Treatment of carpet and textile industry effluents using Diplosphaera mucosa VSPA: A multiple input optimisation study using artificial neural network-genetic algorithms

[Display omitted] •Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input optimisation.•Application of both MATLAB and Python for ANN model construction.•Two-way interaction of pH and N/P ratio has significant effect o...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 387; p. 129619
Main Authors Singh, Virendra, Mehra, Ravi, Ramesh, Kirtan Babu, Srivastava, Pradeep, Mishra, Abha
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2023.129619

Cover

Abstract [Display omitted] •Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input optimisation.•Application of both MATLAB and Python for ANN model construction.•Two-way interaction of pH and N/P ratio has significant effect on algae growth.•ANN models generated by Python showed better accuracy. The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m−2 s−1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
AbstractList The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m-2 s-1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m-2 s-1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m⁻² s⁻¹ light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m  s light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
[Display omitted] •Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input optimisation.•Application of both MATLAB and Python for ANN model construction.•Two-way interaction of pH and N/P ratio has significant effect on algae growth.•ANN models generated by Python showed better accuracy. The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m−2 s−1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.
ArticleNumber 129619
Author Mehra, Ravi
Ramesh, Kirtan Babu
Srivastava, Pradeep
Singh, Virendra
Mishra, Abha
Author_xml – sequence: 1
  givenname: Virendra
  surname: Singh
  fullname: Singh, Virendra
– sequence: 2
  givenname: Ravi
  surname: Mehra
  fullname: Mehra, Ravi
– sequence: 3
  givenname: Kirtan Babu
  surname: Ramesh
  fullname: Ramesh, Kirtan Babu
– sequence: 4
  givenname: Pradeep
  surname: Srivastava
  fullname: Srivastava, Pradeep
– sequence: 5
  givenname: Abha
  surname: Mishra
  fullname: Mishra, Abha
  email: abham.bce@itbhu.ac.in
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37549715$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhS1URNPCK1ReskmwxzO2B7EgKhSQKoFEYWs5njuJg2c8-AeaR-ItcZpkw6asrq_8nXPtey7Q2ehHQOiKkgUllL_aLlbWhwRms6hIxRa0ajltn6AZlYLNq1bwMzQjLSdz2VT1ObqIcUsIYVRUz9A5E03dCtrM0J-7ADoNMCbse2x0mCBhPXY4wX2yDrAduxxT2GHoe5cLF3GOdlzjd3ZyPk4bDUHjIRsfNf7-9cvyNV6W1qVyvVdPuThPyQ426mT9iGPK3e7ooUOyvTVWOzxCDg8l_fbhx3wN5WQN1m7tg02bIT5HT3vtIrw41kv07eb93fXH-e3nD5-ul7dzUxOayncp40zKhrRdDRy0rDnTZR9aG8mI6TVrJDCxIkb2PehVU0Nrqk603JS-Zpfo5cF3Cv5nhphUeboB5_QIPkdVSSlaKYRo_gOthah5YQt6dUTzaoBOTcEOOuzUKYkCvDkAJvgYA_TK2PSwsRS0dYoStQ9ebdUpeLUPXh2CL3L-j_w04VHh24MQyk5_WQgqGgujgc4GMEl13j5m8ReCV9DQ
CitedBy_id crossref_primary_10_1016_j_seppur_2024_127241
crossref_primary_10_1016_j_seta_2024_103670
crossref_primary_10_1016_j_desal_2024_118092
crossref_primary_10_1021_acs_jcim_4c00997
Cites_doi 10.1128/aem.36.4.572-576.1978
10.1016/j.chemosphere.2020.127939
10.1016/j.scitotenv.2020.136577
10.1016/j.enconman.2015.08.072
10.2216/i0031-8884-23-3-257.1
10.1016/j.biortech.2010.02.088
10.1016/j.jwpe.2021.102490
10.1186/1754-6834-6-143
10.1016/j.biortech.2015.02.030
10.4319/lo.1977.22.5.0932
10.1525/bio.2010.60.9.9
10.1016/j.bej.2021.108129
10.17648/sbai-2019-111188
10.1016/j.chemosphere.2018.10.205
10.1016/j.jece.2019.103326
10.1104/pp.105.2.535
10.1016/j.biombioe.2023.106756
10.1016/j.biortech.2021.125574
10.1016/j.fuel.2020.118254
10.1016/j.apenergy.2016.06.012
10.1038/s41598-018-24979-8
10.3390/en6094607
10.1016/j.jece.2022.108444
10.1016/j.renene.2014.09.005
10.1016/j.renene.2020.09.045
10.3390/en15176158
10.1016/j.aej.2013.06.007
10.1016/j.rser.2016.06.056
10.1016/j.biortech.2014.07.048
10.1016/j.biortech.2015.11.042
10.1109/HPCMP-UGC.2006.55
10.1007/s10661-018-6468-y
10.1038/nature02454
10.1016/j.biortech.2020.124335
10.1016/j.algal.2016.03.020
10.1016/j.chemosphere.2020.129323
10.1007/s13205-019-2008-x
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Ltd.
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Ltd.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2023.129619
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 37549715
10_1016_j_biortech_2023_129619
S0960852423010477
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
BNPGV
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c401t-85136388509d4e6ea8463a976aac830cfa358e37b0c8ffeab54e9c2d796cffe43
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Sun Sep 28 08:03:59 EDT 2025
Wed Oct 01 14:58:02 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
Sat Oct 25 06:22:03 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Dec 03 03:45:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microalgae
Bioremediation
Response surface methodology
Artificial neural network
Biomass production
Genetic algorithm
Language English
License Copyright © 2023. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-85136388509d4e6ea8463a976aac830cfa358e37b0c8ffeab54e9c2d796cffe43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 37549715
PQID 2847746777
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2887987775
proquest_miscellaneous_2847746777
pubmed_primary_37549715
crossref_citationtrail_10_1016_j_biortech_2023_129619
crossref_primary_10_1016_j_biortech_2023_129619
elsevier_sciencedirect_doi_10_1016_j_biortech_2023_129619
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miyawaki, Mariano, Vargas, Balmant, Defrancheschi, Corrêa, Santos, Selesu, Ordonez, Kava (b0125) 2021; 163
(b0160) 2019; Volume 2
Moungmoon, Chaichana, Pumas, Pathom-aree, Ruangrit, Pekkoh (b0130) 2020; 714
Sayre (b0150) 2010; 60
Lianda, J., Amri, H., 2016. Genetic Algorithms Method on Street Lighting Energy Saving, in: The 5th International Conference on Information Technology and Engineering Application (ICIBA2016). Bina Darma University.
Mayers, Flynn, Shields (b0115) 2014; 169
Singh, Mishra, Srivastava (b0180) 2023; 172
Yan, Zhu, Wang (b0205) 2016; 178
Almomani, Örmeci (b0015) 2018; 190
Cecchin, Benfatto, Griggio, Mori, Cazzaniga, Vitulo, Delledonne, Ballottari (b0035) 2018; 8
Konopka, Brock (b0090) 1978; 36
Mandotra, Kumar, Suseela, Nayaka, Ramteke (b0105) 2016; 201
Abomohra, Jin, Tu, Han, Eid, Eladel (b0005) 2016; 64
Juneja, Ceballos, Murthy (b0080) 2013; 6
Maxwell, Falk, Trick, Huner (b0110) 1994; 105
Singh, Mishra (b0165) 2021; 174
Ren, Liu, Ma, Zhao, Ren (b0145) 2013; 6
Chaves, J.C., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco, J., Chalker, A., Warnock, A., Samsi, S., 2006. Octave and python: High-level scripting languages productivity and performance evaluation, in: 2006 HPCMP Users Group Conference (HPCMP-UGC’06). IEEE, pp. 429–434.
Nayak, Karemore, Sen (b0135) 2016; 16
Sydney, Sturm, de Carvalho, Thomaz-Soccol, Larroche, Pandey, Soccol (b0190) 2010; 101
Tripathi, Singh, Thakur (b0195) 2015; 74
Zhang, Guo, Liao, Gao, Zhao, Jin, She, Wang (b0215) 2021; 338
Avramović, Veličković, Stamenković, Rajković, Milić, Veljković (b0025) 2015; 105
Broady (b0030) 1984; 23
Jaafari, Yaghmaeian (b0070) 2019; 217
Silambarasan, Logeswari, Sivaramakrishnan, Incharoensakdi, Cornejo, Kamaraj, Chi (b0155) 2021; 268
Guedes, P.F.S., Nepomuceno, E.G., 2019. Some remarks on the performance of Matlab, Python and Octave in simulating dynamical systems. arXiv preprint arXiv:1910.06117.
APHA, 2012. Standard Methods for the Examination of Water and Wastewater 1496.
Garg, Jain (b0050) 2020; 277
Klausmeier, Litchman, Daufresne, Levin (b0085) 2004; 429
Kumar, Thakur, Aseer, Natarajan, Singh, Priyadarshi, Twala (b0095) 2022; 15
Chu, Tan, Zhang, Yang, Zhao, Guo (b0045) 2015; 185
You, Zhang, Guo, Liao, Wang, Zhao, Jin, Gao, She, Wang (b0210) 2021; 320
Meng, Chen, Wang, Fan, Qiu, Zheng, Chen, Xu (b0120) 2021; 9
Singh, Srivastava, Mishra (b0185) 2023; 13
Singh, Mishra (b0175) 2022; 10
Singh, Mishra (b0170) 2022; 10
Hossain, Sultana, Jassim, Coskuner, Hazin, Razzak, Hossain (b0065) 2022; 45
Jafarinejad, Jiang (b0075) 2019; 7
Ahmad, Kothari, Shankarayan, Tyagi (b0010) 2020; 10
Goldman (b0055) 1977; 22
Prakash Maran, Sivakumar, Thirugnanasambandham, Sridhar (b0140) 2013; 52
Wágner, Cazzaniga, Steidl, Dechesne, Valverde-Pérez, Plósz (b0200) 2021; 262
Avramović (10.1016/j.biortech.2023.129619_b0025) 2015; 105
Goldman (10.1016/j.biortech.2023.129619_b0055) 1977; 22
You (10.1016/j.biortech.2023.129619_b0210) 2021; 320
10.1016/j.biortech.2023.129619_b0020
10.1016/j.biortech.2023.129619_b0100
10.1016/j.biortech.2023.129619_b0060
Cecchin (10.1016/j.biortech.2023.129619_b0035) 2018; 8
Ren (10.1016/j.biortech.2023.129619_b0145) 2013; 6
10.1016/j.biortech.2023.129619_b0040
Mayers (10.1016/j.biortech.2023.129619_b0115) 2014; 169
Hossain (10.1016/j.biortech.2023.129619_b0065) 2022; 45
Jafarinejad (10.1016/j.biortech.2023.129619_b0075) 2019; 7
Maxwell (10.1016/j.biortech.2023.129619_b0110) 1994; 105
Singh (10.1016/j.biortech.2023.129619_b0175) 2022; 10
Sydney (10.1016/j.biortech.2023.129619_b0190) 2010; 101
Almomani (10.1016/j.biortech.2023.129619_b0015) 2018; 190
Moungmoon (10.1016/j.biortech.2023.129619_b0130) 2020; 714
Miyawaki (10.1016/j.biortech.2023.129619_b0125) 2021; 163
Garg (10.1016/j.biortech.2023.129619_b0050) 2020; 277
Kumar (10.1016/j.biortech.2023.129619_b0095) 2022; 15
Juneja (10.1016/j.biortech.2023.129619_b0080) 2013; 6
Sayre (10.1016/j.biortech.2023.129619_b0150) 2010; 60
Prakash Maran (10.1016/j.biortech.2023.129619_b0140) 2013; 52
(10.1016/j.biortech.2023.129619_b0160) 2019; Volume 2
Singh (10.1016/j.biortech.2023.129619_b0180) 2023; 172
Chu (10.1016/j.biortech.2023.129619_b0045) 2015; 185
Tripathi (10.1016/j.biortech.2023.129619_b0195) 2015; 74
Singh (10.1016/j.biortech.2023.129619_b0170) 2022; 10
Wágner (10.1016/j.biortech.2023.129619_b0200) 2021; 262
Yan (10.1016/j.biortech.2023.129619_b0205) 2016; 178
Zhang (10.1016/j.biortech.2023.129619_b0215) 2021; 338
Jaafari (10.1016/j.biortech.2023.129619_b0070) 2019; 217
Singh (10.1016/j.biortech.2023.129619_b0185) 2023; 13
Meng (10.1016/j.biortech.2023.129619_b0120) 2021; 9
Silambarasan (10.1016/j.biortech.2023.129619_b0155) 2021; 268
Singh (10.1016/j.biortech.2023.129619_b0165) 2021; 174
Nayak (10.1016/j.biortech.2023.129619_b0135) 2016; 16
Klausmeier (10.1016/j.biortech.2023.129619_b0085) 2004; 429
Ahmad (10.1016/j.biortech.2023.129619_b0010) 2020; 10
Abomohra (10.1016/j.biortech.2023.129619_b0005) 2016; 64
Konopka (10.1016/j.biortech.2023.129619_b0090) 1978; 36
Mandotra (10.1016/j.biortech.2023.129619_b0105) 2016; 201
Broady (10.1016/j.biortech.2023.129619_b0030) 1984; 23
References_xml – volume: 217
  start-page: 447
  year: 2019
  end-page: 455
  ident: b0070
  article-title: Chemosphere Optimization of heavy metal biosorption onto freshwater algae (
  publication-title: Chemosphere
– volume: 13
  start-page: 235
  year: 2023
  ident: b0185
  article-title: Design and modelling of photobioreactor for the treatment of carpet and textile effluent using
  publication-title: Biotech
– volume: 105
  start-page: 535
  year: 1994
  end-page: 543
  ident: b0110
  article-title: Growth at low temperature mimics high-light acclimation in
  publication-title: Plant Physiol.
– volume: 277
  start-page: 118254
  year: 2020
  ident: b0050
  article-title: Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks
  publication-title: Fuel
– volume: 15
  start-page: 6158
  year: 2022
  ident: b0095
  article-title: An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes
  publication-title: Energies (Basel)
– volume: 23
  start-page: 257
  year: 1984
  end-page: 271
  ident: b0030
  article-title: Taxonomic and ecological investigations of algae on steam-warmed soil on Mt Erebus, Ross Island, Antarctica
  publication-title: Phycologia
– volume: 7
  year: 2019
  ident: b0075
  article-title: Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters
  publication-title: J. Environ. Chem. Eng.
– volume: 105
  start-page: 1149
  year: 2015
  end-page: 1156
  ident: b0025
  article-title: Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA
  publication-title: Energy Convers Manag
– volume: 163
  start-page: 1153
  year: 2021
  end-page: 1165
  ident: b0125
  article-title: Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment
  publication-title: Renew. Energy
– volume: 10
  start-page: 108444
  year: 2022
  ident: b0175
  article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining
  publication-title: J. Environ. Chem. Eng.
– volume: 262
  year: 2021
  ident: b0200
  article-title: Optimal influent N-to-P ratio for stable microalgal cultivation in water treatment and nutrient recovery
  publication-title: Chemosphere
– volume: 338
  year: 2021
  ident: b0215
  article-title: Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation
  publication-title: Bioresour. Technol.
– volume: 714
  year: 2020
  ident: b0130
  article-title: Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester
  publication-title: Sci. Total Environ.
– volume: 9
  year: 2021
  ident: b0120
  article-title: Interaction Effects of Temperature, Light, Nutrients, and pH on Growth and Competition of
  publication-title: Strain PCC. Front Environ Sci
– volume: 172
  year: 2023
  ident: b0180
  article-title: Textile and domestic effluent treatment via co-cultivation of
  publication-title: Biomass Bioenergy
– volume: 60
  start-page: 722
  year: 2010
  end-page: 727
  ident: b0150
  article-title: Microalgae: The Potential for Carbon Capture
  publication-title: Bioscience
– volume: 45
  year: 2022
  ident: b0065
  article-title: Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae
  publication-title: J. Water Process Eng.
– volume: 74
  start-page: 774
  year: 2015
  end-page: 781
  ident: b0195
  article-title: Characterization of microalga
  publication-title: Renew. Energy
– reference: APHA, 2012. Standard Methods for the Examination of Water and Wastewater 1496.
– volume: 201
  start-page: 222
  year: 2016
  end-page: 229
  ident: b0105
  article-title: Evaluation of fatty acid profile and biodiesel properties of microalga
  publication-title: Bioresour. Technol.
– volume: 16
  start-page: 216
  year: 2016
  end-page: 223
  ident: b0135
  article-title: Performance evaluation of microalgae for concomitant wastewater bioremediation, CO
  publication-title: Algal Res.
– volume: 185
  start-page: 40
  year: 2015
  end-page: 48
  ident: b0045
  article-title: Continuous cultivation of
  publication-title: Bioresour. Technol.
– volume: Volume 2
  start-page: 319
  year: 2019
  end-page: 357
  ident: b0160
  publication-title: Bioremediation of Nutrients and Heavy Metals from Wastewater by Microalgal Cells: Mechanism and Kinetics BT - Microbial Genomics in Sustainable Agroecosystems
– volume: 101
  start-page: 5892
  year: 2010
  end-page: 5896
  ident: b0190
  article-title: Potential carbon dioxide fixation by industrially important microalgae
  publication-title: Bioresour. Technol.
– reference: Chaves, J.C., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco, J., Chalker, A., Warnock, A., Samsi, S., 2006. Octave and python: High-level scripting languages productivity and performance evaluation, in: 2006 HPCMP Users Group Conference (HPCMP-UGC’06). IEEE, pp. 429–434.
– reference: Guedes, P.F.S., Nepomuceno, E.G., 2019. Some remarks on the performance of Matlab, Python and Octave in simulating dynamical systems. arXiv preprint arXiv:1910.06117.
– reference: Lianda, J., Amri, H., 2016. Genetic Algorithms Method on Street Lighting Energy Saving, in: The 5th International Conference on Information Technology and Engineering Application (ICIBA2016). Bina Darma University.
– volume: 268
  year: 2021
  ident: b0155
  article-title: Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for
  publication-title: Chemosphere
– volume: 22
  start-page: 932
  year: 1977
  end-page: 936
  ident: b0055
  article-title: Temperature effects on phytoplankton growth in continuous culture1
  publication-title: Limnol. Oceanogr.
– volume: 429
  start-page: 171
  year: 2004
  end-page: 174
  ident: b0085
  article-title: Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton
  publication-title: Nature
– volume: 320
  year: 2021
  ident: b0210
  article-title: Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment
  publication-title: Bioresour. Technol.
– volume: 169
  start-page: 588
  year: 2014
  end-page: 595
  ident: b0115
  article-title: Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of
  publication-title: Bioresour. Technol.
– volume: 36
  start-page: 572
  year: 1978
  end-page: 576
  ident: b0090
  article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  year: 2022
  ident: b0170
  article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining
  publication-title: J. Environ. Chem. Eng.
– volume: 10
  year: 2020
  ident: b0010
  article-title: Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation
  publication-title: 3 Biotech
– volume: 6
  start-page: 143
  year: 2013
  ident: b0145
  article-title: A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production
  publication-title: Biotechnol. Biofuels
– volume: 190
  year: 2018
  ident: b0015
  article-title: Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method
  publication-title: Environ. Monit. Assess.
– volume: 174
  start-page: 108129
  year: 2021
  ident: b0165
  article-title: Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production
  publication-title: Biochem. Eng. J.
– volume: 178
  start-page: 9
  year: 2016
  end-page: 18
  ident: b0205
  article-title: Photosynthetic CO
  publication-title: Appl. Energy
– volume: 64
  start-page: 596
  year: 2016
  end-page: 606
  ident: b0005
  article-title: Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  year: 2018
  ident: b0035
  article-title: Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana
  publication-title: Sci. Rep.
– volume: 6
  start-page: 4607
  year: 2013
  end-page: 4638
  ident: b0080
  article-title: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review
  publication-title: Energies (Basel)
– volume: 52
  start-page: 507
  year: 2013
  end-page: 516
  ident: b0140
  article-title: Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L
  publication-title: Alex. Eng. J.
– volume: 36
  start-page: 572
  issue: 4
  year: 1978
  ident: 10.1016/j.biortech.2023.129619_b0090
  article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.36.4.572-576.1978
– volume: 262
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0200
  article-title: Optimal influent N-to-P ratio for stable microalgal cultivation in water treatment and nutrient recovery
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127939
– volume: 714
  year: 2020
  ident: 10.1016/j.biortech.2023.129619_b0130
  article-title: Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136577
– volume: 105
  start-page: 1149
  year: 2015
  ident: 10.1016/j.biortech.2023.129619_b0025
  article-title: Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.08.072
– volume: 23
  start-page: 257
  issue: 3
  year: 1984
  ident: 10.1016/j.biortech.2023.129619_b0030
  article-title: Taxonomic and ecological investigations of algae on steam-warmed soil on Mt Erebus, Ross Island, Antarctica
  publication-title: Phycologia
  doi: 10.2216/i0031-8884-23-3-257.1
– volume: 101
  start-page: 5892
  issue: 15
  year: 2010
  ident: 10.1016/j.biortech.2023.129619_b0190
  article-title: Potential carbon dioxide fixation by industrially important microalgae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.088
– volume: 45
  year: 2022
  ident: 10.1016/j.biortech.2023.129619_b0065
  article-title: Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102490
– volume: 6
  start-page: 143
  issue: 1
  year: 2013
  ident: 10.1016/j.biortech.2023.129619_b0145
  article-title: A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-6-143
– volume: 185
  start-page: 40
  year: 2015
  ident: 10.1016/j.biortech.2023.129619_b0045
  article-title: Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.02.030
– volume: 22
  start-page: 932
  year: 1977
  ident: 10.1016/j.biortech.2023.129619_b0055
  article-title: Temperature effects on phytoplankton growth in continuous culture1
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1977.22.5.0932
– volume: 60
  start-page: 722
  year: 2010
  ident: 10.1016/j.biortech.2023.129619_b0150
  article-title: Microalgae: The Potential for Carbon Capture
  publication-title: Bioscience
  doi: 10.1525/bio.2010.60.9.9
– volume: 174
  start-page: 108129
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0165
  article-title: Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2021.108129
– ident: 10.1016/j.biortech.2023.129619_b0060
  doi: 10.17648/sbai-2019-111188
– volume: 217
  start-page: 447
  year: 2019
  ident: 10.1016/j.biortech.2023.129619_b0070
  article-title: Chemosphere Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.205
– volume: 7
  issue: 5
  year: 2019
  ident: 10.1016/j.biortech.2023.129619_b0075
  article-title: Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103326
– volume: 105
  start-page: 535
  issue: 2
  year: 1994
  ident: 10.1016/j.biortech.2023.129619_b0110
  article-title: Growth at low temperature mimics high-light acclimation in Chlorella vulgaris
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.2.535
– volume: 172
  year: 2023
  ident: 10.1016/j.biortech.2023.129619_b0180
  article-title: Textile and domestic effluent treatment via co-cultivation of Diplosphaera mucosa VSPA and Scenedesmus obliquus
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2023.106756
– volume: 338
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0215
  article-title: Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125574
– volume: 277
  start-page: 118254
  year: 2020
  ident: 10.1016/j.biortech.2023.129619_b0050
  article-title: Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118254
– volume: 178
  start-page: 9
  year: 2016
  ident: 10.1016/j.biortech.2023.129619_b0205
  article-title: Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.06.012
– volume: 8
  year: 2018
  ident: 10.1016/j.biortech.2023.129619_b0035
  article-title: Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24979-8
– volume: 6
  start-page: 4607
  year: 2013
  ident: 10.1016/j.biortech.2023.129619_b0080
  article-title: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review
  publication-title: Energies (Basel)
  doi: 10.3390/en6094607
– volume: 10
  issue: 5
  year: 2022
  ident: 10.1016/j.biortech.2023.129619_b0170
  article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108444
– ident: 10.1016/j.biortech.2023.129619_b0100
– volume: 74
  start-page: 774
  year: 2015
  ident: 10.1016/j.biortech.2023.129619_b0195
  article-title: Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.09.005
– volume: 9
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0120
  article-title: Interaction Effects of Temperature, Light, Nutrients, and pH on Growth and Competition of Chlorella vulgaris and Anabaena sp
  publication-title: Strain PCC. Front Environ Sci
– volume: 163
  start-page: 1153
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0125
  article-title: Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.09.045
– volume: 13
  start-page: 235
  year: 2023
  ident: 10.1016/j.biortech.2023.129619_b0185
  article-title: Design and modelling of photobioreactor for the treatment of carpet and textile effluent using Diplosphaera mucosa VSPA. 3
  publication-title: Biotech
– volume: 15
  start-page: 6158
  issue: 17
  year: 2022
  ident: 10.1016/j.biortech.2023.129619_b0095
  article-title: An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes
  publication-title: Energies (Basel)
  doi: 10.3390/en15176158
– ident: 10.1016/j.biortech.2023.129619_b0020
– volume: 52
  start-page: 507
  year: 2013
  ident: 10.1016/j.biortech.2023.129619_b0140
  article-title: Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2013.06.007
– volume: Volume 2
  start-page: 319
  year: 2019
  ident: 10.1016/j.biortech.2023.129619_b0160
  publication-title: Bioremediation of Nutrients and Heavy Metals from Wastewater by Microalgal Cells: Mechanism and Kinetics BT - Microbial Genomics in Sustainable Agroecosystems
– volume: 64
  start-page: 596
  year: 2016
  ident: 10.1016/j.biortech.2023.129619_b0005
  article-title: Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.056
– volume: 169
  start-page: 588
  year: 2014
  ident: 10.1016/j.biortech.2023.129619_b0115
  article-title: Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.07.048
– volume: 201
  start-page: 222
  year: 2016
  ident: 10.1016/j.biortech.2023.129619_b0105
  article-title: Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.042
– volume: 10
  start-page: 108444
  issue: 5
  year: 2022
  ident: 10.1016/j.biortech.2023.129619_b0175
  article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108444
– ident: 10.1016/j.biortech.2023.129619_b0040
  doi: 10.1109/HPCMP-UGC.2006.55
– volume: 190
  year: 2018
  ident: 10.1016/j.biortech.2023.129619_b0015
  article-title: Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-6468-y
– volume: 429
  start-page: 171
  issue: 6988
  year: 2004
  ident: 10.1016/j.biortech.2023.129619_b0085
  article-title: Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton
  publication-title: Nature
  doi: 10.1038/nature02454
– volume: 320
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0210
  article-title: Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124335
– volume: 16
  start-page: 216
  year: 2016
  ident: 10.1016/j.biortech.2023.129619_b0135
  article-title: Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2016.03.020
– volume: 268
  year: 2021
  ident: 10.1016/j.biortech.2023.129619_b0155
  article-title: Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129323
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.biortech.2023.129619_b0010
  article-title: Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation
  publication-title: 3 Biotech
  doi: 10.1007/s13205-019-2008-x
SSID ssj0003172
Score 2.4735253
Snippet [Display omitted] •Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input...
The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129619
SubjectTerms algorithms
Artificial neural network
Biomass production
Bioremediation
Genetic algorithm
hybridization
light intensity
Microalgae
mucosa
neural networks
pollutants
Python
Response surface methodology
temperature
textile industry
wastewater
wastewater treatment
Title Treatment of carpet and textile industry effluents using Diplosphaera mucosa VSPA: A multiple input optimisation study using artificial neural network-genetic algorithms
URI https://dx.doi.org/10.1016/j.biortech.2023.129619
https://www.ncbi.nlm.nih.gov/pubmed/37549715
https://www.proquest.com/docview/2847746777
https://www.proquest.com/docview/2887987775
Volume 387
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcgAOCMpHl4_KSFyz203sOOEWLVQLiAqpLerNchx7m2o3iXazh176f_iXzDh2KRLQA6coiR1Znsn4WX7zhpB30yoGmFyqSMdJEjEBe1bFpybSOua2FLqyLsv163E6P2Ofz_n5DpmFXBikVfrYP8R0F639k4mfzUlX15MTBN8ZRzzgNGYwo5wxgVUMxte_aB6wPrqTBGgcYetbWcKX47JGRqs7lIiTMSx9KSru_HmB-hsAdQvR0WPyyCNIWgyDfEJ2TLNHHhaLtVfRMHvk_iyUcYM3txQHn5Ifp4FYTltL3eFLT1VTUSSAQICg9VDK44oa66qX9BuK1PgF_VB3y3bTXSizVnSFPHdFv598K97TggZWIvTutvBlCEMrTxOiTr_WfwMndlCsoKij6S6OhR6BG2M2JVXLRbuu-4vV5hk5O_p4OptHvlpDpGGP1sPkThP4mTNAIBUzqVGAbBIFaEcpnSWH2qqEZyYR5aHOrDWq5MzkOq5Enmq4Z8lzstu0jdkn1MZC2xxMZlLBcmMUbPNsBciOpWBoE48IDyaS2kuZY0WNpQyctUsZTCvRtHIw7YhMbvp1g5jHnT3y4AHyN7eUsOLc2fdtcBkJk44HMaox7XYjERJgmRch_tUmEzmKNfIReTH4282YsWxxLqb85X-M7hV5gHdDWuVrstuvt-YN4Ku-PHA_0AG5V3z6Mj_-CSzeKfY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKORQOCMrX8mkkrtntxnGccFstVAu0FVK3qDfLcextqt0k2s0euPB_-JfMOHYpEtADpyiJHVmeyfhZfvOGkLfjMgaYXKhIx4xFiYA9q-JjE2kdc1sIXVqX5Xp8ks7Okk_n_HyHTEMuDNIqfezvY7qL1v7JyM_mqK2q0SmC74wjHnAaM-IWuZ3wWOAObPj9F88DFkh3lACtI2x-LU34clhUSGl1pxIxG8Lal6Lkzp9XqL8hULcSHd4n9zyEpJN-lA_Ijqn3yd3JYu1lNMw-2ZuGOm7w5prk4EPyYx6Y5bSx1J2-dFTVJUUGCEQIWvW1PL5RY135km5DkRu_oO-rdtls2gtl1oqukOiu6NfTL5N3dEIDLRF6t1v4MsShlecJUSdg67-BM9tLVlAU0nQXR0OPwI8xnZKq5aJZV93FavOInB1-mE9nkS_XEGnYpHUwuWMGf3MGEKRMTGoUQBumAO4opTN2oK1iPDNMFAc6s9aogicm13Ep8lTDfcIek926qc1TQm0stM3BZCYVSW6Mgn2eLQHaJSlY2sQDwoOJpPZa5lhSYykDae1SBtNKNK3sTTsgo6t-ba_mcWOPPHiA_M0vJSw5N_Z9E1xGwqTjSYyqTbPdSMQEWOdFiH-1yUSOao18QJ70_nY1ZqxbnIsxf_Yfo3tN9mbz4yN59PHk83NyB9_0OZYvyG633pqXALa64pX7mX4CzDkriw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+of+carpet+and+textile+industry+effluents+using+Diplosphaera+mucosa+VSPA%3A+A+multiple+input+optimisation+study+using+artificial+neural+network-genetic+algorithms&rft.jtitle=Bioresource+technology&rft.au=Singh%2C+Virendra&rft.au=Mehra%2C+Ravi&rft.au=Ramesh%2C+Kirtan+Babu&rft.au=Srivastava%2C+Pradeep&rft.date=2023-11-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=387&rft.spage=129619&rft_id=info:doi/10.1016%2Fj.biortech.2023.129619&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon