Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller
► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are considered. ► The performance of a MLPNN controller using reinforcement learning is evaluated for the system. ► The performance of the MLPNN co...
Saved in:
Published in | International journal of electrical power & energy systems Vol. 33; no. 4; pp. 1101 - 1108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.05.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0142-0615 1879-3517 |
DOI | 10.1016/j.ijepes.2011.01.029 |
Cover
Abstract | ► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are considered. ► The performance of a MLPNN controller using reinforcement learning is evaluated for the system. ► The performance of the MLPNN controller is compared with that of BFIC.
This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains (
K
Ii
) and speed regulation parameter (
R
i
) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant (
H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum
K
Ii
and
R
i
obtained at nominal condition. |
---|---|
AbstractList | This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains (K sub(Ii) and speed regulation parameter (R) sub(i)) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant (H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum K sub(Ii and R) sub(i) obtained at nominal condition. ► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are considered. ► The performance of a MLPNN controller using reinforcement learning is evaluated for the system. ► The performance of the MLPNN controller is compared with that of BFIC. This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains ( K Ii ) and speed regulation parameter ( R i ) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant ( H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum K Ii and R i obtained at nominal condition. |
Author | Nanda, J. Saikia, Lalit Chandra Mishra, Sukumar Sinha, Nidul |
Author_xml | – sequence: 1 givenname: Lalit Chandra surname: Saikia fullname: Saikia, Lalit Chandra email: lcsaikia@yahoo.com organization: Department of Electrical Engineering, National Institute of Technology Silchar, Assam, India – sequence: 2 givenname: Sukumar surname: Mishra fullname: Mishra, Sukumar email: sukumar@ee.iitd.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India – sequence: 3 givenname: Nidul surname: Sinha fullname: Sinha, Nidul email: nidulsinha@hotmail.com organization: Department of Electrical Engineering, National Institute of Technology Silchar, Assam, India – sequence: 4 givenname: J. surname: Nanda fullname: Nanda, J. email: janardannanda@yahoo.co.in organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23965268$$DView record in Pascal Francis |
BookMark | eNqFkbFuFDEQhi0UJC6BN6Bwg6C5w-PdtXcpkKKIAFIkGqgtn3c28eG1j7EXdG-PLxcoKII8ki3r-_9ivnN2FlNExl6C2IAA9Xa38TvcY95IAbARdeTwhK2g18O66UCfsZWAVq6Fgu4ZO895J4TQQytXrFwuJc22eMdvMSLVV4rcpVgoBZ4mbvm8hOK5JbT87jBSKndIsw08H3LBmS_Zx1tO6OOUyOHIA1qKx7-IC1UuYvmV6Puf0oD0nD2dbMj44uG-YN-uP3y9-rS--fLx89Xlzdq1Asq6Gxw4IUaNWzuKXuIgeq1GGCcHW7A4bltour5rVKNROtu5sR6wvWxt31rVXLDXp949pR8L5mJmnx2GYCOmJZteDX0zCNVU8s2jJCgNUmvdiYq-ekBtdjZMZKPz2ezJz5YORjaD6qTqK9eeOEcpZ8LpLwLCHLWZnTlpM0dtRtSRQ429-yfmfLm3Usj68L_w-1MY61Z_eiSTncdYrXhCV8yY_OMFvwHsrbru |
CODEN | IEPSDC |
CitedBy_id | crossref_primary_10_1007_s00500_020_05215_w crossref_primary_10_1016_j_isatra_2024_07_038 crossref_primary_10_1016_j_est_2023_107804 crossref_primary_10_1177_1077546317717866 crossref_primary_10_1016_j_jestch_2018_03_010 crossref_primary_10_1080_15325008_2014_893545 crossref_primary_10_1002_asjc_2364 crossref_primary_10_1007_s00202_024_02551_0 crossref_primary_10_1007_s00542_020_04897_4 crossref_primary_10_1049_rpg2_12688 crossref_primary_10_1016_j_arcontrol_2020_03_001 crossref_primary_10_26634_jic_4_4_8229 crossref_primary_10_1016_j_jfranklin_2024_107280 crossref_primary_10_1186_s41601_022_00238_x crossref_primary_10_1007_s40998_018_0062_8 crossref_primary_10_1016_j_ijepes_2015_01_019 crossref_primary_10_1080_02286203_2019_1596727 crossref_primary_10_1049_iet_gtd_2014_0097 crossref_primary_10_1002_etep_2483 crossref_primary_10_1007_s40031_018_0369_x crossref_primary_10_1016_j_ref_2022_09_006 crossref_primary_10_1016_j_ijepes_2014_01_011 crossref_primary_10_1002_er_4767 crossref_primary_10_1016_j_ijepes_2015_09_011 crossref_primary_10_1007_s00521_021_06168_3 crossref_primary_10_1016_j_ijepes_2015_11_029 crossref_primary_10_3390_en16041917 crossref_primary_10_1016_j_ijepes_2014_06_053 crossref_primary_10_1049_iet_gtd_2019_0284 crossref_primary_10_1007_s00521_022_07558_x crossref_primary_10_1016_j_asej_2021_04_031 crossref_primary_10_1016_j_ijepes_2022_108400 crossref_primary_10_1016_j_engappai_2018_10_003 crossref_primary_10_1016_j_rineng_2024_103624 crossref_primary_10_1016_j_engappai_2019_103407 crossref_primary_10_1016_j_segan_2020_100370 crossref_primary_10_1080_02286203_2020_1829444 crossref_primary_10_1016_j_ijepes_2012_03_035 crossref_primary_10_1016_j_isatra_2023_01_029 crossref_primary_10_1007_s40998_024_00724_y crossref_primary_10_1016_j_jestch_2015_08_007 crossref_primary_10_1007_s13369_021_06479_6 crossref_primary_10_1080_15325008_2019_1576242 crossref_primary_10_1080_15325008_2017_1402221 crossref_primary_10_1007_s12652_019_01348_5 crossref_primary_10_1016_j_epsr_2023_109411 crossref_primary_10_1016_j_isatra_2016_04_021 crossref_primary_10_1016_j_prime_2024_100787 crossref_primary_10_1109_ACCESS_2022_3169749 crossref_primary_10_1016_j_jestch_2022_101166 crossref_primary_10_1049_iet_gtd_2016_0699 crossref_primary_10_1155_2022_5526827 crossref_primary_10_1007_s13369_023_07995_3 crossref_primary_10_1080_15325008_2023_2280904 crossref_primary_10_1109_TPWRS_2017_2765692 crossref_primary_10_1016_j_apenergy_2020_114858 crossref_primary_10_1002_2050_7038_12837 crossref_primary_10_1002_etep_2533 crossref_primary_10_1080_15325008_2023_2234373 crossref_primary_10_1080_15567036_2022_2158251 crossref_primary_10_1016_j_asej_2014_03_011 crossref_primary_10_1016_j_ijepes_2013_03_007 crossref_primary_10_1016_j_rser_2017_01_053 crossref_primary_10_1016_j_egypro_2017_05_206 crossref_primary_10_1016_j_ijepes_2012_05_057 crossref_primary_10_1016_j_ijepes_2015_07_025 crossref_primary_10_1007_s40998_018_0106_0 crossref_primary_10_1016_j_ijepes_2015_05_050 crossref_primary_10_1002_er_6328 crossref_primary_10_1080_23311916_2020_1711675 crossref_primary_10_1016_j_asej_2016_06_003 crossref_primary_10_1007_s11227_022_04397_4 crossref_primary_10_1049_iet_stg_2019_0261 crossref_primary_10_1016_j_ijepes_2014_08_021 crossref_primary_10_1016_j_ijepes_2012_06_036 crossref_primary_10_1016_j_jprocont_2014_08_006 crossref_primary_10_1007_s00202_017_0547_x crossref_primary_10_1016_j_ijepes_2015_11_057 crossref_primary_10_1016_j_asej_2014_12_009 crossref_primary_10_1007_s13369_020_05178_y crossref_primary_10_1007_s12652_022_03751_x crossref_primary_10_1016_j_ijepes_2013_11_055 crossref_primary_10_1007_s40998_019_00297_1 crossref_primary_10_1007_s00521_022_07813_1 crossref_primary_10_1007_s40565_018_0458_5 |
Cites_doi | 10.1016/S0378-7796(03)00087-7 10.1016/j.ijepes.2009.03.007 10.1109/TENCON.2008.4766636 10.1109/TEC.2005.853757 10.1016/j.ijepes.2009.09.004 10.1016/j.ijepes.2009.09.002 10.1109/TEC.2002.801992 10.1109/TPWRD.2006.876651 10.1016/S0378-7796(02)00088-3 10.1109/MCS.2002.1004010 10.1016/0893-6080(94)90067-1 10.1109/TENCON.1998.798284 10.1109/TPWRS.2009.2016588 10.1109/59.709084 10.1109/59.317682 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 8FD FR3 KR7 7QL 7ST C1K SOI |
DOI | 10.1016/j.ijepes.2011.01.029 |
DatabaseName | CrossRef Pascal-Francis Technology Research Database Engineering Research Database Civil Engineering Abstracts Bacteriology Abstracts (Microbiology B) Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database Environment Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1879-3517 |
EndPage | 1108 |
ExternalDocumentID | 23965268 10_1016_j_ijepes_2011_01_029 S0142061511000573 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 8FD FR3 KR7 7QL 7ST C1K SOI |
ID | FETCH-LOGICAL-c401t-59c1c00d7ebad082e90876d1dfc1b1aedb4135853637e2ca5cdcdc1a824a84a63 |
IEDL.DBID | .~1 |
ISSN | 0142-0615 |
IngestDate | Wed Oct 01 09:37:33 EDT 2025 Sun Sep 28 09:49:09 EDT 2025 Mon Jul 21 09:15:34 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Wed Oct 01 06:48:17 EDT 2025 Fri Feb 23 02:17:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Integral controller Multilayer perceptron neural network Neural nets Bacterial foraging Automatic generation control Performance evaluation Sensitivity analysis Error estimation Power system control Control system Reinforcement learning Turbine Neural network Step response Frequency characteristic Backpropagation algorithm Speed regulation On line processing Multilayer perceptrons Frequency response Comparative study Multilayer network |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-59c1c00d7ebad082e90876d1dfc1b1aedb4135853637e2ca5cdcdc1a824a84a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671277750 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_869839063 proquest_miscellaneous_1671277750 pascalfrancis_primary_23965268 crossref_primary_10_1016_j_ijepes_2011_01_029 crossref_citationtrail_10_1016_j_ijepes_2011_01_029 elsevier_sciencedirect_doi_10_1016_j_ijepes_2011_01_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-01 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of electrical power & energy systems |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Passino (b0045) 2002; 22 Nanda, Mangla, Suri (b0015) 2006; 21 Nanda, Mishra, Saikia (b0050) 2009; 24 Rao, Nagaraju, Raju (b0060) 2009; 31 Djukanovic, Novicevic, Sobajic, Pao (b0065) 1995; 3 Beaufays, Magid, Widrow (b0070) 1994; 7 Mishra, Bhende (b0040) 2007; 22 Bhatt, Roy, Ghoshal (b0030) 2010; 32 Elgerd (b0010) 1983 Ghoshal, Goswami (b0020) 2003; 67 Ahamed, Rao, Sastry (b0080) 2006; 26 Ahamed, Rao, Sastry (b0085) 2006; 6 Jaleel JA, Ahammed TPI. Simulation of artificial neural network controller for automatic generation control of hydro electric power system. In: TENCON 2008. IEEE region 10 conference; November, 2008. p. 19–21. Chown, Hartman (b0055) 1998; 13 Hari, Kothari, Nanda (b0005) 1991; 138 Douglas, Green, Kramer (b0100) 1994; 9 Demiroren A, Zeynelgil HL, Sengor NS. The application of ANN technique to load–frequency control for three-area power system. In: IEEE porto power tech proceedings; 10–13 September 2001, Porto, Portugal. Bhatt, Roy, Ghoshal (b0025) 2010; 32 Ahamed, Rao, Sastry (b0075) 2002; 63 Abido (b0035) 2002; 17 Kumar DMV. Intelligent controllers for automatic generation control. In: TENCON ‘98. IEEE region 10th international conference on global connectivity in energy, computer, communication and control, vol. 2(17–19); 1998. p. 557–74. Passino (10.1016/j.ijepes.2011.01.029_b0045) 2002; 22 Nanda (10.1016/j.ijepes.2011.01.029_b0050) 2009; 24 Chown (10.1016/j.ijepes.2011.01.029_b0055) 1998; 13 Nanda (10.1016/j.ijepes.2011.01.029_b0015) 2006; 21 Douglas (10.1016/j.ijepes.2011.01.029_b0100) 1994; 9 Ahamed (10.1016/j.ijepes.2011.01.029_b0075) 2002; 63 Djukanovic (10.1016/j.ijepes.2011.01.029_b0065) 1995; 3 Ahamed (10.1016/j.ijepes.2011.01.029_b0085) 2006; 6 Elgerd (10.1016/j.ijepes.2011.01.029_b0010) 1983 10.1016/j.ijepes.2011.01.029_b0105 Bhatt (10.1016/j.ijepes.2011.01.029_b0030) 2010; 32 Mishra (10.1016/j.ijepes.2011.01.029_b0040) 2007; 22 Hari (10.1016/j.ijepes.2011.01.029_b0005) 1991; 138 Abido (10.1016/j.ijepes.2011.01.029_b0035) 2002; 17 10.1016/j.ijepes.2011.01.029_b0095 Bhatt (10.1016/j.ijepes.2011.01.029_b0025) 2010; 32 Beaufays (10.1016/j.ijepes.2011.01.029_b0070) 1994; 7 Ghoshal (10.1016/j.ijepes.2011.01.029_b0020) 2003; 67 Rao (10.1016/j.ijepes.2011.01.029_b0060) 2009; 31 10.1016/j.ijepes.2011.01.029_b0090 Ahamed (10.1016/j.ijepes.2011.01.029_b0080) 2006; 26 |
References_xml | – volume: 31 start-page: 315 year: 2009 end-page: 322 ident: b0060 article-title: Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach publication-title: Int J Electric Power Energy Syst – volume: 67 start-page: 79 year: 2003 end-page: 88 ident: b0020 article-title: Application of GA based optimal integral gains in fuzzy based active power-frequency control of non-reheat and reheat thermal generating systems publication-title: Electric Power Syst Res – volume: 32 start-page: 311 year: 2010 end-page: 322 ident: b0030 article-title: Optimized multi area AGC simulation in restructured power systems publication-title: Int J Electric Power Energy Syst – volume: 6 start-page: 1 year: 2006 end-page: 31 ident: b0085 article-title: A neural network based automatic generation controller design through reinforcement learning publication-title: Int J Emerg Electric Power Syst – reference: Jaleel JA, Ahammed TPI. Simulation of artificial neural network controller for automatic generation control of hydro electric power system. In: TENCON 2008. IEEE region 10 conference; November, 2008. p. 19–21. – volume: 9 start-page: 619 year: 1994 end-page: 628 ident: b0100 article-title: New approaches to the AGC non-conforming load problem publication-title: IEEE Trans Power Syst – reference: Demiroren A, Zeynelgil HL, Sengor NS. The application of ANN technique to load–frequency control for three-area power system. In: IEEE porto power tech proceedings; 10–13 September 2001, Porto, Portugal. – volume: 17 start-page: 406 year: 2002 end-page: 413 ident: b0035 article-title: Optimal design of power-system stabilizers using particle swarm optimization publication-title: IEEE Trans Energy Convers – volume: 7 start-page: 183 year: 1994 end-page: 194 ident: b0070 article-title: Application of neural network to load frequency control in power systems publication-title: Neural Networks – volume: 138 start-page: 401 year: 1991 end-page: 406 ident: b0005 article-title: Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints publication-title: IEE Proc C – volume: 26 start-page: 137 year: 2006 end-page: 146 ident: b0080 article-title: Reinforcement learning controllers for automatic generation control in power systems having reheat units with GRC and dead-band publication-title: Int J Power Energy Syst – volume: 32 start-page: 299 year: 2010 end-page: 310 ident: b0025 article-title: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control publication-title: Int J Electric Power Energy Syst – volume: 22 start-page: 52 year: 2002 end-page: 67 ident: b0045 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: Control Syst Mag IEEE – volume: 3 start-page: 95 year: 1995 end-page: 108 ident: b0065 article-title: Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory publication-title: Int J Eng Intell Syst Electric Eng Commun – year: 1983 ident: b0010 article-title: Electric energy systems theory: an introduction – volume: 63 start-page: 9 year: 2002 end-page: 26 ident: b0075 article-title: A reinforcement learning approach to automatic generation control publication-title: Electric Power Syst Res – volume: 21 start-page: 187 year: 2006 end-page: 194 ident: b0015 article-title: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers publication-title: IEEE Trans Energy Convers – volume: 22 start-page: 457 year: 2007 end-page: 465 ident: b0040 article-title: Bacterial foraging technique-based optimized active power filter for load compensation publication-title: IEEE Trans Power Del – volume: 24 start-page: 602 year: 2009 end-page: 609 ident: b0050 article-title: Maiden application of bacterial foraging based optimization technique in multiarea automatic generation control publication-title: IEEE Trans Power Syst – reference: Kumar DMV. Intelligent controllers for automatic generation control. In: TENCON ‘98. IEEE region 10th international conference on global connectivity in energy, computer, communication and control, vol. 2(17–19); 1998. p. 557–74. – volume: 13 start-page: 965 year: 1998 end-page: 970 ident: b0055 article-title: Design and experience of fuzzy logic controller for automatic generation control (AGC) publication-title: IEEE Trans Power Syst – volume: 67 start-page: 79 year: 2003 ident: 10.1016/j.ijepes.2011.01.029_b0020 article-title: Application of GA based optimal integral gains in fuzzy based active power-frequency control of non-reheat and reheat thermal generating systems publication-title: Electric Power Syst Res doi: 10.1016/S0378-7796(03)00087-7 – volume: 31 start-page: 315 issue: 7–8 year: 2009 ident: 10.1016/j.ijepes.2011.01.029_b0060 article-title: Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach publication-title: Int J Electric Power Energy Syst doi: 10.1016/j.ijepes.2009.03.007 – ident: 10.1016/j.ijepes.2011.01.029_b0095 doi: 10.1109/TENCON.2008.4766636 – volume: 21 start-page: 187 issue: 1 year: 2006 ident: 10.1016/j.ijepes.2011.01.029_b0015 article-title: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2005.853757 – volume: 32 start-page: 299 issue: 4 year: 2010 ident: 10.1016/j.ijepes.2011.01.029_b0025 article-title: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control publication-title: Int J Electric Power Energy Syst doi: 10.1016/j.ijepes.2009.09.004 – volume: 32 start-page: 311 issue: 4 year: 2010 ident: 10.1016/j.ijepes.2011.01.029_b0030 article-title: Optimized multi area AGC simulation in restructured power systems publication-title: Int J Electric Power Energy Syst doi: 10.1016/j.ijepes.2009.09.002 – volume: 138 start-page: 401 issue: 5 year: 1991 ident: 10.1016/j.ijepes.2011.01.029_b0005 article-title: Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints publication-title: IEE Proc C – volume: 26 start-page: 137 issue: 2 year: 2006 ident: 10.1016/j.ijepes.2011.01.029_b0080 article-title: Reinforcement learning controllers for automatic generation control in power systems having reheat units with GRC and dead-band publication-title: Int J Power Energy Syst – volume: 17 start-page: 406 issue: 3 year: 2002 ident: 10.1016/j.ijepes.2011.01.029_b0035 article-title: Optimal design of power-system stabilizers using particle swarm optimization publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2002.801992 – ident: 10.1016/j.ijepes.2011.01.029_b0105 – volume: 22 start-page: 457 issue: 1 year: 2007 ident: 10.1016/j.ijepes.2011.01.029_b0040 article-title: Bacterial foraging technique-based optimized active power filter for load compensation publication-title: IEEE Trans Power Del doi: 10.1109/TPWRD.2006.876651 – volume: 63 start-page: 9 issue: 1 year: 2002 ident: 10.1016/j.ijepes.2011.01.029_b0075 article-title: A reinforcement learning approach to automatic generation control publication-title: Electric Power Syst Res doi: 10.1016/S0378-7796(02)00088-3 – volume: 6 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.ijepes.2011.01.029_b0085 article-title: A neural network based automatic generation controller design through reinforcement learning publication-title: Int J Emerg Electric Power Syst – volume: 22 start-page: 52 issue: 3 year: 2002 ident: 10.1016/j.ijepes.2011.01.029_b0045 article-title: Biomimicry of bacterial foraging for distributed optimization and control publication-title: Control Syst Mag IEEE doi: 10.1109/MCS.2002.1004010 – volume: 7 start-page: 183 issue: 1 year: 1994 ident: 10.1016/j.ijepes.2011.01.029_b0070 article-title: Application of neural network to load frequency control in power systems publication-title: Neural Networks doi: 10.1016/0893-6080(94)90067-1 – ident: 10.1016/j.ijepes.2011.01.029_b0090 doi: 10.1109/TENCON.1998.798284 – volume: 24 start-page: 602 issue: 2 year: 2009 ident: 10.1016/j.ijepes.2011.01.029_b0050 article-title: Maiden application of bacterial foraging based optimization technique in multiarea automatic generation control publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2016588 – volume: 3 start-page: 95 issue: 2 year: 1995 ident: 10.1016/j.ijepes.2011.01.029_b0065 article-title: Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory publication-title: Int J Eng Intell Syst Electric Eng Commun – volume: 13 start-page: 965 issue: 3 year: 1998 ident: 10.1016/j.ijepes.2011.01.029_b0055 article-title: Design and experience of fuzzy logic controller for automatic generation control (AGC) publication-title: IEEE Trans Power Syst doi: 10.1109/59.709084 – year: 1983 ident: 10.1016/j.ijepes.2011.01.029_b0010 – volume: 9 start-page: 619 issue: 2 year: 1994 ident: 10.1016/j.ijepes.2011.01.029_b0100 article-title: New approaches to the AGC non-conforming load problem publication-title: IEEE Trans Power Syst doi: 10.1109/59.317682 |
SSID | ssj0007942 |
Score | 2.3230088 |
Snippet | ► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are... This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1101 |
SubjectTerms | Applied sciences Automatic generation control Bacteria Bacterial foraging Control systems Dynamical systems Dynamics Electrical engineering. Electrical power engineering Electrical machines Electrical power engineering Errors Exact sciences and technology Integral controller Learning Multilayer perceptron neural network Neural nets Neural networks Operation. Load control. Reliability Perturbation methods Power networks and lines Regulation and control Reinforcement |
Title | Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller |
URI | https://dx.doi.org/10.1016/j.ijepes.2011.01.029 https://www.proquest.com/docview/1671277750 https://www.proquest.com/docview/869839063 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Complete Freedom Collection customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYQvGxC0zZAFLbKSLyGJnZiJ49VBepA8DQk3izHdroiSKs2feBlv50722FDE0KakqfIdqy7i-_sfPcdIacCCUwsN0lZpTzJrasTXeZFUqdlIwppOa8x3_n6Rkxv88u74m6LTPpcGIRVxrU_rOl-tY5PRlGao-V8PkJYEvMOGY-oC4mMn8j-BTZ99vsPzAPsjQUYI8MqBkWfPucxXvN7t3TrSOSJ5J3VW-5pd6nXILQmVLv4Z-H23ujiM_kUw0g6DjP9QrZc-5V8_ItccI9040238ISsdOa5pVEFNELT6aKhmno0IdUQN9JfT3blk7EeYdhA70wREz-jK-fJVUFSNJaYmFFkwYR2bcCQ94M-uNU-ub04_zmZJrHGQmJgZ9UlRWUyk6ZWulpbCAdchRx1NrONyepMO1uDl4MtBRdcOmZ0YSxcmS5ZDjrVgh-Q7XbRukNChdQQA0vTwC4pt4JrYXRZZlyyHDxxWg0I70WrTCQgxzoYD6pHmt2roBCFClEp3Ax6JS-9loGA4532steaemVICnzEOz2Hr5T88jrGK4GsOANy0mtdwUeIf1Z06xabtcqEzJiUEH0NCH2jTSkqCEYhIjz67xkekw_hSBvxlt_IdrfauO8QE3X10Bv9kOyMf1xNb54BpegPVA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8rBNExpsiG4MPGmvURM7sZPHCg2VAX0CiTfLsZ2uCNKqTR_23-_8I9UQQkhT8hTZiXVn352d774D-MEdgYlhOimrlCW5sXWiyrxI6rRseCEMY7XLd76e8slt_uuuuNuBsz4XxsEqo-0PNt1b6_hkFKU5Ws7nIwdLot4huyPqQrA3sJsXaJMHsDu-uJxMtwYZpxwNSEbqChkUfQadh3nN7-3SriOXp-PvrF7yUB-Wao1ya0LBi2e22zuk84-wFyNJMg6D3Ycd2x7A-3_4BT9BN950C8_JSmaeXtppgUR0Olk0RBEPKCQKQ0fy-49Z-XysR3xtYHgmDhY_Iyvr-VVRWCRWmZgRR4SJ7doAI-9f-mBXn-H2_OfN2SSJZRYSjZurLikqnek0NcLWymBEYCtHU2cy0-iszpQ1NQoVdxWMM2GpVoU2eGWqpDmqVXF2CIN20dojIFwoDIOFbnCjlBvOFNeqLDMmaI7OOK2GwHrRSh05yF0pjAfZg83uZVCIdAqRKd4UeyXbXsvAwfFKe9FrTT6ZSxLdxCs9T54oefs5yiruiHGG8L3XusR16H6uqNYuNmuZcZFRITAAGwJ5oU3JK4xHMSj88t8jPIW3k5vrK3l1Mb38Cu_CCbeDXx7DoFtt7DcMkbr6JC6Bv8nmEf8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+generation+control+of+a+multi+area+hydrothermal+system+using+reinforced+learning+neural+network+controller&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Saikia%2C+Lalit+Chandra&rft.au=Mishra%2C+Sukumar&rft.au=Sinha%2C+Nidul&rft.au=Nanda%2C+J.&rft.date=2011-05-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=33&rft.issue=4&rft.spage=1101&rft.epage=1108&rft_id=info:doi/10.1016%2Fj.ijepes.2011.01.029&rft.externalDocID=S0142061511000573 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |