Beyond ℓ1 sparse coding in V1

Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ 1 norm as a penalty due to its convexity, which makes...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 19; no. 9; p. e1011459
Main Authors Rentzeperis, Ilias, Calatroni, Luca, Perrinet, Laurent U., Prandi, Dario
Format Journal Article
LanguageEnglish
Published San Francisco, CA USA Public Library of Science 01.09.2023
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1011459

Cover

Abstract Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ 1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ 1 norm is highly suboptimal compared to other functions suited to approximating ℓ p with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ 1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ 1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ 0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ 0 - and ℓ 1 -based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ 0 -based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ 0 pseudo-norm rather than the ℓ 1 one, and suggests a similar mode of operation for the sensory cortex in general.
AbstractList Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.
Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.
Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general. Recordings in the brain indicate that relatively few sensory neurons are active at any instant. This so called sparse coding is considered a hallmark of efficiency in the encoding of natural stimuli by sensory neurons. Computational works have shown that if we add sparse activity as an optimization term in a generative model encoding natural images then the model will learn units with receptive fields (RFs) similar to the neurons in the primary visual cortex (V1). Traditionally, computational models have used the ℓ1 norm as the sparsity term to be minimized, because of its convexity and claims of optimality. Here we show that by using sparsity inducing regularizers that approximate the ℓ0 pseudo-norm, we get sparser activations for the same quality of encoding. Moreover, for a certain level of sparsity, both ℓ0 and ℓ1 based generative models produce RFs similar to V1 biological neurons, but the ℓ1 model has five times worse encoding performance. Our study thus shows that sparsity-inducing regularizers approaching the ℓ0 pseudo-norm are more appropriate for modelling biological vision from an efficiency point of view.
Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ 1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ 1 norm is highly suboptimal compared to other functions suited to approximating ℓ p with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ 1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ 1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ 0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ 0 - and ℓ 1 -based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ 0 -based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ 0 pseudo-norm rather than the ℓ 1 one, and suggests a similar mode of operation for the sensory cortex in general.
Author Rentzeperis, Ilias
Perrinet, Laurent U.
Calatroni, Luca
Prandi, Dario
AuthorAffiliation 2 CNRS, UCA, INRIA, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis, Sophia Antipolis, France
3 Aix Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
UT Austin: The University of Texas at Austin, UNITED STATES
1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Paris, France
AuthorAffiliation_xml – name: UT Austin: The University of Texas at Austin, UNITED STATES
– name: 1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Paris, France
– name: 2 CNRS, UCA, INRIA, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis, Sophia Antipolis, France
– name: 3 Aix Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
Author_xml – sequence: 1
  givenname: Ilias
  orcidid: 0000-0003-1324-4090
  surname: Rentzeperis
  fullname: Rentzeperis, Ilias
– sequence: 2
  givenname: Luca
  surname: Calatroni
  fullname: Calatroni, Luca
– sequence: 3
  givenname: Laurent U.
  orcidid: 0000-0002-9536-010X
  surname: Perrinet
  fullname: Perrinet, Laurent U.
– sequence: 4
  givenname: Dario
  surname: Prandi
  fullname: Prandi, Dario
BookMark eNqNkEtOwzAQQC0Egha4ARJZsmnx38kKQcVPQmIDbC3HnpRUqR3sBtQ9N-CGnIRAK0R3rGY0nzejN0TbPnhA6IjgMWGKnM5CF71pxq0t6zHBhHBRbKEBEYKNFBP59p98Dw1TmmHcp4XcRXtMyaLAgg7Q8QUsg3fZ5_sHyVJrYoLMBlf7aVb77IkcoJ3KNAkO13EfPV5dPkxuRnf317eT87uR5ZgsRtyCArAOBKWSEpUT258qJODKWEuxKsrCyRwwN4IxjCkTMnemKqvcClsKto9uV1wXzEy3sZ6buNTB1PqnEOJUm7iobQMaVKWkVYxTp3hZOiOdUsoBLzlnxkHPEitW51uzfDNN8wskWH_L02t5-lueXsvr985We21XzsFZ8Itomo1nNju-ftbT8NoDBJGc0Z5wsibE8NJBWuh5nSw0jfEQuqRpLrkkRa-_H-WrURtDShGq__34BWBrnFo
Cites_doi 10.1007/s10827-006-0003-9
10.1016/j.cnsns.2021.106135
10.1137/16M1059333
10.1109/MSP.2007.914731
10.1016/j.visres.2006.03.008
10.1167/jov.20.12.10
10.1152/jn.2002.88.1.455
10.1162/NECO_a_00372
10.1523/JNEUROSCI.07-11-03378.1987
10.1137/151003714
10.1016/j.crma.2008.03.014
10.1073/pnas.1525505113
10.1162/neco.2008.03-07-486
10.1152/jn.00954.2002
10.1109/TNNLS.2012.2197412
10.3389/fnsys.2021.580569
10.1152/jn.00594.2010
10.1002/cne.21060
10.1002/cpa.20124
10.1109/18.119725
10.1038/381607a0
10.1016/S0042-6989(97)00169-7
10.1126/science.1070502
10.1002/cpa.20042
10.1371/journal.pbio.0060016
10.1038/s41467-020-14645-x
10.1162/neco.2010.05-08-795
10.1523/JNEUROSCI.22-13-05639.2002
10.1109/TSP.2014.2309076
10.1038/274423a0
10.1126/science.3283936
10.1109/JRPROC.1959.287207
10.1098/rspb.1998.0303
10.1109/TIT.2006.871582
10.1073/pnas.2008173118
10.1007/s00041-008-9045-x
10.1037/h0033117
10.1126/science.287.5456.1273
10.1364/JOSAA.16.001587
10.1137/1.9781611974997
10.3390/vision3030047
10.1093/cercor/13.1.15
10.1038/75702
10.1523/JNEUROSCI.2120-16.2016
10.1016/0042-6989(82)90112-2
10.1523/JNEUROSCI.2603-16.2016
10.1137/080724265
10.1068/p010371
10.1038/s41593-019-0340-4
10.1137/S0097539792240406
10.1111/j.2517-6161.1975.tb01550.x
10.3389/fpsyg.2014.00932
10.1016/S0042-6989(97)00121-1
10.1007/s00041-008-9035-z
10.1073/pnas.95.5.2609
10.1561/2400000003
10.1109/LSP.2007.898300
10.1016/j.tics.2007.12.003
10.1162/neco.1989.1.3.295
10.1109/TCSVT.2004.828329
ContentType Journal Article
Copyright Copyright: © 2023 Rentzeperis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023 Rentzeperis et al 2023 Rentzeperis et al
Copyright_xml – notice: Copyright: © 2023 Rentzeperis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2023 Rentzeperis et al 2023 Rentzeperis et al
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1011459
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Beyond ℓ1 sparse coding in V1
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_e7f76c7342d74bbda6d777de4b443ade
10.1371/journal.pcbi.1011459
PMC10516432
10_1371_journal_pcbi_1011459
GrantInformation_xml – fundername: ;
  grantid: RUBIN-VASE
– fundername: ;
  grantid: ANR-20-CE23-0021
– fundername: ;
  grantid: SPLIN
– fundername: ;
  grantid: ANR-22-CE48-0010
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
7X8
5PM
ADRAZ
ADTOC
C1A
H13
IPNFZ
RIG
UNPAY
WOQ
ID FETCH-LOGICAL-c401t-4ce7eecde522621781c58996e0facc2079b9d68e04a5330023568dafbf8c5cb53
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Fri Oct 03 12:43:41 EDT 2025
Sun Oct 26 04:15:20 EDT 2025
Tue Sep 30 17:12:52 EDT 2025
Wed Oct 01 17:02:09 EDT 2025
Wed Oct 01 02:25:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-4ce7eecde522621781c58996e0facc2079b9d68e04a5330023568dafbf8c5cb53
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Instituto de Óptica, CSIC, Madrid, Spain
The authors have declared that no competing interests exist.
ORCID 0000-0002-9536-010X
0000-0003-1324-4090
OpenAccessLink https://doaj.org/article/e7f76c7342d74bbda6d777de4b443ade
PMID 37699052
PQID 2864619376
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e7f76c7342d74bbda6d777de4b443ade
unpaywall_primary_10_1371_journal_pcbi_1011459
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10516432
proquest_miscellaneous_2864619376
crossref_primary_10_1371_journal_pcbi_1011459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace San Francisco, CA USA
PublicationPlace_xml – name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationYear 2023
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References EJ Candes (pcbi.1011459.ref038) 2008; 25
DH Hubel (pcbi.1011459.ref055) 1987; 7
B Li (pcbi.1011459.ref027) 2003; 90
J Perez-Orive (pcbi.1011459.ref005) 2002; 297
A Angelucci (pcbi.1011459.ref013) 2006; 498
SM Zeki (pcbi.1011459.ref054) 1978; 274
EJ Candes (pcbi.1011459.ref018) 2008; 346
LU Perrinet (pcbi.1011459.ref041) 2019; 3
JS Lund (pcbi.1011459.ref012) 2003; 13
I Rentzeperis (pcbi.1011459.ref059) 2021; 15
RL De Valois (pcbi.1011459.ref026) 1982; 22
CS Furmanski (pcbi.1011459.ref052) 2000; 3
MS Lewicki (pcbi.1011459.ref060) 1999; 16
T Yoshida (pcbi.1011459.ref032) 2020; 11
JH Van Hateren (pcbi.1011459.ref034) 1998; 265
DJ Graham (pcbi.1011459.ref035) 2006; 46
R Chartrand (pcbi.1011459.ref019) 2007; 14
AS Charles (pcbi.1011459.ref064) 2012; 24
S Mallat (pcbi.1011459.ref015) 1998
HB Barlow (pcbi.1011459.ref061) 1989; 1
pcbi.1011459.ref040
WE Vinje (pcbi.1011459.ref004) 2000; 287
KV Mardia (pcbi.1011459.ref046) 1975; 37
CJ Rozell (pcbi.1011459.ref063) 2008; 20
DL Donoho (pcbi.1011459.ref021) 2006; 52
DM Paiton (pcbi.1011459.ref065) 2020; 20
BA Olshausen (pcbi.1011459.ref048) 2009
BD Willmore (pcbi.1011459.ref008) 2011; 105
T Blumensath (pcbi.1011459.ref029) 2008; 14
S Appelle (pcbi.1011459.ref050) 1972; 78
I Rentzeperis (pcbi.1011459.ref058) 2022; 107
E Soubies (pcbi.1011459.ref023) 2015; 8
B Chapman (pcbi.1011459.ref051) 1998; 95
M Rehn (pcbi.1011459.ref030) 2007; 22
L Chariker (pcbi.1011459.ref014) 2016; 36
DL Ringach (pcbi.1011459.ref024) 2002; 22
E Batschelet (pcbi.1011459.ref047) 1981
I Rentzeperis (pcbi.1011459.ref057) 2014; 5
BA Olshausen (pcbi.1011459.ref009) 1996; 381
T Hromádka (pcbi.1011459.ref006) 2008; 6
EJ Candes (pcbi.1011459.ref017) 2006; 59
WB Levy (pcbi.1011459.ref031) 2021; 118
E Soubies (pcbi.1011459.ref045) 2017; 27
JL Gardner (pcbi.1011459.ref022) 2019; 22
P Schmid-Saugeon (pcbi.1011459.ref010) 2004; 14
RQ Quiroga (pcbi.1011459.ref007) 2008; 12
HB Barlow (pcbi.1011459.ref003) 1972; 1
LU Perrinet (pcbi.1011459.ref016) 2010; 22
Y Wang (pcbi.1011459.ref039) 2008; 1
BD Burns (pcbi.1011459.ref002) 1968
N Parikh (pcbi.1011459.ref043) 2014; 1
L Liu (pcbi.1011459.ref033) 2016; 113
Z Xu (pcbi.1011459.ref028) 2012; 23
M Livingstone (pcbi.1011459.ref056) 1988; 240
EP Simoncelli (pcbi.1011459.ref011) 1992; 38
DL Ringach (pcbi.1011459.ref053) 2002; 88
BK Natarajan (pcbi.1011459.ref037) 1995; 24
EJ Candes (pcbi.1011459.ref020) 2008; 14
AJ Bell (pcbi.1011459.ref062) 1997; 37
BA Olshausen (pcbi.1011459.ref036) 1997; 37
J Zeng (pcbi.1011459.ref044) 2014; 62
BA Olshausen (pcbi.1011459.ref049) 2013
A Gharat (pcbi.1011459.ref025) 2017; 37
JY Lettvin (pcbi.1011459.ref001) 1959; 47
I Daubechies (pcbi.1011459.ref042) 2004; 57
References_xml – volume: 22
  start-page: 135
  issue: 2
  year: 2007
  ident: pcbi.1011459.ref030
  article-title: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields
  publication-title: Journal of computational neuroscience
  doi: 10.1007/s10827-006-0003-9
– volume: 107
  start-page: 106135
  year: 2022
  ident: pcbi.1011459.ref058
  article-title: Adaptive rewiring of random neural networks generates convergent–divergent units
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2021.106135
– volume: 27
  start-page: 2034
  issue: 3
  year: 2017
  ident: pcbi.1011459.ref045
  article-title: A unified view of exact continuous penalties for ℓ2-ℓ0 minimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/16M1059333
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  ident: pcbi.1011459.ref038
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2007.914731
– volume: 46
  start-page: 2901
  issue: 18
  year: 2006
  ident: pcbi.1011459.ref035
  article-title: Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields?
  publication-title: Vision research
  doi: 10.1016/j.visres.2006.03.008
– volume: 20
  start-page: 10
  issue: 12
  year: 2020
  ident: pcbi.1011459.ref065
  article-title: Selectivity and robustness of sparse coding networks
  publication-title: Journal of vision
  doi: 10.1167/jov.20.12.10
– volume: 88
  start-page: 455
  issue: 1
  year: 2002
  ident: pcbi.1011459.ref053
  article-title: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.2002.88.1.455
– volume: 24
  start-page: 3317
  issue: 12
  year: 2012
  ident: pcbi.1011459.ref064
  article-title: A common network architecture efficiently implements a variety of sparsity-based inference problems
  publication-title: Neural computation
  doi: 10.1162/NECO_a_00372
– volume: 7
  start-page: 3378
  issue: 11
  year: 1987
  ident: pcbi.1011459.ref055
  article-title: Segregation of form, color, and stereopsis in primate area 18
  publication-title: Journal of neuroscience
  doi: 10.1523/JNEUROSCI.07-11-03378.1987
– volume: 8
  start-page: 1607
  issue: 3
  year: 2015
  ident: pcbi.1011459.ref023
  article-title: A continuous exact ℓ0 penalty (CEL0) for least squares regularized problem
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/151003714
– volume: 346
  start-page: 589
  issue: 9-10
  year: 2008
  ident: pcbi.1011459.ref018
  article-title: The restricted isometry property and its implications for compressed sensing
  publication-title: Comptes rendus mathematique
  doi: 10.1016/j.crma.2008.03.014
– volume: 113
  start-page: 1913
  issue: 7
  year: 2016
  ident: pcbi.1011459.ref033
  article-title: Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2)
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1525505113
– volume: 20
  start-page: 2526
  issue: 10
  year: 2008
  ident: pcbi.1011459.ref063
  article-title: Sparse coding via thresholding and local competition in neural circuits
  publication-title: Neural computation
  doi: 10.1162/neco.2008.03-07-486
– volume: 90
  start-page: 204
  issue: 1
  year: 2003
  ident: pcbi.1011459.ref027
  article-title: Oblique effect: a neural basis in the visual cortex
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.00954.2002
– volume: 23
  start-page: 1013
  issue: 7
  year: 2012
  ident: pcbi.1011459.ref028
  article-title: ℓ1/2 regularization: A thresholding representation theory and a fast solver
  publication-title: IEEE Transactions on neural networks and learning systems
  doi: 10.1109/TNNLS.2012.2197412
– volume: 15
  start-page: 13
  year: 2021
  ident: pcbi.1011459.ref059
  article-title: Adaptive rewiring in weighted networks shows specificity, robustness, and flexibility
  publication-title: Frontiers in Systems Neuroscience
  doi: 10.3389/fnsys.2021.580569
– volume: 105
  start-page: 2907
  issue: 6
  year: 2011
  ident: pcbi.1011459.ref008
  article-title: Sparse coding in striate and extrastriate visual cortex
  publication-title: Journal of neurophysiology
  doi: 10.1152/jn.00594.2010
– volume: 498
  start-page: 330
  issue: 3
  year: 2006
  ident: pcbi.1011459.ref013
  article-title: Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN
  publication-title: Journal of comparative neurology
  doi: 10.1002/cne.21060
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  ident: pcbi.1011459.ref017
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences
  doi: 10.1002/cpa.20124
– volume: 38
  start-page: 587
  issue: 2
  year: 1992
  ident: pcbi.1011459.ref011
  article-title: Shiftable multiscale transforms
  publication-title: IEEE transactions on Information Theory
  doi: 10.1109/18.119725
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: pcbi.1011459.ref009
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 37
  start-page: 3311
  issue: 23
  year: 1997
  ident: pcbi.1011459.ref036
  article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1?
  publication-title: Vision research
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 297
  start-page: 359
  issue: 5580
  year: 2002
  ident: pcbi.1011459.ref005
  article-title: Oscillations and sparsening of odor representations in the mushroom body
  publication-title: Science
  doi: 10.1126/science.1070502
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: pcbi.1011459.ref042
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences
  doi: 10.1002/cpa.20042
– volume: 6
  start-page: e16
  issue: 1
  year: 2008
  ident: pcbi.1011459.ref006
  article-title: Sparse representation of sounds in the unanesthetized auditory cortex
  publication-title: PLoS biology
  doi: 10.1371/journal.pbio.0060016
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: pcbi.1011459.ref032
  article-title: Natural images are reliably represented by sparse and variable populations of neurons in visual cortex
  publication-title: Nature communications
  doi: 10.1038/s41467-020-14645-x
– start-page: 10003
  volume-title: Circular statistics in biology
  year: 1981
  ident: pcbi.1011459.ref047
– volume: 22
  start-page: 1812
  issue: 7
  year: 2010
  ident: pcbi.1011459.ref016
  article-title: Role of homeostasis in learning sparse representations
  publication-title: Neural computation
  doi: 10.1162/neco.2010.05-08-795
– volume: 22
  start-page: 5639
  issue: 13
  year: 2002
  ident: pcbi.1011459.ref024
  article-title: Orientation selectivity in macaque V1: diversity and laminar dependence
  publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience
  doi: 10.1523/JNEUROSCI.22-13-05639.2002
– volume: 62
  start-page: 2317
  issue: 9
  year: 2014
  ident: pcbi.1011459.ref044
  article-title: ℓ1/2 regularization: Convergence of iterative half thresholding algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2309076
– volume: 274
  start-page: 423
  issue: 5670
  year: 1978
  ident: pcbi.1011459.ref054
  article-title: Functional specialisation in the visual cortex of the rhesus monkey
  publication-title: Nature
  doi: 10.1038/274423a0
– volume: 240
  start-page: 740
  issue: 4853
  year: 1988
  ident: pcbi.1011459.ref056
  article-title: Segregation of form, color, movement, and depth: anatomy, physiology, and perception
  publication-title: Science
  doi: 10.1126/science.3283936
– volume: 47
  start-page: 1940
  issue: 11
  year: 1959
  ident: pcbi.1011459.ref001
  article-title: What the frog’s eye tells the frog’s brain
  publication-title: Proceedings of the IRE
  doi: 10.1109/JRPROC.1959.287207
– volume: 265
  start-page: 359
  issue: 1394
  year: 1998
  ident: pcbi.1011459.ref034
  article-title: Independent component filters of natural images compared with simple cells in primary visual cortex
  publication-title: Proceedings of the Royal Society of London Series B: Biological Sciences
  doi: 10.1098/rspb.1998.0303
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: pcbi.1011459.ref021
  article-title: Compressed sensing
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2006.871582
– volume: 118
  start-page: e2008173118
  issue: 18
  year: 2021
  ident: pcbi.1011459.ref031
  article-title: Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2008173118
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  ident: pcbi.1011459.ref020
  article-title: Enhancing sparsity by reweighted ℓ1 minimization
  publication-title: Journal of Fourier analysis and applications
  doi: 10.1007/s00041-008-9045-x
– volume: 78
  start-page: 266
  issue: 4
  year: 1972
  ident: pcbi.1011459.ref050
  article-title: Perception and discrimination as a function of stimulus orientation: the ‘oblique effect’ in man and animals
  publication-title: Psychological bulletin
  doi: 10.1037/h0033117
– volume: 287
  start-page: 1273
  issue: 5456
  year: 2000
  ident: pcbi.1011459.ref004
  article-title: Sparse coding and decorrelation in primary visual cortex during natural vision
  publication-title: Science
  doi: 10.1126/science.287.5456.1273
– volume: 16
  start-page: 1587
  issue: 7
  year: 1999
  ident: pcbi.1011459.ref060
  article-title: Probabilistic framework for the adaptation and comparison of image codes
  publication-title: JOSA A
  doi: 10.1364/JOSAA.16.001587
– ident: pcbi.1011459.ref040
  doi: 10.1137/1.9781611974997
– volume: 3
  start-page: 47
  issue: 3
  year: 2019
  ident: pcbi.1011459.ref041
  article-title: An adaptive homeostatic algorithm for the unsupervised learning of visual features
  publication-title: Vision
  doi: 10.3390/vision3030047
– volume: 13
  start-page: 15
  issue: 1
  year: 2003
  ident: pcbi.1011459.ref012
  article-title: Anatomical substrates for functional columns in macaque monkey primary visual cortex
  publication-title: Cerebral cortex
  doi: 10.1093/cercor/13.1.15
– volume: 3
  start-page: 535
  issue: 6
  year: 2000
  ident: pcbi.1011459.ref052
  article-title: An oblique effect in human primary visual cortex
  publication-title: Nature neuroscience
  doi: 10.1038/75702
– volume-title: A wavelet tour of signal processing
  year: 1998
  ident: pcbi.1011459.ref015
– volume: 37
  start-page: 998
  issue: 4
  year: 2017
  ident: pcbi.1011459.ref025
  article-title: Nonlinear Y-like receptive fields in the early visual cortex: An intermediate stage for building cue-invariant receptive fields from subcortical Y cells
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2120-16.2016
– volume: 22
  start-page: 531
  issue: 5
  year: 1982
  ident: pcbi.1011459.ref026
  article-title: The orientation and direction selectivity of cells in macaque visual cortex
  publication-title: Vision research
  doi: 10.1016/0042-6989(82)90112-2
– volume: 36
  start-page: 12368
  issue: 49
  year: 2016
  ident: pcbi.1011459.ref014
  article-title: Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2603-16.2016
– start-page: 168
  volume-title: Human vision and electronic imaging XVIII
  year: 2013
  ident: pcbi.1011459.ref049
– volume: 1
  start-page: 248
  issue: 3
  year: 2008
  ident: pcbi.1011459.ref039
  article-title: A new alternating minimization algorithm for total variation image reconstruction
  publication-title: SIAM Journal on Imaging Sciences
  doi: 10.1137/080724265
– volume: 1
  start-page: 371
  issue: 4
  year: 1972
  ident: pcbi.1011459.ref003
  article-title: Single units and sensation: A neuron doctrine for perceptual psychology?
  publication-title: Perception
  doi: 10.1068/p010371
– volume: 22
  start-page: 514
  issue: 4
  year: 2019
  ident: pcbi.1011459.ref022
  article-title: Optimality and heuristics in perceptual neuroscience
  publication-title: Nature neuroscience
  doi: 10.1038/s41593-019-0340-4
– volume: 24
  start-page: 227
  issue: 2
  year: 1995
  ident: pcbi.1011459.ref037
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539792240406
– start-page: 236
  volume-title: Wavelets XIII
  year: 2009
  ident: pcbi.1011459.ref048
– volume: 37
  start-page: 349
  issue: 3
  year: 1975
  ident: pcbi.1011459.ref046
  article-title: Statistics of directional data
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1975.tb01550.x
– volume: 5
  start-page: 932
  year: 2014
  ident: pcbi.1011459.ref057
  article-title: Distributed processing of color and form in the visual cortex
  publication-title: Frontiers in psychology
  doi: 10.3389/fpsyg.2014.00932
– volume-title: Uncertain nervous system
  year: 1968
  ident: pcbi.1011459.ref002
– volume: 37
  start-page: 3327
  issue: 23
  year: 1997
  ident: pcbi.1011459.ref062
  article-title: The “independent components” of natural scenes are edge filters
  publication-title: Vision research
  doi: 10.1016/S0042-6989(97)00121-1
– volume: 14
  start-page: 629
  issue: 5
  year: 2008
  ident: pcbi.1011459.ref029
  article-title: Iterative thresholding for sparse approximations
  publication-title: Journal of Fourier analysis and Applications
  doi: 10.1007/s00041-008-9035-z
– volume: 95
  start-page: 2609
  issue: 5
  year: 1998
  ident: pcbi.1011459.ref051
  article-title: Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.95.5.2609
– volume: 1
  start-page: 127
  issue: 3
  year: 2014
  ident: pcbi.1011459.ref043
  article-title: Proximal algorithms
  publication-title: Foundations and Trends in optimization
  doi: 10.1561/2400000003
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  ident: pcbi.1011459.ref019
  article-title: Exact reconstruction of sparse signals via nonconvex minimization
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2007.898300
– volume: 12
  start-page: 87
  issue: 3
  year: 2008
  ident: pcbi.1011459.ref007
  article-title: Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe
  publication-title: Trends in cognitive sciences
  doi: 10.1016/j.tics.2007.12.003
– volume: 1
  start-page: 295
  issue: 3
  year: 1989
  ident: pcbi.1011459.ref061
  article-title: Unsupervised learning
  publication-title: Neural computation
  doi: 10.1162/neco.1989.1.3.295
– volume: 14
  start-page: 880
  issue: 6
  year: 2004
  ident: pcbi.1011459.ref010
  article-title: Dictionary design for matching pursuit and application to motion-compensated video coding
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2004.828329
SSID ssj0035896
Score 2.455853
Snippet Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time....
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1011459
SubjectTerms Biology and Life Sciences
Medicine and Health Sciences
Physical Sciences
Research and Analysis Methods
Social Sciences
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHoRnxifEbymTbKb3c1RxSKCnqz0tuxjgoWSlj6Q3v0H_kN_ibvZtDRe9OA1D5KZb5mZj539BqFrLguZgJNCLDBEhOdFxJU0lvMQFWfKKFo10Tw904ceeexn_bVRX64nzMsDe8d1gBWMaoZJahhRykhqGGMGiCIESwMu-sY8X5IpH4NxxqvJXG4oTmTf7deH5jBLOjVG7bFWA8ddE-J0SteSUqXd3yg4f7ZLbs3LsVy8y-FwLRd1d9FOXUSGN_7n99AGlPto04-VXBygS38sJfz6-ExCGzEmUwj1yCWpcFCGr8kh6nXvX-4eonoQQqQt_ZlFRAMD0AZcsWQ5BE-0NTCnEBdS6zRmucoN5RAT6ZpFnYQN5UYWquA60yrDR6hVjko4RiFRtl4wmeURsSGGp3nBjCKQEs1jiRMVoGjpCTH2ehei2vRilid464TznKg9F6Bb567Vs06turpgMRQ1huI3DAN0tXS2sKvbbVnIEkbzqUg5JZbi2SgYIN5AofHF5p1y8FbpZNvS0ZJBnAaovQLsT0ad_IdRp2jbjab3_WhnqDWbzOHcFjAzdVGt1W-kmvC0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaIv3sVYqymIb0lzmVseW7EUweJDV9anMGdmgotLdulmkfqq_8B_6C_xTC5tUyjog28hyUyYb27nyznnG4DXSlc6dV4KscpdxFRRRQq1Jc7DMOFoUbRBNB9OxPGUvZ_x2RbgkAvTI0gccbFct558f-HDq70o0X4P574XLepcqHGay3QoFq8Mzj0hTRkv3rSyQ_73WOOzkG7BtuBkr09ge3ry8eBzK6TK80jmbHZ5zVWfX3dTraP9q5X5H9mm1yMr72zqlT7_pheLK9vW0X34MTS4i1b5Gm8ajM33a1qQ_xeRB3Cvt3rDg66Wh7Dl6kdwuzsH8_wxvOryaMLfP3-lIS1xZ2sXmqXfVcN5HX5Kn8D06N3p2-OoP7khMsTXmogZJ50z1nnrjkiPSg0nYidcUmljskQWWFihXMK0j271mjtCWV1hpQw3yPOnMKmXtXsGIUMycCwn4pNYZlVWVNIicxkzKtF5igFEQ3-Uq06go2y9dJKITde60mNQ9hgEcOg77eJdL6_d3iBkyx7M0slKCkMjI7OSIVotrJTSOoaM5dq6APaGLi9pOnofi67dcrMuMyUYcVJatgNQo7Ew-uL4ST3_0gp7k61L7DXPAogvhs1fNer5vxbYgbsZod4Fy72ASXO2cbtkXTX4sp8efwC_miqd
  priority: 102
  providerName: Unpaywall
Title Beyond ℓ1 sparse coding in V1
URI https://www.proquest.com/docview/2864619376
https://pubmed.ncbi.nlm.nih.gov/PMC10516432
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011459&type=printable
https://doaj.org/article/e7f76c7342d74bbda6d777de4b443ade
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71EIKXilOYlmAkxJsjH2vv-gGhBBoqpEYVIig8WXuMS6TISXOozTv_gH_YX8Ls2okwAqkvtrw-d_aY-Tyz8wG8EbKUEdpUiGWCARN5GQglDWEepsJUGZW5IJrzYXY2Yp_H6XgPto72RoDLf0I7yyc1Wky7N1eb9zTg3znWBh5tb-rOtZpYNBqxNH87vwostZR1wTY8G_twSOort_wO52znakhS4Ui8LH9OwOmoWV_3vwe39JdL89-yTf-OrLy_ruZycy2n0z_U1uAhHDX2pt-rO8gj2MPqMdyrGSg3T-BVvYLFv_35K_Jpclks0dczq8_8SeV_i57CaHD69cNZ0HAmBJqQ0ipgGjmiNmjtKoIbItJUwTzDsJRaxyHPVW4ygSGTNq7UZrvJhJGlKoVOtUqTZ3BQzSp8Dj5TZFqYlCBHaJgRcV5yoxjGTItQJpHyINhKopjXqTEK5x_jBCnq2hVWckUjOQ_6Vly7a21ia1cwW1wWzTgpkJc80zxhseFMKSMzwzk3yBRjiTToweutsAsaCNa7ISucrZdFLDJGaJAmTA9EqxVab2yfqSY_XEptsjIJNyaxB91dg92pUi_u8D3H8MCS1NeRaSdwsFqs8SWZMivVgX0-5rQVg08dOOz1P_YHtO-fDi--dNzvgY7rrFQ2Gl70vv8GJub9lw
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaIv3sVYqymIb0lzmVseW7EUweJDV9anMGdmgotLdulmkfqq_8B_6C_xTC5tUyjog28hyUyYb27nyznnG4DXSlc6dV4KscpdxFRRRQq1Jc7DMOFoUbRBNB9OxPGUvZ_x2RbgkAvTI0gccbFct558f-HDq70o0X4P574XLepcqHGay3QoFq8Mzj0hTRkv3rSyQ_73WOOzkG7BtuBkr09ge3ry8eBzK6TK80jmbHZ5zVWfX3dTraP9q5X5H9mm1yMr72zqlT7_pheLK9vW0X34MTS4i1b5Gm8ajM33a1qQ_xeRB3Cvt3rDg66Wh7Dl6kdwuzsH8_wxvOryaMLfP3-lIS1xZ2sXmqXfVcN5HX5Kn8D06N3p2-OoP7khMsTXmogZJ50z1nnrjkiPSg0nYidcUmljskQWWFihXMK0j271mjtCWV1hpQw3yPOnMKmXtXsGIUMycCwn4pNYZlVWVNIicxkzKtF5igFEQ3-Uq06go2y9dJKITde60mNQ9hgEcOg77eJdL6_d3iBkyx7M0slKCkMjI7OSIVotrJTSOoaM5dq6APaGLi9pOnofi67dcrMuMyUYcVJatgNQo7Ew-uL4ST3_0gp7k61L7DXPAogvhs1fNer5vxbYgbsZod4Fy72ASXO2cbtkXTX4sp8efwC_miqd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+%E2%84%931+sparse+coding+in+V1&rft.jtitle=PLoS+computational+biology&rft.au=Rentzeperis%2C+Ilias&rft.au=Calatroni%2C+Luca&rft.au=Perrinet%2C+Laurent+U&rft.au=Prandi%2C+Dario&rft.date=2023-09-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=19&rft.issue=9&rft.spage=e1011459&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon