Do You Like Sclera? Sclera-region Detection and Colorization for Anime Character Line Drawings

Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this background, research on automated line drawing colorization was recently conducted. However, the existing approaches present multiple problems, one...

Full description

Saved in:
Bibliographic Details
Published inThe International journal of networked and distributed computing (Online) Vol. 7; no. 3; pp. 113 - 120
Main Authors Aizawa, Masashi, Sei, Yuichi, Tahara, Yasuyuki, Orihara, Ryohei, Ohsuga, Akihiko
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 2019
Springer
Subjects
Online AccessGet full text
ISSN2211-7938
2211-7946
2211-7946
DOI10.2991/ijndc.k.190711.001

Cover

Abstract Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this background, research on automated line drawing colorization was recently conducted. However, the existing approaches present multiple problems, one of which is the inconsistency of the whites of the eyes (sclera) between line drawings and the results of colorizing. In particular, in line drawings, a person’s skin and sclera are often expressed in white. Hence, there are cases in which existing colorization methods cannot predict the boundary correctly. In this study, we propose automated colorization methods that use machine learning to segment sclera regions in grayscale line drawings. To improve the accuracy of previous automated colorization approaches, we implemented sclera-region detection and an automated colorizing approach on grayscale line drawings of people. In addition, we evaluated the colorization results created by our methods through a user study. Statistics show that our methods are somewhat superior to industrial application, but many of our respondents perceived little difference between the methods.
AbstractList Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this background, research on automated line drawing colorization was recently conducted. However, the existing approaches present multiple problems, one of which is the inconsistency of the whites of the eyes (sclera) between line drawings and the results of colorizing. In particular, in line drawings, a person’s skin and sclera are often expressed in white. Hence, there are cases in which existing colorization methods cannot predict the boundary correctly. In this study, we propose automated colorization methods that use machine learning to segment sclera regions in grayscale line drawings. To improve the accuracy of previous automated colorization approaches, we implemented sclera-region detection and an automated colorizing approach on grayscale line drawings of people. In addition, we evaluated the colorization results created by our methods through a user study. Statistics show that our methods are somewhat superior to industrial application, but many of our respondents perceived little difference between the methods.
Author Tahara, Yasuyuki
Ohsuga, Akihiko
Orihara, Ryohei
Aizawa, Masashi
Sei, Yuichi
Author_xml – sequence: 1
  givenname: Masashi
  surname: Aizawa
  fullname: Aizawa, Masashi
  email: aizawa.masashi@ohsuga.lab.uec.ac.jp
  organization: Department of Informatics, The University of Electro-Communications
– sequence: 2
  givenname: Yuichi
  surname: Sei
  fullname: Sei, Yuichi
  organization: Department of Informatics, The University of Electro-Communications
– sequence: 3
  givenname: Yasuyuki
  surname: Tahara
  fullname: Tahara, Yasuyuki
  organization: Department of Informatics, The University of Electro-Communications
– sequence: 4
  givenname: Ryohei
  surname: Orihara
  fullname: Orihara, Ryohei
  organization: Department of Informatics, The University of Electro-Communications
– sequence: 5
  givenname: Akihiko
  surname: Ohsuga
  fullname: Ohsuga, Akihiko
  organization: Department of Informatics, The University of Electro-Communications
BookMark eNp9kMtOwzAQRS0EElD6A6zyAykex3acFUItj0qVWAALNljuxCnuw0ZOKgRfj_uABYuuZjSae2fuOSfHPnhLyCXQAasquHJzX-NgMYCKlgADSuGInDEGkJcVl8d_faFOSb9t3ZQKoEqUSpyRt1HIXsM6m7iFzZ5waaO53tc82pkLPhvZzmK36Yyvs2FYhui-zXbQhJjdeLey2fDdRIOdjcnJ22wUzafzs_aCnDRm2dr-vvbIy93t8_Ahnzzej4c3kxw5hS5XiiOXhQVUsqZSiMpMp3baYKMKoDWXZQ0Fq0EwgQwROWdUVWWKJUBRA0WPjHe-dTBz_RHdysQvHYzT20GIM21i51IujVLUBhqklDfpalVJULaQgjWlVMgxeamdF8bQttE2Gl23zdtF45YaqN5g11vseqF32HXCnqTsn_T3lYOiYidq07Kf2ajnYR19wnVI9QP3QpmR
CitedBy_id crossref_primary_10_3390_land13020254
crossref_primary_10_1016_j_engappai_2022_105006
crossref_primary_10_1007_s11263_022_01645_1
ContentType Journal Article
Copyright The Authors 2019
Copyright_xml – notice: The Authors 2019
DBID C6C
AAYXX
CITATION
DOA
DOI 10.2991/ijndc.k.190711.001
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2211-7946
EndPage 120
ExternalDocumentID oai_doaj_org_article_c65da1fc004f4c499618e3652f768c4c
10_2991_ijndc_k_190711_001
GroupedDBID 0R~
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C24
C6C
EBLON
EBS
GROUPED_DOAJ
OK1
RSV
SOJ
AASML
AAYXX
CITATION
ID FETCH-LOGICAL-c401t-884c463e1c86d06559abbebfcf8310d467d132d1525c2ccc44208972115180a13
IEDL.DBID C6C
ISSN 2211-7938
2211-7946
IngestDate Wed Aug 27 01:31:31 EDT 2025
Tue Jul 01 01:28:07 EDT 2025
Thu Apr 24 22:49:59 EDT 2025
Fri Feb 21 02:42:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords segmentation
sclera region
colorization
Line drawing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-884c463e1c86d06559abbebfcf8310d467d132d1525c2ccc44208972115180a13
OpenAccessLink https://doi.org/10.2991/ijndc.k.190711.001
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c65da1fc004f4c499618e3652f768c4c
crossref_citationtrail_10_2991_ijndc_k_190711_001
crossref_primary_10_2991_ijndc_k_190711_001
springer_journals_10_2991_ijndc_k_190711_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle The International journal of networked and distributed computing (Online)
PublicationTitleAbbrev Int J Netw Distrib Comput
PublicationYear 2019
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References FurusawaCHiroshibaKOgakiKOdagiriYComicolorization: semi-automatic manga colorization2017Bangkok, ThailandSIGGRAPH Asia 2017 Technical Briefs
O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: N. Navab, J. Hornegger, W Wells, A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234–241.
MatsuiYItoKAramakiYFujimotoAOgawaTYamasakiTSketch-based manga retrieval using Manga109 datasetMultimedia Tools and Applications2017792181121838
R. Zhang, J-Y Zhu, P. Isola, X. Geng, A.S. Lin, T. Yu, et al., Realtime user-guided image colorization with learned deep priors, ACM Trans. Graph. 36 (2017).
E. Simo-Serra, S. Iizuka, H. Ishikawa, Real-time data-driven interactive rough sketch inking, ACM Trans. Graph. 37 (2018).
K. Frans. Outline colorization through tandem adversarial networks, http://arxiv.org/abs/1704.08834.
C. Li, X. Liu, T-T. Wong, Deep extraction of manga structural lines, ACM Trans. Graph. 36 (2017).
S. Iizuka, E. Simo-Serra, H. Ishikawa, Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification, ACM Trans. Graph. 35 (2016).
Preferred Networks, Inc., PaintsChainer, https://paintschainer.preferred.tech/index_ja.html.
QuYWongT-THengP-AManga colorizationACM Trans. Graph.20062512141220
Y. Ci, X. Ma, Z. Wang, H. Li, Z. Luo, User-guided deep anime line art colorization with conditional adversarial networks, 26th ACM International Conference on Multimedia, ACM, Seoul, Republic of Korea, 2018, pp. 1536–1544.
LevinALischinskiDWeissYColorization using optimizationACM Trans. Graph.200423689694
hepesu, LineDistiller, https://github.com/hepesu/LineDistiller.
P. Sangkloy, J. Lu, C. Fang, F. Yu, J. Hays, Scribbler: controlling deep image synthesis with sketch and color, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, USA, 2017.
RotherCKolmogorovVBlakeA“GrabCut”: interactive foreground extraction using iterated graph cutsACM Trans. Graph.200423309314
SykoraDDinglianaJCollinsSLazyBrush: flexible painting tool for hand-drawn cartoonsComput. Graph. Forum200928599608
L. Zhang, C. Li, T-T. Wong, Y Ji, C. Liu, Two-stage sketch colorization. ACM Trans. Graph. 37 (2018).
L. Zhang, Y. Ji, X. Lin, C. Liu, Style transfer for anime sketches with enhanced residual U-net and auxiliary classifier GAN, 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, Nanjing, China, 2017, pp. 506–511.
Y. Liu, Z. Qin, Z. Luo, H. Wang, Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks, http://arxiv.org/abs/1705.01908.
nagadomi, lbpcascade_animeface, https://github.com/nagadomi/lbpcascade_animeface.
E. Simo-Serra, S. Iizuka, H. Ishikawa, Mastering sketching: adversarial augmentation for structured prediction, ACM Trans. Graph. 37 (2018).
G. Larsson, M. Maire, G. Shakhnarovich, Learning representations for automatic colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 577–593.
Y.Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, Eighth IEEE International Conference on Computer Vision (ICCV), IEEE, Vancouver, BC, Canada, Canada, 2001, pp. 105–112.
E. Simo-Serra, S. Iizuka, K. Sasaki, H. Ishikawa, Learning to simplify: fully convolutional networks for rough sketch cleanup. ACM Trans. Graph. 35 (2016).
P. Hensman, K. Aizawa, cGAN-based manga colorization using a single training image, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Kyoto, Japan, 2017, pp. 72–77.
R. Zhang, P. Isola, A.A. Efros, Colorful image colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 649–666.
References_xml – reference: C. Li, X. Liu, T-T. Wong, Deep extraction of manga structural lines, ACM Trans. Graph. 36 (2017).
– reference: R. Zhang, P. Isola, A.A. Efros, Colorful image colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 649–666.
– reference: P. Sangkloy, J. Lu, C. Fang, F. Yu, J. Hays, Scribbler: controlling deep image synthesis with sketch and color, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, USA, 2017.
– reference: S. Iizuka, E. Simo-Serra, H. Ishikawa, Let there be color!: Joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification, ACM Trans. Graph. 35 (2016).
– reference: E. Simo-Serra, S. Iizuka, H. Ishikawa, Mastering sketching: adversarial augmentation for structured prediction, ACM Trans. Graph. 37 (2018).
– reference: hepesu, LineDistiller, https://github.com/hepesu/LineDistiller.
– reference: G. Larsson, M. Maire, G. Shakhnarovich, Learning representations for automatic colorization, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision — ECCV 2016, Springer International Publishing, Cham, 2016, pp. 577–593.
– reference: Y. Liu, Z. Qin, Z. Luo, H. Wang, Auto-painter: Cartoon image generation from sketch by using conditional generative adversarial networks, http://arxiv.org/abs/1705.01908.
– reference: E. Simo-Serra, S. Iizuka, K. Sasaki, H. Ishikawa, Learning to simplify: fully convolutional networks for rough sketch cleanup. ACM Trans. Graph. 35 (2016).
– reference: Y. Ci, X. Ma, Z. Wang, H. Li, Z. Luo, User-guided deep anime line art colorization with conditional adversarial networks, 26th ACM International Conference on Multimedia, ACM, Seoul, Republic of Korea, 2018, pp. 1536–1544.
– reference: P. Hensman, K. Aizawa, cGAN-based manga colorization using a single training image, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), IEEE, Kyoto, Japan, 2017, pp. 72–77.
– reference: nagadomi, lbpcascade_animeface, https://github.com/nagadomi/lbpcascade_animeface.
– reference: O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: N. Navab, J. Hornegger, W Wells, A. Frangi (Eds.), Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Springer International Publishing, Cham, 2015, pp. 234–241.
– reference: SykoraDDinglianaJCollinsSLazyBrush: flexible painting tool for hand-drawn cartoonsComput. Graph. Forum200928599608
– reference: MatsuiYItoKAramakiYFujimotoAOgawaTYamasakiTSketch-based manga retrieval using Manga109 datasetMultimedia Tools and Applications2017792181121838
– reference: Y.Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images, Eighth IEEE International Conference on Computer Vision (ICCV), IEEE, Vancouver, BC, Canada, Canada, 2001, pp. 105–112.
– reference: R. Zhang, J-Y Zhu, P. Isola, X. Geng, A.S. Lin, T. Yu, et al., Realtime user-guided image colorization with learned deep priors, ACM Trans. Graph. 36 (2017).
– reference: L. Zhang, Y. Ji, X. Lin, C. Liu, Style transfer for anime sketches with enhanced residual U-net and auxiliary classifier GAN, 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), IEEE, Nanjing, China, 2017, pp. 506–511.
– reference: L. Zhang, C. Li, T-T. Wong, Y Ji, C. Liu, Two-stage sketch colorization. ACM Trans. Graph. 37 (2018).
– reference: K. Frans. Outline colorization through tandem adversarial networks, http://arxiv.org/abs/1704.08834.
– reference: FurusawaCHiroshibaKOgakiKOdagiriYComicolorization: semi-automatic manga colorization2017Bangkok, ThailandSIGGRAPH Asia 2017 Technical Briefs
– reference: Preferred Networks, Inc., PaintsChainer, https://paintschainer.preferred.tech/index_ja.html.
– reference: LevinALischinskiDWeissYColorization using optimizationACM Trans. Graph.200423689694
– reference: RotherCKolmogorovVBlakeA“GrabCut”: interactive foreground extraction using iterated graph cutsACM Trans. Graph.200423309314
– reference: QuYWongT-THengP-AManga colorizationACM Trans. Graph.20062512141220
– reference: E. Simo-Serra, S. Iizuka, H. Ishikawa, Real-time data-driven interactive rough sketch inking, ACM Trans. Graph. 37 (2018).
SSID ssib051085785
ssib053800439
ssj0002140107
Score 2.1119447
Snippet Colorizing line drawings requires special skill, experience, and knowledge. Artists also spend a great deal of time and effort creating art. Given this...
SourceID doaj
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms colorization
Line drawing
Research Article
sclera region
segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA6yJ19EUXH-Ig--abXJ2i59krk5hqgvKuzJkl4vMKeZzIr_vndtJwNhvvhUCGnSXi6Xu-TyfUKc5IghKu0CHYMOIsjTwCrAQNsOdLXVoa34U-7uk9FTdDOOx0tUX5wTVsMD14K7gCQurHJAg-kiIP88UQY7SawdOcoQAVvfMA2Xgim2wZrjhrBb35Ihi6suJi--gPPpOS2AXYbtbFhgFitRBdj_6zS0WmSGm2Kj8Q5lr_6qLbGGfls8D2aSJqW8nUxRPlD53F42z4B5FWZeDrCsUqq8tL6Q_Rmn1dX3KyU5pbLnJ28o-wtsZmrJoxzM7Rdvk--Ip-H1Y38UNLQIAdBPlYExJIekgwpMUpAHEac2zzF34Jg0rCDLV1CIWTCxEWgAiPgEnUF6aHE3oVWdXdHyM497QqrYWmMdqghNhHlqwKWO2jA5Wue0bQu1EFEGDWY4U1e8ZhQ7sFizSqzZNKvFyhlybXH68857jZixsvYVS_6nJqNdVwWkA1mjA9lfOtAWZ4txy5op-LGiz_3_6PNArJPvlNa7MYeiVc4_8Yj8kzI_rlTxG7Hh4oM
  priority: 102
  providerName: Directory of Open Access Journals
Title Do You Like Sclera? Sclera-region Detection and Colorization for Anime Character Line Drawings
URI https://link.springer.com/article/10.2991/ijndc.k.190711.001
https://doaj.org/article/c65da1fc004f4c499618e3652f768c4c
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swELYQvPCCmBhagVV-2NtmVrtO6jwhSEFoGrwAEk9EzuUsdR0u6jrxxm_nzkkrEBrSXhIpcmz5fGff-e6-E-JLjThAbYIyGRhloS6U14DK-CGMjDcDn-qnXFzm5zf2x21228HkcC7MC_89bZT6--RXbOBwekjn1ojRNjlVayOjjZe5uczLJe9kHEX_AreF5JidXMXqvsWwJZGypw3ZPIrY0rU5NP8Y5tU5leD83_hK0xF0ti22Ot1RHreL_UGsYdwRd-OZJJGVPydTlFf0fe6PurfiqguzKMe4SAFXUfrYyHLGQXdt9qUklVUex8k9ynKJ3Ew9RZTjuX_kS_SP4ubs9Lo8V13RBAU0wYVyzoLNh6jB5Q3pF1nh6xrrAIFLijW0LzZkgDZc9ggMAFj2rzOEDx39buD1cFesx1nET0LqzHvnA2qLzmJdOAhFoD5cjT4E43tCL0lUQYcozoUtfldkWTBZq0TWalq1ZOX4uZ74uvrnocXTeLf1CVN-1ZKxsNMHYpGqE60K8qzxOgCtd6C5F1zDBod5ZgKZUmChJ74t163qBPTPO2Pu_V_zfbFJOlTR3sociPXF_C9-Jj1lUfeJQY3tJzbtJ1ufnhdPp89RVeEB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxsxDI4QPMDLBBoTHQzysDcWaNK7I_eE4DrUQeFlIPFElPM5UimkqBTt72PfXSsmNKQ9nRTlEsWxEzu2PwvxvUTsojZBmRSMSqDMldeAyvgeHBlvur6un3J5lQ1ukvPb9LaFyeFcmDf-ezoo9eHoPlZwMD6ge-uI0TY5VWuFPZeMk19kxZx3Uo6if4PbQnLMTq588d5i2JKos6cN2TyK2NI2OTT_mOave6qG83_nK62voLN18anVHeVJs9kbYgnjZ3HXn0gSWTkcjVH-pvapP26_iqsuTKLs46wOuIrSx0oWEw66a7IvJams8iSOHlEWc-RmGimi7E_9H35E3xQ3Zz-vi4FqiyYooAXOlLUJJFkPNdisIv0izX1ZYhkgcEmxis7FigzQissegQGAhP3rDOFDV7_tet37IpbjJOKWkDr13vqAOkGbYJlbCHmgMWyJPgTjO0LPSeSgRRTnwhYPjiwLJquryerGriErx891xP7in6cGT-PD3qdM-UVPxsKuG4hFXCtaDrK08joA7XegtedcwwZ7WWoCmVKQQEf8mO-bawX0-YM5v_5f9z2xOri-HLrhr6uLbbFG-lTevNDsiOXZ9AW_kc4yK3drZn0FNmThAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDDelg9KX0rGO3tZtfthb6_biS1LnaXS5Hf1aGWyFPs04ilxutznllrF_f5KTHB1jhT4FjD-wLMWSJf0kxNsKcYyJ9kpnoFUKVaFcAqi0m8CxdnrsYv2Uj1f56XV6fpPd3Mvij9Hug0uyy2lglKbQHt3VPgYuk0JzNP8WajhcHNJtdswYnJzA9YSxujior8zLgaMyjq2_h-ZC0s2ur2L1CqPZvog51ZosIUXMarrMmv8s89ftFUH-__Ggxotpti22eo1SnnQs8FSsYXgmvk4bSYIsL-cLlJ-pfene9V_FtRiaIKfYxjCsIF2oZdlwKF6XkylJkZUnYf4DZTngOdNMAeV06X7z0_qOuJ59-FKeqr6UggLaYKuMSSHNJ5iAyWvSOrLCVRVWHjwXGqvpb1mTWVpzMSTQAJCy152BfUghMGOXTJ6L9dAE3BUyyZwzzmOSokmxKgz4wtMcpkLnvXYjkQwkstDjjHO5i--W7A0mq41ktQvbkZWj6kZifzXmrkPZeLD3e6b8qicjZMeGZnlre4GzkGe1SzzQeXvae8GVbXCSZ9qTgQUpjMTBcG62F9ufD6z54nHd34iNT9OZvTy7ungpNknJKrpnmz2x3i5_4StSZNrqdeTVP-AN6VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+You+Like+Sclera%3F+Sclera-region+Detection+and+Colorization+for+Anime+Character+Line+Drawings&rft.jtitle=The+International+journal+of+networked+and+distributed+computing+%28Online%29&rft.au=Aizawa%2C+Masashi&rft.au=Sei%2C+Yuichi&rft.au=Tahara%2C+Yasuyuki&rft.au=Orihara%2C+Ryohei&rft.date=2019&rft.pub=Springer+Netherlands&rft.issn=2211-7938&rft.eissn=2211-7946&rft.volume=7&rft.issue=3&rft.spage=113&rft.epage=120&rft_id=info:doi/10.2991%2Fijndc.k.190711.001&rft.externalDocID=10_2991_ijndc_k_190711_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-7938&client=summon