Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc

[Display omitted] Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical out...

Full description

Saved in:
Bibliographic Details
Published inMaterials today communications Vol. 19; pp. 506 - 512
Main Authors Costa, João Bebiano, Silva-Correia, Joana, Ribeiro, Viviana Pinto, da Silva Morais, Alain, Oliveira, Joaquim Miguel, Reis, Rui Luís
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2019
Subjects
Online AccessGet full text
ISSN2352-4928
2352-4928
DOI10.1016/j.mtcomm.2018.01.011

Cover

Abstract [Display omitted] Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in particular the outer region of the IVD (i.e. annulus fibrosus, AF). Following a reverse engineering approach, the proposed strategy makes use of a 3D model of AF obtained by semi-automatic morphological segmentation from magnetic resonance imaging dataset of human IVD. SF/elastin bioprinted scaffolds were characterized thoroughly in vitro, in terms of physico-chemical and biological performance. The bioprinted SF/elastin scaffolds were shown to possess structural and mechanical properties similar to the native AF and to support cell attachment and growth. Human adipose-derived stem cell cultured onto the SF/elastin bioprinted scaffolds were shown to adhere, proliferate and maintain metabolic activity and viability up to 21 days of culturing. The implantation of custom-made SF/elastin implants that best emulate a patient AF anatomy can potentially open up new personalized treatments for tackling IVD disorders by means of improving recovery time after surgery and helping to restore spine biofunctionality.
AbstractList [Display omitted] Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in particular the outer region of the IVD (i.e. annulus fibrosus, AF). Following a reverse engineering approach, the proposed strategy makes use of a 3D model of AF obtained by semi-automatic morphological segmentation from magnetic resonance imaging dataset of human IVD. SF/elastin bioprinted scaffolds were characterized thoroughly in vitro, in terms of physico-chemical and biological performance. The bioprinted SF/elastin scaffolds were shown to possess structural and mechanical properties similar to the native AF and to support cell attachment and growth. Human adipose-derived stem cell cultured onto the SF/elastin bioprinted scaffolds were shown to adhere, proliferate and maintain metabolic activity and viability up to 21 days of culturing. The implantation of custom-made SF/elastin implants that best emulate a patient AF anatomy can potentially open up new personalized treatments for tackling IVD disorders by means of improving recovery time after surgery and helping to restore spine biofunctionality.
Author Costa, João Bebiano
da Silva Morais, Alain
Oliveira, Joaquim Miguel
Reis, Rui Luís
Ribeiro, Viviana Pinto
Silva-Correia, Joana
Author_xml – sequence: 1
  givenname: João Bebiano
  surname: Costa
  fullname: Costa, João Bebiano
  organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
– sequence: 2
  givenname: Joana
  surname: Silva-Correia
  fullname: Silva-Correia, Joana
  email: joana.correia@dep.uminho.pt
  organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
– sequence: 3
  givenname: Viviana Pinto
  surname: Ribeiro
  fullname: Ribeiro, Viviana Pinto
  organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
– sequence: 4
  givenname: Alain
  surname: da Silva Morais
  fullname: da Silva Morais, Alain
  organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
– sequence: 5
  givenname: Joaquim Miguel
  surname: Oliveira
  fullname: Oliveira, Joaquim Miguel
  organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
– sequence: 6
  givenname: Rui Luís
  surname: Reis
  fullname: Reis, Rui Luís
  organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
BookMark eNqFkE9LAzEQxYMoWGu_gYd8gV2T3XQ360GQUv9AwYueQ3Z2UlK6SUliwW9vlnoQDwoDMzDvPXi_K3LuvENCbjgrOePN7a4cE_hxLCvGZcl4Hn5GZlW9rArRVfL8x31JFjHuGMvKJROdmBFYu611iMG6LT3oZNGlIh4QrLFAe-sP-ZNwoOBdTOEDUqTGB5oC6jRmMfWGDrhFh0FPukkdjhgS9kHv6WAjXJMLo_cRF997Tt4f12-r52Lz-vSyetgUIBhPRSuBd9B1HZq6bXTfDi1jRnKs2w6wRwRpZAemGnqjTdMIIZtG1lIwU9WoWT0nd6dcCD7GgEaBTbmSdylou1ecqYmY2qkTMTURU4zn4dksfplz81GHz_9s9ycb5mJHi0FFyAwBBxsQkhq8_TvgC_v0jUM
CitedBy_id crossref_primary_10_1038_s41467_020_20375_x
crossref_primary_10_1039_C9BM01288E
crossref_primary_10_2217_3dp_2020_0005
crossref_primary_10_3390_ijms21144889
crossref_primary_10_1002_adhm_202102530
crossref_primary_10_1016_j_tibtech_2020_11_003
crossref_primary_10_1002_jsp2_1117
crossref_primary_10_3390_polym15224419
crossref_primary_10_3390_gels10020153
crossref_primary_10_1007_s10845_021_01749_4
crossref_primary_10_3390_jfb13040297
crossref_primary_10_3389_fbioe_2021_754113
crossref_primary_10_1021_acsbiomaterials_2c00313
crossref_primary_10_3390_ijms23136915
crossref_primary_10_1016_j_bone_2021_116256
crossref_primary_10_3390_biomimetics8010016
crossref_primary_10_1016_j_bioactmat_2024_01_015
crossref_primary_10_1088_2516_1091_ad2d59
crossref_primary_10_1002_jsp2_1225
crossref_primary_10_3390_gels9010025
crossref_primary_10_1002_slct_202301395
crossref_primary_10_1016_j_bprint_2021_e00170
crossref_primary_10_1007_s40610_018_0106_x
crossref_primary_10_3390_biomimetics8020152
crossref_primary_10_3390_ijms21197012
crossref_primary_10_2217_3dp_2018_0006
crossref_primary_10_1021_acs_chemmater_0c03556
Cites_doi 10.1002/jbm.b.33267
10.1021/bm4011062
10.1371/journal.pone.0124774
10.1038/nrrheum.2015.13
10.1002/term.363
10.1021/acsbiomaterials.6b00121
10.1016/j.arr.2007.08.001
10.1016/j.actbio.2012.04.035
10.1016/j.actbio.2011.09.037
10.1016/S0021-9290(98)00046-3
10.1002/term.541
10.1007/s00586-007-0364-4
10.2217/3dp-2016-0011
10.1097/01.BRS.0000128264.46510.27
10.2217/17460751.3.5.717
10.1111/j.1469-7580.2007.00707.x
10.1016/j.biotechadv.2013.07.010
10.1002/adhm.201200256
10.1016/j.berh.2006.04.002
10.1016/j.actbio.2014.10.021
10.1089/ten.tea.2011.0632
10.1002/jbm.a.32326
10.1089/ten.tea.2011.0195
10.1002/term.500
10.1038/nbt.2958
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtcomm.2018.01.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
EndPage 512
ExternalDocumentID 10_1016_j_mtcomm_2018_01_011
S2352492817301344
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c401t-78c19c999ef376ab7d700f81e379cebeec8f89cf2dbfaf664486683840f23ea03
IEDL.DBID AIKHN
ISSN 2352-4928
IngestDate Tue Jul 01 02:45:41 EDT 2025
Thu Apr 24 22:55:14 EDT 2025
Fri Feb 23 02:27:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Silk fibroin/elastin bioink
Patient-specific
Reverse engineering
Tissue engineering
Intervertebral disc
3D printing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-78c19c999ef376ab7d700f81e379cebeec8f89cf2dbfaf664486683840f23ea03
OpenAccessLink http://hdl.handle.net/1822/53713
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_mtcomm_2018_01_011
crossref_primary_10_1016_j_mtcomm_2018_01_011
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2018_01_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Materials today communications
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References L.-P. Yan, A.L. Oliveira, J.M. Oliveira, D.R. Pereira, C. Correia, R.A. Sousa, R.L. Reis, Hydrogels derived from silk fibroin: methods and uses thereof, Patent 106041, Priority date: 107/2013, 06.06.2013 PT.
Yan, Oliveira, Oliveira, Caridade, Mano, Reis (bib0120) 2012; 8
Silva-Correia, Correia, Oliveira, Reis (bib0030) 2013; 31
Chang, Kim, Kaplan, Vunjak-Novakovic, Kandel (bib0065) 2007; 16
Chang, Kim, Vunjak-Novakovic, Kaplan, Kandel (bib0070) 2010; 92A
Zhao, Wang, Jiang, Dai (bib0010) 2007; 6
Silva-Correia, Zavan, Vindigni, Silva, Oliveira, Abatangelo, Reis (bib0150) 2013; 2
Murphy, Atala (bib0045) 2014; 32
Mansour (bib0105) 2013
Silva-Correia, Miranda-Gonçalves, Salgado, Sousa, Oliveira, Reis, Reis (bib0155) 2012; 18
Yu, Tirlapur, Fairbank, Handford, Roberts, Winlove, Cui, Urban (bib0080) 2007; 210
Sakai, Andersson (bib0135) 2015; 11
Vasconcelos, Gomes, Cavaco-Paulo (bib0095) 2012; 8
Richardson, Mobasheri, Freemont, Hoyland (bib0025) 2007; 22
Park, Gil, Mandal, Cho, Kluge, Min, Kaplan (bib0075) 2012; 6
Xu, Xu, Wu, Li, Zhang, Ma, Yang (bib0125) 2015; 10
Yan, Oliveira, Oliveira, Reis (bib0140) 2015; 103
Kalson, Richardson, Hoyland (bib0020) 2008; 3
Mizuno, Roy, Vacanti, Kojima, Ueda, Bonassar (bib0035) 2004; 29
Iatridis, Setton, Foster, Rawlins, Weidenbaum, Mow (bib0110) 1998; 31
Park, Gil, Mandal, Cho, Kluge, Min, Kaplan (bib0130) 2012; 6
Guvendiren, Molde, Soares, Kohn (bib0040) 2016; 2
Park, Gil, Cho, Mandal, Tien, Min, Kaplan (bib0100) 2012; 18
J.B. Costa, J. Silva-Correia, J.M. Oliveira, R.L. Reis, Inks for 3D Printing, Methods of Production and Uses Thereof, P514.1 PP, Priority date: 09.06.2017 PT (2017).
Silva-Correia, Oliveira, Caridade, Oliveira, Sousa, Mano, Reis (bib0145) 2011; 5
Yan, Silva-Correia, Oliveira, Vilela, Pereira, Sousa, Mano, Oliveira, Oliveira, Reis (bib0115) 2015; 12
Roberts, Evans, Trivedi, Menage (bib0015) 2006; 88
Oner, Cengiz, Pitikakis, Cesario, Parascandolo, Vosilla, Viano, Oliveira, Reis, Silva-Correia (bib0085) 2017; 1
Cerqueira, Pirraco, Santos, Rodrigues, Frias, Martins, Reis, Marques (bib0090) 2013; 14
Pereira, Silva-Correia, Oliveira, Reis (bib0050) 2013; 7
Diamond, Borenstein (bib0005) 2006; 20
Diamond (10.1016/j.mtcomm.2018.01.011_bib0005) 2006; 20
Xu (10.1016/j.mtcomm.2018.01.011_bib0125) 2015; 10
Zhao (10.1016/j.mtcomm.2018.01.011_bib0010) 2007; 6
Yan (10.1016/j.mtcomm.2018.01.011_bib0120) 2012; 8
Murphy (10.1016/j.mtcomm.2018.01.011_bib0045) 2014; 32
10.1016/j.mtcomm.2018.01.011_bib0060
Park (10.1016/j.mtcomm.2018.01.011_bib0130) 2012; 6
Park (10.1016/j.mtcomm.2018.01.011_bib0100) 2012; 18
Yan (10.1016/j.mtcomm.2018.01.011_bib0140) 2015; 103
Mansour (10.1016/j.mtcomm.2018.01.011_bib0105) 2013
Richardson (10.1016/j.mtcomm.2018.01.011_bib0025) 2007; 22
Chang (10.1016/j.mtcomm.2018.01.011_bib0065) 2007; 16
Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0155) 2012; 18
Chang (10.1016/j.mtcomm.2018.01.011_bib0070) 2010; 92A
10.1016/j.mtcomm.2018.01.011_bib0055
Yu (10.1016/j.mtcomm.2018.01.011_bib0080) 2007; 210
Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0145) 2011; 5
Guvendiren (10.1016/j.mtcomm.2018.01.011_bib0040) 2016; 2
Mizuno (10.1016/j.mtcomm.2018.01.011_bib0035) 2004; 29
Iatridis (10.1016/j.mtcomm.2018.01.011_bib0110) 1998; 31
Roberts (10.1016/j.mtcomm.2018.01.011_bib0015) 2006; 88
Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0030) 2013; 31
Yan (10.1016/j.mtcomm.2018.01.011_bib0115) 2015; 12
Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0150) 2013; 2
Cerqueira (10.1016/j.mtcomm.2018.01.011_bib0090) 2013; 14
Pereira (10.1016/j.mtcomm.2018.01.011_bib0050) 2013; 7
Park (10.1016/j.mtcomm.2018.01.011_bib0075) 2012; 6
Vasconcelos (10.1016/j.mtcomm.2018.01.011_bib0095) 2012; 8
Sakai (10.1016/j.mtcomm.2018.01.011_bib0135) 2015; 11
Kalson (10.1016/j.mtcomm.2018.01.011_bib0020) 2008; 3
Oner (10.1016/j.mtcomm.2018.01.011_bib0085) 2017; 1
References_xml – volume: 2
  start-page: 1679
  year: 2016
  end-page: 1693
  ident: bib0040
  article-title: Designing biomaterials for 3D printing
  publication-title: ACS Biomater. Sci. Eng.
– volume: 6
  start-page: s24
  year: 2012
  end-page: s33
  ident: bib0075
  article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 5
  start-page: e97
  year: 2011
  end-page: e107
  ident: bib0145
  article-title: Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 7
  start-page: 85
  year: 2013
  end-page: 98
  ident: bib0050
  article-title: Hydrogels in acellular and cellular strategies for intervertebral disc regeneration
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 88
  start-page: 10
  year: 2006
  end-page: 14
  ident: bib0015
  article-title: Histology and pathology of the human intervertebral disc
  publication-title: J. Bone Joint Surg. Am.
– volume: 29
  start-page: 1290
  year: 2004
  end-page: 1297
  ident: bib0035
  article-title: Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement
  publication-title: Spine
– volume: 210
  start-page: 460
  year: 2007
  end-page: 471
  ident: bib0080
  article-title: Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc
  publication-title: J. Anat.
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: bib0045
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
– start-page: 69
  year: 2013
  end-page: 83
  ident: bib0105
  article-title: Biomechanics of cartilage
  publication-title: Kinesiology: The Mechanics and Pathomechanics of Human Movement
– volume: 8
  start-page: 3049
  year: 2012
  end-page: 3060
  ident: bib0095
  article-title: Novel silk fibroin/elastin wound dressings
  publication-title: Acta Biomater.
– volume: 6
  start-page: 247
  year: 2007
  end-page: 261
  ident: bib0010
  article-title: The cell biology of intervertebral disc aging and degeneration
  publication-title: Ageing Res. Rev.
– volume: 22
  start-page: 1033
  year: 2007
  end-page: 1041
  ident: bib0025
  article-title: Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies
  publication-title: Histol. Histopathol.
– volume: 92A
  start-page: 43
  year: 2010
  end-page: 51
  ident: bib0070
  article-title: Enhancing annulus fibrosus tissue formation in porous silk scaffolds
  publication-title: J. Biomed. Mater. Res. A
– volume: 20
  start-page: 707
  year: 2006
  end-page: 720
  ident: bib0005
  article-title: Chronic low back pain in a working-age adult
  publication-title: Best Pract. Res. Clin. Rheumatol.
– volume: 18
  start-page: 447
  year: 2012
  end-page: 458
  ident: bib0100
  article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds
  publication-title: Tissue Eng. Part A
– volume: 18
  start-page: 1203
  year: 2012
  end-page: 1212
  ident: bib0155
  article-title: Angiogenic potential of gellan gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study
  publication-title: Tissue Eng.
– volume: 8
  start-page: 289
  year: 2012
  end-page: 301
  ident: bib0120
  article-title: Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications
  publication-title: Acta Biomater.
– volume: 103
  start-page: 888
  year: 2015
  end-page: 898
  ident: bib0140
  article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 16
  start-page: 1848
  year: 2007
  end-page: 1857
  ident: bib0065
  article-title: Porous silk scaffolds can be used for tissue engineering annulus fibrosus
  publication-title: Eur. Spine J.
– volume: 14
  start-page: 3997
  year: 2013
  end-page: 4008
  ident: bib0090
  article-title: Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds
  publication-title: Biomacromolecules
– volume: 1
  start-page: 91
  year: 2017
  end-page: 101
  ident: bib0085
  article-title: 3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds
  publication-title: J. 3D Print. Med.
– volume: 10
  start-page: e0124774
  year: 2015
  ident: bib0125
  article-title: Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds
  publication-title: PLoS One
– volume: 11
  start-page: 243
  year: 2015
  end-page: 256
  ident: bib0135
  article-title: Stem cell therapy for intervertebral disc regeneration: obstacles and solutions
  publication-title: Nat. Rev. Rheumatol.
– volume: 12
  start-page: 227
  year: 2015
  end-page: 241
  ident: bib0115
  article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance
  publication-title: Acta Biomater.
– reference: L.-P. Yan, A.L. Oliveira, J.M. Oliveira, D.R. Pereira, C. Correia, R.A. Sousa, R.L. Reis, Hydrogels derived from silk fibroin: methods and uses thereof, Patent 106041, Priority date: 107/2013, 06.06.2013 PT.
– volume: 3
  start-page: 717
  year: 2008
  end-page: 729
  ident: bib0020
  article-title: Strategies for regeneration of the intervertebral disc
  publication-title: Regen. Med.
– volume: 31
  start-page: 1514
  year: 2013
  end-page: 1531
  ident: bib0030
  article-title: Tissue engineering strategies applied in the regeneration of the human intervertebral disc
  publication-title: Biotechnol. Adv.
– volume: 2
  start-page: 568
  year: 2013
  end-page: 575
  ident: bib0150
  article-title: Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels:
  publication-title: Adv. Healthc. Mater.
– reference: J.B. Costa, J. Silva-Correia, J.M. Oliveira, R.L. Reis, Inks for 3D Printing, Methods of Production and Uses Thereof, P514.1 PP, Priority date: 09.06.2017 PT (2017).
– volume: 31
  start-page: 535
  year: 1998
  end-page: 544
  ident: bib0110
  article-title: Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression
  publication-title: J. Biomech.
– volume: 6
  start-page: s24
  year: 2012
  end-page: s33
  ident: bib0130
  article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds
  publication-title: J. Tissue Eng. Regen. Med.
– ident: 10.1016/j.mtcomm.2018.01.011_bib0055
– volume: 103
  start-page: 888
  year: 2015
  ident: 10.1016/j.mtcomm.2018.01.011_bib0140
  article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.33267
– start-page: 69
  year: 2013
  ident: 10.1016/j.mtcomm.2018.01.011_bib0105
  article-title: Biomechanics of cartilage
– volume: 14
  start-page: 3997
  year: 2013
  ident: 10.1016/j.mtcomm.2018.01.011_bib0090
  article-title: Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds
  publication-title: Biomacromolecules
  doi: 10.1021/bm4011062
– volume: 10
  start-page: e0124774
  year: 2015
  ident: 10.1016/j.mtcomm.2018.01.011_bib0125
  article-title: Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124774
– volume: 11
  start-page: 243
  year: 2015
  ident: 10.1016/j.mtcomm.2018.01.011_bib0135
  article-title: Stem cell therapy for intervertebral disc regeneration: obstacles and solutions
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2015.13
– volume: 5
  start-page: e97
  year: 2011
  ident: 10.1016/j.mtcomm.2018.01.011_bib0145
  article-title: Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.363
– volume: 2
  start-page: 1679
  year: 2016
  ident: 10.1016/j.mtcomm.2018.01.011_bib0040
  article-title: Designing biomaterials for 3D printing
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00121
– volume: 6
  start-page: 247
  year: 2007
  ident: 10.1016/j.mtcomm.2018.01.011_bib0010
  article-title: The cell biology of intervertebral disc aging and degeneration
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2007.08.001
– volume: 8
  start-page: 3049
  year: 2012
  ident: 10.1016/j.mtcomm.2018.01.011_bib0095
  article-title: Novel silk fibroin/elastin wound dressings
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.04.035
– volume: 8
  start-page: 289
  year: 2012
  ident: 10.1016/j.mtcomm.2018.01.011_bib0120
  article-title: Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.09.037
– volume: 31
  start-page: 535
  year: 1998
  ident: 10.1016/j.mtcomm.2018.01.011_bib0110
  article-title: Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00046-3
– volume: 6
  start-page: s24
  issue: Suppl. 3
  year: 2012
  ident: 10.1016/j.mtcomm.2018.01.011_bib0130
  article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.541
– volume: 16
  start-page: 1848
  year: 2007
  ident: 10.1016/j.mtcomm.2018.01.011_bib0065
  article-title: Porous silk scaffolds can be used for tissue engineering annulus fibrosus
  publication-title: Eur. Spine J.
  doi: 10.1007/s00586-007-0364-4
– volume: 1
  start-page: 91
  year: 2017
  ident: 10.1016/j.mtcomm.2018.01.011_bib0085
  article-title: 3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds
  publication-title: J. 3D Print. Med.
  doi: 10.2217/3dp-2016-0011
– volume: 88
  start-page: 10
  year: 2006
  ident: 10.1016/j.mtcomm.2018.01.011_bib0015
  article-title: Histology and pathology of the human intervertebral disc
  publication-title: J. Bone Joint Surg. Am.
– volume: 29
  start-page: 1290
  year: 2004
  ident: 10.1016/j.mtcomm.2018.01.011_bib0035
  article-title: Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement
  publication-title: Spine
  doi: 10.1097/01.BRS.0000128264.46510.27
– volume: 22
  start-page: 1033
  year: 2007
  ident: 10.1016/j.mtcomm.2018.01.011_bib0025
  article-title: Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies
  publication-title: Histol. Histopathol.
– volume: 3
  start-page: 717
  year: 2008
  ident: 10.1016/j.mtcomm.2018.01.011_bib0020
  article-title: Strategies for regeneration of the intervertebral disc
  publication-title: Regen. Med.
  doi: 10.2217/17460751.3.5.717
– volume: 210
  start-page: 460
  year: 2007
  ident: 10.1016/j.mtcomm.2018.01.011_bib0080
  article-title: Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2007.00707.x
– ident: 10.1016/j.mtcomm.2018.01.011_bib0060
– volume: 31
  start-page: 1514
  year: 2013
  ident: 10.1016/j.mtcomm.2018.01.011_bib0030
  article-title: Tissue engineering strategies applied in the regeneration of the human intervertebral disc
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.07.010
– volume: 2
  start-page: 568
  year: 2013
  ident: 10.1016/j.mtcomm.2018.01.011_bib0150
  article-title: Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels: in vitro and in vivo study
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201200256
– volume: 20
  start-page: 707
  year: 2006
  ident: 10.1016/j.mtcomm.2018.01.011_bib0005
  article-title: Chronic low back pain in a working-age adult
  publication-title: Best Pract. Res. Clin. Rheumatol.
  doi: 10.1016/j.berh.2006.04.002
– volume: 12
  start-page: 227
  year: 2015
  ident: 10.1016/j.mtcomm.2018.01.011_bib0115
  article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.10.021
– volume: 18
  start-page: 1203
  issue: Part A
  year: 2012
  ident: 10.1016/j.mtcomm.2018.01.011_bib0155
  article-title: Angiogenic potential of gellan gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study
  publication-title: Tissue Eng.
  doi: 10.1089/ten.tea.2011.0632
– volume: 6
  start-page: s24
  year: 2012
  ident: 10.1016/j.mtcomm.2018.01.011_bib0075
  article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.541
– volume: 92A
  start-page: 43
  year: 2010
  ident: 10.1016/j.mtcomm.2018.01.011_bib0070
  article-title: Enhancing annulus fibrosus tissue formation in porous silk scaffolds
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32326
– volume: 18
  start-page: 447
  year: 2012
  ident: 10.1016/j.mtcomm.2018.01.011_bib0100
  article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2011.0195
– volume: 7
  start-page: 85
  year: 2013
  ident: 10.1016/j.mtcomm.2018.01.011_bib0050
  article-title: Hydrogels in acellular and cellular strategies for intervertebral disc regeneration
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.500
– volume: 32
  start-page: 773
  year: 2014
  ident: 10.1016/j.mtcomm.2018.01.011_bib0045
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
SSID ssj0001850494
Score 2.262056
Snippet [Display omitted] Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age-...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 506
SubjectTerms 3D printing
Intervertebral disc
Patient-specific
Reverse engineering
Silk fibroin/elastin bioink
Tissue engineering
Title Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc
URI https://dx.doi.org/10.1016/j.mtcomm.2018.01.011
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze_FFFBXnjTz4Gtb0lvRxDMd0uAd1uLeS5iIV3Yb2_-M5bToniIJQKC05tJyEk-8k3_lCyJULXIxpBzNWQoJiAs1UpjUTWioN-JvrAhPFu1k6mce3i2TRIaO2FgZplT72NzG9jtb-zcB7c7Auy8FDCNghzkLJcZBGcbxDeiHM9rJLesOb6WT2tdQiE1RBqY-ZS0KGNm0RXc30eqvgG1iVzmUt4cn5z5PU1sQz3id7HjHSYfNTB6Rjl4dEb-kIUq-NyrBqEpk_tChXuF4HYJLqlZeI_aAAT-mGV05Xjhr7XItOY7uy4T6-V7iR_EqxWPeIzMfXj6MJ8-clMA1ZUsWE1DzTgPisg7ChCmFEEDjJbSQyDZ1ltXQy0y40hVMuxcwsTWUEKZ4LI6uC6Jh0l6ulPSHUudgIaJcZTBiVU0UiMoW8TWOiUMg-iVoH5dqLieOZFq95yxp7yRu35ujWPOBw8T5hG6t1I6bxR3vR-j7_NihyiPe_Wp7-2_KM7MJT1rDBzkkXusheAO6oiks_rvA-vX-afgJn5dvM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9CLKCrW5x68Ls0maXdzLMXS2sfFFnoLyT4kUpui-f84k2xqBVEQckp2SJhdZr_ZfPMNIQ_WsyGmHUwbCQmK9hRLIqWYUDJRgL-5SjFRnM17o2X4tOquGmRQ18IgrdLF_iqml9Ha3ek4b3a2WdZ59gE7hJEvOS7SIAwPSCvEptZN0uqPJ6P511GL7KIKStlmrusztKmL6Eqm11sB78CqdC5LCU_Of96k9jae4Qk5doiR9quPOiUNszkjak9HkDptVIZVk8j8oWmW43kdgEmqcicR-0EBntIdr5zmlmrzUopO47is4j6-F_gjeU2xWPecLIePi8GIuX4JTEGWVDAhFY8UID5jIWwkqdDC86zkJhCRgskySloZKevr1Ca2h5lZrycDSPGsH5jECy5Ic5NvzCWh1oZawLhIY8KY2CTtiihB3qbWgS9kmwS1g2LlxMSxp8U6rlljr3Hl1hjdGnscLt4mbGe1rcQ0_hgvat_H3xZFDPH-V8urf1vek8PRYjaNp-P55JocwZOoYobdkCZMl7kFDFKkd26NfQLcc90N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+patient-specific+bioprinted+constructs+for+treatment+of+degenerated+intervertebral+disc&rft.jtitle=Materials+today+communications&rft.au=Costa%2C+Jo%C3%A3o+Bebiano&rft.au=Silva-Correia%2C+Joana&rft.au=Ribeiro%2C+Viviana+Pinto&rft.au=da+Silva+Morais%2C+Alain&rft.date=2019-06-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=19&rft.spage=506&rft.epage=512&rft_id=info:doi/10.1016%2Fj.mtcomm.2018.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2018_01_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon