Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller

► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are considered. ► The performance of a MLPNN controller using reinforcement learning is evaluated for the system. ► The performance of the MLPNN co...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical power & energy systems Vol. 33; no. 4; pp. 1101 - 1108
Main Authors Saikia, Lalit Chandra, Mishra, Sukumar, Sinha, Nidul, Nanda, J.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0142-0615
1879-3517
DOI10.1016/j.ijepes.2011.01.029

Cover

Abstract ► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are considered. ► The performance of a MLPNN controller using reinforcement learning is evaluated for the system. ► The performance of the MLPNN controller is compared with that of BFIC. This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains ( K Ii ) and speed regulation parameter ( R i ) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant ( H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum K Ii and R i obtained at nominal condition.
AbstractList This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains (K sub(Ii) and speed regulation parameter (R) sub(i)) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant (H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum K sub(Ii and R) sub(i) obtained at nominal condition.
► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are considered. ► The performance of a MLPNN controller using reinforcement learning is evaluated for the system. ► The performance of the MLPNN controller is compared with that of BFIC. This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in hydro area are considered. Appropriate generation rate constraints are considered in the areas. Bacterial foraging (BF) technique is used to simultaneously optimize the integral gains ( K Ii ) and speed regulation parameter ( R i ) keeping frequency bias fixed at frequency response characteristics. The integral controller in this case is termed as BFIC. The performance of a multilayer perception neural network (MLPNN) controller using reinforcement learning is evaluated for the system. In this reinforcement learning, the weights are dynamically adjusted online using backpropagation algorithm with error being the area control error (ACE). The performance of the MLPNN controller is compared with that of BFIC. Also, the performance of MLPNN controller over a wide range of system loading conditions and step load perturbations is compared with BFIC. Investigations clearly reveal the superior performance of MLPNN controller over BFIC. Sensitivity analysis subject to wide changes in system loading, inertia constant ( H) and size and location of step load perturbation is carried out to investigate the robustness of the controller with the optimum K Ii and R i obtained at nominal condition.
Author Nanda, J.
Saikia, Lalit Chandra
Mishra, Sukumar
Sinha, Nidul
Author_xml – sequence: 1
  givenname: Lalit Chandra
  surname: Saikia
  fullname: Saikia, Lalit Chandra
  email: lcsaikia@yahoo.com
  organization: Department of Electrical Engineering, National Institute of Technology Silchar, Assam, India
– sequence: 2
  givenname: Sukumar
  surname: Mishra
  fullname: Mishra, Sukumar
  email: sukumar@ee.iitd.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
– sequence: 3
  givenname: Nidul
  surname: Sinha
  fullname: Sinha, Nidul
  email: nidulsinha@hotmail.com
  organization: Department of Electrical Engineering, National Institute of Technology Silchar, Assam, India
– sequence: 4
  givenname: J.
  surname: Nanda
  fullname: Nanda, J.
  email: janardannanda@yahoo.co.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23965268$$DView record in Pascal Francis
BookMark eNqFkbFuFDEQhi0UJC6BN6Bwg6C5w-PdtXcpkKKIAFIkGqgtn3c28eG1j7EXdG-PLxcoKII8ki3r-_9ivnN2FlNExl6C2IAA9Xa38TvcY95IAbARdeTwhK2g18O66UCfsZWAVq6Fgu4ZO895J4TQQytXrFwuJc22eMdvMSLVV4rcpVgoBZ4mbvm8hOK5JbT87jBSKndIsw08H3LBmS_Zx1tO6OOUyOHIA1qKx7-IC1UuYvmV6Puf0oD0nD2dbMj44uG-YN-uP3y9-rS--fLx89Xlzdq1Asq6Gxw4IUaNWzuKXuIgeq1GGCcHW7A4bltour5rVKNROtu5sR6wvWxt31rVXLDXp949pR8L5mJmnx2GYCOmJZteDX0zCNVU8s2jJCgNUmvdiYq-ekBtdjZMZKPz2ezJz5YORjaD6qTqK9eeOEcpZ8LpLwLCHLWZnTlpM0dtRtSRQ429-yfmfLm3Usj68L_w-1MY61Z_eiSTncdYrXhCV8yY_OMFvwHsrbru
CODEN IEPSDC
CitedBy_id crossref_primary_10_1007_s00500_020_05215_w
crossref_primary_10_1016_j_isatra_2024_07_038
crossref_primary_10_1016_j_est_2023_107804
crossref_primary_10_1177_1077546317717866
crossref_primary_10_1016_j_jestch_2018_03_010
crossref_primary_10_1080_15325008_2014_893545
crossref_primary_10_1002_asjc_2364
crossref_primary_10_1007_s00202_024_02551_0
crossref_primary_10_1007_s00542_020_04897_4
crossref_primary_10_1049_rpg2_12688
crossref_primary_10_1016_j_arcontrol_2020_03_001
crossref_primary_10_26634_jic_4_4_8229
crossref_primary_10_1016_j_jfranklin_2024_107280
crossref_primary_10_1186_s41601_022_00238_x
crossref_primary_10_1007_s40998_018_0062_8
crossref_primary_10_1016_j_ijepes_2015_01_019
crossref_primary_10_1080_02286203_2019_1596727
crossref_primary_10_1049_iet_gtd_2014_0097
crossref_primary_10_1002_etep_2483
crossref_primary_10_1007_s40031_018_0369_x
crossref_primary_10_1016_j_ref_2022_09_006
crossref_primary_10_1016_j_ijepes_2014_01_011
crossref_primary_10_1002_er_4767
crossref_primary_10_1016_j_ijepes_2015_09_011
crossref_primary_10_1007_s00521_021_06168_3
crossref_primary_10_1016_j_ijepes_2015_11_029
crossref_primary_10_3390_en16041917
crossref_primary_10_1016_j_ijepes_2014_06_053
crossref_primary_10_1049_iet_gtd_2019_0284
crossref_primary_10_1007_s00521_022_07558_x
crossref_primary_10_1016_j_asej_2021_04_031
crossref_primary_10_1016_j_ijepes_2022_108400
crossref_primary_10_1016_j_engappai_2018_10_003
crossref_primary_10_1016_j_rineng_2024_103624
crossref_primary_10_1016_j_engappai_2019_103407
crossref_primary_10_1016_j_segan_2020_100370
crossref_primary_10_1080_02286203_2020_1829444
crossref_primary_10_1016_j_ijepes_2012_03_035
crossref_primary_10_1016_j_isatra_2023_01_029
crossref_primary_10_1007_s40998_024_00724_y
crossref_primary_10_1016_j_jestch_2015_08_007
crossref_primary_10_1007_s13369_021_06479_6
crossref_primary_10_1080_15325008_2019_1576242
crossref_primary_10_1080_15325008_2017_1402221
crossref_primary_10_1007_s12652_019_01348_5
crossref_primary_10_1016_j_epsr_2023_109411
crossref_primary_10_1016_j_isatra_2016_04_021
crossref_primary_10_1016_j_prime_2024_100787
crossref_primary_10_1109_ACCESS_2022_3169749
crossref_primary_10_1016_j_jestch_2022_101166
crossref_primary_10_1049_iet_gtd_2016_0699
crossref_primary_10_1155_2022_5526827
crossref_primary_10_1007_s13369_023_07995_3
crossref_primary_10_1080_15325008_2023_2280904
crossref_primary_10_1109_TPWRS_2017_2765692
crossref_primary_10_1016_j_apenergy_2020_114858
crossref_primary_10_1002_2050_7038_12837
crossref_primary_10_1002_etep_2533
crossref_primary_10_1080_15325008_2023_2234373
crossref_primary_10_1080_15567036_2022_2158251
crossref_primary_10_1016_j_asej_2014_03_011
crossref_primary_10_1016_j_ijepes_2013_03_007
crossref_primary_10_1016_j_rser_2017_01_053
crossref_primary_10_1016_j_egypro_2017_05_206
crossref_primary_10_1016_j_ijepes_2012_05_057
crossref_primary_10_1016_j_ijepes_2015_07_025
crossref_primary_10_1007_s40998_018_0106_0
crossref_primary_10_1016_j_ijepes_2015_05_050
crossref_primary_10_1002_er_6328
crossref_primary_10_1080_23311916_2020_1711675
crossref_primary_10_1016_j_asej_2016_06_003
crossref_primary_10_1007_s11227_022_04397_4
crossref_primary_10_1049_iet_stg_2019_0261
crossref_primary_10_1016_j_ijepes_2014_08_021
crossref_primary_10_1016_j_ijepes_2012_06_036
crossref_primary_10_1016_j_jprocont_2014_08_006
crossref_primary_10_1007_s00202_017_0547_x
crossref_primary_10_1016_j_ijepes_2015_11_057
crossref_primary_10_1016_j_asej_2014_12_009
crossref_primary_10_1007_s13369_020_05178_y
crossref_primary_10_1007_s12652_022_03751_x
crossref_primary_10_1016_j_ijepes_2013_11_055
crossref_primary_10_1007_s40998_019_00297_1
crossref_primary_10_1007_s00521_022_07813_1
crossref_primary_10_1007_s40565_018_0458_5
Cites_doi 10.1016/S0378-7796(03)00087-7
10.1016/j.ijepes.2009.03.007
10.1109/TENCON.2008.4766636
10.1109/TEC.2005.853757
10.1016/j.ijepes.2009.09.004
10.1016/j.ijepes.2009.09.002
10.1109/TEC.2002.801992
10.1109/TPWRD.2006.876651
10.1016/S0378-7796(02)00088-3
10.1109/MCS.2002.1004010
10.1016/0893-6080(94)90067-1
10.1109/TENCON.1998.798284
10.1109/TPWRS.2009.2016588
10.1109/59.709084
10.1109/59.317682
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
8FD
FR3
KR7
7QL
7ST
C1K
SOI
DOI 10.1016/j.ijepes.2011.01.029
DatabaseName CrossRef
Pascal-Francis
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
Environment Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList Environment Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-3517
EndPage 1108
ExternalDocumentID 23965268
10_1016_j_ijepes_2011_01_029
S0142061511000573
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
8FD
FR3
KR7
7QL
7ST
C1K
SOI
ID FETCH-LOGICAL-c401t-59c1c00d7ebad082e90876d1dfc1b1aedb4135853637e2ca5cdcdc1a824a84a63
IEDL.DBID .~1
ISSN 0142-0615
IngestDate Wed Oct 01 09:37:33 EDT 2025
Sun Sep 28 09:49:09 EDT 2025
Mon Jul 21 09:15:34 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Wed Oct 01 06:48:17 EDT 2025
Fri Feb 23 02:17:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Integral controller
Multilayer perceptron neural network
Neural nets
Bacterial foraging
Automatic generation control
Performance evaluation
Sensitivity analysis
Error estimation
Power system control
Control system
Reinforcement learning
Turbine
Neural network
Step response
Frequency characteristic
Backpropagation algorithm
Speed regulation
On line processing
Multilayer perceptrons
Frequency response
Comparative study
Multilayer network
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-59c1c00d7ebad082e90876d1dfc1b1aedb4135853637e2ca5cdcdc1a824a84a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671277750
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_869839063
proquest_miscellaneous_1671277750
pascalfrancis_primary_23965268
crossref_primary_10_1016_j_ijepes_2011_01_029
crossref_citationtrail_10_1016_j_ijepes_2011_01_029
elsevier_sciencedirect_doi_10_1016_j_ijepes_2011_01_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Passino (b0045) 2002; 22
Nanda, Mangla, Suri (b0015) 2006; 21
Nanda, Mishra, Saikia (b0050) 2009; 24
Rao, Nagaraju, Raju (b0060) 2009; 31
Djukanovic, Novicevic, Sobajic, Pao (b0065) 1995; 3
Beaufays, Magid, Widrow (b0070) 1994; 7
Mishra, Bhende (b0040) 2007; 22
Bhatt, Roy, Ghoshal (b0030) 2010; 32
Elgerd (b0010) 1983
Ghoshal, Goswami (b0020) 2003; 67
Ahamed, Rao, Sastry (b0080) 2006; 26
Ahamed, Rao, Sastry (b0085) 2006; 6
Jaleel JA, Ahammed TPI. Simulation of artificial neural network controller for automatic generation control of hydro electric power system. In: TENCON 2008. IEEE region 10 conference; November, 2008. p. 19–21.
Chown, Hartman (b0055) 1998; 13
Hari, Kothari, Nanda (b0005) 1991; 138
Douglas, Green, Kramer (b0100) 1994; 9
Demiroren A, Zeynelgil HL, Sengor NS. The application of ANN technique to load–frequency control for three-area power system. In: IEEE porto power tech proceedings; 10–13 September 2001, Porto, Portugal.
Bhatt, Roy, Ghoshal (b0025) 2010; 32
Ahamed, Rao, Sastry (b0075) 2002; 63
Abido (b0035) 2002; 17
Kumar DMV. Intelligent controllers for automatic generation control. In: TENCON ‘98. IEEE region 10th international conference on global connectivity in energy, computer, communication and control, vol. 2(17–19); 1998. p. 557–74.
Passino (10.1016/j.ijepes.2011.01.029_b0045) 2002; 22
Nanda (10.1016/j.ijepes.2011.01.029_b0050) 2009; 24
Chown (10.1016/j.ijepes.2011.01.029_b0055) 1998; 13
Nanda (10.1016/j.ijepes.2011.01.029_b0015) 2006; 21
Douglas (10.1016/j.ijepes.2011.01.029_b0100) 1994; 9
Ahamed (10.1016/j.ijepes.2011.01.029_b0075) 2002; 63
Djukanovic (10.1016/j.ijepes.2011.01.029_b0065) 1995; 3
Ahamed (10.1016/j.ijepes.2011.01.029_b0085) 2006; 6
Elgerd (10.1016/j.ijepes.2011.01.029_b0010) 1983
10.1016/j.ijepes.2011.01.029_b0105
Bhatt (10.1016/j.ijepes.2011.01.029_b0030) 2010; 32
Mishra (10.1016/j.ijepes.2011.01.029_b0040) 2007; 22
Hari (10.1016/j.ijepes.2011.01.029_b0005) 1991; 138
Abido (10.1016/j.ijepes.2011.01.029_b0035) 2002; 17
10.1016/j.ijepes.2011.01.029_b0095
Bhatt (10.1016/j.ijepes.2011.01.029_b0025) 2010; 32
Beaufays (10.1016/j.ijepes.2011.01.029_b0070) 1994; 7
Ghoshal (10.1016/j.ijepes.2011.01.029_b0020) 2003; 67
Rao (10.1016/j.ijepes.2011.01.029_b0060) 2009; 31
10.1016/j.ijepes.2011.01.029_b0090
Ahamed (10.1016/j.ijepes.2011.01.029_b0080) 2006; 26
References_xml – volume: 31
  start-page: 315
  year: 2009
  end-page: 322
  ident: b0060
  article-title: Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach
  publication-title: Int J Electric Power Energy Syst
– volume: 67
  start-page: 79
  year: 2003
  end-page: 88
  ident: b0020
  article-title: Application of GA based optimal integral gains in fuzzy based active power-frequency control of non-reheat and reheat thermal generating systems
  publication-title: Electric Power Syst Res
– volume: 32
  start-page: 311
  year: 2010
  end-page: 322
  ident: b0030
  article-title: Optimized multi area AGC simulation in restructured power systems
  publication-title: Int J Electric Power Energy Syst
– volume: 6
  start-page: 1
  year: 2006
  end-page: 31
  ident: b0085
  article-title: A neural network based automatic generation controller design through reinforcement learning
  publication-title: Int J Emerg Electric Power Syst
– reference: Jaleel JA, Ahammed TPI. Simulation of artificial neural network controller for automatic generation control of hydro electric power system. In: TENCON 2008. IEEE region 10 conference; November, 2008. p. 19–21.
– volume: 9
  start-page: 619
  year: 1994
  end-page: 628
  ident: b0100
  article-title: New approaches to the AGC non-conforming load problem
  publication-title: IEEE Trans Power Syst
– reference: Demiroren A, Zeynelgil HL, Sengor NS. The application of ANN technique to load–frequency control for three-area power system. In: IEEE porto power tech proceedings; 10–13 September 2001, Porto, Portugal.
– volume: 17
  start-page: 406
  year: 2002
  end-page: 413
  ident: b0035
  article-title: Optimal design of power-system stabilizers using particle swarm optimization
  publication-title: IEEE Trans Energy Convers
– volume: 7
  start-page: 183
  year: 1994
  end-page: 194
  ident: b0070
  article-title: Application of neural network to load frequency control in power systems
  publication-title: Neural Networks
– volume: 138
  start-page: 401
  year: 1991
  end-page: 406
  ident: b0005
  article-title: Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints
  publication-title: IEE Proc C
– volume: 26
  start-page: 137
  year: 2006
  end-page: 146
  ident: b0080
  article-title: Reinforcement learning controllers for automatic generation control in power systems having reheat units with GRC and dead-band
  publication-title: Int J Power Energy Syst
– volume: 32
  start-page: 299
  year: 2010
  end-page: 310
  ident: b0025
  article-title: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control
  publication-title: Int J Electric Power Energy Syst
– volume: 22
  start-page: 52
  year: 2002
  end-page: 67
  ident: b0045
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: Control Syst Mag IEEE
– volume: 3
  start-page: 95
  year: 1995
  end-page: 108
  ident: b0065
  article-title: Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory
  publication-title: Int J Eng Intell Syst Electric Eng Commun
– year: 1983
  ident: b0010
  article-title: Electric energy systems theory: an introduction
– volume: 63
  start-page: 9
  year: 2002
  end-page: 26
  ident: b0075
  article-title: A reinforcement learning approach to automatic generation control
  publication-title: Electric Power Syst Res
– volume: 21
  start-page: 187
  year: 2006
  end-page: 194
  ident: b0015
  article-title: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers
  publication-title: IEEE Trans Energy Convers
– volume: 22
  start-page: 457
  year: 2007
  end-page: 465
  ident: b0040
  article-title: Bacterial foraging technique-based optimized active power filter for load compensation
  publication-title: IEEE Trans Power Del
– volume: 24
  start-page: 602
  year: 2009
  end-page: 609
  ident: b0050
  article-title: Maiden application of bacterial foraging based optimization technique in multiarea automatic generation control
  publication-title: IEEE Trans Power Syst
– reference: Kumar DMV. Intelligent controllers for automatic generation control. In: TENCON ‘98. IEEE region 10th international conference on global connectivity in energy, computer, communication and control, vol. 2(17–19); 1998. p. 557–74.
– volume: 13
  start-page: 965
  year: 1998
  end-page: 970
  ident: b0055
  article-title: Design and experience of fuzzy logic controller for automatic generation control (AGC)
  publication-title: IEEE Trans Power Syst
– volume: 67
  start-page: 79
  year: 2003
  ident: 10.1016/j.ijepes.2011.01.029_b0020
  article-title: Application of GA based optimal integral gains in fuzzy based active power-frequency control of non-reheat and reheat thermal generating systems
  publication-title: Electric Power Syst Res
  doi: 10.1016/S0378-7796(03)00087-7
– volume: 31
  start-page: 315
  issue: 7–8
  year: 2009
  ident: 10.1016/j.ijepes.2011.01.029_b0060
  article-title: Automatic generation control of TCPS based hydrothermal system under open market scenario: a fuzzy logic approach
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2009.03.007
– ident: 10.1016/j.ijepes.2011.01.029_b0095
  doi: 10.1109/TENCON.2008.4766636
– volume: 21
  start-page: 187
  issue: 1
  year: 2006
  ident: 10.1016/j.ijepes.2011.01.029_b0015
  article-title: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2005.853757
– volume: 32
  start-page: 299
  issue: 4
  year: 2010
  ident: 10.1016/j.ijepes.2011.01.029_b0025
  article-title: GA/particle swarm intelligence based optimization of two specific varieties of controller devices applied to two-area multi-units automatic generation control
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2009.09.004
– volume: 32
  start-page: 311
  issue: 4
  year: 2010
  ident: 10.1016/j.ijepes.2011.01.029_b0030
  article-title: Optimized multi area AGC simulation in restructured power systems
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2009.09.002
– volume: 138
  start-page: 401
  issue: 5
  year: 1991
  ident: 10.1016/j.ijepes.2011.01.029_b0005
  article-title: Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints
  publication-title: IEE Proc C
– volume: 26
  start-page: 137
  issue: 2
  year: 2006
  ident: 10.1016/j.ijepes.2011.01.029_b0080
  article-title: Reinforcement learning controllers for automatic generation control in power systems having reheat units with GRC and dead-band
  publication-title: Int J Power Energy Syst
– volume: 17
  start-page: 406
  issue: 3
  year: 2002
  ident: 10.1016/j.ijepes.2011.01.029_b0035
  article-title: Optimal design of power-system stabilizers using particle swarm optimization
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2002.801992
– ident: 10.1016/j.ijepes.2011.01.029_b0105
– volume: 22
  start-page: 457
  issue: 1
  year: 2007
  ident: 10.1016/j.ijepes.2011.01.029_b0040
  article-title: Bacterial foraging technique-based optimized active power filter for load compensation
  publication-title: IEEE Trans Power Del
  doi: 10.1109/TPWRD.2006.876651
– volume: 63
  start-page: 9
  issue: 1
  year: 2002
  ident: 10.1016/j.ijepes.2011.01.029_b0075
  article-title: A reinforcement learning approach to automatic generation control
  publication-title: Electric Power Syst Res
  doi: 10.1016/S0378-7796(02)00088-3
– volume: 6
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.ijepes.2011.01.029_b0085
  article-title: A neural network based automatic generation controller design through reinforcement learning
  publication-title: Int J Emerg Electric Power Syst
– volume: 22
  start-page: 52
  issue: 3
  year: 2002
  ident: 10.1016/j.ijepes.2011.01.029_b0045
  article-title: Biomimicry of bacterial foraging for distributed optimization and control
  publication-title: Control Syst Mag IEEE
  doi: 10.1109/MCS.2002.1004010
– volume: 7
  start-page: 183
  issue: 1
  year: 1994
  ident: 10.1016/j.ijepes.2011.01.029_b0070
  article-title: Application of neural network to load frequency control in power systems
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(94)90067-1
– ident: 10.1016/j.ijepes.2011.01.029_b0090
  doi: 10.1109/TENCON.1998.798284
– volume: 24
  start-page: 602
  issue: 2
  year: 2009
  ident: 10.1016/j.ijepes.2011.01.029_b0050
  article-title: Maiden application of bacterial foraging based optimization technique in multiarea automatic generation control
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2016588
– volume: 3
  start-page: 95
  issue: 2
  year: 1995
  ident: 10.1016/j.ijepes.2011.01.029_b0065
  article-title: Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory
  publication-title: Int J Eng Intell Syst Electric Eng Commun
– volume: 13
  start-page: 965
  issue: 3
  year: 1998
  ident: 10.1016/j.ijepes.2011.01.029_b0055
  article-title: Design and experience of fuzzy logic controller for automatic generation control (AGC)
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.709084
– year: 1983
  ident: 10.1016/j.ijepes.2011.01.029_b0010
– volume: 9
  start-page: 619
  issue: 2
  year: 1994
  ident: 10.1016/j.ijepes.2011.01.029_b0100
  article-title: New approaches to the AGC non-conforming load problem
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.317682
SSID ssj0007942
Score 2.3230088
Snippet ► Automatic generation control (AGC) of a three unequal area hydrothermal system. ► Reheat turbines in thermal areas and electric governor in hydro area are...
This paper deals with automatic generation control (AGC) of a three unequal area hydrothermal system. Reheat turbines in thermal areas and electric governor in...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1101
SubjectTerms Applied sciences
Automatic generation control
Bacteria
Bacterial foraging
Control systems
Dynamical systems
Dynamics
Electrical engineering. Electrical power engineering
Electrical machines
Electrical power engineering
Errors
Exact sciences and technology
Integral controller
Learning
Multilayer perceptron neural network
Neural nets
Neural networks
Operation. Load control. Reliability
Perturbation methods
Power networks and lines
Regulation and control
Reinforcement
Title Automatic generation control of a multi area hydrothermal system using reinforced learning neural network controller
URI https://dx.doi.org/10.1016/j.ijepes.2011.01.029
https://www.proquest.com/docview/1671277750
https://www.proquest.com/docview/869839063
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swELYQvGxC0zZAFLbKSLyGJnZiJ49VBepA8DQk3izHdroiSKs2feBlv50722FDE0KakqfIdqy7i-_sfPcdIacCCUwsN0lZpTzJrasTXeZFUqdlIwppOa8x3_n6Rkxv88u74m6LTPpcGIRVxrU_rOl-tY5PRlGao-V8PkJYEvMOGY-oC4mMn8j-BTZ99vsPzAPsjQUYI8MqBkWfPucxXvN7t3TrSOSJ5J3VW-5pd6nXILQmVLv4Z-H23ujiM_kUw0g6DjP9QrZc-5V8_ItccI9040238ISsdOa5pVEFNELT6aKhmno0IdUQN9JfT3blk7EeYdhA70wREz-jK-fJVUFSNJaYmFFkwYR2bcCQ94M-uNU-ub04_zmZJrHGQmJgZ9UlRWUyk6ZWulpbCAdchRx1NrONyepMO1uDl4MtBRdcOmZ0YSxcmS5ZDjrVgh-Q7XbRukNChdQQA0vTwC4pt4JrYXRZZlyyHDxxWg0I70WrTCQgxzoYD6pHmt2roBCFClEp3Ax6JS-9loGA4532steaemVICnzEOz2Hr5T88jrGK4GsOANy0mtdwUeIf1Z06xabtcqEzJiUEH0NCH2jTSkqCEYhIjz67xkekw_hSBvxlt_IdrfauO8QE3X10Bv9kOyMf1xNb54BpegPVA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8rBNExpsiG4MPGmvURM7sZPHCg2VAX0CiTfLsZ2uCNKqTR_23-_8I9UQQkhT8hTZiXVn352d774D-MEdgYlhOimrlCW5sXWiyrxI6rRseCEMY7XLd76e8slt_uuuuNuBsz4XxsEqo-0PNt1b6_hkFKU5Ws7nIwdLot4huyPqQrA3sJsXaJMHsDu-uJxMtwYZpxwNSEbqChkUfQadh3nN7-3SriOXp-PvrF7yUB-Wao1ya0LBi2e22zuk84-wFyNJMg6D3Ycd2x7A-3_4BT9BN950C8_JSmaeXtppgUR0Olk0RBEPKCQKQ0fy-49Z-XysR3xtYHgmDhY_Iyvr-VVRWCRWmZgRR4SJ7doAI-9f-mBXn-H2_OfN2SSJZRYSjZurLikqnek0NcLWymBEYCtHU2cy0-iszpQ1NQoVdxWMM2GpVoU2eGWqpDmqVXF2CIN20dojIFwoDIOFbnCjlBvOFNeqLDMmaI7OOK2GwHrRSh05yF0pjAfZg83uZVCIdAqRKd4UeyXbXsvAwfFKe9FrTT6ZSxLdxCs9T54oefs5yiruiHGG8L3XusR16H6uqNYuNmuZcZFRITAAGwJ5oU3JK4xHMSj88t8jPIW3k5vrK3l1Mb38Cu_CCbeDXx7DoFtt7DcMkbr6JC6Bv8nmEf8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+generation+control+of+a+multi+area+hydrothermal+system+using+reinforced+learning+neural+network+controller&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Saikia%2C+Lalit+Chandra&rft.au=Mishra%2C+Sukumar&rft.au=Sinha%2C+Nidul&rft.au=Nanda%2C+J.&rft.date=2011-05-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=33&rft.issue=4&rft.spage=1101&rft.epage=1108&rft_id=info:doi/10.1016%2Fj.ijepes.2011.01.029&rft.externalDocID=S0142061511000573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon