-page: 825
  year: 2008
  end-page: 834
  ident: bib13
  article-title: “Improved knowledge extraction and phase-based quality prediction for batch processes”
  publication-title: Ind. Eng. Chem. Res.
– volume: 5
  start-page: 125
  year: 2000
  end-page: 137
  ident: bib7
  article-title: “Multivariate analysis and optimization of process variable trajectories for batch processes”
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 20
  start-page: 362
  year: 2006
  end-page: 369
  ident: bib12
  article-title: “The OPLS methodology for analysis of multi-block batch process data”
  publication-title: J. Chemom.
– start-page: 354
  year: 2002
  end-page: 383
  ident: bib18
  publication-title: Applied Multivariate Statistical Analysis
– volume: 54
  start-page: 693
  year: 2008
  end-page: 705
  ident: bib14
  article-title: “Quality prediction based on phase-specific average trajectory for batch processes”
  publication-title: AIChE J.
– volume: 40
  start-page: 1361
  year: 1994
  end-page: 1375
  ident: bib1
  article-title: “Monitoring batch processes using multiway principal component analysis”
  publication-title: AIChE J.
– start-page: 22
  year: 2004
  end-page: 28
  ident: bib19
  publication-title: Introduction to Linear Regression Analysis
– volume: 17
  start-page: 728
  year: 2007
  end-page: 741
  ident: bib15
  article-title: “Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes”
  publication-title: J. Process Control
– volume: 50
  start-page: 255
  year: 2004
  end-page: 259
  ident: bib9
  article-title: “Sub-PCA modeling and on-line monitoring strategy for batch processes”
  publication-title: AIChE J.
– volume: 39
  start-page: 2042
  year: 1999
  end-page: 2064
  ident: bib20
  article-title: “Cycle-to-cycle and within-cycle adaptive control of nozzle pressures during packing-holding for thermoplastic injection molding”
  publication-title: Polym. Eng. Sci.
– volume: 8
  start-page: 1285
  year: 2000
  end-page: 1296
  ident: bib21
  article-title: “Adaptive control of the filling velocity of thermoplastics injection molding”
  publication-title: Control Eng. Practice
– volume: 15
  start-page: 295
  year: 2005
  end-page: 306
  ident: bib6
  article-title: “Multiblock PLS-based localized process diagnosis”
  publication-title: J. Process Control
– volume: 44
  start-page: 3547
  year: 2005
  end-page: 3555
  ident: bib10
  article-title: “Stage-based process analysis and quality prediction for batch processes”
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 172
  year: 2009
  end-page: 183
  ident: bib17
  article-title: “A survey on multistage/multiphase statistical modeling methods for batch processes”
  publication-title: Annual Reviews in Control
– volume: 30
  start-page: 97
  year: 1995
  end-page: 108
  ident: bib2
  article-title: “Multi-way partial least squares in monitoring batch processes”
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 19
  start-page: 816
  year: 2009
  end-page: 826
  ident: bib16
  article-title: “Phase and transition based batch process modeling and online monitoring”
  publication-title: J. Process Control
– volume: 12
  start-page: 301
  year: 1998
  end-page: 321
  ident: bib5
  article-title: “Analysis of multiblock and hierarchical PCA and PLS models”
  publication-title: J. Chemom.
– start-page: 354
  year: 2002
  ident: 10.1016/S1004-9541(12)60607-7_bib18
– volume: 30
  start-page: 97
  year: 1995
  ident: 10.1016/S1004-9541(12)60607-7_bib2
  article-title: “Multi-way partial least squares in monitoring batch processes”
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(95)00043-7
– volume: 33
  start-page: 172
  year: 2009
  ident: 10.1016/S1004-9541(12)60607-7_bib17
  article-title: “A survey on multistage/multiphase statistical modeling methods for batch processes”
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2009.08.001
– volume: 40
  start-page: 1361
  year: 1994
  ident: 10.1016/S1004-9541(12)60607-7_bib1
  article-title: “Monitoring batch processes using multiway principal component analysis”
  publication-title: AIChE J.
  doi: 10.1002/aic.690400809
– volume: 15
  start-page: 295
  year: 2005
  ident: 10.1016/S1004-9541(12)60607-7_bib6
  article-title: “Multiblock PLS-based localized process diagnosis”
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2004.06.010
– volume: 19
  start-page: 816
  year: 2009
  ident: 10.1016/S1004-9541(12)60607-7_bib16
  article-title: “Phase and transition based batch process modeling and online monitoring”
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2008.11.001
– volume: 5
  start-page: 125
  year: 2000
  ident: 10.1016/S1004-9541(12)60607-7_bib7
  article-title: “Multivariate analysis and optimization of process variable trajectories for batch processes”
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(00)00064-2
– volume: 20
  start-page: 362
  year: 2006
  ident: 10.1016/S1004-9541(12)60607-7_bib12
  article-title: “The OPLS methodology for analysis of multi-block batch process data”
  publication-title: J. Chemom.
  doi: 10.1002/cem.1009
– volume: 44
  start-page: 3547
  year: 2005
  ident: 10.1016/S1004-9541(12)60607-7_bib10
  article-title: “Stage-based process analysis and quality prediction for batch processes”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048852l
– volume: 10
  start-page: 463
  year: 1996
  ident: 10.1016/S1004-9541(12)60607-7_bib4
  article-title: “Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection”
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199609)10:5/6<463::AID-CEM445>3.0.CO;2-L
– volume: 22
  start-page: 40
  year: 2002
  ident: 10.1016/S1004-9541(12)60607-7_bib11
  article-title: “Statistical monitoring of multistage, multiphase batch processes”
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2002.1035216
– volume: 47
  start-page: 825
  year: 2008
  ident: 10.1016/S1004-9541(12)60607-7_bib13
  article-title: “Improved knowledge extraction and phase-based quality prediction for batch processes”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0707063
– volume: 17
  start-page: 728
  year: 2007
  ident: 10.1016/S1004-9541(12)60607-7_bib15
  article-title: “Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes”
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2007.02.005
– volume: 54
  start-page: 693
  year: 2008
  ident: 10.1016/S1004-9541(12)60607-7_bib14
  article-title: “Quality prediction based on phase-specific average trajectory for batch processes”
  publication-title: AIChE J.
  doi: 10.1002/aic.11405
– start-page: 22
  year: 2004
  ident: 10.1016/S1004-9541(12)60607-7_bib19
– volume: 39
  start-page: 2042
  year: 1999
  ident: 10.1016/S1004-9541(12)60607-7_bib20
  article-title: “Cycle-to-cycle and within-cycle adaptive control of nozzle pressures during packing-holding for thermoplastic injection molding”
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.11597
– volume: 45
  start-page: 2272
  year: 2006
  ident: 10.1016/S1004-9541(12)60607-7_bib22
  article-title: “Stage-based online quality control for batch processes”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050887d
– volume: 50
  start-page: 255
  year: 2004
  ident: 10.1016/S1004-9541(12)60607-7_bib9
  article-title: “Sub-PCA modeling and on-line monitoring strategy for batch processes”
  publication-title: AIChE J.
  doi: 10.1002/aic.10024
– volume: 43
  start-page: 2680
  year: 2004
  ident: 10.1016/S1004-9541(12)60607-7_bib8
  article-title: “Improved quality estimation and knowledge extraction in a batch process by bootstrapping-based generalized variable selection”
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0341552
– volume: 8
  start-page: 1285
  year: 2000
  ident: 10.1016/S1004-9541(12)60607-7_bib21
  article-title: “Adaptive control of the filling velocity of thermoplastics injection molding”
  publication-title: Control Eng. Practice
  doi: 10.1016/S0967-0661(00)00060-5
– volume: 12
  start-page: 301
  year: 1998
  ident: 10.1016/S1004-9541(12)60607-7_bib5
  article-title: “Analysis of multiblock and hierarchical PCA and PLS models”
  publication-title: J. Chemom.
  doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
– ident: 10.1016/S1004-9541(12)60607-7_bib23
– volume: 27
  start-page: 327
  year: 2003
  ident: 10.1016/S1004-9541(12)60607-7_bib3
  article-title: “A review of process fault detection and diagnosis Part III: Process history based methods”
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00162-X
SSID ssj0020818
Score 2.0579803
Snippet Batch processes are usually involved with multiple phases in the time domain and many researches on process monitoring as well as quality prediction have been...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1191
SubjectTerms Algorithms
batch process
Chemical engineering
Injection molding
Least squares method
Monitoring
multi-phase
On-line systems
partial least squares
Phase transformations
quality prediction
Regression
transition
产品质量
分析基
注塑成型工艺
相位信息
相变
质量预测
间歇过程
Title Phase Transition Analysis Based Quality Prediction for Multi-phase Batch Processes
URI http://lib.cqvip.com/qk/84275X/201206/44358025.html
https://dx.doi.org/10.1016/S1004-9541(12)60607-7
https://www.proquest.com/docview/1283669240
https://www.proquest.com/docview/1506404105
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: ACRLP
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AIKHN
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: .~1
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2210-321X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020818
  issn: 1004-9541
  databaseCode: AKRWK
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvZQDoi0Vy0tG6gEOZp3EzyOgooWqCNEicbOc2MuuhLILLAcu_HZmnGT7kAAJ5ebMOJbHmYdm5jMh3yKYvcCjYSKUJRNCK2aD4kxnVmexUMFHbBT-eaYGl-L0Sl4tkKOuFwbLKlvd3-j0pK3bkX67m_3peNz_hVhnVgrsgeGKa-woh2_hLQb7T_Myjxwh21LGkwuG1H-6eJoZ0uBulu-lSZhGjIXRpL6-Bcvxkq36T2snU3S8QpZbH5IeNMv8RBZi_Zks_YUs-IVcnI_APNFkiVJRFu3QR-ghvAi0wc54pOd3mKlJFOC-0tSPy6aJ-RC09Ii2nQTxfpVcHn__fTRg7fUJrIKgaca85IW2w6C5iNJmVa596bnXugzcBJ_5KEUVBC-qMldGmcKICMZ6WBluvJTD4itZrCd1XCPU8lJBZGMhdsyEF-C25baS8GjuRWXLHlmfb5qbNjAZTghMseayR0S3i65qgcfx_osbN68wQ0E4FITLcpcE4XSP7M_ZuinfYDCdiNw_R8iBdXiLdacTqYPfC3Mmvo6Th3ugMYVSEKTyV2gQ9I9jvez6-5ewQT6CL5Y3lTKbZHF29xC3wN-ZldvpQG-TDwcnPwZnz3F19wY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PTxUxEJ4gHNSDAdT4UKAmHPBQXrfbn0chkqcCIQoJt6a77fORmH1PeBy8-Lc77e4-xQRIzN6606bpdOebycx8C7ATEfYCi4aKUFVUCK2oDYpRXVhdxFIFH1Oj8PGJGp2LTxfyYgkO-l6YVFbZ2f7Wpmdr3Y0Mu9Mczi4vh18T15mVIvXAMMW0fgQrQnKdIrC9X4s6D54423LKkwmaxP-08bRL5MHdgr_Lq1CdSBYm0-bbD4SOu8DqH7OdsehwFZ51TiR53-5zDZZisw5P_6IWfA5fTieITyRDUa7KIj39CNnHF4G05Bk_yelVStVkCfRfSW7IpbM8eR_N9IR0rQTx-gWcH344OxjR7v8JtMaoaU69ZKW246CZiNIWNde-8sxrXQVmgi98lKIOgpV1xZVRpjQiIlqPa8OMl3JcvoTlZtrEV0AsqxSGNhaDx0J4gX4bt7XERzMvalsNYGNxaG7W8mQ4IVKOlcsBiP4UXd0xj6cfYHx3ixKzpAiXFOEK7rIinB7A3mJav-QDE0yvInfrDjmEh4emvu1V6vD7SkkT38TpzTXKmFIpjFLZPTKJ9Y-lgtmN_9_CNjwenR0fuaOPJ59fwxN0zHhbNvMGludXN3ETnZ95tZUv928sSvib
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Transition+Analysis+Based+Quality+Prediction+for+Multi-phase+Batch+Processes&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%8C%96%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E8%B5%B5%E9%9C%B2%E5%B9%B3+%E8%B5%B5%E6%98%A5%E6%99%96+%E9%AB%98%E7%A6%8F%E8%8D%A3&rft.date=2012-12-01&rft.issn=1004-9541&rft.eissn=2210-321X&rft.volume=20&rft.issue=6&rft.spage=1191&rft.epage=1197&rft_id=info:doi/10.1016%2FS1004-9541%2812%2960607-7&rft.externalDocID=44358025
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84275X%2F84275X.jpg