Beyond ℓ1 sparse coding in V1
Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ 1 norm as a penalty due to its convexity, which makes...
Saved in:
| Published in | PLoS computational biology Vol. 19; no. 9; p. e1011459 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
San Francisco, CA USA
Public Library of Science
01.09.2023
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7358 1553-734X 1553-7358 |
| DOI | 10.1371/journal.pcbi.1011459 |
Cover
| Abstract | Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the
ℓ
1
norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the
ℓ
1
norm is highly suboptimal compared to other functions suited to approximating
ℓ
p
with 0 ≤
p
< 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that
ℓ
1
sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the
ℓ
1
norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the
ℓ
0
pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both
ℓ
0
- and
ℓ
1
-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but
ℓ
0
-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the
ℓ
0
pseudo-norm rather than the
ℓ
1
one, and suggests a similar mode of operation for the sensory cortex in general. |
|---|---|
| AbstractList | Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general.Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general. Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general. Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ1 norm is highly suboptimal compared to other functions suited to approximating ℓp with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ0- and ℓ1-based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ0-based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ0 pseudo-norm rather than the ℓ1 one, and suggests a similar mode of operation for the sensory cortex in general. Recordings in the brain indicate that relatively few sensory neurons are active at any instant. This so called sparse coding is considered a hallmark of efficiency in the encoding of natural stimuli by sensory neurons. Computational works have shown that if we add sparse activity as an optimization term in a generative model encoding natural images then the model will learn units with receptive fields (RFs) similar to the neurons in the primary visual cortex (V1). Traditionally, computational models have used the ℓ1 norm as the sparsity term to be minimized, because of its convexity and claims of optimality. Here we show that by using sparsity inducing regularizers that approximate the ℓ0 pseudo-norm, we get sparser activations for the same quality of encoding. Moreover, for a certain level of sparsity, both ℓ0 and ℓ1 based generative models produce RFs similar to V1 biological neurons, but the ℓ1 model has five times worse encoding performance. Our study thus shows that sparsity-inducing regularizers approaching the ℓ0 pseudo-norm are more appropriate for modelling biological vision from an efficiency point of view. Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time. Traditionally, to replicate such biological sparsity, generative models have been using the ℓ 1 norm as a penalty due to its convexity, which makes it amenable to fast and simple algorithmic solvers. In this work, we use biological vision as a test-bed and show that the soft thresholding operation associated to the use of the ℓ 1 norm is highly suboptimal compared to other functions suited to approximating ℓ p with 0 ≤ p < 1 (including recently proposed continuous exact relaxations), in terms of performance. We show that ℓ 1 sparsity employs a pool with more neurons, i.e. has a higher degree of overcompleteness, in order to maintain the same reconstruction error as the other methods considered. More specifically, at the same sparsity level, the thresholding algorithm using the ℓ 1 norm as a penalty requires a dictionary of ten times more units compared to the proposed approach, where a non-convex continuous relaxation of the ℓ 0 pseudo-norm is used, to reconstruct the external stimulus equally well. At a fixed sparsity level, both ℓ 0 - and ℓ 1 -based regularization develop units with receptive field (RF) shapes similar to biological neurons in V1 (and a subset of neurons in V2), but ℓ 0 -based regularization shows approximately five times better reconstruction of the stimulus. Our results in conjunction with recent metabolic findings indicate that for V1 to operate efficiently it should follow a coding regime which uses a regularization that is closer to the ℓ 0 pseudo-norm rather than the ℓ 1 one, and suggests a similar mode of operation for the sensory cortex in general. |
| Author | Rentzeperis, Ilias Perrinet, Laurent U. Calatroni, Luca Prandi, Dario |
| AuthorAffiliation | 2 CNRS, UCA, INRIA, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis, Sophia Antipolis, France 3 Aix Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France UT Austin: The University of Texas at Austin, UNITED STATES 1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Paris, France |
| AuthorAffiliation_xml | – name: UT Austin: The University of Texas at Austin, UNITED STATES – name: 1 Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Paris, France – name: 2 CNRS, UCA, INRIA, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis, Sophia Antipolis, France – name: 3 Aix Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France |
| Author_xml | – sequence: 1 givenname: Ilias orcidid: 0000-0003-1324-4090 surname: Rentzeperis fullname: Rentzeperis, Ilias – sequence: 2 givenname: Luca surname: Calatroni fullname: Calatroni, Luca – sequence: 3 givenname: Laurent U. orcidid: 0000-0002-9536-010X surname: Perrinet fullname: Perrinet, Laurent U. – sequence: 4 givenname: Dario surname: Prandi fullname: Prandi, Dario |
| BookMark | eNqNkEtOwzAQQC0Egha4ARJZsmnx38kKQcVPQmIDbC3HnpRUqR3sBtQ9N-CGnIRAK0R3rGY0nzejN0TbPnhA6IjgMWGKnM5CF71pxq0t6zHBhHBRbKEBEYKNFBP59p98Dw1TmmHcp4XcRXtMyaLAgg7Q8QUsg3fZ5_sHyVJrYoLMBlf7aVb77IkcoJ3KNAkO13EfPV5dPkxuRnf317eT87uR5ZgsRtyCArAOBKWSEpUT258qJODKWEuxKsrCyRwwN4IxjCkTMnemKqvcClsKto9uV1wXzEy3sZ6buNTB1PqnEOJUm7iobQMaVKWkVYxTp3hZOiOdUsoBLzlnxkHPEitW51uzfDNN8wskWH_L02t5-lueXsvr985We21XzsFZ8Itomo1nNju-ftbT8NoDBJGc0Z5wsibE8NJBWuh5nSw0jfEQuqRpLrkkRa-_H-WrURtDShGq__34BWBrnFo |
| Cites_doi | 10.1007/s10827-006-0003-9 10.1016/j.cnsns.2021.106135 10.1137/16M1059333 10.1109/MSP.2007.914731 10.1016/j.visres.2006.03.008 10.1167/jov.20.12.10 10.1152/jn.2002.88.1.455 10.1162/NECO_a_00372 10.1523/JNEUROSCI.07-11-03378.1987 10.1137/151003714 10.1016/j.crma.2008.03.014 10.1073/pnas.1525505113 10.1162/neco.2008.03-07-486 10.1152/jn.00954.2002 10.1109/TNNLS.2012.2197412 10.3389/fnsys.2021.580569 10.1152/jn.00594.2010 10.1002/cne.21060 10.1002/cpa.20124 10.1109/18.119725 10.1038/381607a0 10.1016/S0042-6989(97)00169-7 10.1126/science.1070502 10.1002/cpa.20042 10.1371/journal.pbio.0060016 10.1038/s41467-020-14645-x 10.1162/neco.2010.05-08-795 10.1523/JNEUROSCI.22-13-05639.2002 10.1109/TSP.2014.2309076 10.1038/274423a0 10.1126/science.3283936 10.1109/JRPROC.1959.287207 10.1098/rspb.1998.0303 10.1109/TIT.2006.871582 10.1073/pnas.2008173118 10.1007/s00041-008-9045-x 10.1037/h0033117 10.1126/science.287.5456.1273 10.1364/JOSAA.16.001587 10.1137/1.9781611974997 10.3390/vision3030047 10.1093/cercor/13.1.15 10.1038/75702 10.1523/JNEUROSCI.2120-16.2016 10.1016/0042-6989(82)90112-2 10.1523/JNEUROSCI.2603-16.2016 10.1137/080724265 10.1068/p010371 10.1038/s41593-019-0340-4 10.1137/S0097539792240406 10.1111/j.2517-6161.1975.tb01550.x 10.3389/fpsyg.2014.00932 10.1016/S0042-6989(97)00121-1 10.1007/s00041-008-9035-z 10.1073/pnas.95.5.2609 10.1561/2400000003 10.1109/LSP.2007.898300 10.1016/j.tics.2007.12.003 10.1162/neco.1989.1.3.295 10.1109/TCSVT.2004.828329 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2023 Rentzeperis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2023 Rentzeperis et al 2023 Rentzeperis et al |
| Copyright_xml | – notice: Copyright: © 2023 Rentzeperis et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2023 Rentzeperis et al 2023 Rentzeperis et al |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pcbi.1011459 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Beyond ℓ1 sparse coding in V1 |
| EISSN | 1553-7358 |
| ExternalDocumentID | oai_doaj_org_article_e7f76c7342d74bbda6d777de4b443ade 10.1371/journal.pcbi.1011459 PMC10516432 10_1371_journal_pcbi_1011459 |
| GrantInformation_xml | – fundername: ; grantid: RUBIN-VASE – fundername: ; grantid: ANR-20-CE23-0021 – fundername: ; grantid: SPLIN – fundername: ; grantid: ANR-22-CE48-0010 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 7X8 5PM ADRAZ ADTOC C1A H13 IPNFZ RIG UNPAY WOQ |
| ID | FETCH-LOGICAL-c401t-4ce7eecde522621781c58996e0facc2079b9d68e04a5330023568dafbf8c5cb53 |
| IEDL.DBID | M48 |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Fri Oct 03 12:43:41 EDT 2025 Sun Oct 26 04:15:20 EDT 2025 Tue Sep 30 17:12:52 EDT 2025 Wed Oct 01 17:02:09 EDT 2025 Wed Oct 01 02:25:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-4ce7eecde522621781c58996e0facc2079b9d68e04a5330023568dafbf8c5cb53 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address: Instituto de Óptica, CSIC, Madrid, Spain The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-9536-010X 0000-0003-1324-4090 |
| OpenAccessLink | https://doaj.org/article/e7f76c7342d74bbda6d777de4b443ade |
| PMID | 37699052 |
| PQID | 2864619376 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e7f76c7342d74bbda6d777de4b443ade unpaywall_primary_10_1371_journal_pcbi_1011459 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10516432 proquest_miscellaneous_2864619376 crossref_primary_10_1371_journal_pcbi_1011459 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco, CA USA |
| PublicationPlace_xml | – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationYear | 2023 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | EJ Candes (pcbi.1011459.ref038) 2008; 25 DH Hubel (pcbi.1011459.ref055) 1987; 7 B Li (pcbi.1011459.ref027) 2003; 90 J Perez-Orive (pcbi.1011459.ref005) 2002; 297 A Angelucci (pcbi.1011459.ref013) 2006; 498 SM Zeki (pcbi.1011459.ref054) 1978; 274 EJ Candes (pcbi.1011459.ref018) 2008; 346 LU Perrinet (pcbi.1011459.ref041) 2019; 3 JS Lund (pcbi.1011459.ref012) 2003; 13 I Rentzeperis (pcbi.1011459.ref059) 2021; 15 RL De Valois (pcbi.1011459.ref026) 1982; 22 CS Furmanski (pcbi.1011459.ref052) 2000; 3 MS Lewicki (pcbi.1011459.ref060) 1999; 16 T Yoshida (pcbi.1011459.ref032) 2020; 11 JH Van Hateren (pcbi.1011459.ref034) 1998; 265 DJ Graham (pcbi.1011459.ref035) 2006; 46 R Chartrand (pcbi.1011459.ref019) 2007; 14 AS Charles (pcbi.1011459.ref064) 2012; 24 S Mallat (pcbi.1011459.ref015) 1998 HB Barlow (pcbi.1011459.ref061) 1989; 1 pcbi.1011459.ref040 WE Vinje (pcbi.1011459.ref004) 2000; 287 KV Mardia (pcbi.1011459.ref046) 1975; 37 CJ Rozell (pcbi.1011459.ref063) 2008; 20 DL Donoho (pcbi.1011459.ref021) 2006; 52 DM Paiton (pcbi.1011459.ref065) 2020; 20 BA Olshausen (pcbi.1011459.ref048) 2009 BD Willmore (pcbi.1011459.ref008) 2011; 105 T Blumensath (pcbi.1011459.ref029) 2008; 14 S Appelle (pcbi.1011459.ref050) 1972; 78 I Rentzeperis (pcbi.1011459.ref058) 2022; 107 E Soubies (pcbi.1011459.ref023) 2015; 8 B Chapman (pcbi.1011459.ref051) 1998; 95 M Rehn (pcbi.1011459.ref030) 2007; 22 L Chariker (pcbi.1011459.ref014) 2016; 36 DL Ringach (pcbi.1011459.ref024) 2002; 22 E Batschelet (pcbi.1011459.ref047) 1981 I Rentzeperis (pcbi.1011459.ref057) 2014; 5 BA Olshausen (pcbi.1011459.ref009) 1996; 381 T Hromádka (pcbi.1011459.ref006) 2008; 6 EJ Candes (pcbi.1011459.ref017) 2006; 59 WB Levy (pcbi.1011459.ref031) 2021; 118 E Soubies (pcbi.1011459.ref045) 2017; 27 JL Gardner (pcbi.1011459.ref022) 2019; 22 P Schmid-Saugeon (pcbi.1011459.ref010) 2004; 14 RQ Quiroga (pcbi.1011459.ref007) 2008; 12 HB Barlow (pcbi.1011459.ref003) 1972; 1 LU Perrinet (pcbi.1011459.ref016) 2010; 22 Y Wang (pcbi.1011459.ref039) 2008; 1 BD Burns (pcbi.1011459.ref002) 1968 N Parikh (pcbi.1011459.ref043) 2014; 1 L Liu (pcbi.1011459.ref033) 2016; 113 Z Xu (pcbi.1011459.ref028) 2012; 23 M Livingstone (pcbi.1011459.ref056) 1988; 240 EP Simoncelli (pcbi.1011459.ref011) 1992; 38 DL Ringach (pcbi.1011459.ref053) 2002; 88 BK Natarajan (pcbi.1011459.ref037) 1995; 24 EJ Candes (pcbi.1011459.ref020) 2008; 14 AJ Bell (pcbi.1011459.ref062) 1997; 37 BA Olshausen (pcbi.1011459.ref036) 1997; 37 J Zeng (pcbi.1011459.ref044) 2014; 62 BA Olshausen (pcbi.1011459.ref049) 2013 A Gharat (pcbi.1011459.ref025) 2017; 37 JY Lettvin (pcbi.1011459.ref001) 1959; 47 I Daubechies (pcbi.1011459.ref042) 2004; 57 |
| References_xml | – volume: 22 start-page: 135 issue: 2 year: 2007 ident: pcbi.1011459.ref030 article-title: A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields publication-title: Journal of computational neuroscience doi: 10.1007/s10827-006-0003-9 – volume: 107 start-page: 106135 year: 2022 ident: pcbi.1011459.ref058 article-title: Adaptive rewiring of random neural networks generates convergent–divergent units publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2021.106135 – volume: 27 start-page: 2034 issue: 3 year: 2017 ident: pcbi.1011459.ref045 article-title: A unified view of exact continuous penalties for ℓ2-ℓ0 minimization publication-title: SIAM Journal on Optimization doi: 10.1137/16M1059333 – volume: 25 start-page: 21 issue: 2 year: 2008 ident: pcbi.1011459.ref038 article-title: An introduction to compressive sampling publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2007.914731 – volume: 46 start-page: 2901 issue: 18 year: 2006 ident: pcbi.1011459.ref035 article-title: Can the theory of “whitening” explain the center-surround properties of retinal ganglion cell receptive fields? publication-title: Vision research doi: 10.1016/j.visres.2006.03.008 – volume: 20 start-page: 10 issue: 12 year: 2020 ident: pcbi.1011459.ref065 article-title: Selectivity and robustness of sparse coding networks publication-title: Journal of vision doi: 10.1167/jov.20.12.10 – volume: 88 start-page: 455 issue: 1 year: 2002 ident: pcbi.1011459.ref053 article-title: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex publication-title: Journal of neurophysiology doi: 10.1152/jn.2002.88.1.455 – volume: 24 start-page: 3317 issue: 12 year: 2012 ident: pcbi.1011459.ref064 article-title: A common network architecture efficiently implements a variety of sparsity-based inference problems publication-title: Neural computation doi: 10.1162/NECO_a_00372 – volume: 7 start-page: 3378 issue: 11 year: 1987 ident: pcbi.1011459.ref055 article-title: Segregation of form, color, and stereopsis in primate area 18 publication-title: Journal of neuroscience doi: 10.1523/JNEUROSCI.07-11-03378.1987 – volume: 8 start-page: 1607 issue: 3 year: 2015 ident: pcbi.1011459.ref023 article-title: A continuous exact ℓ0 penalty (CEL0) for least squares regularized problem publication-title: SIAM Journal on Imaging Sciences doi: 10.1137/151003714 – volume: 346 start-page: 589 issue: 9-10 year: 2008 ident: pcbi.1011459.ref018 article-title: The restricted isometry property and its implications for compressed sensing publication-title: Comptes rendus mathematique doi: 10.1016/j.crma.2008.03.014 – volume: 113 start-page: 1913 issue: 7 year: 2016 ident: pcbi.1011459.ref033 article-title: Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2) publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1525505113 – volume: 20 start-page: 2526 issue: 10 year: 2008 ident: pcbi.1011459.ref063 article-title: Sparse coding via thresholding and local competition in neural circuits publication-title: Neural computation doi: 10.1162/neco.2008.03-07-486 – volume: 90 start-page: 204 issue: 1 year: 2003 ident: pcbi.1011459.ref027 article-title: Oblique effect: a neural basis in the visual cortex publication-title: Journal of neurophysiology doi: 10.1152/jn.00954.2002 – volume: 23 start-page: 1013 issue: 7 year: 2012 ident: pcbi.1011459.ref028 article-title: ℓ1/2 regularization: A thresholding representation theory and a fast solver publication-title: IEEE Transactions on neural networks and learning systems doi: 10.1109/TNNLS.2012.2197412 – volume: 15 start-page: 13 year: 2021 ident: pcbi.1011459.ref059 article-title: Adaptive rewiring in weighted networks shows specificity, robustness, and flexibility publication-title: Frontiers in Systems Neuroscience doi: 10.3389/fnsys.2021.580569 – volume: 105 start-page: 2907 issue: 6 year: 2011 ident: pcbi.1011459.ref008 article-title: Sparse coding in striate and extrastriate visual cortex publication-title: Journal of neurophysiology doi: 10.1152/jn.00594.2010 – volume: 498 start-page: 330 issue: 3 year: 2006 ident: pcbi.1011459.ref013 article-title: Contribution of feedforward thalamic afferents and corticogeniculate feedback to the spatial summation area of macaque V1 and LGN publication-title: Journal of comparative neurology doi: 10.1002/cne.21060 – volume: 59 start-page: 1207 issue: 8 year: 2006 ident: pcbi.1011459.ref017 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences doi: 10.1002/cpa.20124 – volume: 38 start-page: 587 issue: 2 year: 1992 ident: pcbi.1011459.ref011 article-title: Shiftable multiscale transforms publication-title: IEEE transactions on Information Theory doi: 10.1109/18.119725 – volume: 381 start-page: 607 issue: 6583 year: 1996 ident: pcbi.1011459.ref009 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 37 start-page: 3311 issue: 23 year: 1997 ident: pcbi.1011459.ref036 article-title: Sparse coding with an overcomplete basis set: A strategy employed by V1? publication-title: Vision research doi: 10.1016/S0042-6989(97)00169-7 – volume: 297 start-page: 359 issue: 5580 year: 2002 ident: pcbi.1011459.ref005 article-title: Oscillations and sparsening of odor representations in the mushroom body publication-title: Science doi: 10.1126/science.1070502 – volume: 57 start-page: 1413 issue: 11 year: 2004 ident: pcbi.1011459.ref042 article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint publication-title: Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences doi: 10.1002/cpa.20042 – volume: 6 start-page: e16 issue: 1 year: 2008 ident: pcbi.1011459.ref006 article-title: Sparse representation of sounds in the unanesthetized auditory cortex publication-title: PLoS biology doi: 10.1371/journal.pbio.0060016 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: pcbi.1011459.ref032 article-title: Natural images are reliably represented by sparse and variable populations of neurons in visual cortex publication-title: Nature communications doi: 10.1038/s41467-020-14645-x – start-page: 10003 volume-title: Circular statistics in biology year: 1981 ident: pcbi.1011459.ref047 – volume: 22 start-page: 1812 issue: 7 year: 2010 ident: pcbi.1011459.ref016 article-title: Role of homeostasis in learning sparse representations publication-title: Neural computation doi: 10.1162/neco.2010.05-08-795 – volume: 22 start-page: 5639 issue: 13 year: 2002 ident: pcbi.1011459.ref024 article-title: Orientation selectivity in macaque V1: diversity and laminar dependence publication-title: The Journal of neuroscience: the official journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.22-13-05639.2002 – volume: 62 start-page: 2317 issue: 9 year: 2014 ident: pcbi.1011459.ref044 article-title: ℓ1/2 regularization: Convergence of iterative half thresholding algorithm publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2014.2309076 – volume: 274 start-page: 423 issue: 5670 year: 1978 ident: pcbi.1011459.ref054 article-title: Functional specialisation in the visual cortex of the rhesus monkey publication-title: Nature doi: 10.1038/274423a0 – volume: 240 start-page: 740 issue: 4853 year: 1988 ident: pcbi.1011459.ref056 article-title: Segregation of form, color, movement, and depth: anatomy, physiology, and perception publication-title: Science doi: 10.1126/science.3283936 – volume: 47 start-page: 1940 issue: 11 year: 1959 ident: pcbi.1011459.ref001 article-title: What the frog’s eye tells the frog’s brain publication-title: Proceedings of the IRE doi: 10.1109/JRPROC.1959.287207 – volume: 265 start-page: 359 issue: 1394 year: 1998 ident: pcbi.1011459.ref034 article-title: Independent component filters of natural images compared with simple cells in primary visual cortex publication-title: Proceedings of the Royal Society of London Series B: Biological Sciences doi: 10.1098/rspb.1998.0303 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: pcbi.1011459.ref021 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2006.871582 – volume: 118 start-page: e2008173118 issue: 18 year: 2021 ident: pcbi.1011459.ref031 article-title: Communication consumes 35 times more energy than computation in the human cortex, but both costs are needed to predict synapse number publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2008173118 – volume: 14 start-page: 877 issue: 5 year: 2008 ident: pcbi.1011459.ref020 article-title: Enhancing sparsity by reweighted ℓ1 minimization publication-title: Journal of Fourier analysis and applications doi: 10.1007/s00041-008-9045-x – volume: 78 start-page: 266 issue: 4 year: 1972 ident: pcbi.1011459.ref050 article-title: Perception and discrimination as a function of stimulus orientation: the ‘oblique effect’ in man and animals publication-title: Psychological bulletin doi: 10.1037/h0033117 – volume: 287 start-page: 1273 issue: 5456 year: 2000 ident: pcbi.1011459.ref004 article-title: Sparse coding and decorrelation in primary visual cortex during natural vision publication-title: Science doi: 10.1126/science.287.5456.1273 – volume: 16 start-page: 1587 issue: 7 year: 1999 ident: pcbi.1011459.ref060 article-title: Probabilistic framework for the adaptation and comparison of image codes publication-title: JOSA A doi: 10.1364/JOSAA.16.001587 – ident: pcbi.1011459.ref040 doi: 10.1137/1.9781611974997 – volume: 3 start-page: 47 issue: 3 year: 2019 ident: pcbi.1011459.ref041 article-title: An adaptive homeostatic algorithm for the unsupervised learning of visual features publication-title: Vision doi: 10.3390/vision3030047 – volume: 13 start-page: 15 issue: 1 year: 2003 ident: pcbi.1011459.ref012 article-title: Anatomical substrates for functional columns in macaque monkey primary visual cortex publication-title: Cerebral cortex doi: 10.1093/cercor/13.1.15 – volume: 3 start-page: 535 issue: 6 year: 2000 ident: pcbi.1011459.ref052 article-title: An oblique effect in human primary visual cortex publication-title: Nature neuroscience doi: 10.1038/75702 – volume-title: A wavelet tour of signal processing year: 1998 ident: pcbi.1011459.ref015 – volume: 37 start-page: 998 issue: 4 year: 2017 ident: pcbi.1011459.ref025 article-title: Nonlinear Y-like receptive fields in the early visual cortex: An intermediate stage for building cue-invariant receptive fields from subcortical Y cells publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2120-16.2016 – volume: 22 start-page: 531 issue: 5 year: 1982 ident: pcbi.1011459.ref026 article-title: The orientation and direction selectivity of cells in macaque visual cortex publication-title: Vision research doi: 10.1016/0042-6989(82)90112-2 – volume: 36 start-page: 12368 issue: 49 year: 2016 ident: pcbi.1011459.ref014 article-title: Orientation selectivity from very sparse LGN inputs in a comprehensive model of macaque V1 cortex publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2603-16.2016 – start-page: 168 volume-title: Human vision and electronic imaging XVIII year: 2013 ident: pcbi.1011459.ref049 – volume: 1 start-page: 248 issue: 3 year: 2008 ident: pcbi.1011459.ref039 article-title: A new alternating minimization algorithm for total variation image reconstruction publication-title: SIAM Journal on Imaging Sciences doi: 10.1137/080724265 – volume: 1 start-page: 371 issue: 4 year: 1972 ident: pcbi.1011459.ref003 article-title: Single units and sensation: A neuron doctrine for perceptual psychology? publication-title: Perception doi: 10.1068/p010371 – volume: 22 start-page: 514 issue: 4 year: 2019 ident: pcbi.1011459.ref022 article-title: Optimality and heuristics in perceptual neuroscience publication-title: Nature neuroscience doi: 10.1038/s41593-019-0340-4 – volume: 24 start-page: 227 issue: 2 year: 1995 ident: pcbi.1011459.ref037 article-title: Sparse approximate solutions to linear systems publication-title: SIAM Journal on Computing doi: 10.1137/S0097539792240406 – start-page: 236 volume-title: Wavelets XIII year: 2009 ident: pcbi.1011459.ref048 – volume: 37 start-page: 349 issue: 3 year: 1975 ident: pcbi.1011459.ref046 article-title: Statistics of directional data publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1975.tb01550.x – volume: 5 start-page: 932 year: 2014 ident: pcbi.1011459.ref057 article-title: Distributed processing of color and form in the visual cortex publication-title: Frontiers in psychology doi: 10.3389/fpsyg.2014.00932 – volume-title: Uncertain nervous system year: 1968 ident: pcbi.1011459.ref002 – volume: 37 start-page: 3327 issue: 23 year: 1997 ident: pcbi.1011459.ref062 article-title: The “independent components” of natural scenes are edge filters publication-title: Vision research doi: 10.1016/S0042-6989(97)00121-1 – volume: 14 start-page: 629 issue: 5 year: 2008 ident: pcbi.1011459.ref029 article-title: Iterative thresholding for sparse approximations publication-title: Journal of Fourier analysis and Applications doi: 10.1007/s00041-008-9035-z – volume: 95 start-page: 2609 issue: 5 year: 1998 ident: pcbi.1011459.ref051 article-title: Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.95.5.2609 – volume: 1 start-page: 127 issue: 3 year: 2014 ident: pcbi.1011459.ref043 article-title: Proximal algorithms publication-title: Foundations and Trends in optimization doi: 10.1561/2400000003 – volume: 14 start-page: 707 issue: 10 year: 2007 ident: pcbi.1011459.ref019 article-title: Exact reconstruction of sparse signals via nonconvex minimization publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2007.898300 – volume: 12 start-page: 87 issue: 3 year: 2008 ident: pcbi.1011459.ref007 article-title: Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe publication-title: Trends in cognitive sciences doi: 10.1016/j.tics.2007.12.003 – volume: 1 start-page: 295 issue: 3 year: 1989 ident: pcbi.1011459.ref061 article-title: Unsupervised learning publication-title: Neural computation doi: 10.1162/neco.1989.1.3.295 – volume: 14 start-page: 880 issue: 6 year: 2004 ident: pcbi.1011459.ref010 article-title: Dictionary design for matching pursuit and application to motion-compensated video coding publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2004.828329 |
| SSID | ssj0035896 |
| Score | 2.455853 |
| Snippet | Growing evidence indicates that only a sparse subset from a pool of sensory neurons is active for the encoding of visual stimuli at any instant in time.... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e1011459 |
| SubjectTerms | Biology and Life Sciences Medicine and Health Sciences Physical Sciences Research and Analysis Methods Social Sciences |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHoRnxifEbymTbKb3c1RxSKCnqz0tuxjgoWSlj6Q3v0H_kN_ibvZtDRe9OA1D5KZb5mZj539BqFrLguZgJNCLDBEhOdFxJU0lvMQFWfKKFo10Tw904ceeexn_bVRX64nzMsDe8d1gBWMaoZJahhRykhqGGMGiCIESwMu-sY8X5IpH4NxxqvJXG4oTmTf7deH5jBLOjVG7bFWA8ddE-J0SteSUqXd3yg4f7ZLbs3LsVy8y-FwLRd1d9FOXUSGN_7n99AGlPto04-VXBygS38sJfz6-ExCGzEmUwj1yCWpcFCGr8kh6nXvX-4eonoQQqQt_ZlFRAMD0AZcsWQ5BE-0NTCnEBdS6zRmucoN5RAT6ZpFnYQN5UYWquA60yrDR6hVjko4RiFRtl4wmeURsSGGp3nBjCKQEs1jiRMVoGjpCTH2ehei2vRilid464TznKg9F6Bb567Vs06turpgMRQ1huI3DAN0tXS2sKvbbVnIEkbzqUg5JZbi2SgYIN5AofHF5p1y8FbpZNvS0ZJBnAaovQLsT0ad_IdRp2jbjab3_WhnqDWbzOHcFjAzdVGt1W-kmvC0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaIv3sVYqymIb0lzmVseW7EUweJDV9anMGdmgotLdulmkfqq_8B_6C_xTC5tUyjog28hyUyYb27nyznnG4DXSlc6dV4KscpdxFRRRQq1Jc7DMOFoUbRBNB9OxPGUvZ_x2RbgkAvTI0gccbFct558f-HDq70o0X4P574XLepcqHGay3QoFq8Mzj0hTRkv3rSyQ_73WOOzkG7BtuBkr09ge3ry8eBzK6TK80jmbHZ5zVWfX3dTraP9q5X5H9mm1yMr72zqlT7_pheLK9vW0X34MTS4i1b5Gm8ajM33a1qQ_xeRB3Cvt3rDg66Wh7Dl6kdwuzsH8_wxvOryaMLfP3-lIS1xZ2sXmqXfVcN5HX5Kn8D06N3p2-OoP7khMsTXmogZJ50z1nnrjkiPSg0nYidcUmljskQWWFihXMK0j271mjtCWV1hpQw3yPOnMKmXtXsGIUMycCwn4pNYZlVWVNIicxkzKtF5igFEQ3-Uq06go2y9dJKITde60mNQ9hgEcOg77eJdL6_d3iBkyx7M0slKCkMjI7OSIVotrJTSOoaM5dq6APaGLi9pOnofi67dcrMuMyUYcVJatgNQo7Ew-uL4ST3_0gp7k61L7DXPAogvhs1fNer5vxbYgbsZod4Fy72ASXO2cbtkXTX4sp8efwC_miqd priority: 102 providerName: Unpaywall |
| Title | Beyond ℓ1 sparse coding in V1 |
| URI | https://www.proquest.com/docview/2864619376 https://pubmed.ncbi.nlm.nih.gov/PMC10516432 https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011459&type=printable https://doaj.org/article/e7f76c7342d74bbda6d777de4b443ade |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB71EIKXilOYlmAkxJsjH2vv-gGhBBoqpEYVIig8WXuMS6TISXOozTv_gH_YX8Ls2okwAqkvtrw-d_aY-Tyz8wG8EbKUEdpUiGWCARN5GQglDWEepsJUGZW5IJrzYXY2Yp_H6XgPto72RoDLf0I7yyc1Wky7N1eb9zTg3znWBh5tb-rOtZpYNBqxNH87vwostZR1wTY8G_twSOort_wO52znakhS4Ui8LH9OwOmoWV_3vwe39JdL89-yTf-OrLy_ruZycy2n0z_U1uAhHDX2pt-rO8gj2MPqMdyrGSg3T-BVvYLFv_35K_Jpclks0dczq8_8SeV_i57CaHD69cNZ0HAmBJqQ0ipgGjmiNmjtKoIbItJUwTzDsJRaxyHPVW4ygSGTNq7UZrvJhJGlKoVOtUqTZ3BQzSp8Dj5TZFqYlCBHaJgRcV5yoxjGTItQJpHyINhKopjXqTEK5x_jBCnq2hVWckUjOQ_6Vly7a21ia1cwW1wWzTgpkJc80zxhseFMKSMzwzk3yBRjiTToweutsAsaCNa7ISucrZdFLDJGaJAmTA9EqxVab2yfqSY_XEptsjIJNyaxB91dg92pUi_u8D3H8MCS1NeRaSdwsFqs8SWZMivVgX0-5rQVg08dOOz1P_YHtO-fDi--dNzvgY7rrFQ2Gl70vv8GJub9lw |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULaIv3sVYqymIb0lzmVseW7EUweJDV9anMGdmgotLdulmkfqq_8B_6C_xTC5tUyjog28hyUyYb27nyznnG4DXSlc6dV4KscpdxFRRRQq1Jc7DMOFoUbRBNB9OxPGUvZ_x2RbgkAvTI0gccbFct558f-HDq70o0X4P574XLepcqHGay3QoFq8Mzj0hTRkv3rSyQ_73WOOzkG7BtuBkr09ge3ry8eBzK6TK80jmbHZ5zVWfX3dTraP9q5X5H9mm1yMr72zqlT7_pheLK9vW0X34MTS4i1b5Gm8ajM33a1qQ_xeRB3Cvt3rDg66Wh7Dl6kdwuzsH8_wxvOryaMLfP3-lIS1xZ2sXmqXfVcN5HX5Kn8D06N3p2-OoP7khMsTXmogZJ50z1nnrjkiPSg0nYidcUmljskQWWFihXMK0j271mjtCWV1hpQw3yPOnMKmXtXsGIUMycCwn4pNYZlVWVNIicxkzKtF5igFEQ3-Uq06go2y9dJKITde60mNQ9hgEcOg77eJdL6_d3iBkyx7M0slKCkMjI7OSIVotrJTSOoaM5dq6APaGLi9pOnofi67dcrMuMyUYcVJatgNQo7Ew-uL4ST3_0gp7k61L7DXPAogvhs1fNer5vxbYgbsZod4Fy72ASXO2cbtkXTX4sp8efwC_miqd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+%E2%84%931+sparse+coding+in+V1&rft.jtitle=PLoS+computational+biology&rft.au=Rentzeperis%2C+Ilias&rft.au=Calatroni%2C+Luca&rft.au=Perrinet%2C+Laurent+U&rft.au=Prandi%2C+Dario&rft.date=2023-09-01&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=19&rft.issue=9&rft.spage=e1011459&rft_id=info:doi/10.1371%2Fjournal.pcbi.1011459&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |