Do You Like Sclera? Sclera-region Detection and Colorization for Anime Character Line Drawings
Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this background, research on automated line drawing colorization was recently conducted. However, the existing approaches present multiple problems, one...
Saved in:
Published in | The International journal of networked and distributed computing (Online) Vol. 7; no. 3; pp. 113 - 120 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
2019
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2211-7938 2211-7946 2211-7946 |
DOI | 10.2991/ijndc.k.190711.001 |
Cover
Abstract | Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this background, research on automated line drawing colorization was recently conducted. However, the existing approaches present multiple problems, one of which is the inconsistency of the whites of the eyes (sclera) between line drawings and the results of colorizing. In particular, in line drawings, a person’s skin and sclera are often expressed in white. Hence, there are cases in which existing colorization methods cannot predict the boundary correctly. In this study, we propose automated colorization methods that use machine learning to segment sclera regions in grayscale line drawings. To improve the accuracy of previous automated colorization approaches, we implemented sclera-region detection and an automated colorizing approach on grayscale line drawings of people. In addition, we evaluated the colorization results created by our methods through a user study. Statistics show that our methods are somewhat superior to industrial application, but many of our respondents perceived little difference between the methods. |
---|---|
AbstractList | Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this background, research on automated line drawing colorization was recently conducted. However, the existing approaches present multiple problems, one of which is the inconsistency of the whites of the eyes (sclera) between line drawings and the results of colorizing. In particular, in line drawings, a person’s skin and sclera are often expressed in white. Hence, there are cases in which existing colorization methods cannot predict the boundary correctly. In this study, we propose automated colorization methods that use machine learning to segment sclera regions in grayscale line drawings. To improve the accuracy of previous automated colorization approaches, we implemented sclera-region detection and an automated colorizing approach on grayscale line drawings of people. In addition, we evaluated the colorization results created by our methods through a user study. Statistics show that our methods are somewhat superior to industrial application, but many of our respondents perceived little difference between the methods. |
Author | Tahara, Yasuyuki Ohsuga, Akihiko Orihara, Ryohei Aizawa, Masashi Sei, Yuichi |
Author_xml | – sequence: 1 givenname: Masashi surname: Aizawa fullname: Aizawa, Masashi email: aizawa.masashi@ohsuga.lab.uec.ac.jp organization: Department of Informatics, The University of Electro-Communications – sequence: 2 givenname: Yuichi surname: Sei fullname: Sei, Yuichi organization: Department of Informatics, The University of Electro-Communications – sequence: 3 givenname: Yasuyuki surname: Tahara fullname: Tahara, Yasuyuki organization: Department of Informatics, The University of Electro-Communications – sequence: 4 givenname: Ryohei surname: Orihara fullname: Orihara, Ryohei organization: Department of Informatics, The University of Electro-Communications – sequence: 5 givenname: Akihiko surname: Ohsuga fullname: Ohsuga, Akihiko organization: Department of Informatics, The University of Electro-Communications |
BookMark | eNp9kMtOwzAQRS0EElD6A6zyAykex3acFUItj0qVWAALNljuxCnuw0ZOKgRfj_uABYuuZjSae2fuOSfHPnhLyCXQAasquHJzX-NgMYCKlgADSuGInDEGkJcVl8d_faFOSb9t3ZQKoEqUSpyRt1HIXsM6m7iFzZ5waaO53tc82pkLPhvZzmK36Yyvs2FYhui-zXbQhJjdeLey2fDdRIOdjcnJ22wUzafzs_aCnDRm2dr-vvbIy93t8_Ahnzzej4c3kxw5hS5XiiOXhQVUsqZSiMpMp3baYKMKoDWXZQ0Fq0EwgQwROWdUVWWKJUBRA0WPjHe-dTBz_RHdysQvHYzT20GIM21i51IujVLUBhqklDfpalVJULaQgjWlVMgxeamdF8bQttE2Gl23zdtF45YaqN5g11vseqF32HXCnqTsn_T3lYOiYidq07Kf2ajnYR19wnVI9QP3QpmR |
CitedBy_id | crossref_primary_10_3390_land13020254 crossref_primary_10_1016_j_engappai_2022_105006 crossref_primary_10_1007_s11263_022_01645_1 |
ContentType | Journal Article |
Copyright | The Authors 2019 |
Copyright_xml | – notice: The Authors 2019 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.2991/ijndc.k.190711.001 |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2211-7946 |
EndPage | 120 |
ExternalDocumentID | oai_doaj_org_article_c65da1fc004f4c499618e3652f768c4c 10_2991_ijndc_k_190711_001 |
GroupedDBID | 0R~ AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ACACY ACULB ADBBV AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C24 C6C EBLON EBS GROUPED_DOAJ OK1 RSV SOJ AASML AAYXX CITATION |
ID | FETCH-LOGICAL-c401t-884c463e1c86d06559abbebfcf8310d467d132d1525c2ccc44208972115180a13 |
IEDL.DBID | C6C |
ISSN | 2211-7938 2211-7946 |
IngestDate | Wed Aug 27 01:31:31 EDT 2025 Tue Jul 01 01:28:07 EDT 2025 Thu Apr 24 22:49:59 EDT 2025 Fri Feb 21 02:42:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | segmentation sclera region colorization Line drawing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-884c463e1c86d06559abbebfcf8310d467d132d1525c2ccc44208972115180a13 |
OpenAccessLink | https://doi.org/10.2991/ijndc.k.190711.001 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c65da1fc004f4c499618e3652f768c4c crossref_citationtrail_10_2991_ijndc_k_190711_001 crossref_primary_10_2991_ijndc_k_190711_001 springer_journals_10_2991_ijndc_k_190711_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | The International journal of networked and distributed computing (Online) |
PublicationTitleAbbrev | Int J Netw Distrib Comput |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer |
References | FurusawaCHiroshibaKOgakiKOdagiriYComicolorization: semi-automatic manga colorization2017Bangkok, ThailandSIGGRAPH Asia 2017 Technical Briefs O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: N. Navab, J. Hornegger, W Wells, A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234–241. MatsuiYItoKAramakiYFujimotoAOgawaTYamasakiTSketch-based manga retrieval using Manga109 datasetMultimedia Tools and Applications2017792181121838 R. Zhang, J-Y Zhu, P. Isola, X. Geng, A.S. Lin, T. Yu, et al., Realtime user-guided image colorization with learned deep priors, ACM Trans. Graph. 36 (2017). E. Simo-Serra, S. Iizuka, H. Ishikawa, Real-time data-driven interactive rough sketch inking, ACM Trans. Graph. 37 (2018). K. Frans. Outline colorization through tandem adversarial networks, http://arxiv.org/abs/1704.08834. C. Li, X. Liu, T-T. Wong, Deep extraction of manga structural lines, ACM Trans. Graph. 36 (2017). S. Iizuka, E. Simo-Serra, H. Ishikawa, Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification, ACM Trans. Graph. 35 (2016). Preferred Networks, Inc., PaintsChainer, https://paintschainer.preferred.tech/index_ja.html. QuYWongT-THengP-AManga colorizationACM Trans. Graph.20062512141220 Y. Ci, X. Ma, Z. Wang, H. Li, Z. Luo, User-guided deep anime line art colorization with conditional adversarial networks, 26th ACM International Conference on Multimedia, ACM, Seoul, Republic of Korea, 2018, pp. 1536–1544. LevinALischinskiDWeissYColorization using optimizationACM Trans. Graph.200423689694 hepesu, LineDistiller, https://github.com/hepesu/LineDistiller. P. Sangkloy, J. Lu, C. Fang, F. Yu, J. Hays, Scribbler: controlling deep image synthesis with sketch and color, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, USA, 2017. RotherCKolmogorovVBlakeA“GrabCut”: interactive foreground extraction using iterated graph cutsACM Trans. Graph.200423309314 SykoraDDinglianaJCollinsSLazyBrush: flexible painting tool for hand-drawn cartoonsComput. Graph. Forum200928599608 L. Zhang, C. Li, T-T. Wong, Y Ji, C. Liu, Two-stage sketch colorization. ACM Trans. Graph. 37 (2018). L. Zhang, Y. Ji, X. Lin, C. Liu, Style transfer for anime sketches with enhanced residual U-net and auxiliary classifier GAN, 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, Nanjing, China, 2017, pp. 506–511. Y. Liu, Z. Qin, Z. Luo, H. Wang, Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks, http://arxiv.org/abs/1705.01908. nagadomi, lbpcascade_animeface, https://github.com/nagadomi/lbpcascade_animeface. E. Simo-Serra, S. Iizuka, H. Ishikawa, Mastering sketching: adversarial augmentation for structured prediction, ACM Trans. Graph. 37 (2018). G. Larsson, M. Maire, G. Shakhnarovich, Learning representations for automatic colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 577–593. Y.Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, Eighth IEEE International Conference on Computer Vision (ICCV), IEEE, Vancouver, BC, Canada, Canada, 2001, pp. 105–112. E. Simo-Serra, S. Iizuka, K. Sasaki, H. Ishikawa, Learning to simplify: fully convolutional networks for rough sketch cleanup. ACM Trans. Graph. 35 (2016). P. Hensman, K. Aizawa, cGAN-based manga colorization using a single training image, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Kyoto, Japan, 2017, pp. 72–77. R. Zhang, P. Isola, A.A. Efros, Colorful image colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 649–666. |
References_xml | – reference: C. Li, X. Liu, T-T. Wong, Deep extraction of manga structural lines, ACM Trans. Graph. 36 (2017). – reference: R. Zhang, P. Isola, A.A. Efros, Colorful image colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 649–666. – reference: P. Sangkloy, J. Lu, C. Fang, F. Yu, J. Hays, Scribbler: controlling deep image synthesis with sketch and color, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, USA, 2017. – reference: S. Iizuka, E. Simo-Serra, H. Ishikawa, Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification, ACM Trans. Graph. 35 (2016). – reference: E. Simo-Serra, S. Iizuka, H. Ishikawa, Mastering sketching: adversarial augmentation for structured prediction, ACM Trans. Graph. 37 (2018). – reference: hepesu, LineDistiller, https://github.com/hepesu/LineDistiller. – reference: G. Larsson, M. Maire, G. Shakhnarovich, Learning representations for automatic colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 577–593. – reference: Y. Liu, Z. Qin, Z. Luo, H. Wang, Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks, http://arxiv.org/abs/1705.01908. – reference: E. Simo-Serra, S. Iizuka, K. Sasaki, H. Ishikawa, Learning to simplify: fully convolutional networks for rough sketch cleanup. ACM Trans. Graph. 35 (2016). – reference: Y. Ci, X. Ma, Z. Wang, H. Li, Z. Luo, User-guided deep anime line art colorization with conditional adversarial networks, 26th ACM International Conference on Multimedia, ACM, Seoul, Republic of Korea, 2018, pp. 1536–1544. – reference: P. Hensman, K. Aizawa, cGAN-based manga colorization using a single training image, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Kyoto, Japan, 2017, pp. 72–77. – reference: nagadomi, lbpcascade_animeface, https://github.com/nagadomi/lbpcascade_animeface. – reference: O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: N. Navab, J. Hornegger, W Wells, A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234–241. – reference: SykoraDDinglianaJCollinsSLazyBrush: flexible painting tool for hand-drawn cartoonsComput. Graph. Forum200928599608 – reference: MatsuiYItoKAramakiYFujimotoAOgawaTYamasakiTSketch-based manga retrieval using Manga109 datasetMultimedia Tools and Applications2017792181121838 – reference: Y.Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, Eighth IEEE International Conference on Computer Vision (ICCV), IEEE, Vancouver, BC, Canada, Canada, 2001, pp. 105–112. – reference: R. Zhang, J-Y Zhu, P. Isola, X. Geng, A.S. Lin, T. Yu, et al., Realtime user-guided image colorization with learned deep priors, ACM Trans. Graph. 36 (2017). – reference: L. Zhang, Y. Ji, X. Lin, C. Liu, Style transfer for anime sketches with enhanced residual U-net and auxiliary classifier GAN, 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, Nanjing, China, 2017, pp. 506–511. – reference: L. Zhang, C. Li, T-T. Wong, Y Ji, C. Liu, Two-stage sketch colorization. ACM Trans. Graph. 37 (2018). – reference: K. Frans. Outline colorization through tandem adversarial networks, http://arxiv.org/abs/1704.08834. – reference: FurusawaCHiroshibaKOgakiKOdagiriYComicolorization: semi-automatic manga colorization2017Bangkok, ThailandSIGGRAPH Asia 2017 Technical Briefs – reference: Preferred Networks, Inc., PaintsChainer, https://paintschainer.preferred.tech/index_ja.html. – reference: LevinALischinskiDWeissYColorization using optimizationACM Trans. Graph.200423689694 – reference: RotherCKolmogorovVBlakeA“GrabCut”: interactive foreground extraction using iterated graph cutsACM Trans. Graph.200423309314 – reference: QuYWongT-THengP-AManga colorizationACM Trans. Graph.20062512141220 – reference: E. Simo-Serra, S. Iizuka, H. Ishikawa, Real-time data-driven interactive rough sketch inking, ACM Trans. Graph. 37 (2018). |
SSID | ssib051085785 ssib053800439 ssj0002140107 |
Score | 2.1119447 |
Snippet | Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 113 |
SubjectTerms | colorization Line drawing Research Article sclera region segmentation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ19EUXH-Ig--abXJ2i59krk5hqgvKuzJkl4vMKeZzIr_vndtJwNhvvhUCGnSXi6Xu-TyfUKc5IghKu0CHYMOIsjTwCrAQNsOdLXVoa34U-7uk9FTdDOOx0tUX5wTVsMD14K7gCQurHJAg-kiIP88UQY7SawdOcoQAVvfMA2Xgim2wZrjhrBb35Ihi6suJi--gPPpOS2AXYbtbFhgFitRBdj_6zS0WmSGm2Kj8Q5lr_6qLbGGfls8D2aSJqW8nUxRPlD53F42z4B5FWZeDrCsUqq8tL6Q_Rmn1dX3KyU5pbLnJ28o-wtsZmrJoxzM7Rdvk--Ip-H1Y38UNLQIAdBPlYExJIekgwpMUpAHEac2zzF34Jg0rCDLV1CIWTCxEWgAiPgEnUF6aHE3oVWdXdHyM497QqrYWmMdqghNhHlqwKWO2jA5Wue0bQu1EFEGDWY4U1e8ZhQ7sFizSqzZNKvFyhlybXH68857jZixsvYVS_6nJqNdVwWkA1mjA9lfOtAWZ4txy5op-LGiz_3_6PNArJPvlNa7MYeiVc4_8Yj8kzI_rlTxG7Hh4oM priority: 102 providerName: Directory of Open Access Journals |
Title | Do You Like Sclera? Sclera-region Detection and Colorization for Anime Character Line Drawings |
URI | https://link.springer.com/article/10.2991/ijndc.k.190711.001 https://doaj.org/article/c65da1fc004f4c499618e3652f768c4c |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELYQvPCCmBhagVV-2NtmVrtO6jwhSEFoGrwAEk9EzuUsdR0u6jrxxm_nzkkrEBrSXhIpcmz5fGff-e6-E-JLjThAbYIyGRhloS6U14DK-CGMjDcDn-qnXFzm5zf2x21228HkcC7MC_89bZT6--RXbOBwekjn1ojRNjlVayOjjZe5uczLJe9kHEX_AreF5JidXMXqvsWwJZGypw3ZPIrY0rU5NP8Y5tU5leD83_hK0xF0ti22Ot1RHreL_UGsYdwRd-OZJJGVPydTlFf0fe6PurfiqguzKMe4SAFXUfrYyHLGQXdt9qUklVUex8k9ynKJ3Ew9RZTjuX_kS_SP4ubs9Lo8V13RBAU0wYVyzoLNh6jB5Q3pF1nh6xrrAIFLijW0LzZkgDZc9ggMAFj2rzOEDx39buD1cFesx1nET0LqzHvnA2qLzmJdOAhFoD5cjT4E43tCL0lUQYcozoUtfldkWTBZq0TWalq1ZOX4uZ74uvrnocXTeLf1CVN-1ZKxsNMHYpGqE60K8qzxOgCtd6C5F1zDBod5ZgKZUmChJ74t163qBPTPO2Pu_V_zfbFJOlTR3sociPXF_C9-Jj1lUfeJQY3tJzbtJ1ufnhdPp89RVeEB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxsxDI4QPMDLBBoTHQzysDcWaNK7I_eE4DrUQeFlIPFElPM5UimkqBTt72PfXSsmNKQ9nRTlEsWxEzu2PwvxvUTsojZBmRSMSqDMldeAyvgeHBlvur6un3J5lQ1ukvPb9LaFyeFcmDf-ezoo9eHoPlZwMD6ge-uI0TY5VWuFPZeMk19kxZx3Uo6if4PbQnLMTq588d5i2JKos6cN2TyK2NI2OTT_mOave6qG83_nK62voLN18anVHeVJs9kbYgnjZ3HXn0gSWTkcjVH-pvapP26_iqsuTKLs46wOuIrSx0oWEw66a7IvJams8iSOHlEWc-RmGimi7E_9H35E3xQ3Zz-vi4FqiyYooAXOlLUJJFkPNdisIv0izX1ZYhkgcEmxis7FigzQissegQGAhP3rDOFDV7_tet37IpbjJOKWkDr13vqAOkGbYJlbCHmgMWyJPgTjO0LPSeSgRRTnwhYPjiwLJquryerGriErx891xP7in6cGT-PD3qdM-UVPxsKuG4hFXCtaDrK08joA7XegtedcwwZ7WWoCmVKQQEf8mO-bawX0-YM5v_5f9z2xOri-HLrhr6uLbbFG-lTevNDsiOXZ9AW_kc4yK3drZn0FNmThAA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDDelg9KX0rGO3tZtfthb6_biS1LnaXS5Hf1aGWyFPs04ilxutznllrF_f5KTHB1jhT4FjD-wLMWSJf0kxNsKcYyJ9kpnoFUKVaFcAqi0m8CxdnrsYv2Uj1f56XV6fpPd3Mvij9Hug0uyy2lglKbQHt3VPgYuk0JzNP8WajhcHNJtdswYnJzA9YSxujior8zLgaMyjq2_h-ZC0s2ur2L1CqPZvog51ZosIUXMarrMmv8s89ftFUH-__Ggxotpti22eo1SnnQs8FSsYXgmvk4bSYIsL-cLlJ-pfene9V_FtRiaIKfYxjCsIF2oZdlwKF6XkylJkZUnYf4DZTngOdNMAeV06X7z0_qOuJ59-FKeqr6UggLaYKuMSSHNJ5iAyWvSOrLCVRVWHjwXGqvpb1mTWVpzMSTQAJCy152BfUghMGOXTJ6L9dAE3BUyyZwzzmOSokmxKgz4wtMcpkLnvXYjkQwkstDjjHO5i--W7A0mq41ktQvbkZWj6kZifzXmrkPZeLD3e6b8qicjZMeGZnlre4GzkGe1SzzQeXvae8GVbXCSZ9qTgQUpjMTBcG62F9ufD6z54nHd34iNT9OZvTy7ungpNknJKrpnmz2x3i5_4StSZNrqdeTVP-AN6VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+You+Like+Sclera%3F+Sclera-region+Detection+and+Colorization+for+Anime+Character+Line+Drawings&rft.jtitle=The+International+journal+of+networked+and+distributed+computing+%28Online%29&rft.au=Aizawa%2C+Masashi&rft.au=Sei%2C+Yuichi&rft.au=Tahara%2C+Yasuyuki&rft.au=Orihara%2C+Ryohei&rft.date=2019&rft.pub=Springer+Netherlands&rft.issn=2211-7938&rft.eissn=2211-7946&rft.volume=7&rft.issue=3&rft.spage=113&rft.epage=120&rft_id=info:doi/10.2991%2Fijndc.k.190711.001&rft.externalDocID=10_2991_ijndc_k_190711_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-7938&client=summon |