Treatment of carpet and textile industry effluents using Diplosphaera mucosa VSPA: A multiple input optimisation study using artificial neural network-genetic algorithms
[Display omitted] •Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input optimisation.•Application of both MATLAB and Python for ANN model construction.•Two-way interaction of pH and N/P ratio has significant effect o...
Saved in:
| Published in | Bioresource technology Vol. 387; p. 129619 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-8524 1873-2976 1873-2976 |
| DOI | 10.1016/j.biortech.2023.129619 |
Cover
| Abstract | [Display omitted]
•Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input optimisation.•Application of both MATLAB and Python for ANN model construction.•Two-way interaction of pH and N/P ratio has significant effect on algae growth.•ANN models generated by Python showed better accuracy.
The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m−2 s−1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio. |
|---|---|
| AbstractList | The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m-2 s-1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio.The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m-2 s-1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio. The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m⁻² s⁻¹ light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio. The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m s light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio. [Display omitted] •Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input optimisation.•Application of both MATLAB and Python for ANN model construction.•Two-way interaction of pH and N/P ratio has significant effect on algae growth.•ANN models generated by Python showed better accuracy. The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH, temperature, light intensity, wastewater percentage (pollutant concentration), and N/P ratio were optimised, and their effects were studied. Two competitive techniques, response surface methodology (RSM) and artificial neural network (ANN), were applied for constructing predictive models using experimental data generated according to central composite design. Both MATLAB and Python were used for constructing ANN models. ANN models predicted the experimental data with high accuracy and less error than RSM models. Generated models were hybridised with a genetic algorithm (GA) to determine the optimised values of input parameters leading to high biomass productivity. ANN-GA hybridisation approach performed in Python presented optimisation results with less error (0.45%), which were 7.8 pH, 28.8 °C temperature, 105.20 μmol m−2 s−1 light intensity, 93.10 wastewater % (COD) and 23.5 N/P ratio. |
| ArticleNumber | 129619 |
| Author | Mehra, Ravi Ramesh, Kirtan Babu Srivastava, Pradeep Singh, Virendra Mishra, Abha |
| Author_xml | – sequence: 1 givenname: Virendra surname: Singh fullname: Singh, Virendra – sequence: 2 givenname: Ravi surname: Mehra fullname: Mehra, Ravi – sequence: 3 givenname: Kirtan Babu surname: Ramesh fullname: Ramesh, Kirtan Babu – sequence: 4 givenname: Pradeep surname: Srivastava fullname: Srivastava, Pradeep – sequence: 5 givenname: Abha surname: Mishra fullname: Mishra, Abha email: abham.bce@itbhu.ac.in |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37549715$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1uEzEUhS1URNPCK1ReskmwxzO2B7EgKhSQKoFEYWs5njuJg2c8-AeaR-ItcZpkw6asrq_8nXPtey7Q2ehHQOiKkgUllL_aLlbWhwRms6hIxRa0ajltn6AZlYLNq1bwMzQjLSdz2VT1ObqIcUsIYVRUz9A5E03dCtrM0J-7ADoNMCbse2x0mCBhPXY4wX2yDrAduxxT2GHoe5cLF3GOdlzjd3ZyPk4bDUHjIRsfNf7-9cvyNV6W1qVyvVdPuThPyQ426mT9iGPK3e7ooUOyvTVWOzxCDg8l_fbhx3wN5WQN1m7tg02bIT5HT3vtIrw41kv07eb93fXH-e3nD5-ul7dzUxOayncp40zKhrRdDRy0rDnTZR9aG8mI6TVrJDCxIkb2PehVU0Nrqk603JS-Zpfo5cF3Cv5nhphUeboB5_QIPkdVSSlaKYRo_gOthah5YQt6dUTzaoBOTcEOOuzUKYkCvDkAJvgYA_TK2PSwsRS0dYoStQ9ebdUpeLUPXh2CL3L-j_w04VHh24MQyk5_WQgqGgujgc4GMEl13j5m8ReCV9DQ |
| CitedBy_id | crossref_primary_10_1016_j_seppur_2024_127241 crossref_primary_10_1016_j_seta_2024_103670 crossref_primary_10_1016_j_desal_2024_118092 crossref_primary_10_1021_acs_jcim_4c00997 |
| Cites_doi | 10.1128/aem.36.4.572-576.1978 10.1016/j.chemosphere.2020.127939 10.1016/j.scitotenv.2020.136577 10.1016/j.enconman.2015.08.072 10.2216/i0031-8884-23-3-257.1 10.1016/j.biortech.2010.02.088 10.1016/j.jwpe.2021.102490 10.1186/1754-6834-6-143 10.1016/j.biortech.2015.02.030 10.4319/lo.1977.22.5.0932 10.1525/bio.2010.60.9.9 10.1016/j.bej.2021.108129 10.17648/sbai-2019-111188 10.1016/j.chemosphere.2018.10.205 10.1016/j.jece.2019.103326 10.1104/pp.105.2.535 10.1016/j.biombioe.2023.106756 10.1016/j.biortech.2021.125574 10.1016/j.fuel.2020.118254 10.1016/j.apenergy.2016.06.012 10.1038/s41598-018-24979-8 10.3390/en6094607 10.1016/j.jece.2022.108444 10.1016/j.renene.2014.09.005 10.1016/j.renene.2020.09.045 10.3390/en15176158 10.1016/j.aej.2013.06.007 10.1016/j.rser.2016.06.056 10.1016/j.biortech.2014.07.048 10.1016/j.biortech.2015.11.042 10.1109/HPCMP-UGC.2006.55 10.1007/s10661-018-6468-y 10.1038/nature02454 10.1016/j.biortech.2020.124335 10.1016/j.algal.2016.03.020 10.1016/j.chemosphere.2020.129323 10.1007/s13205-019-2008-x |
| ContentType | Journal Article |
| Copyright | 2023 Copyright © 2023. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.biortech.2023.129619 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| ExternalDocumentID | 37549715 10_1016_j_biortech_2023_129619 S0960852423010477 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD BNPGV NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c401t-85136388509d4e6ea8463a976aac830cfa358e37b0c8ffeab54e9c2d796cffe43 |
| IEDL.DBID | .~1 |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Sun Sep 28 08:03:59 EDT 2025 Wed Oct 01 14:58:02 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 Sat Oct 25 06:22:03 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Dec 03 03:45:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Microalgae Bioremediation Response surface methodology Artificial neural network Biomass production Genetic algorithm |
| Language | English |
| License | Copyright © 2023. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-85136388509d4e6ea8463a976aac830cfa358e37b0c8ffeab54e9c2d796cffe43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 37549715 |
| PQID | 2847746777 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2887987775 proquest_miscellaneous_2847746777 pubmed_primary_37549715 crossref_citationtrail_10_1016_j_biortech_2023_129619 crossref_primary_10_1016_j_biortech_2023_129619 elsevier_sciencedirect_doi_10_1016_j_biortech_2023_129619 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Miyawaki, Mariano, Vargas, Balmant, Defrancheschi, Corrêa, Santos, Selesu, Ordonez, Kava (b0125) 2021; 163 (b0160) 2019; Volume 2 Moungmoon, Chaichana, Pumas, Pathom-aree, Ruangrit, Pekkoh (b0130) 2020; 714 Sayre (b0150) 2010; 60 Lianda, J., Amri, H., 2016. Genetic Algorithms Method on Street Lighting Energy Saving, in: The 5th International Conference on Information Technology and Engineering Application (ICIBA2016). Bina Darma University. Mayers, Flynn, Shields (b0115) 2014; 169 Singh, Mishra, Srivastava (b0180) 2023; 172 Yan, Zhu, Wang (b0205) 2016; 178 Almomani, Örmeci (b0015) 2018; 190 Cecchin, Benfatto, Griggio, Mori, Cazzaniga, Vitulo, Delledonne, Ballottari (b0035) 2018; 8 Konopka, Brock (b0090) 1978; 36 Mandotra, Kumar, Suseela, Nayaka, Ramteke (b0105) 2016; 201 Abomohra, Jin, Tu, Han, Eid, Eladel (b0005) 2016; 64 Juneja, Ceballos, Murthy (b0080) 2013; 6 Maxwell, Falk, Trick, Huner (b0110) 1994; 105 Singh, Mishra (b0165) 2021; 174 Ren, Liu, Ma, Zhao, Ren (b0145) 2013; 6 Chaves, J.C., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco, J., Chalker, A., Warnock, A., Samsi, S., 2006. Octave and python: High-level scripting languages productivity and performance evaluation, in: 2006 HPCMP Users Group Conference (HPCMP-UGC’06). IEEE, pp. 429–434. Nayak, Karemore, Sen (b0135) 2016; 16 Sydney, Sturm, de Carvalho, Thomaz-Soccol, Larroche, Pandey, Soccol (b0190) 2010; 101 Tripathi, Singh, Thakur (b0195) 2015; 74 Zhang, Guo, Liao, Gao, Zhao, Jin, She, Wang (b0215) 2021; 338 Avramović, Veličković, Stamenković, Rajković, Milić, Veljković (b0025) 2015; 105 Broady (b0030) 1984; 23 Jaafari, Yaghmaeian (b0070) 2019; 217 Silambarasan, Logeswari, Sivaramakrishnan, Incharoensakdi, Cornejo, Kamaraj, Chi (b0155) 2021; 268 Guedes, P.F.S., Nepomuceno, E.G., 2019. Some remarks on the performance of Matlab, Python and Octave in simulating dynamical systems. arXiv preprint arXiv:1910.06117. APHA, 2012. Standard Methods for the Examination of Water and Wastewater 1496. Garg, Jain (b0050) 2020; 277 Klausmeier, Litchman, Daufresne, Levin (b0085) 2004; 429 Kumar, Thakur, Aseer, Natarajan, Singh, Priyadarshi, Twala (b0095) 2022; 15 Chu, Tan, Zhang, Yang, Zhao, Guo (b0045) 2015; 185 You, Zhang, Guo, Liao, Wang, Zhao, Jin, Gao, She, Wang (b0210) 2021; 320 Meng, Chen, Wang, Fan, Qiu, Zheng, Chen, Xu (b0120) 2021; 9 Singh, Srivastava, Mishra (b0185) 2023; 13 Singh, Mishra (b0175) 2022; 10 Singh, Mishra (b0170) 2022; 10 Hossain, Sultana, Jassim, Coskuner, Hazin, Razzak, Hossain (b0065) 2022; 45 Jafarinejad, Jiang (b0075) 2019; 7 Ahmad, Kothari, Shankarayan, Tyagi (b0010) 2020; 10 Goldman (b0055) 1977; 22 Prakash Maran, Sivakumar, Thirugnanasambandham, Sridhar (b0140) 2013; 52 Wágner, Cazzaniga, Steidl, Dechesne, Valverde-Pérez, Plósz (b0200) 2021; 262 Avramović (10.1016/j.biortech.2023.129619_b0025) 2015; 105 Goldman (10.1016/j.biortech.2023.129619_b0055) 1977; 22 You (10.1016/j.biortech.2023.129619_b0210) 2021; 320 10.1016/j.biortech.2023.129619_b0020 10.1016/j.biortech.2023.129619_b0100 10.1016/j.biortech.2023.129619_b0060 Cecchin (10.1016/j.biortech.2023.129619_b0035) 2018; 8 Ren (10.1016/j.biortech.2023.129619_b0145) 2013; 6 10.1016/j.biortech.2023.129619_b0040 Mayers (10.1016/j.biortech.2023.129619_b0115) 2014; 169 Hossain (10.1016/j.biortech.2023.129619_b0065) 2022; 45 Jafarinejad (10.1016/j.biortech.2023.129619_b0075) 2019; 7 Maxwell (10.1016/j.biortech.2023.129619_b0110) 1994; 105 Singh (10.1016/j.biortech.2023.129619_b0175) 2022; 10 Sydney (10.1016/j.biortech.2023.129619_b0190) 2010; 101 Almomani (10.1016/j.biortech.2023.129619_b0015) 2018; 190 Moungmoon (10.1016/j.biortech.2023.129619_b0130) 2020; 714 Miyawaki (10.1016/j.biortech.2023.129619_b0125) 2021; 163 Garg (10.1016/j.biortech.2023.129619_b0050) 2020; 277 Kumar (10.1016/j.biortech.2023.129619_b0095) 2022; 15 Juneja (10.1016/j.biortech.2023.129619_b0080) 2013; 6 Sayre (10.1016/j.biortech.2023.129619_b0150) 2010; 60 Prakash Maran (10.1016/j.biortech.2023.129619_b0140) 2013; 52 (10.1016/j.biortech.2023.129619_b0160) 2019; Volume 2 Singh (10.1016/j.biortech.2023.129619_b0180) 2023; 172 Chu (10.1016/j.biortech.2023.129619_b0045) 2015; 185 Tripathi (10.1016/j.biortech.2023.129619_b0195) 2015; 74 Singh (10.1016/j.biortech.2023.129619_b0170) 2022; 10 Wágner (10.1016/j.biortech.2023.129619_b0200) 2021; 262 Yan (10.1016/j.biortech.2023.129619_b0205) 2016; 178 Zhang (10.1016/j.biortech.2023.129619_b0215) 2021; 338 Jaafari (10.1016/j.biortech.2023.129619_b0070) 2019; 217 Singh (10.1016/j.biortech.2023.129619_b0185) 2023; 13 Meng (10.1016/j.biortech.2023.129619_b0120) 2021; 9 Silambarasan (10.1016/j.biortech.2023.129619_b0155) 2021; 268 Singh (10.1016/j.biortech.2023.129619_b0165) 2021; 174 Nayak (10.1016/j.biortech.2023.129619_b0135) 2016; 16 Klausmeier (10.1016/j.biortech.2023.129619_b0085) 2004; 429 Ahmad (10.1016/j.biortech.2023.129619_b0010) 2020; 10 Abomohra (10.1016/j.biortech.2023.129619_b0005) 2016; 64 Konopka (10.1016/j.biortech.2023.129619_b0090) 1978; 36 Mandotra (10.1016/j.biortech.2023.129619_b0105) 2016; 201 Broady (10.1016/j.biortech.2023.129619_b0030) 1984; 23 |
| References_xml | – volume: 217 start-page: 447 year: 2019 end-page: 455 ident: b0070 article-title: Chemosphere Optimization of heavy metal biosorption onto freshwater algae ( publication-title: Chemosphere – volume: 13 start-page: 235 year: 2023 ident: b0185 article-title: Design and modelling of photobioreactor for the treatment of carpet and textile effluent using publication-title: Biotech – volume: 105 start-page: 535 year: 1994 end-page: 543 ident: b0110 article-title: Growth at low temperature mimics high-light acclimation in publication-title: Plant Physiol. – volume: 277 start-page: 118254 year: 2020 ident: b0050 article-title: Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks publication-title: Fuel – volume: 15 start-page: 6158 year: 2022 ident: b0095 article-title: An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes publication-title: Energies (Basel) – volume: 23 start-page: 257 year: 1984 end-page: 271 ident: b0030 article-title: Taxonomic and ecological investigations of algae on steam-warmed soil on Mt Erebus, Ross Island, Antarctica publication-title: Phycologia – volume: 7 year: 2019 ident: b0075 article-title: Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters publication-title: J. Environ. Chem. Eng. – volume: 105 start-page: 1149 year: 2015 end-page: 1156 ident: b0025 article-title: Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA publication-title: Energy Convers Manag – volume: 163 start-page: 1153 year: 2021 end-page: 1165 ident: b0125 article-title: Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment publication-title: Renew. Energy – volume: 10 start-page: 108444 year: 2022 ident: b0175 article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining publication-title: J. Environ. Chem. Eng. – volume: 262 year: 2021 ident: b0200 article-title: Optimal influent N-to-P ratio for stable microalgal cultivation in water treatment and nutrient recovery publication-title: Chemosphere – volume: 338 year: 2021 ident: b0215 article-title: Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation publication-title: Bioresour. Technol. – volume: 714 year: 2020 ident: b0130 article-title: Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester publication-title: Sci. Total Environ. – volume: 9 year: 2021 ident: b0120 article-title: Interaction Effects of Temperature, Light, Nutrients, and pH on Growth and Competition of publication-title: Strain PCC. Front Environ Sci – volume: 172 year: 2023 ident: b0180 article-title: Textile and domestic effluent treatment via co-cultivation of publication-title: Biomass Bioenergy – volume: 60 start-page: 722 year: 2010 end-page: 727 ident: b0150 article-title: Microalgae: The Potential for Carbon Capture publication-title: Bioscience – volume: 45 year: 2022 ident: b0065 article-title: Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae publication-title: J. Water Process Eng. – volume: 74 start-page: 774 year: 2015 end-page: 781 ident: b0195 article-title: Characterization of microalga publication-title: Renew. Energy – reference: APHA, 2012. Standard Methods for the Examination of Water and Wastewater 1496. – volume: 201 start-page: 222 year: 2016 end-page: 229 ident: b0105 article-title: Evaluation of fatty acid profile and biodiesel properties of microalga publication-title: Bioresour. Technol. – volume: 16 start-page: 216 year: 2016 end-page: 223 ident: b0135 article-title: Performance evaluation of microalgae for concomitant wastewater bioremediation, CO publication-title: Algal Res. – volume: 185 start-page: 40 year: 2015 end-page: 48 ident: b0045 article-title: Continuous cultivation of publication-title: Bioresour. Technol. – volume: Volume 2 start-page: 319 year: 2019 end-page: 357 ident: b0160 publication-title: Bioremediation of Nutrients and Heavy Metals from Wastewater by Microalgal Cells: Mechanism and Kinetics BT - Microbial Genomics in Sustainable Agroecosystems – volume: 101 start-page: 5892 year: 2010 end-page: 5896 ident: b0190 article-title: Potential carbon dioxide fixation by industrially important microalgae publication-title: Bioresour. Technol. – reference: Chaves, J.C., Nehrbass, J., Guilfoos, B., Gardiner, J., Ahalt, S., Krishnamurthy, A., Unpingco, J., Chalker, A., Warnock, A., Samsi, S., 2006. Octave and python: High-level scripting languages productivity and performance evaluation, in: 2006 HPCMP Users Group Conference (HPCMP-UGC’06). IEEE, pp. 429–434. – reference: Guedes, P.F.S., Nepomuceno, E.G., 2019. Some remarks on the performance of Matlab, Python and Octave in simulating dynamical systems. arXiv preprint arXiv:1910.06117. – reference: Lianda, J., Amri, H., 2016. Genetic Algorithms Method on Street Lighting Energy Saving, in: The 5th International Conference on Information Technology and Engineering Application (ICIBA2016). Bina Darma University. – volume: 268 year: 2021 ident: b0155 article-title: Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for publication-title: Chemosphere – volume: 22 start-page: 932 year: 1977 end-page: 936 ident: b0055 article-title: Temperature effects on phytoplankton growth in continuous culture1 publication-title: Limnol. Oceanogr. – volume: 429 start-page: 171 year: 2004 end-page: 174 ident: b0085 article-title: Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton publication-title: Nature – volume: 320 year: 2021 ident: b0210 article-title: Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment publication-title: Bioresour. Technol. – volume: 169 start-page: 588 year: 2014 end-page: 595 ident: b0115 article-title: Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of publication-title: Bioresour. Technol. – volume: 36 start-page: 572 year: 1978 end-page: 576 ident: b0090 article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota publication-title: Appl. Environ. Microbiol. – volume: 10 year: 2022 ident: b0170 article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining publication-title: J. Environ. Chem. Eng. – volume: 10 year: 2020 ident: b0010 article-title: Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation publication-title: 3 Biotech – volume: 6 start-page: 143 year: 2013 ident: b0145 article-title: A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production publication-title: Biotechnol. Biofuels – volume: 190 year: 2018 ident: b0015 article-title: Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method publication-title: Environ. Monit. Assess. – volume: 174 start-page: 108129 year: 2021 ident: b0165 article-title: Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production publication-title: Biochem. Eng. J. – volume: 178 start-page: 9 year: 2016 end-page: 18 ident: b0205 article-title: Photosynthetic CO publication-title: Appl. Energy – volume: 64 start-page: 596 year: 2016 end-page: 606 ident: b0005 article-title: Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives publication-title: Renew. Sustain. Energy Rev. – volume: 8 year: 2018 ident: b0035 article-title: Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana publication-title: Sci. Rep. – volume: 6 start-page: 4607 year: 2013 end-page: 4638 ident: b0080 article-title: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review publication-title: Energies (Basel) – volume: 52 start-page: 507 year: 2013 end-page: 516 ident: b0140 article-title: Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L publication-title: Alex. Eng. J. – volume: 36 start-page: 572 issue: 4 year: 1978 ident: 10.1016/j.biortech.2023.129619_b0090 article-title: Effect of temperature on blue-green algae (Cyanobacteria) in Lake Mendota publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.36.4.572-576.1978 – volume: 262 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0200 article-title: Optimal influent N-to-P ratio for stable microalgal cultivation in water treatment and nutrient recovery publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127939 – volume: 714 year: 2020 ident: 10.1016/j.biortech.2023.129619_b0130 article-title: Quantitative analysis of methane and glycolate production from microalgae using undiluted wastewater obtained from chicken-manure biogas digester publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136577 – volume: 105 start-page: 1149 year: 2015 ident: 10.1016/j.biortech.2023.129619_b0025 article-title: Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.08.072 – volume: 23 start-page: 257 issue: 3 year: 1984 ident: 10.1016/j.biortech.2023.129619_b0030 article-title: Taxonomic and ecological investigations of algae on steam-warmed soil on Mt Erebus, Ross Island, Antarctica publication-title: Phycologia doi: 10.2216/i0031-8884-23-3-257.1 – volume: 101 start-page: 5892 issue: 15 year: 2010 ident: 10.1016/j.biortech.2023.129619_b0190 article-title: Potential carbon dioxide fixation by industrially important microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.088 – volume: 45 year: 2022 ident: 10.1016/j.biortech.2023.129619_b0065 article-title: Soft-computing modeling and multiresponse optimization for nutrient removal process from municipal wastewater using microalgae publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102490 – volume: 6 start-page: 143 issue: 1 year: 2013 ident: 10.1016/j.biortech.2023.129619_b0145 article-title: A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: Effects of carbon and nitrogen sources and initial pH on the biomass and lipid production publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-6-143 – volume: 185 start-page: 40 year: 2015 ident: 10.1016/j.biortech.2023.129619_b0045 article-title: Continuous cultivation of Chlorella pyrenoidosa using anaerobic digested starch processing wastewater in the outdoors publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.02.030 – volume: 22 start-page: 932 year: 1977 ident: 10.1016/j.biortech.2023.129619_b0055 article-title: Temperature effects on phytoplankton growth in continuous culture1 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1977.22.5.0932 – volume: 60 start-page: 722 year: 2010 ident: 10.1016/j.biortech.2023.129619_b0150 article-title: Microalgae: The Potential for Carbon Capture publication-title: Bioscience doi: 10.1525/bio.2010.60.9.9 – volume: 174 start-page: 108129 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0165 article-title: Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2021.108129 – ident: 10.1016/j.biortech.2023.129619_b0060 doi: 10.17648/sbai-2019-111188 – volume: 217 start-page: 447 year: 2019 ident: 10.1016/j.biortech.2023.129619_b0070 article-title: Chemosphere Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.205 – volume: 7 issue: 5 year: 2019 ident: 10.1016/j.biortech.2023.129619_b0075 article-title: Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103326 – volume: 105 start-page: 535 issue: 2 year: 1994 ident: 10.1016/j.biortech.2023.129619_b0110 article-title: Growth at low temperature mimics high-light acclimation in Chlorella vulgaris publication-title: Plant Physiol. doi: 10.1104/pp.105.2.535 – volume: 172 year: 2023 ident: 10.1016/j.biortech.2023.129619_b0180 article-title: Textile and domestic effluent treatment via co-cultivation of Diplosphaera mucosa VSPA and Scenedesmus obliquus publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2023.106756 – volume: 338 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0215 article-title: Bacterial-algal coupling system for high strength mariculture wastewater treatment: Effect of temperature on nutrient recovery and microalgae cultivation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125574 – volume: 277 start-page: 118254 year: 2020 ident: 10.1016/j.biortech.2023.129619_b0050 article-title: Process parameter optimization of biodiesel production from algal oil by response surface methodology and artificial neural networks publication-title: Fuel doi: 10.1016/j.fuel.2020.118254 – volume: 178 start-page: 9 year: 2016 ident: 10.1016/j.biortech.2023.129619_b0205 article-title: Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.06.012 – volume: 8 year: 2018 ident: 10.1016/j.biortech.2023.129619_b0035 article-title: Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana publication-title: Sci. Rep. doi: 10.1038/s41598-018-24979-8 – volume: 6 start-page: 4607 year: 2013 ident: 10.1016/j.biortech.2023.129619_b0080 article-title: Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review publication-title: Energies (Basel) doi: 10.3390/en6094607 – volume: 10 issue: 5 year: 2022 ident: 10.1016/j.biortech.2023.129619_b0170 article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108444 – ident: 10.1016/j.biortech.2023.129619_b0100 – volume: 74 start-page: 774 year: 2015 ident: 10.1016/j.biortech.2023.129619_b0195 article-title: Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production publication-title: Renew. Energy doi: 10.1016/j.renene.2014.09.005 – volume: 9 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0120 article-title: Interaction Effects of Temperature, Light, Nutrients, and pH on Growth and Competition of Chlorella vulgaris and Anabaena sp publication-title: Strain PCC. Front Environ Sci – volume: 163 start-page: 1153 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0125 article-title: Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.045 – volume: 13 start-page: 235 year: 2023 ident: 10.1016/j.biortech.2023.129619_b0185 article-title: Design and modelling of photobioreactor for the treatment of carpet and textile effluent using Diplosphaera mucosa VSPA. 3 publication-title: Biotech – volume: 15 start-page: 6158 issue: 17 year: 2022 ident: 10.1016/j.biortech.2023.129619_b0095 article-title: An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes publication-title: Energies (Basel) doi: 10.3390/en15176158 – ident: 10.1016/j.biortech.2023.129619_b0020 – volume: 52 start-page: 507 year: 2013 ident: 10.1016/j.biortech.2023.129619_b0140 article-title: Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2013.06.007 – volume: Volume 2 start-page: 319 year: 2019 ident: 10.1016/j.biortech.2023.129619_b0160 publication-title: Bioremediation of Nutrients and Heavy Metals from Wastewater by Microalgal Cells: Mechanism and Kinetics BT - Microbial Genomics in Sustainable Agroecosystems – volume: 64 start-page: 596 year: 2016 ident: 10.1016/j.biortech.2023.129619_b0005 article-title: Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.056 – volume: 169 start-page: 588 year: 2014 ident: 10.1016/j.biortech.2023.129619_b0115 article-title: Influence of the N: P supply ratio on biomass productivity and time-resolved changes in elemental and bulk biochemical composition of Nannochloropsis sp publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.048 – volume: 201 start-page: 222 year: 2016 ident: 10.1016/j.biortech.2023.129619_b0105 article-title: Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.042 – volume: 10 start-page: 108444 issue: 5 year: 2022 ident: 10.1016/j.biortech.2023.129619_b0175 article-title: Analysing the effects of culture parameters on wastewater treatment capability of microalgae through association rule mining publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108444 – ident: 10.1016/j.biortech.2023.129619_b0040 doi: 10.1109/HPCMP-UGC.2006.55 – volume: 190 year: 2018 ident: 10.1016/j.biortech.2023.129619_b0015 article-title: Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6468-y – volume: 429 start-page: 171 issue: 6988 year: 2004 ident: 10.1016/j.biortech.2023.129619_b0085 article-title: Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton publication-title: Nature doi: 10.1038/nature02454 – volume: 320 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0210 article-title: Integrating acidogenic fermentation and microalgae cultivation of bacterial-algal coupling system for mariculture wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124335 – volume: 16 start-page: 216 year: 2016 ident: 10.1016/j.biortech.2023.129619_b0135 article-title: Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application publication-title: Algal Res. doi: 10.1016/j.algal.2016.03.020 – volume: 268 year: 2021 ident: 10.1016/j.biortech.2023.129619_b0155 article-title: Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129323 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.biortech.2023.129619_b0010 article-title: Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: an experimental investigation publication-title: 3 Biotech doi: 10.1007/s13205-019-2008-x |
| SSID | ssj0003172 |
| Score | 2.4735253 |
| Snippet | [Display omitted]
•Global optimisation of industrial effluent treatment by Diplosphaera mucosa.•Hybridisation of RSM and ANN models with GA for multi-input... The wastewater treatment efficiency of Diplosphaera mucosa VSPA was enhanced by optimising five input parameters and increasing the biomass yield. pH,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 129619 |
| SubjectTerms | algorithms Artificial neural network Biomass production Bioremediation Genetic algorithm hybridization light intensity Microalgae mucosa neural networks pollutants Python Response surface methodology temperature textile industry wastewater wastewater treatment |
| Title | Treatment of carpet and textile industry effluents using Diplosphaera mucosa VSPA: A multiple input optimisation study using artificial neural network-genetic algorithms |
| URI | https://dx.doi.org/10.1016/j.biortech.2023.129619 https://www.ncbi.nlm.nih.gov/pubmed/37549715 https://www.proquest.com/docview/2847746777 https://www.proquest.com/docview/2887987775 |
| Volume | 387 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcgAOCMpHl4_KSFyz203sOOEWLVQLiAqpLerNchx7m2o3iXazh176f_iXzDh2KRLQA6coiR1Znsn4WX7zhpB30yoGmFyqSMdJEjEBe1bFpybSOua2FLqyLsv163E6P2Ofz_n5DpmFXBikVfrYP8R0F639k4mfzUlX15MTBN8ZRzzgNGYwo5wxgVUMxte_aB6wPrqTBGgcYetbWcKX47JGRqs7lIiTMSx9KSru_HmB-hsAdQvR0WPyyCNIWgyDfEJ2TLNHHhaLtVfRMHvk_iyUcYM3txQHn5Ifp4FYTltL3eFLT1VTUSSAQICg9VDK44oa66qX9BuK1PgF_VB3y3bTXSizVnSFPHdFv598K97TggZWIvTutvBlCEMrTxOiTr_WfwMndlCsoKij6S6OhR6BG2M2JVXLRbuu-4vV5hk5O_p4OptHvlpDpGGP1sPkThP4mTNAIBUzqVGAbBIFaEcpnSWH2qqEZyYR5aHOrDWq5MzkOq5Enmq4Z8lzstu0jdkn1MZC2xxMZlLBcmMUbPNsBciOpWBoE48IDyaS2kuZY0WNpQyctUsZTCvRtHIw7YhMbvp1g5jHnT3y4AHyN7eUsOLc2fdtcBkJk44HMaox7XYjERJgmRch_tUmEzmKNfIReTH4282YsWxxLqb85X-M7hV5gHdDWuVrstuvt-YN4Ku-PHA_0AG5V3z6Mj_-CSzeKfY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKORQOCMrX8mkkrtntxnGccFstVAu0FVK3qDfLcextqt0k2s0euPB_-JfMOHYpEtADpyiJHVmeyfhZfvOGkLfjMgaYXKhIx4xFiYA9q-JjE2kdc1sIXVqX5Xp8ks7Okk_n_HyHTEMuDNIqfezvY7qL1v7JyM_mqK2q0SmC74wjHnAaM-IWuZ3wWOAObPj9F88DFkh3lACtI2x-LU34clhUSGl1pxIxG8Lal6Lkzp9XqL8hULcSHd4n9zyEpJN-lA_Ijqn3yd3JYu1lNMw-2ZuGOm7w5prk4EPyYx6Y5bSx1J2-dFTVJUUGCEQIWvW1PL5RY135km5DkRu_oO-rdtls2gtl1oqukOiu6NfTL5N3dEIDLRF6t1v4MsShlecJUSdg67-BM9tLVlAU0nQXR0OPwI8xnZKq5aJZV93FavOInB1-mE9nkS_XEGnYpHUwuWMGf3MGEKRMTGoUQBumAO4opTN2oK1iPDNMFAc6s9aogicm13Ep8lTDfcIek926qc1TQm0stM3BZCYVSW6Mgn2eLQHaJSlY2sQDwoOJpPZa5lhSYykDae1SBtNKNK3sTTsgo6t-ba_mcWOPPHiA_M0vJSw5N_Z9E1xGwqTjSYyqTbPdSMQEWOdFiH-1yUSOao18QJ70_nY1ZqxbnIsxf_Yfo3tN9mbz4yN59PHk83NyB9_0OZYvyG633pqXALa64pX7mX4CzDkriw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+of+carpet+and+textile+industry+effluents+using+Diplosphaera+mucosa+VSPA%3A+A+multiple+input+optimisation+study+using+artificial+neural+network-genetic+algorithms&rft.jtitle=Bioresource+technology&rft.au=Singh%2C+Virendra&rft.au=Mehra%2C+Ravi&rft.au=Ramesh%2C+Kirtan+Babu&rft.au=Srivastava%2C+Pradeep&rft.date=2023-11-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=387&rft.spage=129619&rft_id=info:doi/10.1016%2Fj.biortech.2023.129619&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |