Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland–pond system: A case study

•Removal efficiency of a large-scale ISFWP treating drinking water source was assessed.•The average effluent concentrations of ISFWP could meet design requirements.•The CODMn average removal efficiency was only 7.6%.•TN removal performance in ISFWP decreased by 38.2% within five years.•Intensificati...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 309; p. 123310
Main Authors Li, Yiping, Zhang, Haikuo, Zhu, Liqin, Chen, Hongwei, Du, Guanchao, Gao, Xu, Pu, Yashuai
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2020.123310

Cover

Abstract •Removal efficiency of a large-scale ISFWP treating drinking water source was assessed.•The average effluent concentrations of ISFWP could meet design requirements.•The CODMn average removal efficiency was only 7.6%.•TN removal performance in ISFWP decreased by 38.2% within five years.•Intensification methods were required for further long-term application of ISFWP. Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland–pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
AbstractList Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland–pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMₙ), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMₙ and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMₙ and TN.
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (COD ), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for COD and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for COD and TN.
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
•Removal efficiency of a large-scale ISFWP treating drinking water source was assessed.•The average effluent concentrations of ISFWP could meet design requirements.•The CODMn average removal efficiency was only 7.6%.•TN removal performance in ISFWP decreased by 38.2% within five years.•Intensification methods were required for further long-term application of ISFWP. Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland–pond (ISFWP) system improving drinking water source. This study aimed to investigate the treatment performance of a large-scale ISFWP system for the improvement of drinking water source. During five years of operation, the average effluent water quality in the ISFWP system could comply with Chinese Environmental Quality Standards for Drinking Water Source. The average removal efficiencies of permanganate index (CODMn), ammonia nitrogen, total nitrogen (TN), total phosphorus, and fecal coliforms were 7.6%, 44.3%, 42.9%, 50.8%, and 88.6%, respectively. The treatment performance in the ISFWP system was stable during the operation time, while TN removal efficiency declined by 38.2% after five years of operation. Moreover, contaminants removal efficiencies were not subject to change of season, except for CODMn and TN. Consequently, efficient and sustainable contaminants removal in the large-scale ISFWP system still possessed challenges, especially for CODMn and TN.
ArticleNumber 123310
Author Pu, Yashuai
Du, Guanchao
Li, Yiping
Gao, Xu
Zhu, Liqin
Chen, Hongwei
Zhang, Haikuo
Author_xml – sequence: 1
  givenname: Yiping
  surname: Li
  fullname: Li, Yiping
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
– sequence: 2
  givenname: Haikuo
  surname: Zhang
  fullname: Zhang, Haikuo
  email: zhanghaikuo@hhu.edu.cn
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
– sequence: 3
  givenname: Liqin
  surname: Zhu
  fullname: Zhu, Liqin
  email: lqzhu@hhu.edu.cn
  organization: College of Marxism, Hohai University, Nanjing 210098, China
– sequence: 4
  givenname: Hongwei
  surname: Chen
  fullname: Chen, Hongwei
  organization: Yancheng Water Conservancy Bureau of Jiangsu Province, Yancheng 224001, China
– sequence: 5
  givenname: Guanchao
  surname: Du
  fullname: Du, Guanchao
  organization: Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
– sequence: 6
  givenname: Xu
  surname: Gao
  fullname: Gao, Xu
  organization: Yancheng Yanlong Lake Drinking Water Source Management Department, Yancheng 224007, China
– sequence: 7
  givenname: Yashuai
  surname: Pu
  fullname: Pu, Yashuai
  organization: Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32325377$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuGyEUhlGVqnHSvkLEsptxucwAU3XRKEovUqRu2jXCcHCwZsAFJpF3eYe8YZ-k4zredOMV0uH7D-j_LtBZTBEQuqJkSQkVHzbLVUi5gr1fMsLmIeOckldoQZXkDeulOEML0gvSqI615-iilA0hhFPJ3qBzzjjruJQL9HT7YIbJ1JAiTh7Xe8BDiuumQh7xFrJPeTTRAg4RGzyYvIamWDPsBxXW2VRwuEzZm5nxQ3rENsVS82T3F49QBxPdn6fnbYoztysVxo_4GltTAJc6ud1b9NqbocC7l_MS_fpy-_PmW3P34-v3m-u7xraE1kZJ0hrnW9N3lHnPvGLGi9Y6zzrhqScrJQG46byUDpyXirRcCFA9E7Ayjl-i94e925x-T1CqHkOxMMz_gzQVzVpOleKEt6dR3rc9UULSGb16QafVCE5vcxhN3uljwTPw6QDYnErJ4LUN9V_dNZswaEr03qfe6KNPvfepDz7nuPgvfnzhZPDzIQhzpw8Bsi42wCzShQy2apfCqRV_AV1dwO8
CitedBy_id crossref_primary_10_2166_wrd_2021_159
crossref_primary_10_1016_j_envres_2023_117498
crossref_primary_10_1016_j_jenvman_2022_116433
crossref_primary_10_1016_j_jenvman_2023_120002
crossref_primary_10_1016_j_jes_2021_03_028
crossref_primary_10_2478_rtuect_2021_0048
crossref_primary_10_1016_j_biortech_2021_126336
crossref_primary_10_1016_j_jwpe_2024_105578
crossref_primary_10_3389_frwa_2023_1128901
crossref_primary_10_1016_j_eti_2021_101542
crossref_primary_10_1016_j_jenvman_2022_116160
crossref_primary_10_3390_w14172670
crossref_primary_10_1016_j_aquaculture_2024_741931
crossref_primary_10_1016_j_chemosphere_2022_137698
crossref_primary_10_1016_j_scitotenv_2020_143489
crossref_primary_10_3390_su17052120
crossref_primary_10_3390_su132212456
crossref_primary_10_1016_j_ecoleng_2024_107325
crossref_primary_10_1016_j_eti_2025_104094
crossref_primary_10_1016_j_ecoleng_2024_107255
crossref_primary_10_1007_s11356_022_23936_3
crossref_primary_10_1016_j_jclepro_2022_134189
Cites_doi 10.1016/j.ecoleng.2006.08.002
10.2166/wh.2006.0017
10.1016/j.ecoleng.2012.06.004
10.1016/j.scitotenv.2017.01.072
10.1016/j.watres.2014.03.020
10.1016/j.cej.2011.11.108
10.1016/j.biortech.2010.09.096
10.1016/j.biortech.2019.121748
10.1016/j.biortech.2013.09.005
10.1016/j.biortech.2017.10.099
10.1016/j.jes.2015.11.006
10.1016/j.ecoleng.2014.07.013
10.1016/j.jhazmat.2015.02.002
10.1016/j.ecoleng.2012.08.016
10.1007/s00267-016-0811-2
10.1016/j.biortech.2019.01.116
10.1016/j.biortech.2017.03.163
10.1080/10934520701418615
10.1016/j.ecoleng.2016.12.026
10.1016/j.ecoleng.2005.10.008
10.1016/j.watres.2016.11.029
10.1016/j.cosust.2013.10.018
10.2175/106143001X139614
10.1007/s11356-011-0649-3
10.1016/j.biortech.2014.10.074
10.1016/j.envpol.2017.09.048
10.1016/j.agwat.2010.06.015
10.1016/j.scitotenv.2017.04.150
10.1016/j.watres.2016.10.005
10.1021/es102460h
10.2166/wst.1997.0177
10.1016/j.ecoleng.2016.06.031
10.1016/j.biortech.2014.10.068
10.1016/j.ecoleng.2013.07.009
10.1016/j.ecoleng.2017.06.012
10.1021/acs.est.8b05709
10.1016/j.ecoleng.2008.08.016
10.1021/acs.est.8b00010
10.1016/j.biortech.2007.04.001
10.1007/s13157-019-01262-8
10.1016/j.biortech.2016.02.008
10.1016/j.biortech.2017.03.185
10.1016/j.ecoleng.2013.01.033
10.1007/s13157-017-0884-6
10.1016/j.scitotenv.2006.09.014
10.1016/j.chemosphere.2018.03.201
10.1371/journal.pmed.1000367
10.1016/S0043-1354(03)00163-5
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.123310
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 32325377
10_1016_j_biortech_2020_123310
S0960852420305824
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c401t-8704adf4a9512ff2f82af64cdf256f1f0b87ee3a5f77dedf7804366e8926ebad3
IEDL.DBID AIKHN
ISSN 0960-8524
1873-2976
IngestDate Thu Sep 04 22:33:15 EDT 2025
Sun Sep 28 12:27:51 EDT 2025
Thu Apr 03 07:02:37 EDT 2025
Tue Jul 01 03:18:43 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Fri Feb 23 02:47:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface flow constructed wetland
Treatment performance
Pond
Long term
Drinking water source
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-8704adf4a9512ff2f82af64cdf256f1f0b87ee3a5f77dedf7804366e8926ebad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32325377
PQID 2394908671
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431883034
proquest_miscellaneous_2394908671
pubmed_primary_32325377
crossref_citationtrail_10_1016_j_biortech_2020_123310
crossref_primary_10_1016_j_biortech_2020_123310
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123310
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
2020-Aug
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vymazal (b0190) 2009; 351
Shan, Wang, Kang, Hou, Luo, Wang, Pan, Feng, Yang (b0145) 2020
Li, Li, Biswas, Nian, Jiang (b0095) 2008; 996
Zheng, Wang, Dzakpasu, Zhao, Ngo, Guo, Ge, Xiong (b0250) 2016; 207
Díaz, O’Geen, Dahlgren (b0040) 2010; 97
Wu, Zhang, Guo, Liang, Fan (b0225) 2017; 249
Vymazal (b0185) 2007; 380
Wu, Fan, Zhang, Ngo, Guo (b0240) 2018; 233
Sutherland, Howard-Williams, Turnbull, Broady, Craggs (b0160) 2015; 184
Saeed, Sun (b0135) 2011; 102
The State Environmental Protection Administration of China (b0170) 2002
Wu, Wang, He, Zhang, Liang, Shen (b0230) 2017; 598
Senduran, Gunes, Topaloglu, Dede, Masi, Kucukosmanoglu (b0140) 2018; 204
Cheesman, Turnar, Inglett, Reddy (b0035) 2010; 44
Tang, Zhang, Zhao, Wang, Shan (b0165) 2013; 60
Guo, Cui, Dong, Luo, Liu, Zhao, Wu (b0045) 2017; 238
Ottová, Balcarová, Vymazal (b0115) 1997; 35
Vymazal (b0195) 2018; 52
Kuiper, Verhofstad, Louwers, Bakker, Brederveld, van Gerven, Janssen, de Klein, Mooij (b0075) 2017; 59
Matamoros, Gutiérrez, Ferrer, García, Bayona (b0105) 2015; 288
Pahl-Wostl, Palmer, Richards (b0120) 2013; 5
Li, Zheng, Chu, Liu, Huang (b0090) 2019; 280
Wu, Lyu, Zhao, Vymazal, Arias, Brix (b0235) 2018; 52
Al-Rubaei, Engström, Viklander, Blecken (b0025) 2016; 95
Rai, Tripathi, Singh, Upadhyay, Dwivedi, Shukla, Mallick, Singh, Nautiyal (b0125) 2013; 148
Macintyre, Warner, Slawson (b0100) 2006; 4
Kadlec, Wallace (b0065) 2009
Kovacic, Twait, Wallace, Bowling (b0070) 2006; 283
Li, Chu, Huang, Zheng (b0085) 2019; 290
Stefanakis, Tsihrintzis (b0155) 2012; 181–182
Jia, Sun, Li (b0055) 2014; 71
Wang, Gao, Guo, Li, Tian, Zhang (b0200) 2012; 49
Adyel, Hipsey, Oldham (b0015) 2017; 102
Wu, Zhang, Ngo, Guo, Hu, Liang, Fan, Liu (b0220) 2015; 175
Tunçsiper (b0175) 2007; 42
Al-Rubaei, Engström, Viklander, Blecken (b0020) 2017; 37
Wu, Kuschk, Brix, Vymazal, Dong (b0215) 2014; 57
Kuschk, Wiessner, Kappelmeyer, Weissbrodt, Kastner, Stottmeister (b0080) 2003; 37
Adyel, Oldham, Hipsey (b0010) 2016; 107
Wang, Zheng, Wang, Zhang, Chen, Yu, Yin (b0205) 2016; 39
Bartram, Cairncross (b0030) 2010; 7
Huang, Gao, Liu, Du, Guo, Ntakirutimana (b0050) 2012; 46
Verhofstad, Poelen, van Kempen, Bakker, Smolders (b0180) 2017; 106
Olguín, Sánchez-Galván, Melo, Hernández, González-Portela (b0110) 2017; 584–585
Reichwaldt, Ho, Zhou, Ghadouani (b0130) 2017; 108
Adhikari, Harrigan, Reinhold, Waldhorn (b0005) 2013; 54
Song, Zheng, Li, Sun, Han, Wang, Xu (b0150) 2006; 263
Wojciechowska (b0210) 2017; 236
Kadlec, Reddy (b0060) 2001; 735
Xu, Feng, Zhu, Xu, Ding, Qi (b0245) 2012; 19
Kovacic (10.1016/j.biortech.2020.123310_b0070) 2006; 283
Senduran (10.1016/j.biortech.2020.123310_b0140) 2018; 204
Li (10.1016/j.biortech.2020.123310_b0095) 2008; 996
Vymazal (10.1016/j.biortech.2020.123310_b0195) 2018; 52
Adhikari (10.1016/j.biortech.2020.123310_b0005) 2013; 54
Stefanakis (10.1016/j.biortech.2020.123310_b0155) 2012; 181–182
Li (10.1016/j.biortech.2020.123310_b0090) 2019; 280
Rai (10.1016/j.biortech.2020.123310_b0125) 2013; 148
Sutherland (10.1016/j.biortech.2020.123310_b0160) 2015; 184
Al-Rubaei (10.1016/j.biortech.2020.123310_b0020) 2017; 37
Tunçsiper (10.1016/j.biortech.2020.123310_b0175) 2007; 42
Wu (10.1016/j.biortech.2020.123310_b0225) 2017; 249
Wu (10.1016/j.biortech.2020.123310_b0230) 2017; 598
Kuiper (10.1016/j.biortech.2020.123310_b0075) 2017; 59
Díaz (10.1016/j.biortech.2020.123310_b0040) 2010; 97
Guo (10.1016/j.biortech.2020.123310_b0045) 2017; 238
Wu (10.1016/j.biortech.2020.123310_b0220) 2015; 175
Wu (10.1016/j.biortech.2020.123310_b0215) 2014; 57
Bartram (10.1016/j.biortech.2020.123310_b0030) 2010; 7
Reichwaldt (10.1016/j.biortech.2020.123310_b0130) 2017; 108
Adyel (10.1016/j.biortech.2020.123310_b0010) 2016; 107
Cheesman (10.1016/j.biortech.2020.123310_b0035) 2010; 44
Saeed (10.1016/j.biortech.2020.123310_b0135) 2011; 102
Li (10.1016/j.biortech.2020.123310_b0085) 2019; 290
Tang (10.1016/j.biortech.2020.123310_b0165) 2013; 60
Macintyre (10.1016/j.biortech.2020.123310_b0100) 2006; 4
Vymazal (10.1016/j.biortech.2020.123310_b0190) 2009; 351
Wang (10.1016/j.biortech.2020.123310_b0205) 2016; 39
Shan (10.1016/j.biortech.2020.123310_b0145) 2020
Huang (10.1016/j.biortech.2020.123310_b0050) 2012; 46
Wojciechowska (10.1016/j.biortech.2020.123310_b0210) 2017; 236
Vymazal (10.1016/j.biortech.2020.123310_b0185) 2007; 380
Xu (10.1016/j.biortech.2020.123310_b0245) 2012; 19
Kadlec (10.1016/j.biortech.2020.123310_b0060) 2001; 735
Pahl-Wostl (10.1016/j.biortech.2020.123310_b0120) 2013; 5
Song (10.1016/j.biortech.2020.123310_b0150) 2006; 263
Wang (10.1016/j.biortech.2020.123310_b0200) 2012; 49
Matamoros (10.1016/j.biortech.2020.123310_b0105) 2015; 288
Jia (10.1016/j.biortech.2020.123310_b0055) 2014; 71
Adyel (10.1016/j.biortech.2020.123310_b0015) 2017; 102
Olguín (10.1016/j.biortech.2020.123310_b0110) 2017; 584–585
Al-Rubaei (10.1016/j.biortech.2020.123310_b0025) 2016; 95
Zheng (10.1016/j.biortech.2020.123310_b0250) 2016; 207
Ottová (10.1016/j.biortech.2020.123310_b0115) 1997; 35
Wu (10.1016/j.biortech.2020.123310_b0235) 2018; 52
Wu (10.1016/j.biortech.2020.123310_b0240) 2018; 233
Verhofstad (10.1016/j.biortech.2020.123310_b0180) 2017; 106
Kuschk (10.1016/j.biortech.2020.123310_b0080) 2003; 37
Kadlec (10.1016/j.biortech.2020.123310_b0065) 2009
The State Environmental Protection Administration of China (10.1016/j.biortech.2020.123310_b0170) 2002
References_xml – volume: 996
  start-page: 1656
  year: 2008
  end-page: 1663
  ident: b0095
  article-title: Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China
  publication-title: Bioresour. Technol.
– volume: 37
  start-page: 4236
  year: 2003
  end-page: 4242
  ident: b0080
  article-title: Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate
  publication-title: Water Res.
– volume: 35
  start-page: 117
  year: 1997
  end-page: 123
  ident: b0115
  article-title: Microbial characteristics of constructed wetlands
  publication-title: Water Sci. Technol.
– volume: 181–182
  start-page: 416
  year: 2012
  end-page: 430
  ident: b0155
  article-title: Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands
  publication-title: Chem. Eng. J.
– volume: 238
  start-page: 461
  year: 2017
  end-page: 471
  ident: b0045
  article-title: Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland
  publication-title: Bioresour. Technol.
– volume: 95
  start-page: 73
  year: 2016
  end-page: 82
  ident: b0025
  article-title: Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland finally maturated or in need of maintenance?
  publication-title: Ecol. Eng.
– volume: 107
  start-page: 66
  year: 2016
  end-page: 82
  ident: b0010
  article-title: Storm water nutrient attenuation in a constructed wetland with alternating surface and subsurface flow pathways: event to annual dynamics
  publication-title: Water Res.
– volume: 584–585
  start-page: 561
  year: 2017
  end-page: 571
  ident: b0110
  article-title: Long-term assessment at field scale of floating treatment wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond
  publication-title: Sci. Total Environ.
– volume: 37
  start-page: 485
  year: 2017
  end-page: 496
  ident: b0020
  article-title: Effectiveness of a 19-year old combined pond-wetland system in removing particulate and dissolved pollutants
  publication-title: Wetlands
– volume: 46
  start-page: 98
  year: 2012
  end-page: 106
  ident: b0050
  article-title: Correlation among soil microorganisms, soil enzyme activities, and removal efficiencies of pollutants in three constructed wetlands purifying micro-polluted river water
  publication-title: Ecol. Eng.
– volume: 71
  start-page: 48
  year: 2014
  end-page: 55
  ident: b0055
  article-title: A four-stage constructed wetland system for treating polluted water from an urban river
  publication-title: Ecol. Eng.
– volume: 236
  start-page: 146
  year: 2017
  end-page: 154
  ident: b0210
  article-title: Potential and limits of landfill leachate treatment in a multi-stage subsurface flow constructed wetland–evaluation of organics and nitrogen removal
  publication-title: Bioresour. Technol.
– volume: 351
  start-page: 1
  year: 2009
  end-page: 17
  ident: b0190
  article-title: The use constructed wetlands with horizontal subsurface flow for various types of wastewater
  publication-title: Ecol. Eng.
– volume: 102
  start-page: 641
  year: 2017
  end-page: 661
  ident: b0015
  article-title: Temporal dynamics of stormwater nutrient attenuation of an urban constructed wetland experiencing low summer flows and macrophyte senescence
  publication-title: Ecol. Eng.
– volume: 290
  year: 2019
  ident: b0085
  article-title: Multiphasic assessment of effects of design configuration on nutrient removal in storing multiple-pond constructed wetlands
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 1205
  year: 2011
  end-page: 1213
  ident: b0135
  article-title: The removal of nitrogen and organics in vertical flow wetland reactors: predictive models
  publication-title: Bioresour. Technol.
– volume: 263
  start-page: 272
  year: 2006
  end-page: 282
  ident: b0150
  article-title: Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China
  publication-title: Ecol. Eng.
– volume: 288
  start-page: 34
  year: 2015
  end-page: 42
  ident: b0105
  article-title: Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study
  publication-title: J. Hazard. Mater.
– volume: 5
  start-page: 676
  year: 2013
  end-page: 684
  ident: b0120
  article-title: Enhancing water security for the benefits of humans and nature—the role of governance
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 184
  start-page: 222
  year: 2015
  end-page: 229
  ident: b0160
  article-title: Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production
  publication-title: Bioresour. Technol.
– year: 2020
  ident: b0145
  article-title: The removal of antibiotics in relation to a microbial community in an integrated constructed wetland for tail water decontamination
  publication-title: Wetlands
– volume: 380
  start-page: 48
  year: 2007
  end-page: 65
  ident: b0185
  article-title: Removal of nutrients in various types of constructed wetlands
  publication-title: Sci. Total Environ.
– year: 2002
  ident: b0170
  article-title: Water and Wastewater Monitoring and Analysis Methods
– volume: 106
  start-page: 423
  year: 2017
  end-page: 430
  ident: b0180
  article-title: Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants
  publication-title: Ecol. Eng.
– volume: 233
  start-page: 933
  year: 2018
  end-page: 942
  ident: b0240
  article-title: Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: carbon dynamics
  publication-title: Environ. Pollut.
– volume: 54
  start-page: 266
  year: 2013
  end-page: 272
  ident: b0005
  article-title: Modeling seasonal variation in bacteriophage removal in constructed wetlands using convection- dispersion equation
  publication-title: Ecol. Eng.
– volume: 39
  start-page: 119
  year: 2016
  end-page: 133
  ident: b0205
  article-title: Performance of pond-wetland complexes as a preliminary processor of drinking water sources
  publication-title: J. Environ. Sci.
– volume: 97
  start-page: 1813
  year: 2010
  end-page: 1821
  ident: b0040
  article-title: Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows
  publication-title: Agr. Water Manage.
– volume: 7
  year: 2010
  ident: b0030
  article-title: Hygiene, sanitation, and water: forgotten foundations of health
  publication-title: PLoS Med.
– volume: 175
  start-page: 594
  year: 2015
  end-page: 601
  ident: b0220
  article-title: A review on the sustainability of constructed wetlands for wastewater treatment: design and operation
  publication-title: Bioresour. Technol.
– volume: 108
  start-page: 401
  year: 2017
  end-page: 411
  ident: b0130
  article-title: Sterols indicate water quality and wastewater treatment efficiency
  publication-title: Water Res.
– volume: 4
  start-page: 211
  year: 2006
  end-page: 214
  ident: b0100
  article-title: Escherichia coli control in a surface flow treatment wetland
  publication-title: J. Water Health
– volume: 598
  start-page: 697
  year: 2017
  end-page: 703
  ident: b0230
  article-title: Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland
  publication-title: Sci. Total Environ.
– volume: 207
  start-page: 134
  year: 2016
  end-page: 141
  ident: b0250
  article-title: Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: a comparative assessment of free water surface and horizontal subsurface flow systems
  publication-title: Bioresour. Technol.
– year: 2009
  ident: b0065
  article-title: Treatment Wetlands
– volume: 280
  start-page: 295
  year: 2019
  end-page: 302
  ident: b0090
  article-title: Seasonal variations of performance and operation in field-scale storing multipond constructed wetlands for nonpoint source pollution mitigation in a plateau lake basin
  publication-title: Bioresour. Technol.
– volume: 44
  start-page: 9265
  year: 2010
  end-page: 9271
  ident: b0035
  article-title: Phosphorus transformations during decomposition of wetland macrophytes
  publication-title: Environ. Sci. Technol.
– volume: 57
  start-page: 40
  year: 2014
  end-page: 55
  ident: b0215
  article-title: Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review
  publication-title: Water Res.
– volume: 19
  start-page: 1584
  year: 2012
  end-page: 1593
  ident: b0245
  article-title: Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation
  publication-title: Environ. Sci. Pollut. R
– volume: 59
  start-page: 619
  year: 2017
  end-page: 634
  ident: b0075
  article-title: Mowing submerged macrophytes in shallow lakes with alternative stable states: battling the good guys?
  publication-title: Environ. Manage.
– volume: 204
  start-page: 335
  year: 2018
  end-page: 343
  ident: b0140
  article-title: Mitigation and treatment of pollutants from railway and highway runoff by pocket wetland system: a case study
  publication-title: Chemosphere
– volume: 60
  start-page: 135
  year: 2013
  end-page: 139
  ident: b0165
  article-title: Nitrogen removal from polluted river water in a novel ditch–wetland–pond system
  publication-title: Ecol. Eng.
– volume: 283
  start-page: 258
  year: 2006
  end-page: 270
  ident: b0070
  article-title: Use of created wetlands to improve water quality in the Midwest-Lake Bloomington case study
  publication-title: Ecol. Eng.
– volume: 148
  start-page: 535
  year: 2013
  end-page: 541
  ident: b0125
  article-title: Constructed wetland as an ecotechnological tool for pollution treatment for conservation of ganga river
  publication-title: Bioresour. Technol.
– volume: 735
  start-page: 543
  year: 2001
  end-page: 557
  ident: b0060
  article-title: Temperature effects in treatment wetlands
  publication-title: Water Environ. Res.
– volume: 49
  start-page: 93
  year: 2012
  end-page: 103
  ident: b0200
  article-title: Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river
  publication-title: Ecol. Eng.
– volume: 52
  start-page: 1693
  year: 2018
  end-page: 1694
  ident: b0235
  article-title: Rethinking intensification of constructed wetlands as a green eco-technology for wastewater treatment
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 1117
  year: 2007
  end-page: 1124
  ident: b0175
  article-title: Removal of nutrient and bacteria in pilot-scale constructed wetlands
  publication-title: J. Environ. Sci. Health A
– volume: 52
  start-page: 12956
  year: 2018
  end-page: 12957
  ident: b0195
  article-title: Do laboratory scale experiments improve constructed wetland treatment technology?
  publication-title: Environ. Sci. Technol.
– volume: 249
  start-page: 1092
  year: 2017
  end-page: 1096
  ident: b0225
  article-title: Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland: a case study in Northern China
  publication-title: Bioresour. Technol.
– volume: 283
  start-page: 258
  year: 2006
  ident: 10.1016/j.biortech.2020.123310_b0070
  article-title: Use of created wetlands to improve water quality in the Midwest-Lake Bloomington case study
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2006.08.002
– volume: 4
  start-page: 211
  issue: 2
  year: 2006
  ident: 10.1016/j.biortech.2020.123310_b0100
  article-title: Escherichia coli control in a surface flow treatment wetland
  publication-title: J. Water Health
  doi: 10.2166/wh.2006.0017
– year: 2002
  ident: 10.1016/j.biortech.2020.123310_b0170
– volume: 46
  start-page: 98
  year: 2012
  ident: 10.1016/j.biortech.2020.123310_b0050
  article-title: Correlation among soil microorganisms, soil enzyme activities, and removal efficiencies of pollutants in three constructed wetlands purifying micro-polluted river water
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2012.06.004
– volume: 584–585
  start-page: 561
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0110
  article-title: Long-term assessment at field scale of floating treatment wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.072
– volume: 57
  start-page: 40
  year: 2014
  ident: 10.1016/j.biortech.2020.123310_b0215
  article-title: Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.03.020
– volume: 181–182
  start-page: 416
  year: 2012
  ident: 10.1016/j.biortech.2020.123310_b0155
  article-title: Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.11.108
– volume: 102
  start-page: 1205
  year: 2011
  ident: 10.1016/j.biortech.2020.123310_b0135
  article-title: The removal of nitrogen and organics in vertical flow wetland reactors: predictive models
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.09.096
– volume: 290
  year: 2019
  ident: 10.1016/j.biortech.2020.123310_b0085
  article-title: Multiphasic assessment of effects of design configuration on nutrient removal in storing multiple-pond constructed wetlands
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121748
– volume: 148
  start-page: 535
  year: 2013
  ident: 10.1016/j.biortech.2020.123310_b0125
  article-title: Constructed wetland as an ecotechnological tool for pollution treatment for conservation of ganga river
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.09.005
– volume: 249
  start-page: 1092
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0225
  article-title: Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland: a case study in Northern China
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.099
– volume: 39
  start-page: 119
  year: 2016
  ident: 10.1016/j.biortech.2020.123310_b0205
  article-title: Performance of pond-wetland complexes as a preliminary processor of drinking water sources
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2015.11.006
– volume: 71
  start-page: 48
  year: 2014
  ident: 10.1016/j.biortech.2020.123310_b0055
  article-title: A four-stage constructed wetland system for treating polluted water from an urban river
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2014.07.013
– volume: 288
  start-page: 34
  year: 2015
  ident: 10.1016/j.biortech.2020.123310_b0105
  article-title: Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.002
– volume: 49
  start-page: 93
  year: 2012
  ident: 10.1016/j.biortech.2020.123310_b0200
  article-title: Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2012.08.016
– volume: 59
  start-page: 619
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0075
  article-title: Mowing submerged macrophytes in shallow lakes with alternative stable states: battling the good guys?
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-016-0811-2
– volume: 280
  start-page: 295
  year: 2019
  ident: 10.1016/j.biortech.2020.123310_b0090
  article-title: Seasonal variations of performance and operation in field-scale storing multipond constructed wetlands for nonpoint source pollution mitigation in a plateau lake basin
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.01.116
– volume: 238
  start-page: 461
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0045
  article-title: Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.163
– volume: 42
  start-page: 1117
  issue: 8
  year: 2007
  ident: 10.1016/j.biortech.2020.123310_b0175
  article-title: Removal of nutrient and bacteria in pilot-scale constructed wetlands
  publication-title: J. Environ. Sci. Health A
  doi: 10.1080/10934520701418615
– volume: 102
  start-page: 641
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0015
  article-title: Temporal dynamics of stormwater nutrient attenuation of an urban constructed wetland experiencing low summer flows and macrophyte senescence
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.12.026
– volume: 263
  start-page: 272
  year: 2006
  ident: 10.1016/j.biortech.2020.123310_b0150
  article-title: Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2005.10.008
– volume: 108
  start-page: 401
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0130
  article-title: Sterols indicate water quality and wastewater treatment efficiency
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.11.029
– year: 2009
  ident: 10.1016/j.biortech.2020.123310_b0065
– volume: 5
  start-page: 676
  year: 2013
  ident: 10.1016/j.biortech.2020.123310_b0120
  article-title: Enhancing water security for the benefits of humans and nature—the role of governance
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2013.10.018
– volume: 735
  start-page: 543
  year: 2001
  ident: 10.1016/j.biortech.2020.123310_b0060
  article-title: Temperature effects in treatment wetlands
  publication-title: Water Environ. Res.
  doi: 10.2175/106143001X139614
– volume: 19
  start-page: 1584
  issue: 5
  year: 2012
  ident: 10.1016/j.biortech.2020.123310_b0245
  article-title: Biofilm formation and microbial community analysis of the simulated river bioreactor for contaminated source water remediation
  publication-title: Environ. Sci. Pollut. R
  doi: 10.1007/s11356-011-0649-3
– volume: 184
  start-page: 222
  year: 2015
  ident: 10.1016/j.biortech.2020.123310_b0160
  article-title: Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.074
– volume: 233
  start-page: 933
  year: 2018
  ident: 10.1016/j.biortech.2020.123310_b0240
  article-title: Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: carbon dynamics
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.09.048
– volume: 97
  start-page: 1813
  issue: 11
  year: 2010
  ident: 10.1016/j.biortech.2020.123310_b0040
  article-title: Efficacy of constructed wetlands for removal of bacterial contamination from agricultural return flows
  publication-title: Agr. Water Manage.
  doi: 10.1016/j.agwat.2010.06.015
– volume: 598
  start-page: 697
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0230
  article-title: Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.150
– volume: 107
  start-page: 66
  year: 2016
  ident: 10.1016/j.biortech.2020.123310_b0010
  article-title: Storm water nutrient attenuation in a constructed wetland with alternating surface and subsurface flow pathways: event to annual dynamics
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.10.005
– volume: 44
  start-page: 9265
  year: 2010
  ident: 10.1016/j.biortech.2020.123310_b0035
  article-title: Phosphorus transformations during decomposition of wetland macrophytes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102460h
– volume: 35
  start-page: 117
  year: 1997
  ident: 10.1016/j.biortech.2020.123310_b0115
  article-title: Microbial characteristics of constructed wetlands
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1997.0177
– volume: 95
  start-page: 73
  year: 2016
  ident: 10.1016/j.biortech.2020.123310_b0025
  article-title: Long-term hydraulic and treatment performance of a 19-year old constructed stormwater wetland finally maturated or in need of maintenance?
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.06.031
– volume: 175
  start-page: 594
  year: 2015
  ident: 10.1016/j.biortech.2020.123310_b0220
  article-title: A review on the sustainability of constructed wetlands for wastewater treatment: design and operation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.068
– volume: 60
  start-page: 135
  year: 2013
  ident: 10.1016/j.biortech.2020.123310_b0165
  article-title: Nitrogen removal from polluted river water in a novel ditch–wetland–pond system
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.07.009
– volume: 106
  start-page: 423
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0180
  article-title: Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2017.06.012
– volume: 52
  start-page: 12956
  issue: 22
  year: 2018
  ident: 10.1016/j.biortech.2020.123310_b0195
  article-title: Do laboratory scale experiments improve constructed wetland treatment technology?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05709
– volume: 351
  start-page: 1
  year: 2009
  ident: 10.1016/j.biortech.2020.123310_b0190
  article-title: The use constructed wetlands with horizontal subsurface flow for various types of wastewater
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2008.08.016
– volume: 52
  start-page: 1693
  issue: 4
  year: 2018
  ident: 10.1016/j.biortech.2020.123310_b0235
  article-title: Rethinking intensification of constructed wetlands as a green eco-technology for wastewater treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00010
– volume: 996
  start-page: 1656
  year: 2008
  ident: 10.1016/j.biortech.2020.123310_b0095
  article-title: Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.04.001
– year: 2020
  ident: 10.1016/j.biortech.2020.123310_b0145
  article-title: The removal of antibiotics in relation to a microbial community in an integrated constructed wetland for tail water decontamination
  publication-title: Wetlands
  doi: 10.1007/s13157-019-01262-8
– volume: 207
  start-page: 134
  year: 2016
  ident: 10.1016/j.biortech.2020.123310_b0250
  article-title: Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: a comparative assessment of free water surface and horizontal subsurface flow systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.02.008
– volume: 236
  start-page: 146
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0210
  article-title: Potential and limits of landfill leachate treatment in a multi-stage subsurface flow constructed wetland–evaluation of organics and nitrogen removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.185
– volume: 54
  start-page: 266
  year: 2013
  ident: 10.1016/j.biortech.2020.123310_b0005
  article-title: Modeling seasonal variation in bacteriophage removal in constructed wetlands using convection- dispersion equation
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2013.01.033
– volume: 37
  start-page: 485
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2020.123310_b0020
  article-title: Effectiveness of a 19-year old combined pond-wetland system in removing particulate and dissolved pollutants
  publication-title: Wetlands
  doi: 10.1007/s13157-017-0884-6
– volume: 380
  start-page: 48
  issue: 1–3
  year: 2007
  ident: 10.1016/j.biortech.2020.123310_b0185
  article-title: Removal of nutrients in various types of constructed wetlands
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.09.014
– volume: 204
  start-page: 335
  year: 2018
  ident: 10.1016/j.biortech.2020.123310_b0140
  article-title: Mitigation and treatment of pollutants from railway and highway runoff by pocket wetland system: a case study
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.03.201
– volume: 7
  issue: 11
  year: 2010
  ident: 10.1016/j.biortech.2020.123310_b0030
  article-title: Hygiene, sanitation, and water: forgotten foundations of health
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000367
– volume: 37
  start-page: 4236
  issue: 17
  year: 2003
  ident: 10.1016/j.biortech.2020.123310_b0080
  article-title: Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(03)00163-5
SSID ssj0003172
Score 2.4579637
Snippet •Removal efficiency of a large-scale ISFWP treating drinking water source was assessed.•The average effluent concentrations of ISFWP could meet design...
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland-pond (ISFWP)...
Limited information is available in regards to the long-term treatment performance of large-scale integrated surface flow constructed wetland–pond (ISFWP)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123310
SubjectTerms ammonium nitrogen
case studies
drinking water
Drinking water source
fecal bacteria
Long term
Nitrogen
overland flow
Phosphorus
Pond
Ponds
Surface flow constructed wetland
total nitrogen
total phosphorus
Treatment performance
Waste Disposal, Fluid
Water Purification
water quality
Wetlands
Title Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland–pond system: A case study
URI https://dx.doi.org/10.1016/j.biortech.2020.123310
https://www.ncbi.nlm.nih.gov/pubmed/32325377
https://www.proquest.com/docview/2394908671
https://www.proquest.com/docview/2431883034
Volume 309
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB612wNwqKD8LYXKSFzdTWwn8fa2WrVaQPQClXqz7MSutlolq-5WvaG-A2_IkzCTONsiAT1wjDMjWZ7JzBd55huAD0nqMOpJx51Uiqs0ZNwK4bgtLMY-kVa2LaL5cprPztSn8-x8C6Z9LwyVVcbY38X0NlrHlVE8zdFyPh99JfCtM0wx5LNaqG3YEZjt9QB2Jh8_z043ARlTZHuZgPKcFO41Cl8eujkVtbb3EoK4FqSkZto_56i_YdA2F508hd0IItmk2-cz2PL1HjyZXFxFIg2_B4-m_SQ3fHOPdPA53B5vCL5ZExgCQLZo6gtOMZot7_oI2Lxmli2oUpyv0JK0EKklKra6vgoWZcKiuWFlE2lo8cWNX1Ot5M_bH8umRrmWKPqITViJ6ZK1ZLYv4Ozk-Nt0xuMcBl7i39caA2aibBWURTQmQhBBCxtyVVYB8VJIQ-J04b20WSiKyleBOI1knns9Frl3tpIvYVA3tX8NzEqRBOIi9QgryrLUWklZhbSQaeZS74aQ9SdvykhSTrMyFqavRrs0vcUMWcx0FhvCaKO37Gg6HtQY94Y1vzmcwVzyoO773hMMmpKuWGztm-uVoUHz44Q4A_8hg5hNa4QOagivOjfa7FkiwM1kUbz5j93tw2N66qoU38IAHcC_Q-S0dgewffg9PYjfxy83DhpE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7R5UB7QJT-Lf1zpV7TTWwn8fa2WoGWAnspSNwsO7HRolWyYhdx5R36hjwJM4mzBakth17tGcnyTGa-yDPfAHyNE4tRT9jICikjmfg0MpzbyOQGYx9PStMU0ZxMs8mZ_HGenm_AuOuFobLKEPvbmN5E67AyCLc5WMxmg58EvlWKKYZ8VnH5DDYlDbXuwebo8GgyXQdkTJHNYwLKR6TwoFH48pudUVFr8y7BiWtBCGqm_XOO-hsGbXLRwQ5sBxDJRu05X8KGq3bhxejiKhBpuF3YGneT3HDnAengK7jdXxN8s9ozBIBsXlcXEcVotvjdR8BmFTNsTpXi0RItSQuBWqJky-srb1DGz-sbVtSBhhY3btyKaiXvbn8t6grlGqLo72zECkyXrCGzfQ1nB_un40kU5jBEBf59rTBgxtKUXhpEY9x77hU3PpNF6REv-cTHVuXOCZP6PC9d6YnTSGSZU0OeOWtK8QZ6VV25d8CM4LEnLlKHsKIoCqWkEKVPcpGkNnG2D2l387oIJOU0K2Ouu2q0S91ZTJPFdGuxPgzWeouWpuNJjWFnWP3I4TTmkid1v3SeoNGU9MRiKldfLzUNmh_GxBn4DxnEbEohdJB9eNu60frMAgFuKvJ87z9O9xm2Jqcnx_r4cHr0Hp7TTlux-AF66AzuI6Kolf0UvpJ72oYcKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+long-term+performance+in+a+large-scale+integrated+surface+flow+constructed+wetland%E2%80%93pond+system%3A+A+case+study&rft.jtitle=Bioresource+technology&rft.au=Li%2C+Yiping&rft.au=Zhang%2C+Haikuo&rft.au=Zhu%2C+Liqin&rft.au=Chen%2C+Hongwei&rft.date=2020-08-01&rft.issn=0960-8524&rft.volume=309+p.123310-&rft_id=info:doi/10.1016%2Fj.biortech.2020.123310&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon