Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum

Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fracture Vol. 141; no. 1-2; pp. 177 - 194
Main Authors Czarnota, Christophe, Mercier, Sébastien, Molinari, Alain
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.09.2006
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0376-9429
1573-2673
DOI10.1007/s10704-006-0070-y

Cover

Abstract Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure pc is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of pc. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Supérieure de Mécanique et d’Aéronautique, Université de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage.
AbstractList Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure p sub(c) is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of p sub(c). In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Superieure de Mecanique et d'Aeronautique, Universite de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage.
Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure p c is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of p c. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high-purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Superieure de Mecanique et d'Aeronautique, Universite de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage.
Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model, dedicated to nucleation and growth of voids during dynamic pressure loading, is developed. Initially, the material is free of voids but has potential sites for nucleation. A void nucleates from an existing site when the cavitation pressure pc is reached. A Weibull probability law is used to describe the distribution of the cavitation pressure among potential nucleation sites. During the initial growth, the effect of material properties is essentially appearing through the magnitude of pc. In the later stages, the matrix softening due to the increase of porosity has to be taken into account. In a first step, the response of a sphere made of dense matrix but containing a unique potential site, is investigated. When the applied loading is a pressure ramp, a closed form solution is derived for the evolution of the void that has nucleated from the existing site. The solution appears to be valid up to a porosity of 0.5. In a second part, the dynamic ductile fracture of a high purity grade tantalum is simulated using the proposed model. Spall stresses for this tantalum are calculated and are in close agreement with experimental levels measured by Roy (2003, Ph.D. Thesis, Ecole Nationale Supérieure de Mécanique et d'Aéronautique, Université de Poitiers, France). Finally, a parametric study is performed to capture the influence of different parameters (mass density of the material, mean spacing between neighboring sites, distribution of nucleation sites...) on the evolution of damage.
Author Mercier, Sébastien
Molinari, Alain
Czarnota, Christophe
Author_xml – sequence: 1
  givenname: Christophe
  surname: Czarnota
  fullname: Czarnota, Christophe
– sequence: 2
  givenname: Sébastien
  surname: Mercier
  fullname: Mercier, Sébastien
– sequence: 3
  givenname: Alain
  surname: Molinari
  fullname: Molinari, Alain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18306875$$DView record in Pascal Francis
https://hal.science/hal-00121135$$DView record in HAL
BookMark eNp9klGL1TAQhYOs4N3VH-BbQBQFq5M0bdLHZVFXuOKLPodpmu7mkpvUpF25_97ULvuwoA9hYPjO5MxwzslZiMES8pLBBwYgP2YGEkQF0JYnoTo9ITvWyLrirazPyA5q2Vad4N0zcp7zAQA6qcSOHL7FwXrvwg2NIw2L8RZnFwPFMNC76AZ6k-Lv-Za6QIdTwKMzdEo25yVZ6iMORfme4jR5ZzbhHGme0Hs62zzTtYFhRr8cn5OnI_psX9zXC_Lz86cfV9fV_vuXr1eX-8oIYHOlrFCy6bFlsrfG8EaZvofa9iNYO4hRDkZ1rBeNkJKNPZeNaoa2Hrm0DFth6gvybpt7i15PyR0xnXREp68v93rtATDOWN3cscK-2dgpxV9LMayPLptyEAw2Lllz1alGdiv49r8gA8VZV8ys6KtH6CEuKZSVNedNpySvuSjU63sKs0E_JgzG5Qe_TNXQljsUTm6cSTHnZEdt3Pz30nNC58vHeg2A3gJQdmv1GgB9Kkr2SPkw_J-aPybRtLw
CODEN IJFRAP
CitedBy_id crossref_primary_10_1063_5_0078182
crossref_primary_10_3390_ma16144998
crossref_primary_10_1016_j_euromechsol_2020_104149
crossref_primary_10_1016_j_mechmat_2013_11_012
crossref_primary_10_1063_5_0009521
crossref_primary_10_1016_j_jmps_2017_06_010
crossref_primary_10_1002_nme_7446
crossref_primary_10_1016_j_ijplas_2017_03_008
crossref_primary_10_1016_j_jmps_2017_07_020
crossref_primary_10_1016_j_ijplas_2020_102903
crossref_primary_10_1016_j_cma_2018_01_028
crossref_primary_10_1063_1_4979346
crossref_primary_10_1016_j_ijsolstr_2018_11_034
crossref_primary_10_1063_5_0153661
crossref_primary_10_1007_s10704_009_9424_6
crossref_primary_10_1016_j_ijsolstr_2016_07_033
crossref_primary_10_1016_j_jmps_2023_105386
crossref_primary_10_1063_5_0234896
crossref_primary_10_1016_j_mechmat_2012_10_004
crossref_primary_10_1098_rspa_2024_0898
crossref_primary_10_7498_aps_74_20241338
crossref_primary_10_1016_j_actamat_2018_01_029
crossref_primary_10_1016_j_ijsolstr_2015_04_029
crossref_primary_10_1016_j_mechmat_2019_05_005
crossref_primary_10_1016_j_jmps_2011_12_010
crossref_primary_10_1016_j_ijplas_2020_102816
crossref_primary_10_1016_j_actamat_2016_12_033
crossref_primary_10_4028_www_scientific_net_MSF_763_65
crossref_primary_10_1016_j_ijsolstr_2022_111598
crossref_primary_10_1016_j_jallcom_2023_168862
crossref_primary_10_1016_j_jnucmat_2020_152496
crossref_primary_10_1007_s10338_022_00353_0
crossref_primary_10_1063_5_0064557
crossref_primary_10_1016_j_wear_2014_03_013
crossref_primary_10_1007_s10704_009_9436_2
crossref_primary_10_1007_s10704_009_9438_0
crossref_primary_10_1016_j_jmps_2020_104023
crossref_primary_10_1016_j_jmps_2022_105032
crossref_primary_10_1016_j_mechmat_2023_104710
crossref_primary_10_1016_j_ijplas_2025_104318
crossref_primary_10_1016_j_ijplas_2025_104314
crossref_primary_10_1016_j_actamat_2019_08_006
crossref_primary_10_1016_j_ijplas_2022_103418
crossref_primary_10_1016_j_piutam_2014_01_019
crossref_primary_10_1016_j_jmps_2023_105520
crossref_primary_10_1063_5_0207473
crossref_primary_10_1016_j_ijplas_2019_09_007
crossref_primary_10_1016_j_ijsolstr_2015_05_003
crossref_primary_10_1016_j_jmps_2017_06_005
crossref_primary_10_1103_PhysRevAccelBeams_21_073001
crossref_primary_10_1007_s10704_020_00441_7
crossref_primary_10_1016_j_mechmat_2014_01_008
Cites_doi 10.1016/0370-1573(87)90049-4
10.1016/0167-6636(86)90029-3
10.1063/1.329011
10.1016/0022-5096(69)90033-7
10.1063/1.2263416
10.1016/0022-5096(91)90004-8
10.1016/S0749-6419(99)00032-7
10.1016/0001-6160(84)90213-X
10.1016/S0022-5096(02)00079-0
10.1063/1.1661372
10.1115/1.3005108
10.1115/1.3422899
10.1063/1.342000
10.1115/1.2895993
10.1016/0749-6419(91)90036-X
10.1016/0020-7683(92)90082-5
10.1115/1.3601204
10.1063/1.1483613
10.1063/1.1780318
10.1016/S0749-6419(02)00036-0
10.1016/0079-6425(83)90003-8
10.1063/1.354678
10.1098/rsta.1982.0095
10.1007/978-1-4612-2934-6_4
10.1016/j.jmps.2005.02.010
10.1115/1.4010337
10.1016/S0022-5096(01)00003-5
10.1016/0749-6419(94)90001-9
10.1063/1.365320
10.1007/BF00036191
10.1115/1.2899463
10.1016/S1359-6454(99)00223-2
10.1007/BF00015686
10.1115/1.3443401
10.1115/1.2897686
10.1023/A:1012924626044
ContentType Journal Article
Copyright 2007 INIST-CNRS
International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2007 INIST-CNRS
– notice: International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
1XC
DOI 10.1007/s10704-006-0070-y
DatabaseName CrossRef
Pascal-Francis
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database

ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-2673
EndPage 194
ExternalDocumentID oai_HAL_hal_00121135v1
18306875
10_1007_s10704_006_0070_y
GroupedDBID -Y2
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
PUEGO
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~8M
~A~
~EX
IQODW
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
1XC
ID FETCH-LOGICAL-c401t-8e4875ba617becc258cbb03ebf0eed4f7dc891b454771fb27585d63f27e1a64c3
IEDL.DBID 8FG
ISSN 0376-9429
IngestDate Fri Sep 12 12:55:41 EDT 2025
Fri Sep 05 13:58:52 EDT 2025
Fri Sep 05 14:07:11 EDT 2025
Fri Jul 25 11:08:19 EDT 2025
Mon Jul 21 09:15:52 EDT 2025
Wed Oct 01 01:19:08 EDT 2025
Thu Apr 24 23:12:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Nucleation
Micro-inertia
Modeling
Crack propagation
Sphere
Cavity
Ductile fracture Spall
Dynamics
Weibull distribution
Loading test(mechanics)
Damaging
Dense matrix
Probabilistic approach
Spacing
Experimental study
Cavitation
Exact solution
Nucleation and growth
Tantalum
Scaling
Inertia
Ductile fracture
Porosity
Coalescence
Dynamic load
Step function
Language English
License http://www.springer.com/tdm
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-8e4875ba617becc258cbb03ebf0eed4f7dc891b454771fb27585d63f27e1a64c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-5640-3306
0000-0002-2957-7220
PQID 2259872324
PQPubID 23500
PageCount 18
ParticipantIDs hal_primary_oai_HAL_hal_00121135v1
proquest_miscellaneous_28985791
proquest_miscellaneous_1082192751
proquest_journals_2259872324
pascalfrancis_primary_18306875
crossref_citationtrail_10_1007_s10704_006_0070_y
crossref_primary_10_1007_s10704_006_0070_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle International journal of fracture
PublicationYear 2006
Publisher Springer
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer
– name: Springer Nature B.V
– name: Springer Verlag
References MM Carroll (70_CR2) 1972; 43
JM Duva (70_CR5) 1986; 5
70_CR39
70_CR38
70_CR31
Y Huang (70_CR13) 1991; 39
V Tvergaard (70_CR34) 1992; 11
JN Johnson (70_CR14) 1981; 52
DR Curran (70_CR4) 1987; 147
JR Rice (70_CR26) 1969; 17
TR Thomason (70_CR28) 1999; 47
V Tvergaard (70_CR32) 1981; 17
V Tvergaard (70_CR33) 1982; 18
R Cortes (70_CR3) 1992; 29
A Needleman (70_CR22) 1972; 41
CO Horgan (70_CR11) 1995; 48
FA McClintock (70_CR18) 1968; 35
JN Johnson (70_CR15) 1988; 64
A Molinari (70_CR21) 2005; 53
JM Ball (70_CR1) 1982; 306
70_CR27
J Eftis (70_CR6) 2003; 19
A Molinari (70_CR20) 2001; 49
R Hill (70_CR10) 1950
Y Huang (70_CR12) 1991; 58
JB Leblond (70_CR17) 1994; 10
W Weibull (70_CR37) 1951; 18
AL Gurson (70_CR9) 1977; 99
H Klöcker (70_CR16) 1988; 49
70_CR23
MA Meyers (70_CR19) 1983; 28
XY Wu (70_CR40) 2003; 51
E Olevsky (70_CR24) 1988; 16
M Ortiz (70_CR25) 1992; 114
ZP Wang (70_CR36) 1997; 81
W Tong (70_CR30) 1995; 62
W Tong (70_CR29) 1993; 74
TF Guo (70_CR8) 2001; 36
J Eftis (70_CR7) 1991; 7
V Tvergaard (70_CR35) 1984; 32
References_xml – volume: 147
  start-page: 253
  issue: 5–6
  year: 1987
  ident: 70_CR4
  publication-title: Phys Rep
  doi: 10.1016/0370-1573(87)90049-4
– volume: 5
  start-page: 137
  year: 1986
  ident: 70_CR5
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(86)90029-3
– volume: 52
  start-page: 2812
  issue: 4
  year: 1981
  ident: 70_CR14
  publication-title: J Appl Phys
  doi: 10.1063/1.329011
– ident: 70_CR27
– volume: 17
  start-page: 201
  year: 1969
  ident: 70_CR26
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(69)90033-7
– ident: 70_CR38
  doi: 10.1063/1.2263416
– volume: 39
  start-page: 223
  year: 1991
  ident: 70_CR13
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(91)90004-8
– volume: 16
  start-page: 1
  year: 1988
  ident: 70_CR24
  publication-title: Int J Plast
  doi: 10.1016/S0749-6419(99)00032-7
– volume: 32
  start-page: 157
  year: 1984
  ident: 70_CR35
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(84)90213-X
– volume: 51
  start-page: 1
  year: 2003
  ident: 70_CR40
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(02)00079-0
– volume: 43
  start-page: 1626
  year: 1972
  ident: 70_CR2
  publication-title: J Appl Phys
  doi: 10.1063/1.1661372
– volume-title: The mathematical theory of plasticity
  year: 1950
  ident: 70_CR10
– volume: 49
  start-page: C3
  year: 1988
  ident: 70_CR16
  publication-title: J Phys
– volume: 48
  start-page: 471
  year: 1995
  ident: 70_CR11
  publication-title: Appl Mech Rev
  doi: 10.1115/1.3005108
– volume: 41
  start-page: 964
  year: 1972
  ident: 70_CR22
  publication-title: J Appl Mech
  doi: 10.1115/1.3422899
– volume: 64
  start-page: 6699
  issue: 12
  year: 1988
  ident: 70_CR15
  publication-title: J Appl Phys
  doi: 10.1063/1.342000
– volume: 62
  start-page: 633
  year: 1995
  ident: 70_CR30
  publication-title: Trans ASME: J Appl Mech
  doi: 10.1115/1.2895993
– volume: 7
  start-page: 275
  year: 1991
  ident: 70_CR7
  publication-title: Int J Plast
  doi: 10.1016/0749-6419(91)90036-X
– volume: 29
  start-page: 1339
  year: 1992
  ident: 70_CR3
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(92)90082-5
– volume: 35
  start-page: 363
  year: 1968
  ident: 70_CR18
  publication-title: J Appl Mech
  doi: 10.1115/1.3601204
– ident: 70_CR31
  doi: 10.1063/1.1483613
– ident: 70_CR39
  doi: 10.1063/1.1780318
– volume: 19
  start-page: 1321
  year: 2003
  ident: 70_CR6
  publication-title: Int J Plast
  doi: 10.1016/S0749-6419(02)00036-0
– volume: 28
  start-page: 1
  year: 1983
  ident: 70_CR19
  publication-title: Prog Mater Sci
  doi: 10.1016/0079-6425(83)90003-8
– volume: 74
  start-page: 2425
  year: 1993
  ident: 70_CR29
  publication-title: J Appl Phys
  doi: 10.1063/1.354678
– volume: 306
  start-page: 557
  year: 1982
  ident: 70_CR1
  publication-title: Philos Trans R Soc London Ser A
  doi: 10.1098/rsta.1982.0095
– ident: 70_CR23
  doi: 10.1007/978-1-4612-2934-6_4
– volume: 11
  start-page: 215
  year: 1992
  ident: 70_CR34
  publication-title: Eur J Mech Ser A, Solids
– volume: 53
  start-page: 1476
  year: 2005
  ident: 70_CR21
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2005.02.010
– volume: 18
  start-page: 293
  year: 1951
  ident: 70_CR37
  publication-title: J Appl Mech
  doi: 10.1115/1.4010337
– volume: 49
  start-page: 1497
  year: 2001
  ident: 70_CR20
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(01)00003-5
– volume: 10
  start-page: 213
  year: 1994
  ident: 70_CR17
  publication-title: Int J Plast
  doi: 10.1016/0749-6419(94)90001-9
– volume: 81
  start-page: 7213
  year: 1997
  ident: 70_CR36
  publication-title: J Appl Phys
  doi: 10.1063/1.365320
– volume: 17
  start-page: 389
  year: 1981
  ident: 70_CR32
  publication-title: Int J Frac
  doi: 10.1007/BF00036191
– volume: 114
  start-page: 48
  year: 1992
  ident: 70_CR25
  publication-title: J Appl Mech
  doi: 10.1115/1.2899463
– volume: 47
  start-page: 3633
  issue: 13
  year: 1999
  ident: 70_CR28
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(99)00223-2
– volume: 18
  start-page: 237
  year: 1982
  ident: 70_CR33
  publication-title: Int J Frac
  doi: 10.1007/BF00015686
– volume: 99
  start-page: 2
  year: 1977
  ident: 70_CR9
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.3443401
– volume: 58
  start-page: 1084
  issue: 4
  year: 1991
  ident: 70_CR12
  publication-title: J Appl Mech
  doi: 10.1115/1.2897686
– volume: 36
  start-page: 5871
  year: 2001
  ident: 70_CR8
  publication-title: J Mater Sci
  doi: 10.1023/A:1012924626044
SSID ssj0009784
Score 2.0310419
Snippet Dynamic ductile fracture is a three stages process controlled by nucleation, growth and finally coalescence of voids. In the present work, a theoretical model,...
SourceID hal
proquest
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 177
SubjectTerms Cavitation
Coalescing
Computer simulation
Ductile fracture
Dynamic pressure
Dynamics
Engineering Sciences
Evolution
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Material properties
Mathematical models
Mechanics
Mechanics of materials
Nucleation
Physics
Porosity
Solid mechanics
Stress concentration
Structural and continuum mechanics
Tantalum
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Voids
Title Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum
URI https://www.proquest.com/docview/2259872324
https://www.proquest.com/docview/1082192751
https://www.proquest.com/docview/28985791
https://hal.science/hal-00121135
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-2673
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: AFBBN
  dateStart: 19650301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2673
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZS-RAEC48XlZE1F0xHmMr-ySGzTXdyZOoOA7LKiIr-BbSRzwYk9HJDMy_tyqdmVFE30LSSaCqu7q_rurvA_gtlKejjCM2EZIjQNG-m4WxdrkmQZE8Vrmi886XV7x7G_29a981G26DpqxyEhPrQK1LRXvkf7DfITym-f-4_-KSahRlVxsJjXlY9APsSXRSvHMxI90VsaWPEtxNMPBOspr26Jyg-gvC03jljj_MS_MPVBW53M8GaKjcKlx8Ctb1DNRZhZVm6chOrK_XYM4U67D0jlDwJzyRtFnNss3KnBXEVVxbnmWFZqPyUbN7hN3VA3ssmLZa9KyuhB2-GtYr63r6I_Yuqc2qkmHM6fUYLkkrRjcyOj85fP4Ft53z_2ddt1FTcBViqMqNDWETiX4R5LegHSspvdDI3MN5MsqFVnHiSyL4En4uAwISmod5IIyf8UiFG7BQlIXZBMYjXBfIgAtKsiaZkaRCichQRujcRAkHvIktU9VQjZPiRS-dkSST-VNbVCe8dOzA4fSVvuXZ-K7xATpo2o4Ysrsn_1K6ZznrwvbId6D1wX-zz8YIk9AUDuxMHJo2A3eQzrqZA_vTxzjkKI-SFaYcDohTFeM8Ggj_sfdFG8SxcVsk_tb3P9mGH3ZPh4rWdmCheh2aXVzlVLJVd-UWLJ6eX13fvAHjnPt1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QAIIZ7CUNoFwQVh1a_srg8IVUBIadpTK_Vm9mUalNqhcYryp_iNzHjjpBWit94iZ_3QzHhmPs_sNwBvhIlspjhiE6E5AhQbhyqVNuSWBoqU0pSG9jsfHPLBcfbtpHeyBn-6vTDUVtn5xNZR29rQN_IdtDuExxT_P05-hTQ1iqqr3QgNbxb7bv4bIdv0w95n1O_bJOl_Ofo0CBdTBUKDWKIJpaMcXePzCXr-pCeN1lHqdBlhvMhKYY3MY01EVyIudUIJteVpmQgXK56ZFK-7DreyNE2Jq1_2v65IfoX0dFWChzk6-q6K6rfqCer3IPyOv8L5lTi4fkpdmPcmaoqKKf1EjX-CQxvx-g_g_iJVZbveth7Cmqsewd1LBIaP4SeNUmtZvVldsoq4kVtNM1VZdlGPLPuBML85ZaOK2XmlzkaGtZ23s3PHxnXbv_-eXSqis6Zm6OPGY4YpcMPogKL9mrOzJ3B8I3J-ChtVXblnwHiGeYhOuKCibq6cpqmXiER1hsaUGxFA1MmyMAtqc5qwMS5WpMwk_sI38YmomAfwbnnKxPN6XLf4NSpouY4YuQe7w4KOeY68tHcRB7B1RX-ry0qEZSiKADY7hRYLRzEtVmYdwKvl3_iKU91GVa6eTYnDFeMKCgjvsf2fNYibZU_k8fPrb7INtwdHB8NiuHe4_wLu-O9J1DC3CRvN-cy9xAyr0VutWTP4ftPv0V-GsTe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+of+nucleation+and+void+growth+in+dynamic+pressure+loading%2C+application+to+spall+test+on+tantalum&rft.jtitle=International+journal+of+fracture&rft.au=Czarnota%2C+Christophe&rft.au=Mercier%2C+Sebastien&rft.au=Molinari%2C+Alain&rft.date=2006-09-01&rft.issn=0376-9429&rft.volume=141&rft.issue=1-2&rft.spage=177&rft.epage=194&rft_id=info:doi/10.1007%2Fs10704-006-0070-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon