Characterisation of Mega-voltage Electron Pencil Beam Dose Distributions: Viability of a Measurement-based Approach

The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 31; no. 1; pp. 10 - 17
Main Authors Barnes, M. P., Ebert, M. A.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2008
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0158-9938
1879-5447
DOI10.1007/BF03178448

Cover

Abstract The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
AbstractList The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions. [PUBLICATION ABSTRACT]
Author Michael P Barnes
MA Ebert
Author_xml – sequence: 1
  givenname: M. P.
  surname: Barnes
  fullname: Barnes, M. P.
  email: michael.barnes@studentmail.newcastle.edu.au
  organization: School of Mathematical and Physical Sciences, University of Newcastle, Department of Radiation Oncology (Physics), Newcastle Mater Hospital
– sequence: 2
  givenname: M. A.
  surname: Ebert
  fullname: Ebert, M. A.
  organization: Department of Radiation Oncology, Sir Charles Gairdner Hospital, School of Physics, University of Western Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18488959$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS3Uim5bLnwAFHHgAAq1Yye2EZd22wJSq3IArtHEmWy9SuLFdpD67XF2W61U9TSH-b03f94xORjdiIS8ZfQzo1SeXVxTzqQSQr0iC6akzksh5AFZUFaqXGuujshxCGtKC8Er9ZocMSWU0qVekLC8Bw8morcBonVj5rrsFleQ_3N9hBVmVz2a6FPjJ47G9tkFwpBduoDZpQ3R22aaZeFL9sdCY3sbH2YLSCYQJo8DjjFvIGCbnW823oG5PyWHHfQB3zzWE_L7-urX8nt-c_ftx_L8JjeCsphzrcq2Ako104WpQFPedMCUEijLsiqFYQp4Q4UpQAOU2LbpbihoIVnZqY6fkA873zT274Qh1oMNBvseRnRTqCWVVcEkTeD7Z-DaTX5Mu9UFFVVRcFkl6N0jNDUDtvXG2wH8Q_30ywR83AHGuxA8dnuE1nNQ9T6oBNNnsLFxG0D0YPuXJZ92kpB8xxX6_ZYv0l93tB9srI3r5xjnoNYQtwLOWVXbsXNbIJ2p0lMFl1wKKvh_9Qq0vw
CitedBy_id crossref_primary_10_1007_s13246_010_0038_0
crossref_primary_10_1002_acm2_13478
Cites_doi 10.1088/0031-9155/36/2/006
10.1118/1.596267
10.1118/1.596057
10.1111/j.1749-6632.1969.tb34039.x
10.1118/1.597552
10.1016/S0360-3016(01)02689-X
10.1118/1.597414
10.1088/0031-9155/26/3/008
10.1118/1.597606
10.1088/0031-9155/42/11/005
10.1118/1.596695
10.1088/0031-9155/44/7/314
10.3109/02841868009130169
10.1103/PhysRev.74.1534
10.1088/0031-9155/31/8/006
10.1118/1.596885
10.1118/1.596166
10.1088/0031-9155/43/5/008
10.1118/1.1626990
10.1016/0360-3016(90)90269-P
10.1016/S0360-3016(02)02811-0
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2008
Copyright Copyright Agency Limited (Distributor) Mar 2008
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2008
– notice: Copyright Copyright Agency Limited (Distributor) Mar 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AO
8FE
8FG
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
M0S
M1P
M2P
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/BF03178448
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Science Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Central Student


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-5447
EndPage 17
ExternalDocumentID 1740227741
18488959
10_1007_BF03178448
10.3316/informit.046855643737404
Genre Journal Article
Evaluation Studies
GroupedDBID ..I
06D
0R~
1N0
203
23N
29~
2KG
30V
4.4
408
40D
53G
5GY
67N
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8WZ
96X
A6W
AAIAL
AAJKR
AANXM
AARHV
AARTL
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABFTV
ABJNI
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABULA
ABUWG
ABXPI
ACBXY
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEBTG
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFKRA
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AH1
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
AZQEC
BENPR
BGLVJ
BGNMA
BPHCQ
BVXVI
CAG
CCPQU
COF
CSCUP
DWQXO
EIOEI
EJD
EMB
EN4
ESBYG
EX3
FINBP
FRRFC
FSGXE
FYJPI
FYUFA
GGRSB
GJIRD
GNUQQ
GQ7
HCIFZ
HMCUK
HMJXF
HRMNR
HZ~
I0C
IAEEK
IEN
ITM
J0Z
JBSCW
KOV
KTM
M1P
M2P
M4Y
NQJWS
NU0
O9-
O93
O9I
O9J
P2P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
R9I
RLLFE
ROL
S27
S3A
S3B
SBL
SHX
SPISZ
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UZXMN
VC2
VFIZW
W48
WK8
WOQ
WOW
Z45
ZOVNA
ZY4
~A9
-EM
0VY
36B
3V.
AAAVM
AATVU
ABTAH
ADINQ
AHAVH
AHSBF
ALIPV
EMOBN
FIGPU
GQ6
H13
HF~
Q2X
RSV
S1Z
SISQX
SNE
SNX
SSXJD
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c401t-3985d6a009192c6a903bfa1884e755654c18a3b04c2a9aa5edd544a202715f8f3
IEDL.DBID BENPR
ISSN 0158-9938
IngestDate Thu Sep 04 22:48:35 EDT 2025
Fri Oct 03 07:10:58 EDT 2025
Thu Apr 03 07:07:54 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Wed Oct 01 05:02:09 EDT 2025
Fri Feb 21 02:33:06 EST 2025
Tue Sep 23 20:02:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly false
Issue 1
Keywords radiographic film
radiotherapy
Monte Carlo
TLD
electron pencil beam
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-3985d6a009192c6a903bfa1884e755654c18a3b04c2a9aa5edd544a202715f8f3
Notes Australasian Physical & Engineering Sciences in Medicine, Vol. 31, No. 1, Mar 2008: 10-17
APESMJ_c.jpg
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 18488959
PQID 204622376
PQPubID 33672
PageCount 8
ParticipantIDs proquest_miscellaneous_70762170
proquest_journals_204622376
pubmed_primary_18488959
crossref_primary_10_1007_BF03178448
crossref_citationtrail_10_1007_BF03178448
springer_journals_10_1007_BF03178448
rmit_collectionsjats_10_3316_informit_046855643737404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle The Offical Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Australas. Phys. Eng. Sci. Med
PublicationTitleAlternate Australas Phys Eng Sci Med
PublicationYear 2008
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Rogers, Faddegon, Ding, Ma, Wei (CR22) 1995; 22
Suchowerska, Hoban, Davison, Metcalfe (CR18) 1999; 44
Chui, Mohan (CR15) 1988; 15
Antolak, Mah, Scrimger (CR6) 1995; 22
Fraass, Smathers, Deye (CR14) 2003; 30
Dutreix, Dutreix (CR19) 1969; 161
Korevaar, Huizenga, Lof, Stroom, Leer, Brahme (CR27) 2002; 52
Low, Starkschall, Bujnowski, Wang, Hogstrom (CR12) 1992; 19
Brahme, Kraepelien, Svensson (CR16) 1980; 19
Ebert, Hoban (CR26) 1995; 22
Eyges (CR4) 1948; 74
Hogstrom, Antolak, Kudchadker, Ma, Leavitt (CR11) 2003
Khan, Khan, Potish (CR24) 2000
Lax (CR7) 1986; 31
Khan, Doppke, Hogstrom, Kutcher, Nath, Prasad, Purdy, Rozenfeld, Werner (CR20) 1991; 18
Hogstrom, Mills, Almond (CR1) 1981; 26
Kawrakow, Rogers (CR23) 2000
Karlsson, Karlsson, Zackrisson (CR9) 1998; 43
Jette (CR8) 1995
Kudchadker, Hogstrom, Garden, McNeese, Boyd, Antolak (CR13) 2002; 53
Jette (CR2) 1988; 15
CR25
Starkschall, Shiu, Buynowski, Wang, Low, Hogstrom (CR3) 1991; 36
McKinlay (CR21) 1981
Klevenhagen (CR5) 1985
McParland (CR17) 1986; 14
Ebert, Hoban (CR10) 1997; 42
L. Eyges (BF03178448_CR4) 1948; 74
M. A Ebert (BF03178448_CR10) 1997; 42
D. W. O. Rogers (BF03178448_CR22) 1995; 22
F. M. Khan (BF03178448_CR20) 1991; 18
I. Lax (BF03178448_CR7) 1986; 31
S. C. Klevenhagen (BF03178448_CR5) 1985
D. Jette (BF03178448_CR2) 1988; 15
J Dutreix (BF03178448_CR19) 1969; 161
M. A Ebert (BF03178448_CR26) 1995; 22
A. F. McKinlay (BF03178448_CR21) 1981
F. M. Khan (BF03178448_CR24) 2000
C. S Chui (BF03178448_CR15) 1988; 15
BF03178448_CR25
M. G. Karlsson (BF03178448_CR9) 1998; 43
K. R. Hogstrom (BF03178448_CR11) 2003
E. W. Korevaar (BF03178448_CR27) 2002; 52
R. J. Kudchadker (BF03178448_CR13) 2002; 53
B. A. Fraass (BF03178448_CR14) 2003; 30
D. A. Low (BF03178448_CR12) 1992; 19
B. J. McParland (BF03178448_CR17) 1986; 14
J. A. Antolak (BF03178448_CR6) 1995; 22
G. Starkschall (BF03178448_CR3) 1991; 36
N. Suchowerska (BF03178448_CR18) 1999; 44
D. Jette (BF03178448_CR8) 1995
A. Brahme (BF03178448_CR16) 1980; 19
K. R. Hogstrom (BF03178448_CR1) 1981; 26
J Kawrakow (BF03178448_CR23) 2000
References_xml – volume: 53
  start-page: 1023
  year: 2002
  end-page: 1037
  ident: CR13
  article-title: Electron Conformal Radiotherapy Using Bolus and Intensity Modulation
  publication-title: Int. J. Rad. Oncol. Biol. Phys.
– volume: 36
  start-page: 207
  year: 1991
  end-page: 228
  ident: CR3
  article-title: Effect of Dimensionality of Heterogeneity Corrections on the Implementation of a Three-Dimensional Electron Pencil-Beam Algorithm
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/36/2/006
– volume: 15
  start-page: 138
  year: 1988
  end-page: 144
  ident: CR15
  article-title: Extraction of Pencil Beam Kernels by the Deconvolution Method
  publication-title: Med. Phys.
  doi: 10.1118/1.596267
– year: 2000
  ident: CR23
  publication-title: The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Technical Report PIRS-701
– volume: 14
  start-page: 406
  year: 1986
  end-page: 409
  ident: CR17
  article-title: Using Background Subtraction for Measuring the Dose Distribution of an Electron Pencil Beam
  publication-title: Med. Phys.
  doi: 10.1118/1.596057
– year: 1981
  ident: CR21
  publication-title: Thermoluminescence Dosimetry
– volume: 161
  start-page: 33
  year: 1969
  end-page: 43
  ident: CR19
  article-title: Film Dosimetry of High Energy Electrons
  publication-title: Ann. NY. Acad. Sci.
  doi: 10.1111/j.1749-6632.1969.tb34039.x
– volume: 22
  start-page: 503
  year: 1995
  end-page: 524
  ident: CR22
  article-title: BEAM: A Monte Carlo Code to Simulate Radiotherapy Treatment Units
  publication-title: Med. Phys.
  doi: 10.1118/1.597552
– volume: 52
  start-page: 236
  year: 2002
  end-page: 253
  ident: CR27
  article-title: Investigation of the Added Value of High-Energy Electrons in Intensity-Modulated Radiotherapy: Four clinical cases
  publication-title: Int. J. Radt. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(01)02689-X
– volume: 22
  start-page: 1431
  year: 1995
  end-page: 1435
  ident: CR26
  article-title: A Monte Carlo Investigation of Electron Beam Applicator Scatter
  publication-title: Med. Phys.
  doi: 10.1118/1.597414
– volume: 26
  start-page: 445
  year: 1981
  end-page: 459
  ident: CR1
  article-title: Electron Beam Dose Calculations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/26/3/008
– year: 1995
  ident: CR8
  publication-title: Radiation Therapy Physics; Electron Beam Dose Calculations
– ident: CR25
– volume: 22
  start-page: 411
  year: 1995
  end-page: 419
  ident: CR6
  article-title: Optimisation of pencil beam widths for electron-beam dose calculations
  publication-title: Med. Phys.
  doi: 10.1118/1.597606
– volume: 42
  start-page: 2065
  year: 1997
  end-page: 2081
  ident: CR10
  article-title: Possibilities for Tailoring Dose Distributions through the Manipulation of Electron Beam Characteristics
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/42/11/005
– volume: 18
  start-page: 73
  year: 1991
  end-page: 109
  ident: CR20
  article-title: Clinical Electron-Beam Dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25
  publication-title: Med. Phys.
  doi: 10.1118/1.596695
– volume: 44
  start-page: 1755
  year: 1999
  end-page: 1765
  ident: CR18
  article-title: Perturbation of Radiotherapy Beam by Radiographic Film; Measurements and Monte Carlo Simulations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/7/314
– volume: 19
  start-page: 305
  year: 1980
  end-page: 319
  ident: CR16
  article-title: Electron and photon beams from a 50 MeV racetrack microtron
  publication-title: Acta Radiol. Oncol.
  doi: 10.3109/02841868009130169
– volume: 74
  start-page: 1534
  year: 1948
  end-page: 1535
  ident: CR4
  article-title: Multiple Scattering with Energy Loss
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.1534
– year: 1985
  ident: CR5
  publication-title: Physics of Electron Beam Therapy
– year: 2003
  ident: CR11
  article-title: Modulated electron therapy
  publication-title: Intensity-Modulated Radiation Therapy: The State of the Art, American Association of Physicists in Medicine Monograph 29
– volume: 31
  start-page: 879
  year: 1986
  end-page: 892
  ident: CR7
  article-title: Inhomogeneity Corrections in Electron-Beam Dose Planning. Limitations with the Semi-Infinite Slab Approximation
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/31/8/006
– volume: 19
  start-page: 115
  year: 1992
  end-page: 24
  ident: CR12
  article-title: Electron Bolus Design for Radiotherapy Treatment Planning: Bolus Design Algorithms
  publication-title: Med. Phys.
  doi: 10.1118/1.596885
– volume: 15
  start-page: 123
  year: 1988
  end-page: 137
  ident: CR2
  article-title: Electron Dose Calculation using Multiple-Scattering Theory. A Gaussian Multiple — Scattering Theory
  publication-title: Medical Physics.
  doi: 10.1118/1.596166
– volume: 43
  start-page: 1159
  year: 1998
  end-page: 1169
  ident: CR9
  article-title: Intensity Modulations with Electrons: Calculations, Measurements and Clinical Applications
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/43/5/008
– volume: 30
  start-page: 3206
  year: 2003
  end-page: 3216
  ident: CR14
  article-title: Summary and Recommendations of a National Cancer Institute Workshop on Issues Limiting the Clinical use of Monte Carlo Dose Calculation Algorithms for Megavoltage External Beam Radiation Therapy
  publication-title: Medical Physics.
  doi: 10.1118/1.1626990
– year: 2000
  ident: CR24
  article-title: Dose Distribution Algorithms for Electron Beams
  publication-title: Treatment Planning in Radiation Oncology
– volume: 30
  start-page: 3206
  year: 2003
  ident: BF03178448_CR14
  publication-title: Medical Physics.
  doi: 10.1118/1.1626990
– volume: 19
  start-page: 305
  year: 1980
  ident: BF03178448_CR16
  publication-title: Acta Radiol. Oncol.
  doi: 10.3109/02841868009130169
– volume-title: The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport. Technical Report PIRS-701
  year: 2000
  ident: BF03178448_CR23
– volume-title: Radiation Therapy Physics; Electron Beam Dose Calculations
  year: 1995
  ident: BF03178448_CR8
– volume: 74
  start-page: 1534
  year: 1948
  ident: BF03178448_CR4
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.1534
– volume: 161
  start-page: 33
  year: 1969
  ident: BF03178448_CR19
  publication-title: Ann. NY. Acad. Sci.
  doi: 10.1111/j.1749-6632.1969.tb34039.x
– volume: 44
  start-page: 1755
  year: 1999
  ident: BF03178448_CR18
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/7/314
– volume-title: Treatment Planning in Radiation Oncology
  year: 2000
  ident: BF03178448_CR24
– volume-title: Thermoluminescence Dosimetry
  year: 1981
  ident: BF03178448_CR21
– volume: 43
  start-page: 1159
  year: 1998
  ident: BF03178448_CR9
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/43/5/008
– volume-title: Physics of Electron Beam Therapy
  year: 1985
  ident: BF03178448_CR5
– volume: 31
  start-page: 879
  year: 1986
  ident: BF03178448_CR7
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/31/8/006
– volume: 22
  start-page: 411
  year: 1995
  ident: BF03178448_CR6
  publication-title: Med. Phys.
  doi: 10.1118/1.597606
– volume: 18
  start-page: 73
  year: 1991
  ident: BF03178448_CR20
  publication-title: Med. Phys.
  doi: 10.1118/1.596695
– volume: 15
  start-page: 138
  year: 1988
  ident: BF03178448_CR15
  publication-title: Med. Phys.
  doi: 10.1118/1.596267
– ident: BF03178448_CR25
  doi: 10.1016/0360-3016(90)90269-P
– volume: 19
  start-page: 115
  year: 1992
  ident: BF03178448_CR12
  publication-title: Med. Phys.
  doi: 10.1118/1.596885
– volume: 52
  start-page: 236
  year: 2002
  ident: BF03178448_CR27
  publication-title: Int. J. Radt. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(01)02689-X
– volume: 36
  start-page: 207
  year: 1991
  ident: BF03178448_CR3
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/36/2/006
– volume: 22
  start-page: 503
  year: 1995
  ident: BF03178448_CR22
  publication-title: Med. Phys.
  doi: 10.1118/1.597552
– volume-title: Intensity-Modulated Radiation Therapy: The State of the Art, American Association of Physicists in Medicine Monograph 29
  year: 2003
  ident: BF03178448_CR11
– volume: 14
  start-page: 406
  year: 1986
  ident: BF03178448_CR17
  publication-title: Med. Phys.
  doi: 10.1118/1.596057
– volume: 26
  start-page: 445
  year: 1981
  ident: BF03178448_CR1
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/26/3/008
– volume: 15
  start-page: 123
  year: 1988
  ident: BF03178448_CR2
  publication-title: Medical Physics.
  doi: 10.1118/1.596166
– volume: 53
  start-page: 1023
  year: 2002
  ident: BF03178448_CR13
  publication-title: Int. J. Rad. Oncol. Biol. Phys.
  doi: 10.1016/S0360-3016(02)02811-0
– volume: 42
  start-page: 2065
  year: 1997
  ident: BF03178448_CR10
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/42/11/005
– volume: 22
  start-page: 1431
  year: 1995
  ident: BF03178448_CR26
  publication-title: Med. Phys.
  doi: 10.1118/1.597414
SSID ssj0024368
Score 1.4323485
Snippet The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom...
SourceID proquest
pubmed
crossref
springer
rmit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10
SubjectTerms Algorithms
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Contamination
Dosage
Electron beams
Electrons - therapeutic use
Medical and Radiation Physics
Methods
Monte Carlo method
Radiation
Radiation therapy
Radiometry - instrumentation
Radiometry - methods
Radiotherapy Dosage
Radiotherapy, High energy
Radiotherapy, High-Energy - methods
Reproducibility of Results
Scientific Papers
Sensitivity and Specificity
Therapeutic use
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BvbSHCkppA4VaKhckIsWJndjcEAIhJHrqStyiiT2LQJBFJFTqv2ecx-6i7YFzJvZoxvOyx58BDjkHIc68XZwnDmOlfRIjSc01DxcL2lrvOk1f_84vJ-rqRt-swfF4F6brdh-PJDtPvQQoyrHOcDmxDh90gPHi1TtJT5eQ9bqLbxzf2IRtZt6CkQ7_vg0_KznlcI9-5Vi0izYXm_B5SBPFaa_XLVij-gt8WgIP3IbmbIG13IlXzKbikW4xZo_TspsQ4xM34omX4t2DqAgfhZ81JHyAyx1eumpOxN-7Hq37XxgCeZD5vmEcopwXI_L4V5hcnP85u4yHJxRix4VTG2fWaJ8jJ1IsMJejTbJqitIYRYVmZSgnDWZVolyKFlGT91opDDsiUk_NNNuBjXpW03cQnvLUEHH5I70iQpRYpCSd1rrKrUoiOBolW7oBXzw8c_FQjsjICy1E8GtO-9SjavyXam9UUDlYVlOm4TZtaOWJ4Of8K5tEOOfAmmYvTVkk7OFlwRx967W6mMOwv7LaRqCDmstga13HW93cY9sEHrJM5mUPWssEPJlhOQX8p0IlKoLDcV0sOFplfPd9ZHvwse8-CR1tP2CjfX6hfU5x2uqgW9mvW8DzWw
  priority: 102
  providerName: Springer Nature
Title Characterisation of Mega-voltage Electron Pencil Beam Dose Distributions: Viability of a Measurement-based Approach
URI https://search.informit.org/documentSummary;dn=046855643737404;res=IELHEA
https://link.springer.com/article/10.1007/BF03178448
https://www.ncbi.nlm.nih.gov/pubmed/18488959
https://www.proquest.com/docview/204622376
https://www.proquest.com/docview/70762170
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-5447
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0024368
  issn: 0158-9938
  databaseCode: BENPR
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 1879-5447
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0024368
  issn: 0158-9938
  databaseCode: 7X7
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-5447
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0024368
  issn: 0158-9938
  databaseCode: 8FG
  dateStart: 20050301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1879-5447
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024368
  issn: 0158-9938
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1879-5447
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024368
  issn: 0158-9938
  databaseCode: U2A
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH_a2gscEN-EQbHELhws5cNObCSEytRuAm1CiErlFL3Y7jS0JYVkSPz3POejLSrikkNiOU9-3_bz7wEcUwziKPI2PA0NciFtyNFFknIeShak1ta0nD6_SM8W4uNSLg_gfLgL48sqB5vYGmpbGb9HTkm6SGNfwvF-_YP7plH-cHXooIF9ZwX7rkUYO4Rx7IGxRjD-MLv4_GUHfK-9G0cukLRcJ-pvvFJypUr4RkC7Hmov7Oyv2u-dnLYOaX4f7vWRJJt2rH8AB658CHd38AUfQX2yhWNuOcCqFbtxl8jJKDVkSdjQBYetSVqvrlnh8IbZqnbMekTdvhlW_Zb9uuoAvX_7KZAm2Wwtcu8ILRvAyR_DYj77enLG-y4L3FBu1fBEK2lTpFiLgj2Tog6TYoWRUsJlkvglTKQwKUJhYtSI0lkrhUC_aRLJlVolT2BUVqV7Bsy6NFbOUYYUWeEcYoRZ7CIjpSxSLcIA3gwrm5segtx3wrjOB_DkLRcCeL0Zu-6AN_456mhgUN4rX51vRCWAV5uvpDX-KARLV93WeRaSE4gyouhpx9XtPxSZNC11ANKzOffq2BbFlfV3bGpPQ5JEad7h2tIA-pmidfIQUZkIRQDHg1xsKdon_Pl_CT-CO11diq91ewGj5uete0nBT1NM4DBbZvRU89MJjKen3z7NJr2Y09tFPP0De48EuA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEG9CgVqiHDhYysNObKQKQWm1pe0KoVbqLUxsL2rVJluSgvrj-G-M89hdtIhbz7Gckedtz3wDsEkxiKPI2_A0NMiFtCFHF0nKeShZkFpb03L6cJyOjsXnE3myAr-HXhhfVjnYxNZQ28r4O3JK0kUa-xKO99NL7odG-cfVYYIG9pMV7FaLMNb3dey761-UwdVbe5-I3W_ieHfnaHvE-yED3FBq0fBEK2lTpFCDYh2Tog6TYoKRUsJlksgVJlKYFKEwMWpE6ayVQqC_M4jkRE0S2vcWrIlEaMr91j7ujL98XQD7a3vxyOWSVdGJ-hsflVy3En7w0KJHXApz-9b-pZfa1gHu3od7feTKPnSi9gBWXPkQ7i7gGT6CensO_9xynFUTduG-Iycj2JDlYsPUHTYl7Tg9Z4XDC2ar2jHrEXz74Vv1O_bztAMQv_ZbIG0yu8rk3vFaNoChP4bjGznwJ7BaVqV7Bsy6NFbOUUYWWeEcYoRZ7CIjpSxSLcIA3g4nm5se8txP3jjPB7DmORcCeD1bO-2APv65an1gUN4re53PRDOAjdlX0lL_9IKlq67qPAvJ6UQZUfS04-r8H4pMqJY6AOnZnHv1b4vwyvoMm9rTkCRRmnc4urSAfqbonDwkVSZCEcDmIBdzipYJf_5fwjfg9ujo8CA_2Bvvr8OdribG19m9gNXmx5V7SYFXU7zqxZvBt5vWqD9yJjvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4VLwJLdQS5cDBIo7txEaqEGpZtRQqDlTaW3BsBxW1yULSov40_h3jPHYXLeLWsy175Hnb428AdjAG8Rh5W5rG1lAhXUyNZxJzHkwWpNbOdpz-dJwenIgPUzldg9_jX5hQVjnaxM5Qu9qGO3JM0kWahBKO1-VQFfF5f_J29oOGBlLhoXXsptFLyJG_-oXZW7N7uI-sfpkkk_df9g7o0GCAWkwrWsq1ki41GGZgnGNTo2NelIYpJXwmkVRhmTK8iIVNjDZGeuekECbcFzBZqpLjujfgZsa5DtWE2TRbgvnrfuGhs0V7orn6GxkVnbYSoeXQsi9cCXCHT_0rb7Sd65vchY0hZiXveiG7B2u-ug93lpAMH0CztwB-7nhN6pKc-2-Govlr0WaRsd8OmaFenJ6Rwptz4urGExewe4e2W80bcnnaQ4dfhSUMLjK_xKTB5ToywqA_hJNrOe5HsF7VlX8CxPk0Ud5jLsac8N4YZrLEMyulLFIt4ghejSeb2wHsPPTcOMtHmOYFFyJ4MZ876yE-_jlrc2RQPqh5k8-FMoLt-SjqZ3h0MZWvL5o8i9HdsAwpetxzdbGHQuOppY5ABjbnQfG78ruq-W7aJtDAOUvzHkEXJ-BmCs8pgFFlIhYR7IxysaBolfCn_yV8G26hHuUfD4-PNuF2XwwTCuy2YL39eeGfYcTVFs872Sbw9bqV6Q-9kjmK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterisation+of+mega-voltage+electron+pencil+beam+dose+distributions%3A+viability+of+a+measurement-based+approach&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Barnes%2C+M+P&rft.au=Ebert%2C+M+A&rft.date=2008-03-01&rft.issn=0158-9938&rft.volume=31&rft.issue=1&rft.spage=10&rft_id=info:doi/10.1007%2FBF03178448&rft_id=info%3Apmid%2F18488959&rft.externalDocID=18488959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0158-9938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0158-9938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0158-9938&client=summon