Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum
Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has...
Saved in:
Published in | International journal of fracture Vol. 141; no. 1-2; pp. 177 - 194 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer
01.09.2006
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0376-9429 1573-2673 |
DOI | 10.1007/s10704-006-0070-y |
Cover
Abstract | Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure pc is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of pc. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Supérieure de Mécanique et d’Aéronautique, Université de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage. |
---|---|
AbstractList | Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure p sub(c) is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of p sub(c). In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Superieure de Mecanique et d'Aeronautique, Universite de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage. Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure p c is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of p c. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Superieure de Mecanique et d'Aeronautique, Universite de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage. Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure pc is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of pc. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Supérieure de Mécanique et d'Aéronautique, Université de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage. |
Author | Mercier, Sébastien Molinari, Alain Czarnota, Christophe |
Author_xml | – sequence: 1 givenname: Christophe surname: Czarnota fullname: Czarnota, Christophe – sequence: 2 givenname: Sébastien surname: Mercier fullname: Mercier, Sébastien – sequence: 3 givenname: Alain surname: Molinari fullname: Molinari, Alain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18306875$$DView record in Pascal Francis https://hal.science/hal-00121135$$DView record in HAL |
BookMark | eNp9klGL1TAQhYOs4N3VH-BbQBQFq5M0bdLHZVFXuOKLPodpmu7mkpvUpF25_97ULvuwoA9hYPjO5MxwzslZiMES8pLBBwYgP2YGEkQF0JYnoTo9ITvWyLrirazPyA5q2Vad4N0zcp7zAQA6qcSOHL7FwXrvwg2NIw2L8RZnFwPFMNC76AZ6k-Lv-Za6QIdTwKMzdEo25yVZ6iMORfme4jR5ZzbhHGme0Hs62zzTtYFhRr8cn5OnI_psX9zXC_Lz86cfV9fV_vuXr1eX-8oIYHOlrFCy6bFlsrfG8EaZvofa9iNYO4hRDkZ1rBeNkJKNPZeNaoa2Hrm0DFth6gvybpt7i15PyR0xnXREp68v93rtATDOWN3cscK-2dgpxV9LMayPLptyEAw2Lllz1alGdiv49r8gA8VZV8ys6KtH6CEuKZSVNedNpySvuSjU63sKs0E_JgzG5Qe_TNXQljsUTm6cSTHnZEdt3Pz30nNC58vHeg2A3gJQdmv1GgB9Kkr2SPkw_J-aPybRtLw |
CODEN | IJFRAP |
CitedBy_id | crossref_primary_10_1063_5_0078182 crossref_primary_10_3390_ma16144998 crossref_primary_10_1016_j_euromechsol_2020_104149 crossref_primary_10_1016_j_mechmat_2013_11_012 crossref_primary_10_1063_5_0009521 crossref_primary_10_1016_j_jmps_2017_06_010 crossref_primary_10_1002_nme_7446 crossref_primary_10_1016_j_ijplas_2017_03_008 crossref_primary_10_1016_j_jmps_2017_07_020 crossref_primary_10_1016_j_ijplas_2020_102903 crossref_primary_10_1016_j_cma_2018_01_028 crossref_primary_10_1063_1_4979346 crossref_primary_10_1016_j_ijsolstr_2018_11_034 crossref_primary_10_1063_5_0153661 crossref_primary_10_1007_s10704_009_9424_6 crossref_primary_10_1016_j_ijsolstr_2016_07_033 crossref_primary_10_1016_j_jmps_2023_105386 crossref_primary_10_1063_5_0234896 crossref_primary_10_1016_j_mechmat_2012_10_004 crossref_primary_10_1098_rspa_2024_0898 crossref_primary_10_7498_aps_74_20241338 crossref_primary_10_1016_j_actamat_2018_01_029 crossref_primary_10_1016_j_ijsolstr_2015_04_029 crossref_primary_10_1016_j_mechmat_2019_05_005 crossref_primary_10_1016_j_jmps_2011_12_010 crossref_primary_10_1016_j_ijplas_2020_102816 crossref_primary_10_1016_j_actamat_2016_12_033 crossref_primary_10_4028_www_scientific_net_MSF_763_65 crossref_primary_10_1016_j_ijsolstr_2022_111598 crossref_primary_10_1016_j_jallcom_2023_168862 crossref_primary_10_1016_j_jnucmat_2020_152496 crossref_primary_10_1007_s10338_022_00353_0 crossref_primary_10_1063_5_0064557 crossref_primary_10_1016_j_wear_2014_03_013 crossref_primary_10_1007_s10704_009_9436_2 crossref_primary_10_1007_s10704_009_9438_0 crossref_primary_10_1016_j_jmps_2020_104023 crossref_primary_10_1016_j_jmps_2022_105032 crossref_primary_10_1016_j_mechmat_2023_104710 crossref_primary_10_1016_j_ijplas_2025_104318 crossref_primary_10_1016_j_ijplas_2025_104314 crossref_primary_10_1016_j_actamat_2019_08_006 crossref_primary_10_1016_j_ijplas_2022_103418 crossref_primary_10_1016_j_piutam_2014_01_019 crossref_primary_10_1016_j_jmps_2023_105520 crossref_primary_10_1063_5_0207473 crossref_primary_10_1016_j_ijplas_2019_09_007 crossref_primary_10_1016_j_ijsolstr_2015_05_003 crossref_primary_10_1016_j_jmps_2017_06_005 crossref_primary_10_1103_PhysRevAccelBeams_21_073001 crossref_primary_10_1007_s10704_020_00441_7 crossref_primary_10_1016_j_mechmat_2014_01_008 |
Cites_doi | 10.1016/0370-1573(87)90049-4 10.1016/0167-6636(86)90029-3 10.1063/1.329011 10.1016/0022-5096(69)90033-7 10.1063/1.2263416 10.1016/0022-5096(91)90004-8 10.1016/S0749-6419(99)00032-7 10.1016/0001-6160(84)90213-X 10.1016/S0022-5096(02)00079-0 10.1063/1.1661372 10.1115/1.3005108 10.1115/1.3422899 10.1063/1.342000 10.1115/1.2895993 10.1016/0749-6419(91)90036-X 10.1016/0020-7683(92)90082-5 10.1115/1.3601204 10.1063/1.1483613 10.1063/1.1780318 10.1016/S0749-6419(02)00036-0 10.1016/0079-6425(83)90003-8 10.1063/1.354678 10.1098/rsta.1982.0095 10.1007/978-1-4612-2934-6_4 10.1016/j.jmps.2005.02.010 10.1115/1.4010337 10.1016/S0022-5096(01)00003-5 10.1016/0749-6419(94)90001-9 10.1063/1.365320 10.1007/BF00036191 10.1115/1.2899463 10.1016/S1359-6454(99)00223-2 10.1007/BF00015686 10.1115/1.3443401 10.1115/1.2897686 10.1023/A:1012924626044 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SR 7TB 8BQ 8FD FR3 JG9 KR7 1XC |
DOI | 10.1007/s10704-006-0070-y |
DatabaseName | CrossRef Pascal-Francis ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-2673 |
EndPage | 194 |
ExternalDocumentID | oai_HAL_hal_00121135v1 18306875 10_1007_s10704_006_0070_y |
GroupedDBID | -Y2 -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS PUEGO QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~8M ~A~ ~EX IQODW DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7SR 7TB 8BQ 8FD FR3 JG9 KR7 1XC |
ID | FETCH-LOGICAL-c401t-8e4875ba617becc258cbb03ebf0eed4f7dc891b454771fb27585d63f27e1a64c3 |
IEDL.DBID | 8FG |
ISSN | 0376-9429 |
IngestDate | Fri Sep 12 12:55:41 EDT 2025 Fri Sep 05 13:58:52 EDT 2025 Fri Sep 05 14:07:11 EDT 2025 Fri Jul 25 11:08:19 EDT 2025 Mon Jul 21 09:15:52 EDT 2025 Wed Oct 01 01:19:08 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Nucleation Micro-inertia Modeling Crack propagation Sphere Cavity Ductile fracture Spall Dynamics Weibull distribution Loading test(mechanics) Damaging Dense matrix Probabilistic approach Spacing Experimental study Cavitation Exact solution Nucleation and growth Tantalum Scaling Inertia Ductile fracture Porosity Coalescence Dynamic load Step function |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-8e4875ba617becc258cbb03ebf0eed4f7dc891b454771fb27585d63f27e1a64c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-5640-3306 0000-0002-2957-7220 |
PQID | 2259872324 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | hal_primary_oai_HAL_hal_00121135v1 proquest_miscellaneous_28985791 proquest_miscellaneous_1082192751 proquest_journals_2259872324 pascalfrancis_primary_18306875 crossref_citationtrail_10_1007_s10704_006_0070_y crossref_primary_10_1007_s10704_006_0070_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-09-01 |
PublicationDateYYYYMMDD | 2006-09-01 |
PublicationDate_xml | – month: 09 year: 2006 text: 2006-09-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | International journal of fracture |
PublicationYear | 2006 |
Publisher | Springer Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer – name: Springer Nature B.V – name: Springer Verlag |
References | MM Carroll (70_CR2) 1972; 43 JM Duva (70_CR5) 1986; 5 70_CR39 70_CR38 70_CR31 Y Huang (70_CR13) 1991; 39 V Tvergaard (70_CR34) 1992; 11 JN Johnson (70_CR14) 1981; 52 DR Curran (70_CR4) 1987; 147 JR Rice (70_CR26) 1969; 17 TR Thomason (70_CR28) 1999; 47 V Tvergaard (70_CR32) 1981; 17 V Tvergaard (70_CR33) 1982; 18 R Cortes (70_CR3) 1992; 29 A Needleman (70_CR22) 1972; 41 CO Horgan (70_CR11) 1995; 48 FA McClintock (70_CR18) 1968; 35 JN Johnson (70_CR15) 1988; 64 A Molinari (70_CR21) 2005; 53 JM Ball (70_CR1) 1982; 306 70_CR27 J Eftis (70_CR6) 2003; 19 A Molinari (70_CR20) 2001; 49 R Hill (70_CR10) 1950 Y Huang (70_CR12) 1991; 58 JB Leblond (70_CR17) 1994; 10 W Weibull (70_CR37) 1951; 18 AL Gurson (70_CR9) 1977; 99 H Klöcker (70_CR16) 1988; 49 70_CR23 MA Meyers (70_CR19) 1983; 28 XY Wu (70_CR40) 2003; 51 E Olevsky (70_CR24) 1988; 16 M Ortiz (70_CR25) 1992; 114 ZP Wang (70_CR36) 1997; 81 W Tong (70_CR30) 1995; 62 W Tong (70_CR29) 1993; 74 TF Guo (70_CR8) 2001; 36 J Eftis (70_CR7) 1991; 7 V Tvergaard (70_CR35) 1984; 32 |
References_xml | – volume: 147 start-page: 253 issue: 5–6 year: 1987 ident: 70_CR4 publication-title: Phys Rep doi: 10.1016/0370-1573(87)90049-4 – volume: 5 start-page: 137 year: 1986 ident: 70_CR5 publication-title: Mech Mater doi: 10.1016/0167-6636(86)90029-3 – volume: 52 start-page: 2812 issue: 4 year: 1981 ident: 70_CR14 publication-title: J Appl Phys doi: 10.1063/1.329011 – ident: 70_CR27 – volume: 17 start-page: 201 year: 1969 ident: 70_CR26 publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(69)90033-7 – ident: 70_CR38 doi: 10.1063/1.2263416 – volume: 39 start-page: 223 year: 1991 ident: 70_CR13 publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(91)90004-8 – volume: 16 start-page: 1 year: 1988 ident: 70_CR24 publication-title: Int J Plast doi: 10.1016/S0749-6419(99)00032-7 – volume: 32 start-page: 157 year: 1984 ident: 70_CR35 publication-title: Acta Metall doi: 10.1016/0001-6160(84)90213-X – volume: 51 start-page: 1 year: 2003 ident: 70_CR40 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(02)00079-0 – volume: 43 start-page: 1626 year: 1972 ident: 70_CR2 publication-title: J Appl Phys doi: 10.1063/1.1661372 – volume-title: The mathematical theory of plasticity year: 1950 ident: 70_CR10 – volume: 49 start-page: C3 year: 1988 ident: 70_CR16 publication-title: J Phys – volume: 48 start-page: 471 year: 1995 ident: 70_CR11 publication-title: Appl Mech Rev doi: 10.1115/1.3005108 – volume: 41 start-page: 964 year: 1972 ident: 70_CR22 publication-title: J Appl Mech doi: 10.1115/1.3422899 – volume: 64 start-page: 6699 issue: 12 year: 1988 ident: 70_CR15 publication-title: J Appl Phys doi: 10.1063/1.342000 – volume: 62 start-page: 633 year: 1995 ident: 70_CR30 publication-title: Trans ASME: J Appl Mech doi: 10.1115/1.2895993 – volume: 7 start-page: 275 year: 1991 ident: 70_CR7 publication-title: Int J Plast doi: 10.1016/0749-6419(91)90036-X – volume: 29 start-page: 1339 year: 1992 ident: 70_CR3 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(92)90082-5 – volume: 35 start-page: 363 year: 1968 ident: 70_CR18 publication-title: J Appl Mech doi: 10.1115/1.3601204 – ident: 70_CR31 doi: 10.1063/1.1483613 – ident: 70_CR39 doi: 10.1063/1.1780318 – volume: 19 start-page: 1321 year: 2003 ident: 70_CR6 publication-title: Int J Plast doi: 10.1016/S0749-6419(02)00036-0 – volume: 28 start-page: 1 year: 1983 ident: 70_CR19 publication-title: Prog Mater Sci doi: 10.1016/0079-6425(83)90003-8 – volume: 74 start-page: 2425 year: 1993 ident: 70_CR29 publication-title: J Appl Phys doi: 10.1063/1.354678 – volume: 306 start-page: 557 year: 1982 ident: 70_CR1 publication-title: Philos Trans R Soc London Ser A doi: 10.1098/rsta.1982.0095 – ident: 70_CR23 doi: 10.1007/978-1-4612-2934-6_4 – volume: 11 start-page: 215 year: 1992 ident: 70_CR34 publication-title: Eur J Mech Ser A, Solids – volume: 53 start-page: 1476 year: 2005 ident: 70_CR21 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2005.02.010 – volume: 18 start-page: 293 year: 1951 ident: 70_CR37 publication-title: J Appl Mech doi: 10.1115/1.4010337 – volume: 49 start-page: 1497 year: 2001 ident: 70_CR20 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(01)00003-5 – volume: 10 start-page: 213 year: 1994 ident: 70_CR17 publication-title: Int J Plast doi: 10.1016/0749-6419(94)90001-9 – volume: 81 start-page: 7213 year: 1997 ident: 70_CR36 publication-title: J Appl Phys doi: 10.1063/1.365320 – volume: 17 start-page: 389 year: 1981 ident: 70_CR32 publication-title: Int J Frac doi: 10.1007/BF00036191 – volume: 114 start-page: 48 year: 1992 ident: 70_CR25 publication-title: J Appl Mech doi: 10.1115/1.2899463 – volume: 47 start-page: 3633 issue: 13 year: 1999 ident: 70_CR28 publication-title: Acta Mater doi: 10.1016/S1359-6454(99)00223-2 – volume: 18 start-page: 237 year: 1982 ident: 70_CR33 publication-title: Int J Frac doi: 10.1007/BF00015686 – volume: 99 start-page: 2 year: 1977 ident: 70_CR9 publication-title: J Eng Mater Technol doi: 10.1115/1.3443401 – volume: 58 start-page: 1084 issue: 4 year: 1991 ident: 70_CR12 publication-title: J Appl Mech doi: 10.1115/1.2897686 – volume: 36 start-page: 5871 year: 2001 ident: 70_CR8 publication-title: J Mater Sci doi: 10.1023/A:1012924626044 |
SSID | ssj0009784 |
Score | 2.0310419 |
Snippet | Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model,... |
SourceID | hal proquest pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 177 |
SubjectTerms | Cavitation Coalescing Computer simulation Ductile fracture Dynamic pressure Dynamics Engineering Sciences Evolution Exact sciences and technology Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Material properties Mathematical models Mechanics Mechanics of materials Nucleation Physics Porosity Solid mechanics Stress concentration Structural and continuum mechanics Tantalum Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Voids |
Title | Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum |
URI | https://www.proquest.com/docview/2259872324 https://www.proquest.com/docview/1082192751 https://www.proquest.com/docview/28985791 https://hal.science/hal-00121135 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-2673 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-2673 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: AFBBN dateStart: 19650301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-2673 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2673 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS-RAEC48XlZE1F0xHmMr-ySGzTXdyZOoOA7LKiIr-BbSRzwYk9HJDMy_tyqdmVFE30LSSaCqu7q_rurvA_gtlKejjCM2EZIjQNG-m4WxdrkmQZE8Vrmi886XV7x7G_29a981G26DpqxyEhPrQK1LRXvkf7DfITym-f-4_-KSahRlVxsJjXlY9APsSXRSvHMxI90VsaWPEtxNMPBOspr26Jyg-gvC03jljj_MS_MPVBW53M8GaKjcKlx8Ctb1DNRZhZVm6chOrK_XYM4U67D0jlDwJzyRtFnNss3KnBXEVVxbnmWFZqPyUbN7hN3VA3ssmLZa9KyuhB2-GtYr63r6I_Yuqc2qkmHM6fUYLkkrRjcyOj85fP4Ft53z_2ddt1FTcBViqMqNDWETiX4R5LegHSspvdDI3MN5MsqFVnHiSyL4En4uAwISmod5IIyf8UiFG7BQlIXZBMYjXBfIgAtKsiaZkaRCichQRujcRAkHvIktU9VQjZPiRS-dkSST-VNbVCe8dOzA4fSVvuXZ-K7xATpo2o4Ysrsn_1K6ZznrwvbId6D1wX-zz8YIk9AUDuxMHJo2A3eQzrqZA_vTxzjkKI-SFaYcDohTFeM8Ggj_sfdFG8SxcVsk_tb3P9mGH3ZPh4rWdmCheh2aXVzlVLJVd-UWLJ6eX13fvAHjnPt1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QAIIZ7CUNoFwQVh1a_srg8IVUBIadpTK_Vm9mUalNqhcYryp_iNzHjjpBWit94iZ_3QzHhmPs_sNwBvhIlspjhiE6E5AhQbhyqVNuSWBoqU0pSG9jsfHPLBcfbtpHeyBn-6vTDUVtn5xNZR29rQN_IdtDuExxT_P05-hTQ1iqqr3QgNbxb7bv4bIdv0w95n1O_bJOl_Ofo0CBdTBUKDWKIJpaMcXePzCXr-pCeN1lHqdBlhvMhKYY3MY01EVyIudUIJteVpmQgXK56ZFK-7DreyNE2Jq1_2v65IfoX0dFWChzk6-q6K6rfqCer3IPyOv8L5lTi4fkpdmPcmaoqKKf1EjX-CQxvx-g_g_iJVZbveth7Cmqsewd1LBIaP4SeNUmtZvVldsoq4kVtNM1VZdlGPLPuBML85ZaOK2XmlzkaGtZ23s3PHxnXbv_-eXSqis6Zm6OPGY4YpcMPogKL9mrOzJ3B8I3J-ChtVXblnwHiGeYhOuKCibq6cpqmXiER1hsaUGxFA1MmyMAtqc5qwMS5WpMwk_sI38YmomAfwbnnKxPN6XLf4NSpouY4YuQe7w4KOeY68tHcRB7B1RX-ry0qEZSiKADY7hRYLRzEtVmYdwKvl3_iKU91GVa6eTYnDFeMKCgjvsf2fNYibZU_k8fPrb7INtwdHB8NiuHe4_wLu-O9J1DC3CRvN-cy9xAyr0VutWTP4ftPv0V-GsTe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+nucleation+and+void+growth+in+dynamic+pressure+loading%2C+application+to+spall+test+on+tantalum&rft.jtitle=International+journal+of+fracture&rft.au=Czarnota%2C+Christophe&rft.au=Mercier%2C+Sebastien&rft.au=Molinari%2C+Alain&rft.date=2006-09-01&rft.issn=0376-9429&rft.volume=141&rft.issue=1-2&rft.spage=177&rft.epage=194&rft_id=info:doi/10.1007%2Fs10704-006-0070-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon |