Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc
[Display omitted] Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical out...
Saved in:
Published in | Materials today communications Vol. 19; pp. 506 - 512 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-4928 2352-4928 |
DOI | 10.1016/j.mtcomm.2018.01.011 |
Cover
Abstract | [Display omitted]
Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in particular the outer region of the IVD (i.e. annulus fibrosus, AF). Following a reverse engineering approach, the proposed strategy makes use of a 3D model of AF obtained by semi-automatic morphological segmentation from magnetic resonance imaging dataset of human IVD. SF/elastin bioprinted scaffolds were characterized thoroughly in vitro, in terms of physico-chemical and biological performance. The bioprinted SF/elastin scaffolds were shown to possess structural and mechanical properties similar to the native AF and to support cell attachment and growth. Human adipose-derived stem cell cultured onto the SF/elastin bioprinted scaffolds were shown to adhere, proliferate and maintain metabolic activity and viability up to 21 days of culturing. The implantation of custom-made SF/elastin implants that best emulate a patient AF anatomy can potentially open up new personalized treatments for tackling IVD disorders by means of improving recovery time after surgery and helping to restore spine biofunctionality. |
---|---|
AbstractList | [Display omitted]
Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in particular the outer region of the IVD (i.e. annulus fibrosus, AF). Following a reverse engineering approach, the proposed strategy makes use of a 3D model of AF obtained by semi-automatic morphological segmentation from magnetic resonance imaging dataset of human IVD. SF/elastin bioprinted scaffolds were characterized thoroughly in vitro, in terms of physico-chemical and biological performance. The bioprinted SF/elastin scaffolds were shown to possess structural and mechanical properties similar to the native AF and to support cell attachment and growth. Human adipose-derived stem cell cultured onto the SF/elastin bioprinted scaffolds were shown to adhere, proliferate and maintain metabolic activity and viability up to 21 days of culturing. The implantation of custom-made SF/elastin implants that best emulate a patient AF anatomy can potentially open up new personalized treatments for tackling IVD disorders by means of improving recovery time after surgery and helping to restore spine biofunctionality. |
Author | Costa, João Bebiano da Silva Morais, Alain Oliveira, Joaquim Miguel Reis, Rui Luís Ribeiro, Viviana Pinto Silva-Correia, Joana |
Author_xml | – sequence: 1 givenname: João Bebiano surname: Costa fullname: Costa, João Bebiano organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal – sequence: 2 givenname: Joana surname: Silva-Correia fullname: Silva-Correia, Joana email: joana.correia@dep.uminho.pt organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal – sequence: 3 givenname: Viviana Pinto surname: Ribeiro fullname: Ribeiro, Viviana Pinto organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal – sequence: 4 givenname: Alain surname: da Silva Morais fullname: da Silva Morais, Alain organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal – sequence: 5 givenname: Joaquim Miguel surname: Oliveira fullname: Oliveira, Joaquim Miguel organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal – sequence: 6 givenname: Rui Luís surname: Reis fullname: Reis, Rui Luís organization: 3B's Research Group–Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark–Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal |
BookMark | eNqFkE9LAzEQxYMoWGu_gYd8gV2T3XQ360GQUv9AwYueQ3Z2UlK6SUliwW9vlnoQDwoDMzDvPXi_K3LuvENCbjgrOePN7a4cE_hxLCvGZcl4Hn5GZlW9rArRVfL8x31JFjHuGMvKJROdmBFYu611iMG6LT3oZNGlIh4QrLFAe-sP-ZNwoOBdTOEDUqTGB5oC6jRmMfWGDrhFh0FPukkdjhgS9kHv6WAjXJMLo_cRF997Tt4f12-r52Lz-vSyetgUIBhPRSuBd9B1HZq6bXTfDi1jRnKs2w6wRwRpZAemGnqjTdMIIZtG1lIwU9WoWT0nd6dcCD7GgEaBTbmSdylou1ecqYmY2qkTMTURU4zn4dksfplz81GHz_9s9ycb5mJHi0FFyAwBBxsQkhq8_TvgC_v0jUM |
CitedBy_id | crossref_primary_10_1038_s41467_020_20375_x crossref_primary_10_1039_C9BM01288E crossref_primary_10_2217_3dp_2020_0005 crossref_primary_10_3390_ijms21144889 crossref_primary_10_1002_adhm_202102530 crossref_primary_10_1016_j_tibtech_2020_11_003 crossref_primary_10_1002_jsp2_1117 crossref_primary_10_3390_polym15224419 crossref_primary_10_3390_gels10020153 crossref_primary_10_1007_s10845_021_01749_4 crossref_primary_10_3390_jfb13040297 crossref_primary_10_3389_fbioe_2021_754113 crossref_primary_10_1021_acsbiomaterials_2c00313 crossref_primary_10_3390_ijms23136915 crossref_primary_10_1016_j_bone_2021_116256 crossref_primary_10_3390_biomimetics8010016 crossref_primary_10_1016_j_bioactmat_2024_01_015 crossref_primary_10_1088_2516_1091_ad2d59 crossref_primary_10_1002_jsp2_1225 crossref_primary_10_3390_gels9010025 crossref_primary_10_1002_slct_202301395 crossref_primary_10_1016_j_bprint_2021_e00170 crossref_primary_10_1007_s40610_018_0106_x crossref_primary_10_3390_biomimetics8020152 crossref_primary_10_3390_ijms21197012 crossref_primary_10_2217_3dp_2018_0006 crossref_primary_10_1021_acs_chemmater_0c03556 |
Cites_doi | 10.1002/jbm.b.33267 10.1021/bm4011062 10.1371/journal.pone.0124774 10.1038/nrrheum.2015.13 10.1002/term.363 10.1021/acsbiomaterials.6b00121 10.1016/j.arr.2007.08.001 10.1016/j.actbio.2012.04.035 10.1016/j.actbio.2011.09.037 10.1016/S0021-9290(98)00046-3 10.1002/term.541 10.1007/s00586-007-0364-4 10.2217/3dp-2016-0011 10.1097/01.BRS.0000128264.46510.27 10.2217/17460751.3.5.717 10.1111/j.1469-7580.2007.00707.x 10.1016/j.biotechadv.2013.07.010 10.1002/adhm.201200256 10.1016/j.berh.2006.04.002 10.1016/j.actbio.2014.10.021 10.1089/ten.tea.2011.0632 10.1002/jbm.a.32326 10.1089/ten.tea.2011.0195 10.1002/term.500 10.1038/nbt.2958 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtcomm.2018.01.011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4928 |
EndPage | 512 |
ExternalDocumentID | 10_1016_j_mtcomm_2018_01_011 S2352492817301344 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c401t-78c19c999ef376ab7d700f81e379cebeec8f89cf2dbfaf664486683840f23ea03 |
IEDL.DBID | AIKHN |
ISSN | 2352-4928 |
IngestDate | Tue Jul 01 02:45:41 EDT 2025 Thu Apr 24 22:55:14 EDT 2025 Fri Feb 23 02:27:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Silk fibroin/elastin bioink Patient-specific Reverse engineering Tissue engineering Intervertebral disc 3D printing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-78c19c999ef376ab7d700f81e379cebeec8f89cf2dbfaf664486683840f23ea03 |
OpenAccessLink | http://hdl.handle.net/1822/53713 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mtcomm_2018_01_011 crossref_primary_10_1016_j_mtcomm_2018_01_011 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2018_01_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials today communications |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | L.-P. Yan, A.L. Oliveira, J.M. Oliveira, D.R. Pereira, C. Correia, R.A. Sousa, R.L. Reis, Hydrogels derived from silk fibroin: methods and uses thereof, Patent 106041, Priority date: 107/2013, 06.06.2013 PT. Yan, Oliveira, Oliveira, Caridade, Mano, Reis (bib0120) 2012; 8 Silva-Correia, Correia, Oliveira, Reis (bib0030) 2013; 31 Chang, Kim, Kaplan, Vunjak-Novakovic, Kandel (bib0065) 2007; 16 Chang, Kim, Vunjak-Novakovic, Kaplan, Kandel (bib0070) 2010; 92A Zhao, Wang, Jiang, Dai (bib0010) 2007; 6 Silva-Correia, Zavan, Vindigni, Silva, Oliveira, Abatangelo, Reis (bib0150) 2013; 2 Murphy, Atala (bib0045) 2014; 32 Mansour (bib0105) 2013 Silva-Correia, Miranda-Gonçalves, Salgado, Sousa, Oliveira, Reis, Reis (bib0155) 2012; 18 Yu, Tirlapur, Fairbank, Handford, Roberts, Winlove, Cui, Urban (bib0080) 2007; 210 Sakai, Andersson (bib0135) 2015; 11 Vasconcelos, Gomes, Cavaco-Paulo (bib0095) 2012; 8 Richardson, Mobasheri, Freemont, Hoyland (bib0025) 2007; 22 Park, Gil, Mandal, Cho, Kluge, Min, Kaplan (bib0075) 2012; 6 Xu, Xu, Wu, Li, Zhang, Ma, Yang (bib0125) 2015; 10 Yan, Oliveira, Oliveira, Reis (bib0140) 2015; 103 Kalson, Richardson, Hoyland (bib0020) 2008; 3 Mizuno, Roy, Vacanti, Kojima, Ueda, Bonassar (bib0035) 2004; 29 Iatridis, Setton, Foster, Rawlins, Weidenbaum, Mow (bib0110) 1998; 31 Park, Gil, Mandal, Cho, Kluge, Min, Kaplan (bib0130) 2012; 6 Guvendiren, Molde, Soares, Kohn (bib0040) 2016; 2 Park, Gil, Cho, Mandal, Tien, Min, Kaplan (bib0100) 2012; 18 J.B. Costa, J. Silva-Correia, J.M. Oliveira, R.L. Reis, Inks for 3D Printing, Methods of Production and Uses Thereof, P514.1 PP, Priority date: 09.06.2017 PT (2017). Silva-Correia, Oliveira, Caridade, Oliveira, Sousa, Mano, Reis (bib0145) 2011; 5 Yan, Silva-Correia, Oliveira, Vilela, Pereira, Sousa, Mano, Oliveira, Oliveira, Reis (bib0115) 2015; 12 Roberts, Evans, Trivedi, Menage (bib0015) 2006; 88 Oner, Cengiz, Pitikakis, Cesario, Parascandolo, Vosilla, Viano, Oliveira, Reis, Silva-Correia (bib0085) 2017; 1 Cerqueira, Pirraco, Santos, Rodrigues, Frias, Martins, Reis, Marques (bib0090) 2013; 14 Pereira, Silva-Correia, Oliveira, Reis (bib0050) 2013; 7 Diamond, Borenstein (bib0005) 2006; 20 Diamond (10.1016/j.mtcomm.2018.01.011_bib0005) 2006; 20 Xu (10.1016/j.mtcomm.2018.01.011_bib0125) 2015; 10 Zhao (10.1016/j.mtcomm.2018.01.011_bib0010) 2007; 6 Yan (10.1016/j.mtcomm.2018.01.011_bib0120) 2012; 8 Murphy (10.1016/j.mtcomm.2018.01.011_bib0045) 2014; 32 10.1016/j.mtcomm.2018.01.011_bib0060 Park (10.1016/j.mtcomm.2018.01.011_bib0130) 2012; 6 Park (10.1016/j.mtcomm.2018.01.011_bib0100) 2012; 18 Yan (10.1016/j.mtcomm.2018.01.011_bib0140) 2015; 103 Mansour (10.1016/j.mtcomm.2018.01.011_bib0105) 2013 Richardson (10.1016/j.mtcomm.2018.01.011_bib0025) 2007; 22 Chang (10.1016/j.mtcomm.2018.01.011_bib0065) 2007; 16 Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0155) 2012; 18 Chang (10.1016/j.mtcomm.2018.01.011_bib0070) 2010; 92A 10.1016/j.mtcomm.2018.01.011_bib0055 Yu (10.1016/j.mtcomm.2018.01.011_bib0080) 2007; 210 Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0145) 2011; 5 Guvendiren (10.1016/j.mtcomm.2018.01.011_bib0040) 2016; 2 Mizuno (10.1016/j.mtcomm.2018.01.011_bib0035) 2004; 29 Iatridis (10.1016/j.mtcomm.2018.01.011_bib0110) 1998; 31 Roberts (10.1016/j.mtcomm.2018.01.011_bib0015) 2006; 88 Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0030) 2013; 31 Yan (10.1016/j.mtcomm.2018.01.011_bib0115) 2015; 12 Silva-Correia (10.1016/j.mtcomm.2018.01.011_bib0150) 2013; 2 Cerqueira (10.1016/j.mtcomm.2018.01.011_bib0090) 2013; 14 Pereira (10.1016/j.mtcomm.2018.01.011_bib0050) 2013; 7 Park (10.1016/j.mtcomm.2018.01.011_bib0075) 2012; 6 Vasconcelos (10.1016/j.mtcomm.2018.01.011_bib0095) 2012; 8 Sakai (10.1016/j.mtcomm.2018.01.011_bib0135) 2015; 11 Kalson (10.1016/j.mtcomm.2018.01.011_bib0020) 2008; 3 Oner (10.1016/j.mtcomm.2018.01.011_bib0085) 2017; 1 |
References_xml | – volume: 2 start-page: 1679 year: 2016 end-page: 1693 ident: bib0040 article-title: Designing biomaterials for 3D printing publication-title: ACS Biomater. Sci. Eng. – volume: 6 start-page: s24 year: 2012 end-page: s33 ident: bib0075 article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds publication-title: J. Tissue Eng. Regen. Med. – volume: 5 start-page: e97 year: 2011 end-page: e107 ident: bib0145 article-title: Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications publication-title: J. Tissue Eng. Regen. Med. – volume: 7 start-page: 85 year: 2013 end-page: 98 ident: bib0050 article-title: Hydrogels in acellular and cellular strategies for intervertebral disc regeneration publication-title: J. Tissue Eng. Regen. Med. – volume: 88 start-page: 10 year: 2006 end-page: 14 ident: bib0015 article-title: Histology and pathology of the human intervertebral disc publication-title: J. Bone Joint Surg. Am. – volume: 29 start-page: 1290 year: 2004 end-page: 1297 ident: bib0035 article-title: Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement publication-title: Spine – volume: 210 start-page: 460 year: 2007 end-page: 471 ident: bib0080 article-title: Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc publication-title: J. Anat. – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: bib0045 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. – start-page: 69 year: 2013 end-page: 83 ident: bib0105 article-title: Biomechanics of cartilage publication-title: Kinesiology: The Mechanics and Pathomechanics of Human Movement – volume: 8 start-page: 3049 year: 2012 end-page: 3060 ident: bib0095 article-title: Novel silk fibroin/elastin wound dressings publication-title: Acta Biomater. – volume: 6 start-page: 247 year: 2007 end-page: 261 ident: bib0010 article-title: The cell biology of intervertebral disc aging and degeneration publication-title: Ageing Res. Rev. – volume: 22 start-page: 1033 year: 2007 end-page: 1041 ident: bib0025 article-title: Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies publication-title: Histol. Histopathol. – volume: 92A start-page: 43 year: 2010 end-page: 51 ident: bib0070 article-title: Enhancing annulus fibrosus tissue formation in porous silk scaffolds publication-title: J. Biomed. Mater. Res. A – volume: 20 start-page: 707 year: 2006 end-page: 720 ident: bib0005 article-title: Chronic low back pain in a working-age adult publication-title: Best Pract. Res. Clin. Rheumatol. – volume: 18 start-page: 447 year: 2012 end-page: 458 ident: bib0100 article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds publication-title: Tissue Eng. Part A – volume: 18 start-page: 1203 year: 2012 end-page: 1212 ident: bib0155 article-title: Angiogenic potential of gellan gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study publication-title: Tissue Eng. – volume: 8 start-page: 289 year: 2012 end-page: 301 ident: bib0120 article-title: Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications publication-title: Acta Biomater. – volume: 103 start-page: 888 year: 2015 end-page: 898 ident: bib0140 article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 16 start-page: 1848 year: 2007 end-page: 1857 ident: bib0065 article-title: Porous silk scaffolds can be used for tissue engineering annulus fibrosus publication-title: Eur. Spine J. – volume: 14 start-page: 3997 year: 2013 end-page: 4008 ident: bib0090 article-title: Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds publication-title: Biomacromolecules – volume: 1 start-page: 91 year: 2017 end-page: 101 ident: bib0085 article-title: 3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds publication-title: J. 3D Print. Med. – volume: 10 start-page: e0124774 year: 2015 ident: bib0125 article-title: Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds publication-title: PLoS One – volume: 11 start-page: 243 year: 2015 end-page: 256 ident: bib0135 article-title: Stem cell therapy for intervertebral disc regeneration: obstacles and solutions publication-title: Nat. Rev. Rheumatol. – volume: 12 start-page: 227 year: 2015 end-page: 241 ident: bib0115 article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance publication-title: Acta Biomater. – reference: L.-P. Yan, A.L. Oliveira, J.M. Oliveira, D.R. Pereira, C. Correia, R.A. Sousa, R.L. Reis, Hydrogels derived from silk fibroin: methods and uses thereof, Patent 106041, Priority date: 107/2013, 06.06.2013 PT. – volume: 3 start-page: 717 year: 2008 end-page: 729 ident: bib0020 article-title: Strategies for regeneration of the intervertebral disc publication-title: Regen. Med. – volume: 31 start-page: 1514 year: 2013 end-page: 1531 ident: bib0030 article-title: Tissue engineering strategies applied in the regeneration of the human intervertebral disc publication-title: Biotechnol. Adv. – volume: 2 start-page: 568 year: 2013 end-page: 575 ident: bib0150 article-title: Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels: publication-title: Adv. Healthc. Mater. – reference: J.B. Costa, J. Silva-Correia, J.M. Oliveira, R.L. Reis, Inks for 3D Printing, Methods of Production and Uses Thereof, P514.1 PP, Priority date: 09.06.2017 PT (2017). – volume: 31 start-page: 535 year: 1998 end-page: 544 ident: bib0110 article-title: Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression publication-title: J. Biomech. – volume: 6 start-page: s24 year: 2012 end-page: s33 ident: bib0130 article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds publication-title: J. Tissue Eng. Regen. Med. – ident: 10.1016/j.mtcomm.2018.01.011_bib0055 – volume: 103 start-page: 888 year: 2015 ident: 10.1016/j.mtcomm.2018.01.011_bib0140 article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.33267 – start-page: 69 year: 2013 ident: 10.1016/j.mtcomm.2018.01.011_bib0105 article-title: Biomechanics of cartilage – volume: 14 start-page: 3997 year: 2013 ident: 10.1016/j.mtcomm.2018.01.011_bib0090 article-title: Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds publication-title: Biomacromolecules doi: 10.1021/bm4011062 – volume: 10 start-page: e0124774 year: 2015 ident: 10.1016/j.mtcomm.2018.01.011_bib0125 article-title: Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds publication-title: PLoS One doi: 10.1371/journal.pone.0124774 – volume: 11 start-page: 243 year: 2015 ident: 10.1016/j.mtcomm.2018.01.011_bib0135 article-title: Stem cell therapy for intervertebral disc regeneration: obstacles and solutions publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2015.13 – volume: 5 start-page: e97 year: 2011 ident: 10.1016/j.mtcomm.2018.01.011_bib0145 article-title: Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.363 – volume: 2 start-page: 1679 year: 2016 ident: 10.1016/j.mtcomm.2018.01.011_bib0040 article-title: Designing biomaterials for 3D printing publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00121 – volume: 6 start-page: 247 year: 2007 ident: 10.1016/j.mtcomm.2018.01.011_bib0010 article-title: The cell biology of intervertebral disc aging and degeneration publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2007.08.001 – volume: 8 start-page: 3049 year: 2012 ident: 10.1016/j.mtcomm.2018.01.011_bib0095 article-title: Novel silk fibroin/elastin wound dressings publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.04.035 – volume: 8 start-page: 289 year: 2012 ident: 10.1016/j.mtcomm.2018.01.011_bib0120 article-title: Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.09.037 – volume: 31 start-page: 535 year: 1998 ident: 10.1016/j.mtcomm.2018.01.011_bib0110 article-title: Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00046-3 – volume: 6 start-page: s24 issue: Suppl. 3 year: 2012 ident: 10.1016/j.mtcomm.2018.01.011_bib0130 article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.541 – volume: 16 start-page: 1848 year: 2007 ident: 10.1016/j.mtcomm.2018.01.011_bib0065 article-title: Porous silk scaffolds can be used for tissue engineering annulus fibrosus publication-title: Eur. Spine J. doi: 10.1007/s00586-007-0364-4 – volume: 1 start-page: 91 year: 2017 ident: 10.1016/j.mtcomm.2018.01.011_bib0085 article-title: 3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds publication-title: J. 3D Print. Med. doi: 10.2217/3dp-2016-0011 – volume: 88 start-page: 10 year: 2006 ident: 10.1016/j.mtcomm.2018.01.011_bib0015 article-title: Histology and pathology of the human intervertebral disc publication-title: J. Bone Joint Surg. Am. – volume: 29 start-page: 1290 year: 2004 ident: 10.1016/j.mtcomm.2018.01.011_bib0035 article-title: Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement publication-title: Spine doi: 10.1097/01.BRS.0000128264.46510.27 – volume: 22 start-page: 1033 year: 2007 ident: 10.1016/j.mtcomm.2018.01.011_bib0025 article-title: Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies publication-title: Histol. Histopathol. – volume: 3 start-page: 717 year: 2008 ident: 10.1016/j.mtcomm.2018.01.011_bib0020 article-title: Strategies for regeneration of the intervertebral disc publication-title: Regen. Med. doi: 10.2217/17460751.3.5.717 – volume: 210 start-page: 460 year: 2007 ident: 10.1016/j.mtcomm.2018.01.011_bib0080 article-title: Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc publication-title: J. Anat. doi: 10.1111/j.1469-7580.2007.00707.x – ident: 10.1016/j.mtcomm.2018.01.011_bib0060 – volume: 31 start-page: 1514 year: 2013 ident: 10.1016/j.mtcomm.2018.01.011_bib0030 article-title: Tissue engineering strategies applied in the regeneration of the human intervertebral disc publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.07.010 – volume: 2 start-page: 568 year: 2013 ident: 10.1016/j.mtcomm.2018.01.011_bib0150 article-title: Biocompatibility evaluation of ionic- and photo-crosslinked methacrylated gellan gum hydrogels: in vitro and in vivo study publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201200256 – volume: 20 start-page: 707 year: 2006 ident: 10.1016/j.mtcomm.2018.01.011_bib0005 article-title: Chronic low back pain in a working-age adult publication-title: Best Pract. Res. Clin. Rheumatol. doi: 10.1016/j.berh.2006.04.002 – volume: 12 start-page: 227 year: 2015 ident: 10.1016/j.mtcomm.2018.01.011_bib0115 article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.10.021 – volume: 18 start-page: 1203 issue: Part A year: 2012 ident: 10.1016/j.mtcomm.2018.01.011_bib0155 article-title: Angiogenic potential of gellan gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study publication-title: Tissue Eng. doi: 10.1089/ten.tea.2011.0632 – volume: 6 start-page: s24 year: 2012 ident: 10.1016/j.mtcomm.2018.01.011_bib0075 article-title: Annulus fibrosus tissue engineering using lamellar silk scaffolds publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.541 – volume: 92A start-page: 43 year: 2010 ident: 10.1016/j.mtcomm.2018.01.011_bib0070 article-title: Enhancing annulus fibrosus tissue formation in porous silk scaffolds publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32326 – volume: 18 start-page: 447 year: 2012 ident: 10.1016/j.mtcomm.2018.01.011_bib0100 article-title: Intervertebral disk tissue engineering using biphasic silk composite scaffolds publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2011.0195 – volume: 7 start-page: 85 year: 2013 ident: 10.1016/j.mtcomm.2018.01.011_bib0050 article-title: Hydrogels in acellular and cellular strategies for intervertebral disc regeneration publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.500 – volume: 32 start-page: 773 year: 2014 ident: 10.1016/j.mtcomm.2018.01.011_bib0045 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 |
SSID | ssj0001850494 |
Score | 2.262056 |
Snippet | [Display omitted]
Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age-... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 506 |
SubjectTerms | 3D printing Intervertebral disc Patient-specific Reverse engineering Silk fibroin/elastin bioink Tissue engineering |
Title | Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc |
URI | https://dx.doi.org/10.1016/j.mtcomm.2018.01.011 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ze_FFFBXnjTz4Gtb0lvRxDMd0uAd1uLeS5iIV3Yb2_-M5bToniIJQKC05tJyEk-8k3_lCyJULXIxpBzNWQoJiAs1UpjUTWioN-JvrAhPFu1k6mce3i2TRIaO2FgZplT72NzG9jtb-zcB7c7Auy8FDCNghzkLJcZBGcbxDeiHM9rJLesOb6WT2tdQiE1RBqY-ZS0KGNm0RXc30eqvgG1iVzmUt4cn5z5PU1sQz3id7HjHSYfNTB6Rjl4dEb-kIUq-NyrBqEpk_tChXuF4HYJLqlZeI_aAAT-mGV05Xjhr7XItOY7uy4T6-V7iR_EqxWPeIzMfXj6MJ8-clMA1ZUsWE1DzTgPisg7ChCmFEEDjJbSQyDZ1ltXQy0y40hVMuxcwsTWUEKZ4LI6uC6Jh0l6ulPSHUudgIaJcZTBiVU0UiMoW8TWOiUMg-iVoH5dqLieOZFq95yxp7yRu35ujWPOBw8T5hG6t1I6bxR3vR-j7_NihyiPe_Wp7-2_KM7MJT1rDBzkkXusheAO6oiks_rvA-vX-afgJn5dvM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9CLKCrW5x68Ls0maXdzLMXS2sfFFnoLyT4kUpui-f84k2xqBVEQckp2SJhdZr_ZfPMNIQ_WsyGmHUwbCQmK9hRLIqWYUDJRgL-5SjFRnM17o2X4tOquGmRQ18IgrdLF_iqml9Ha3ek4b3a2WdZ59gE7hJEvOS7SIAwPSCvEptZN0uqPJ6P511GL7KIKStlmrusztKmL6Eqm11sB78CqdC5LCU_Of96k9jae4Qk5doiR9quPOiUNszkjak9HkDptVIZVk8j8oWmW43kdgEmqcicR-0EBntIdr5zmlmrzUopO47is4j6-F_gjeU2xWPecLIePi8GIuX4JTEGWVDAhFY8UID5jIWwkqdDC86zkJhCRgskySloZKevr1Ca2h5lZrycDSPGsH5jECy5Ic5NvzCWh1oZawLhIY8KY2CTtiihB3qbWgS9kmwS1g2LlxMSxp8U6rlljr3Hl1hjdGnscLt4mbGe1rcQ0_hgvat_H3xZFDPH-V8urf1vek8PRYjaNp-P55JocwZOoYobdkCZMl7kFDFKkd26NfQLcc90N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+patient-specific+bioprinted+constructs+for+treatment+of+degenerated+intervertebral+disc&rft.jtitle=Materials+today+communications&rft.au=Costa%2C+Jo%C3%A3o+Bebiano&rft.au=Silva-Correia%2C+Joana&rft.au=Ribeiro%2C+Viviana+Pinto&rft.au=da+Silva+Morais%2C+Alain&rft.date=2019-06-01&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=19&rft.spage=506&rft.epage=512&rft_id=info:doi/10.1016%2Fj.mtcomm.2018.01.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mtcomm_2018_01_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |