Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond
In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEE...
Saved in:
Published in | Carbon (New York) Vol. 194; pp. 282 - 289 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.07.2022
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0008-6223 1873-3891 |
DOI | 10.1016/j.carbon.2022.04.005 |
Cover
Abstract | In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV− ratio with respect to substitutional nitrogen impurities (Ns0) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV− ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N2O) and with exceptionally high NV−/ Ns0 ratios of up to 25% can be achieved. This NV− creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV− density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity.
[Display omitted]
•Dense NV ensembles up to 800 ppb obtained on [113]-oriented diamond with N2O as a dopant.•Low temperature growth promotes nitrogen incorporation in the NV form.•NV−/ Ns0 creation yield measured by double electron-electron resonance.•Highest NV−/ Ns0 yield ever obtained in as-grown diamond of 25%. |
---|---|
AbstractList | In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV− ratio with respect to substitutional nitrogen impurities (N0s) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV− ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N2O) and with exceptionally high NV−/N0s ratios of up to 25% can be achieved. This NV− creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV− density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity. In this work we investigate the properties of negatively charged nitrogen-vacancy (NV⁻) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N₂O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV⁻ ratio with respect to substitutional nitrogen impurities (Ns0) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV⁻ ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N₂O) and with exceptionally high NV⁻/ Ns0 ratios of up to 25% can be achieved. This NV⁻ creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV⁻ density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity. In this work we investigate the properties of negatively charged nitrogen-vacancy (NV À) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N 2 O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV À ratio with respect to substitutional nitrogen impurities (N 0 s) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 C), dense NV À ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N 2 O) and with exceptionally high NV À / N 0 s ratios of up to 25% can be achieved. This NV À creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV À density, high creation yield, long coherence times of several tens of ms together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity. In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV− ratio with respect to substitutional nitrogen impurities (Ns0) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV− ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N2O) and with exceptionally high NV−/ Ns0 ratios of up to 25% can be achieved. This NV− creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV− density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity. [Display omitted] •Dense NV ensembles up to 800 ppb obtained on [113]-oriented diamond with N2O as a dopant.•Low temperature growth promotes nitrogen incorporation in the NV form.•NV−/ Ns0 creation yield measured by double electron-electron resonance.•Highest NV−/ Ns0 yield ever obtained in as-grown diamond of 25%. |
Author | Balasubramanian, Priyadharshini Osterkamp, Christian Rollo, Maxime Robert-Philip, Isabelle Jelezko, Fedor Achard, Jocelyn Jacques, Vincent Goldner, Philippe Tallaire, Alexandre Brinza, Ovidiu |
Author_xml | – sequence: 1 givenname: Priyadharshini orcidid: 0000-0003-3699-8864 surname: Balasubramanian fullname: Balasubramanian, Priyadharshini organization: Institute for Quantum Optics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081, Ulm, Germany – sequence: 2 givenname: Christian orcidid: 0000-0002-4893-027X surname: Osterkamp fullname: Osterkamp, Christian organization: Institute for Quantum Optics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081, Ulm, Germany – sequence: 3 givenname: Ovidiu surname: Brinza fullname: Brinza, Ovidiu organization: Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, Université Sorbonne Paris-Nord, Villetaneuse, 93430, France – sequence: 4 givenname: Maxime surname: Rollo fullname: Rollo, Maxime organization: Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, 34095, France – sequence: 5 givenname: Isabelle surname: Robert-Philip fullname: Robert-Philip, Isabelle organization: Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, 34095, France – sequence: 6 givenname: Philippe surname: Goldner fullname: Goldner, Philippe organization: Institut de Recherche de Chimie Paris, IRCP, Chimie ParisTech, PSL University, CNRS, Paris 75005, France – sequence: 7 givenname: Vincent surname: Jacques fullname: Jacques, Vincent organization: Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, 34095, France – sequence: 8 givenname: Fedor surname: Jelezko fullname: Jelezko, Fedor organization: Institute for Quantum Optics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081, Ulm, Germany – sequence: 9 givenname: Jocelyn surname: Achard fullname: Achard, Jocelyn organization: Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, Université Sorbonne Paris-Nord, Villetaneuse, 93430, France – sequence: 10 givenname: Alexandre orcidid: 0000-0002-0663-6662 surname: Tallaire fullname: Tallaire, Alexandre email: alexandre.tallaire@chimieparistech.psl.eu organization: Institut de Recherche de Chimie Paris, IRCP, Chimie ParisTech, PSL University, CNRS, Paris 75005, France |
BackLink | https://hal.science/hal-03865721$$DView record in HAL |
BookMark | eNqFkU1v1DAQhi1UJLYt_4CDJS5wSPBnEnNAqqpCkVbl0nLgYjn2ROtVYi-2d6X99yQEcegBTpZHzzv2zHOJLkIMgNAbSmpKaPNhX1uT-hhqRhiriagJkS_QhnYtr3in6AXaEEK6qmGMv0KXOe_nq-io2KAfd2FngoUJQsFxwGUH2CYwxceAzx5Gt1QfvmMIGaZ-hIx9wAbbHUzemnE845M5xGPCDg4x-wIOO2-mGNw1ejmYMcPrP-cVevp893h7X22_ffl6e7OtrCC0VJwOxkpgMMihI6x3hKneuL53vOeC2l5xI6igTjYgrSMSWiWUsMoMFFpH-BV6v_bdmVEfkp9MOutovL6_2eqlRnjXyJbRE53Zdyt7SPHnEXLRk88WxtEEiMesWUs7xhmXzYy-fYbu5zHDPIlmTaOkUo1cHhcrZVPMOcHw9weU6EWO3utVjl7kaCL0LGeOfXwWs778XnpJxo__C39awzBv9eQh6Ww9zBKdT2CLdtH_u8EvysOucw |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118689 crossref_primary_10_1063_5_0117951 crossref_primary_10_1063_5_0196719 crossref_primary_10_1364_OME_478924 crossref_primary_10_3390_photonics11020188 crossref_primary_10_1002_adfm_202309586 crossref_primary_10_1063_5_0148067 crossref_primary_10_1063_5_0101215 crossref_primary_10_1103_PhysRevMaterials_8_026204 crossref_primary_10_1007_s00339_023_06655_5 crossref_primary_10_3390_ma17061311 crossref_primary_10_1016_j_diamond_2024_111659 crossref_primary_10_1038_s41534_023_00724_6 crossref_primary_10_1103_PhysRevMaterials_8_026203 |
Cites_doi | 10.1021/acs.nanolett.9b01402 10.1103/PhysRevMaterials.3.113802 10.1016/j.carbon.2020.08.048 10.1103/PhysRevApplied.14.014009 10.1126/sciadv.1602429 10.1016/j.physrep.2013.02.001 10.1063/1.4915305 10.1063/1.4868128 10.1088/2633-4356/abd88a 10.1088/0034-4885/77/5/056503 10.1016/j.diamond.2006.02.005 10.1103/PhysRevB.94.024421 10.1038/ncomms1856 10.1016/j.diamond.2015.05.003 10.1016/j.diamond.2019.04.022 10.1063/1.4748280 10.5741/GEMS.46.1.4 10.1063/5.0079687 10.1126/science.aaw4329 10.1103/PhysRevB.86.121202 10.1016/j.crhy.2012.10.008 10.1021/acs.nanolett.9b02993 10.1063/1.4869103 10.1038/srep00382 10.1063/1.5004106 10.1038/nmat2420 10.1038/nature25781 10.1016/j.diamond.2013.11.002 10.1088/1361-6463/ab81d1 10.1103/PhysRevB.86.035201 10.1063/1.4904988 10.1103/PhysRevB.102.134210 10.1103/RevModPhys.92.015004 10.1038/nphys1969 10.1016/j.carbon.2021.12.032 10.1016/j.diamond.2014.11.010 10.1038/nature12373 10.1016/j.diamond.2006.09.012 10.1103/PhysRevB.100.174103 10.1016/j.diamond.2020.107794 10.1088/1367-2630/aaec58 10.1038/nature23656 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 2022 Attribution - NonCommercial - NoDerivatives |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2022 – notice: Attribution - NonCommercial - NoDerivatives |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.carbon.2022.04.005 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3891 |
EndPage | 289 |
ExternalDocumentID | oai_HAL_hal_03865721v1 10_1016_j_carbon_2022_04_005 S0008622322002755 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 8FD AFXIZ AGRNS BNPGV JG9 SSH 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c401t-31fac5e2ef5f802bd029badbbd3b341cb93a4141d56e5cd05e79494c9af1e7d03 |
IEDL.DBID | AIKHN |
ISSN | 0008-6223 |
IngestDate | Fri Sep 12 12:27:29 EDT 2025 Fri Sep 05 10:50:30 EDT 2025 Fri Jul 25 08:29:09 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Thu Sep 18 00:23:48 EDT 2025 Fri Feb 23 02:39:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NV yield CVD growth Colour centres in diamond Single crystal diamond Quantum technologies |
Language | English |
License | Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c401t-31fac5e2ef5f802bd029badbbd3b341cb93a4141d56e5cd05e79494c9af1e7d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3699-8864 0000-0002-4893-027X 0000-0002-0663-6662 0000-0002-1586-2194 0009-0007-0975-713X 0000-0001-7000-7230 0000-0001-5471-6061 0000-0001-8517-0911 |
OpenAccessLink | https://hal.science/hal-03865721 |
PQID | 2669599650 |
PQPubID | 2045273 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_03865721v1 proquest_miscellaneous_2718232356 proquest_journals_2669599650 crossref_primary_10_1016_j_carbon_2022_04_005 crossref_citationtrail_10_1016_j_carbon_2022_04_005 elsevier_sciencedirect_doi_10_1016_j_carbon_2022_04_005 |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 20220701 2022-07 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Achard, Silva, Brinza, Tallaire, Gicquel (bib24) 2007; 16 de Lange, van der Sar, Blok, Wang, Dobrovitski, Hanson (bib35) 2012; 2 Kucsko, Maurer, Yao, Kubo, Noh, Lo, Park, Lukin (bib2) 2013; 500 Tallaire, Collins, Charles, Achard, Sussmann, Gicquel, Newton, Edmonds, Cruddace (bib13) 2006; 15 Lesik, Plays, Tallaire, Achard, Brinza, William, Chipaux, Toraille, Debuisschert, Gicquel, Roch, Jacques (bib18) 2015; 56 Balasubramanian, Neumann, Twitchen, Markham, Kolesov, Mizuochi, Isoya, Achard, Beck, Tissler, Jacques, Hemmer, Jelezko, Wrachtrup (bib14) 2009; 8 Aude Craik, Kehayias, Greenspon, Zhang, Turner, Schloss, Bauch, Hart, Hu, Walsworth (bib43) 2020; 14 Miyazaki, Miyamoto, Makino, Kato, Yamasaki, Fukui, Doi, Tokuda, Hatano, Mizuochi (bib38) 2014; 105 Broadway, Johnson, Barson, Lillie, Dontschuk, McCloskey, Tsai, Teraji, Simpson, Stacey, McCallum, Bradby, Doherty, Hollenberg, Tetienne (bib5) 2019; 19 Rondin, Tetienne, Hingant, Roch, Maletinsky, Jacques (bib6) 2014; 77 Chouaieb, Martínez, Akhtar, Robert-Philip, Dréau, Brinza, Achard, Tallaire, Jacques (bib22) 2019; 96 Bar-Gill, Pham, Belthangady, Le Sage, Cappellaro, Maze, Lukin, Yacoby, Walsworth (bib29) 2012; 3 Kollarics, Simon, Bojtor, Koltai, Klujber, Szieberth, Márkus, Beke, Kamarás, Gali, Amirari, Berry, Boucher, Gavryushkin, Jeschke, Cleveland, Takahashi, Szirmai, Forró, Emmanouilidou, Singh, Holczer (bib32) 2022; 188 Zaitsev, Kazuchits, Kazuchits, Moe, Rusetsky, Korolik, Kitajima, Butler, Wang (bib39) 2020; 105 Lesik, Plisson, Toraille, Renaud, Occelli, Schmidt, Salord, Delobbe, Debuisschert, Rondin, Loubeyre, Roch (bib3) 2019; 366 Osterkamp, Balasubramanian, Wolff, Teraji, Nesladek, Jelezko (bib31) 2020 Kehayias, Turner, Trubko, Schloss, Hart, Wesson, Glenn, Walsworth (bib4) 2019; 100 Tallaire, Achard, Silva, Brinza, Gicquel (bib34) 2013; 14 Stepanov, Takahashi (bib37) 2016; 94 Michl, Teraji, Zaiser, Jakobi, Waldherr, Dolde, Neumann, Doherty, Manson, Isoya, Wrachtrup (bib19) 2014; 104 Eichhorn, McLellan, Bleszynski Jayich (bib36) 2019; 3 Tallaire, Lesik, Jacques, Pezzagna, Mille, Brinza, Meijer, Abel, Roch, Gicquel, Achard (bib17) 2015; 51 Pham, Bar-Gill, Le Sage, Belthangady, Stacey, Markham, Twitchen, Lukin, Walsworth (bib21) 2013; 86 Bauch, Singh, Lee, Hart, Schloss, Turner, Barry, Pham, Bar-Gill, Yelin, Walsworth (bib30) 2020; 102 Barry, Schloss, Bauch, Turner, Hart, Pham, Walsworth (bib7) 2020; 92 Lesik, Tetienne, Tallaire, Achard, Mille, Gicquel, Roch, Jacques (bib20) 2014; 104 Dolde, Fedder, Doherty, Nöbauer, Rempp, Balasubramanian, Wolf, Reinhard, Hollenberg, Jelezko, Wrachtrup (bib8) 2011; 7 Osterkamp, Lang, Scharpf, Müller, McGuinness, Thomas Diemant (bib16) 2015; 106 Tallaire, Mayer, Brinza, Pinault-Thaury, Debuisschert, Achard (bib25) 2017; 111 Shinei, Miyakawa, Ishii, Saiki, Onoda, Taniguchi, Ohshima, Teraji (bib44) 2021; 119 Doherty, Manson, Delaney, Jelezko, Wrachtrup, Hollenberg (bib1) 2013; 528 Glenn, Bucher, Lee, Lukin, Park, Walsworth (bib11) 2018; 555 Edmonds, D'Haenens-Johansson, Cruddace, Newton, Fu, Santori, Beausoleil, Twitchen, Markham (bib27) 2012; 86 Tetienne, Dontschuk, Broadway, Stacey, Simpson, Hollenberg (bib10) 2017; 3 Achard, Jacques, Tallaire (bib12) 2020; 53 Wang, Doering, Tower, Lu, Eaton-Magaña, Johnson, Emerson, Moses (bib40) 2010; 46 Luo, Lindner, Langer, Cimalla, Hahl, Schreyvogel, Onoda, Ishii, Ohshima, Wang, Simpson, Johnson, Capelli, Blinder, Jeske (bib28) 2021 Balasubramanian, Osterkamp, Chen, Chen, Teraji, Wu, Naydenov, Jelezko (bib33) 2019; 19 Manson, Hedges, Barson, Ahlefeldt, Doherty, Abe, Ohshima, Sellars (bib41) 2018; 20 Edmonds, Hart, Turner, Colard, Schloss, Olsson, Trubko, Markham, Rathmill, Horne-Smith, Lew, Manickam, Bruce, Kaup, Russo, DiMario, South, Hansen, Twitchen, Walsworth (bib23) 2021 Tallaire, Achard, Boussadi, Brinza, Gicquel, Kupriyanov, Palyanov, Sakr, Barjon (bib42) 2014; 41 Gross, Akhtar, Garcia, Martínez, Chouaieb, Garcia, Carrétéro, Barthélémy, Appel, Maletinsky, Kim, Chauleau, Jaouen, Viret, Bibes, Fusil, Jacques (bib9) 2017; 549 Tallaire, Brinza, Huillery, Delord, Pellet-Mary, Staacke, Abel, Pezzagna, Meijer, Touati, Binet, Ferrier, Goldner, Hetet, Achard (bib26) 2020; 170 Ohno, Joseph Heremans, Bassett, Myers, Toyli, Bleszynski Jayich, Palmstrom, Awschalom (bib15) 2012; 101 Michl (10.1016/j.carbon.2022.04.005_bib19) 2014; 104 Manson (10.1016/j.carbon.2022.04.005_bib41) 2018; 20 Kucsko (10.1016/j.carbon.2022.04.005_bib2) 2013; 500 de Lange (10.1016/j.carbon.2022.04.005_bib35) 2012; 2 Achard (10.1016/j.carbon.2022.04.005_bib12) 2020; 53 Tallaire (10.1016/j.carbon.2022.04.005_bib25) 2017; 111 Aude Craik (10.1016/j.carbon.2022.04.005_bib43) 2020; 14 Bauch (10.1016/j.carbon.2022.04.005_bib30) 2020; 102 Barry (10.1016/j.carbon.2022.04.005_bib7) 2020; 92 Achard (10.1016/j.carbon.2022.04.005_bib24) 2007; 16 Wang (10.1016/j.carbon.2022.04.005_bib40) 2010; 46 Shinei (10.1016/j.carbon.2022.04.005_bib44) 2021; 119 Glenn (10.1016/j.carbon.2022.04.005_bib11) 2018; 555 Eichhorn (10.1016/j.carbon.2022.04.005_bib36) 2019; 3 Tallaire (10.1016/j.carbon.2022.04.005_bib13) 2006; 15 Luo (10.1016/j.carbon.2022.04.005_bib28) 2021 Edmonds (10.1016/j.carbon.2022.04.005_bib27) 2012; 86 Pham (10.1016/j.carbon.2022.04.005_bib21) 2013; 86 Tallaire (10.1016/j.carbon.2022.04.005_bib42) 2014; 41 Broadway (10.1016/j.carbon.2022.04.005_bib5) 2019; 19 Osterkamp (10.1016/j.carbon.2022.04.005_bib16) 2015; 106 Tallaire (10.1016/j.carbon.2022.04.005_bib17) 2015; 51 Bar-Gill (10.1016/j.carbon.2022.04.005_bib29) 2012; 3 Kollarics (10.1016/j.carbon.2022.04.005_bib32) 2022; 188 Dolde (10.1016/j.carbon.2022.04.005_bib8) 2011; 7 Miyazaki (10.1016/j.carbon.2022.04.005_bib38) 2014; 105 Lesik (10.1016/j.carbon.2022.04.005_bib3) 2019; 366 Doherty (10.1016/j.carbon.2022.04.005_bib1) 2013; 528 Gross (10.1016/j.carbon.2022.04.005_bib9) 2017; 549 Ohno (10.1016/j.carbon.2022.04.005_bib15) 2012; 101 Osterkamp (10.1016/j.carbon.2022.04.005_bib31) 2020 Stepanov (10.1016/j.carbon.2022.04.005_bib37) 2016; 94 Tetienne (10.1016/j.carbon.2022.04.005_bib10) 2017; 3 Chouaieb (10.1016/j.carbon.2022.04.005_bib22) 2019; 96 Balasubramanian (10.1016/j.carbon.2022.04.005_bib33) 2019; 19 Rondin (10.1016/j.carbon.2022.04.005_bib6) 2014; 77 Tallaire (10.1016/j.carbon.2022.04.005_bib34) 2013; 14 Zaitsev (10.1016/j.carbon.2022.04.005_bib39) 2020; 105 Kehayias (10.1016/j.carbon.2022.04.005_bib4) 2019; 100 Balasubramanian (10.1016/j.carbon.2022.04.005_bib14) 2009; 8 Edmonds (10.1016/j.carbon.2022.04.005_bib23) 2021 Tallaire (10.1016/j.carbon.2022.04.005_bib26) 2020; 170 Lesik (10.1016/j.carbon.2022.04.005_bib18) 2015; 56 Lesik (10.1016/j.carbon.2022.04.005_bib20) 2014; 104 |
References_xml | – volume: 51 start-page: 55 year: 2015 end-page: 60 ident: bib17 article-title: Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers publication-title: Diam. Relat. Mater. – volume: 549 start-page: 252 year: 2017 end-page: 256 ident: bib9 article-title: Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer publication-title: Nature – volume: 20 start-page: 113037 year: 2018 ident: bib41 article-title: NV−–N+ pair centre in 1b diamond publication-title: New J. Phys. – volume: 77 year: 2014 ident: bib6 article-title: Magnetometry with nitrogen-vacancy defects in diamond publication-title: Rep. Prog. Phys. – volume: 105 start-page: 261601 year: 2014 ident: bib38 article-title: Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond publication-title: Appl. Phys. Lett. – volume: 96 start-page: 85 year: 2019 end-page: 89 ident: bib22 article-title: Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature publication-title: Diam. Relat. Mater. – volume: 3 year: 2017 ident: bib10 article-title: Quantum imaging of current flow in graphene publication-title: Sci. Adv. – volume: 111 start-page: 143101 year: 2017 ident: bib25 article-title: Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas publication-title: Appl. Phys. Lett. – volume: 170 start-page: 421 year: 2020 end-page: 429 ident: bib26 article-title: High NV density in a pink CVD diamond grown with N2O addition publication-title: Carbon – volume: 100 start-page: 174103 year: 2019 ident: bib4 article-title: Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers publication-title: Phys. Rev. B – volume: 8 start-page: 383 year: 2009 end-page: 387 ident: bib14 article-title: Ultralong spin coherence time in isotopically engineered diamond publication-title: Nat. Mater. – volume: 19 start-page: 4543 year: 2019 end-page: 4550 ident: bib5 article-title: Microscopic imaging of the stress tensor in diamond using in situ quantum sensors publication-title: Nano Lett. – volume: 366 start-page: 1359 year: 2019 end-page: 1362 ident: bib3 article-title: Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers publication-title: Science – volume: 86 year: 2012 ident: bib27 article-title: Production of oriented nitrogen-vacancy color centers in synthetic diamond publication-title: Phys. Rev. B – volume: 3 start-page: 113802 year: 2019 ident: bib36 article-title: Optimizing the formation of depth-confined nitrogen vacancy center spin ensembles in diamond for quantum sensing publication-title: Physical Review Materials – volume: 46 start-page: 4 year: 2010 end-page: 17 ident: bib40 article-title: Strongly colored pink CVD lab-grown diamonds publication-title: Gems and Gemmology – volume: 86 start-page: 121202 year: 2013 ident: bib21 article-title: Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond publication-title: Phys. Rev. B – volume: 14 year: 2020 ident: bib43 article-title: Microwave-assisted spectroscopy technique for studying charge state in nitrogen-vacancy ensembles in diamond publication-title: Phys. Rev. Applied. – volume: 528 start-page: 1 year: 2013 end-page: 45 ident: bib1 article-title: The nitrogen-vacancy colour centre in diamond publication-title: Phys. Rep. – volume: 188 start-page: 393 year: 2022 end-page: 400 ident: bib32 article-title: Ultrahigh nitrogen-vacancy center concentration in diamond publication-title: Carbon – volume: 119 start-page: 254001 year: 2021 ident: bib44 article-title: Equilibrium charge state of NV centers in diamond publication-title: Appl. Phys. Lett. – volume: 56 start-page: 47 year: 2015 end-page: 53 ident: bib18 article-title: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates publication-title: Diam. Relat. Mater. – year: 2021 ident: bib23 article-title: Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications publication-title: Mater. Quantum. Technol. – volume: 15 start-page: 1700 year: 2006 end-page: 1707 ident: bib13 article-title: Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition publication-title: Diam. Relat. Mater. – volume: 106 start-page: 113109 year: 2015 ident: bib16 article-title: Jürgen Behm, Boris Naydenov, Fedor Jelezko, Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF6 plasma treatment publication-title: Appl. Phys. Lett. – volume: 105 start-page: 107794 year: 2020 ident: bib39 article-title: Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress publication-title: Diam. Relat. Mater. – volume: 104 start-page: 113107 year: 2014 ident: bib20 article-title: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample publication-title: Appl. Phys. Lett. – volume: 16 start-page: 685 year: 2007 end-page: 689 ident: bib24 article-title: Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals publication-title: Diam. Relat. Mater. – volume: 555 start-page: 351 year: 2018 ident: bib11 article-title: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor publication-title: Nature – volume: 101 year: 2012 ident: bib15 article-title: Engineering shallow spins in diamond with nitrogen delta-doping publication-title: Appl. Phys. Lett. – volume: 104 start-page: 102407 year: 2014 ident: bib19 article-title: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces publication-title: Appl. Phys. Lett. – volume: 19 start-page: 6681 year: 2019 end-page: 6686 ident: bib33 article-title: Dc magnetometry with engineered nitrogen-vacancy spin ensembles in diamond publication-title: Nano Lett. – volume: 102 start-page: 134210 year: 2020 ident: bib30 article-title: Decoherence of ensembles of nitrogen-vacancy centers in diamond publication-title: Phys. Rev. B – year: 2021 ident: bib28 article-title: Creation of Nitrogen-Vacancy Centers in Chemical Vapor Deposition Diamond for Sensing Applications – volume: 94 year: 2016 ident: bib37 article-title: Determination of nitrogen spin concentration in diamond using double electron-electron resonance publication-title: Phys. Rev. B – volume: 92 year: 2020 ident: bib7 article-title: Sensitivity optimization for NV-diamond magnetometry publication-title: Rev. Mod. Phys. – volume: 500 start-page: 54 year: 2013 end-page: 58 ident: bib2 article-title: Nanometre-scale thermometry in a living cell publication-title: Nature – volume: 3 start-page: 858 year: 2012 ident: bib29 article-title: Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems publication-title: Nat. Commun. – volume: 2 start-page: 382 year: 2012 ident: bib35 article-title: Controlling the quantum dynamics of a mesoscopic spin bath in diamond publication-title: Sci. Rep. – year: 2020 ident: bib31 article-title: Benchmark for Synthesized Diamond Sensors Based on Isotopically Engineered Nitrogen-Vacancy Spin Ensembles for Magnetometry Applications, Advanced Quantum Technologies – volume: 53 year: 2020 ident: bib12 article-title: CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications publication-title: J. Phys. D Appl. Phys. – volume: 41 start-page: 34 year: 2014 end-page: 40 ident: bib42 article-title: High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates publication-title: Diam. Relat. Mater. – volume: 7 start-page: 459 year: 2011 end-page: 463 ident: bib8 article-title: Electric-field sensing using single diamond spins publication-title: Nat. Phys. – volume: 14 start-page: 169 year: 2013 end-page: 184 ident: bib34 article-title: Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges publication-title: Compt. Rendus Phys. – volume: 19 start-page: 4543 year: 2019 ident: 10.1016/j.carbon.2022.04.005_bib5 article-title: Microscopic imaging of the stress tensor in diamond using in situ quantum sensors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01402 – volume: 3 start-page: 113802 year: 2019 ident: 10.1016/j.carbon.2022.04.005_bib36 article-title: Optimizing the formation of depth-confined nitrogen vacancy center spin ensembles in diamond for quantum sensing publication-title: Physical Review Materials doi: 10.1103/PhysRevMaterials.3.113802 – volume: 170 start-page: 421 year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib26 article-title: High NV density in a pink CVD diamond grown with N2O addition publication-title: Carbon doi: 10.1016/j.carbon.2020.08.048 – volume: 14 year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib43 article-title: Microwave-assisted spectroscopy technique for studying charge state in nitrogen-vacancy ensembles in diamond publication-title: Phys. Rev. Applied. doi: 10.1103/PhysRevApplied.14.014009 – volume: 3 year: 2017 ident: 10.1016/j.carbon.2022.04.005_bib10 article-title: Quantum imaging of current flow in graphene publication-title: Sci. Adv. doi: 10.1126/sciadv.1602429 – volume: 528 start-page: 1 year: 2013 ident: 10.1016/j.carbon.2022.04.005_bib1 article-title: The nitrogen-vacancy colour centre in diamond publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.02.001 – volume: 106 start-page: 113109 year: 2015 ident: 10.1016/j.carbon.2022.04.005_bib16 article-title: Jürgen Behm, Boris Naydenov, Fedor Jelezko, Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF6 plasma treatment publication-title: Appl. Phys. Lett. doi: 10.1063/1.4915305 – volume: 104 start-page: 102407 year: 2014 ident: 10.1016/j.carbon.2022.04.005_bib19 article-title: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces publication-title: Appl. Phys. Lett. doi: 10.1063/1.4868128 – year: 2021 ident: 10.1016/j.carbon.2022.04.005_bib23 article-title: Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications publication-title: Mater. Quantum. Technol. doi: 10.1088/2633-4356/abd88a – volume: 77 year: 2014 ident: 10.1016/j.carbon.2022.04.005_bib6 article-title: Magnetometry with nitrogen-vacancy defects in diamond publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/77/5/056503 – volume: 15 start-page: 1700 year: 2006 ident: 10.1016/j.carbon.2022.04.005_bib13 article-title: Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2006.02.005 – volume: 94 year: 2016 ident: 10.1016/j.carbon.2022.04.005_bib37 article-title: Determination of nitrogen spin concentration in diamond using double electron-electron resonance publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.024421 – volume: 3 start-page: 858 year: 2012 ident: 10.1016/j.carbon.2022.04.005_bib29 article-title: Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems publication-title: Nat. Commun. doi: 10.1038/ncomms1856 – volume: 56 start-page: 47 year: 2015 ident: 10.1016/j.carbon.2022.04.005_bib18 article-title: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2015.05.003 – volume: 96 start-page: 85 year: 2019 ident: 10.1016/j.carbon.2022.04.005_bib22 article-title: Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2019.04.022 – volume: 101 year: 2012 ident: 10.1016/j.carbon.2022.04.005_bib15 article-title: Engineering shallow spins in diamond with nitrogen delta-doping publication-title: Appl. Phys. Lett. doi: 10.1063/1.4748280 – volume: 46 start-page: 4 year: 2010 ident: 10.1016/j.carbon.2022.04.005_bib40 article-title: Strongly colored pink CVD lab-grown diamonds publication-title: Gems and Gemmology doi: 10.5741/GEMS.46.1.4 – volume: 119 start-page: 254001 year: 2021 ident: 10.1016/j.carbon.2022.04.005_bib44 article-title: Equilibrium charge state of NV centers in diamond publication-title: Appl. Phys. Lett. doi: 10.1063/5.0079687 – volume: 366 start-page: 1359 year: 2019 ident: 10.1016/j.carbon.2022.04.005_bib3 article-title: Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers publication-title: Science doi: 10.1126/science.aaw4329 – volume: 86 start-page: 121202 year: 2013 ident: 10.1016/j.carbon.2022.04.005_bib21 article-title: Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.121202 – volume: 14 start-page: 169 year: 2013 ident: 10.1016/j.carbon.2022.04.005_bib34 article-title: Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges publication-title: Compt. Rendus Phys. doi: 10.1016/j.crhy.2012.10.008 – volume: 19 start-page: 6681 year: 2019 ident: 10.1016/j.carbon.2022.04.005_bib33 article-title: Dc magnetometry with engineered nitrogen-vacancy spin ensembles in diamond publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02993 – year: 2021 ident: 10.1016/j.carbon.2022.04.005_bib28 – volume: 104 start-page: 113107 year: 2014 ident: 10.1016/j.carbon.2022.04.005_bib20 article-title: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample publication-title: Appl. Phys. Lett. doi: 10.1063/1.4869103 – volume: 2 start-page: 382 year: 2012 ident: 10.1016/j.carbon.2022.04.005_bib35 article-title: Controlling the quantum dynamics of a mesoscopic spin bath in diamond publication-title: Sci. Rep. doi: 10.1038/srep00382 – volume: 111 start-page: 143101 year: 2017 ident: 10.1016/j.carbon.2022.04.005_bib25 article-title: Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas publication-title: Appl. Phys. Lett. doi: 10.1063/1.5004106 – year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib31 – volume: 8 start-page: 383 year: 2009 ident: 10.1016/j.carbon.2022.04.005_bib14 article-title: Ultralong spin coherence time in isotopically engineered diamond publication-title: Nat. Mater. doi: 10.1038/nmat2420 – volume: 555 start-page: 351 year: 2018 ident: 10.1016/j.carbon.2022.04.005_bib11 article-title: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor publication-title: Nature doi: 10.1038/nature25781 – volume: 41 start-page: 34 year: 2014 ident: 10.1016/j.carbon.2022.04.005_bib42 article-title: High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2013.11.002 – volume: 53 year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib12 article-title: CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ab81d1 – volume: 86 year: 2012 ident: 10.1016/j.carbon.2022.04.005_bib27 article-title: Production of oriented nitrogen-vacancy color centers in synthetic diamond publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.035201 – volume: 105 start-page: 261601 year: 2014 ident: 10.1016/j.carbon.2022.04.005_bib38 article-title: Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904988 – volume: 102 start-page: 134210 year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib30 article-title: Decoherence of ensembles of nitrogen-vacancy centers in diamond publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.134210 – volume: 92 year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib7 article-title: Sensitivity optimization for NV-diamond magnetometry publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.92.015004 – volume: 7 start-page: 459 year: 2011 ident: 10.1016/j.carbon.2022.04.005_bib8 article-title: Electric-field sensing using single diamond spins publication-title: Nat. Phys. doi: 10.1038/nphys1969 – volume: 188 start-page: 393 year: 2022 ident: 10.1016/j.carbon.2022.04.005_bib32 article-title: Ultrahigh nitrogen-vacancy center concentration in diamond publication-title: Carbon doi: 10.1016/j.carbon.2021.12.032 – volume: 51 start-page: 55 year: 2015 ident: 10.1016/j.carbon.2022.04.005_bib17 article-title: Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2014.11.010 – volume: 500 start-page: 54 year: 2013 ident: 10.1016/j.carbon.2022.04.005_bib2 article-title: Nanometre-scale thermometry in a living cell publication-title: Nature doi: 10.1038/nature12373 – volume: 16 start-page: 685 year: 2007 ident: 10.1016/j.carbon.2022.04.005_bib24 article-title: Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2006.09.012 – volume: 100 start-page: 174103 year: 2019 ident: 10.1016/j.carbon.2022.04.005_bib4 article-title: Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.174103 – volume: 105 start-page: 107794 year: 2020 ident: 10.1016/j.carbon.2022.04.005_bib39 article-title: Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2020.107794 – volume: 20 start-page: 113037 year: 2018 ident: 10.1016/j.carbon.2022.04.005_bib41 article-title: NV−–N+ pair centre in 1b diamond publication-title: New J. Phys. doi: 10.1088/1367-2630/aaec58 – volume: 549 start-page: 252 year: 2017 ident: 10.1016/j.carbon.2022.04.005_bib9 article-title: Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer publication-title: Nature doi: 10.1038/nature23656 |
SSID | ssj0004814 |
Score | 2.5000205 |
Snippet | In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour... In this work we investigate the properties of negatively charged nitrogen-vacancy (NV⁻) centres created during single crystal diamond growth by chemical vapour... In this work we investigate the properties of negatively charged nitrogen-vacancy (NV À) centres created during single crystal diamond growth by chemical... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 282 |
SubjectTerms | Chemical vapor deposition Colour centres in diamond Condensed Matter Crystal growth Crystal structure crystals CVD growth Diamonds Electron spin Electrons Figure of merit Lattice vacancies materials Nitrogen Nitrous oxide NV yield Physics Quantum sensors Quantum technologies Single crystal diamond Single crystals Substrates technology temperature vapors |
Title | Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond |
URI | https://dx.doi.org/10.1016/j.carbon.2022.04.005 https://www.proquest.com/docview/2669599650 https://www.proquest.com/docview/2718232356 https://hal.science/hal-03865721 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-a9GF7Ges-WNauaGOvXm1LcqzHEFrSbsvTOspehD5pRuaENi30pX_77mw5Y2NQ6JOxLGFxd7o7Sb-7A_goaiVtxcssCDq6sejDWWXrjFfWoXmujGiL9n2dV7NzcXYhL3Zg2sfCEKwy6f5Op7faOrUcJWoerRcLivEldxw9AsIZjKUcwG6J1r4ewu7k9PNs_ic8su5SfNNNPw3oI-hamJczV3ZFiVDLss15SnXs_m-hBpcElfxHY7dm6OQ5PEv-I5t0U9yDndC8gCfTvmzbS_hx3FwSJ-nUj60iQweP9Z4huyO8GrXOvzPcv4Zfdhmu2aJhhrmUOWB5x27NGn_DfGgRXcEzlCGUVv8Kzk-Ov01nWSqgkDncNm1Qv0bjZChDlLHOS-vzUlnjrfXcovVyVnEjClF4WQXpfC4Drk4lnDKxCGOf89cwbFZNeANMqMpJMRYi4kP5WMvI8-gLJ3lV1DaOgPdE0y5lF6ciF0vdw8h-6o7Umkitc6GR1CPItqPWXXaNB_qPe37ov6REowF4YOQHZN_2J5RUezb5oqktp7KnuBG-LUZw0HNXp6V8rdGDUZTDRuYjeL_9jEylmxXThNUN9kELj4LIZfX20TPch6f01kGBD2C4uboJ79Dh2dhDGHy6Lw6TWP8GucD-IQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_0fLAvpdqWXrWalr4u7m6Svc3jcShrPe9Ji_Ql5BOvXPcOPQX_e2f240pLQejTQjYhYWYy80syHwBfRamkLXieBEFXNxYxnFW2THhhHZrnwoimaN_lrKiuxbcbebMFkz4WhtwqO93f6vRGW3ctJx01T1bzOcX4EhxHREB-BiMpt2FHUFHrAeyMzy-q2e_wyLJN8U0v_TSgj6Br3LycubNLSoSa503OU6pj928LtX1LrpJ_aezGDJ29gdcdfmTjdol7sBXqfdid9GXb3sKP0_qWOEm3fmwZGQI81iND9kT-atQ6-87w_Bp-2UW4Z_OaGea6zAGLJ_ZoVjgN86Hx6AqeoQyhtPp3cH12ejWpkq6AQuLw2LRG_RqNkyEPUcYyza1Pc2WNt9Zzi9bLWcUNEizzsgjS-VQG3J1KOGViFkY-5e9hUC_r8AGYUIWTYiRExI_ysZSRp9FnTvIiK20cAu-Jpl2XXZyKXCx070b2U7ek1kRqnQqNpB5Cshm1arNrvNB_1PND_yElGg3ACyO_IPs2k1BS7Wo81dSWUtlTPAg_ZkM47Lmru618rxHBKMphI9MhfN78RqbSy4qpw_IB-6CFR0Hksvj43ys8ht3q6nKqp-eziwN4RX9at-BDGKzvHsInBD9re9QJ9zO2agAW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+creation+yield+of+NV+ensembles+in+a+chemically+vapour+deposited+diamond&rft.jtitle=Carbon+%28New+York%29&rft.au=Balasubramanian%2C+Priyadharshini&rft.au=Osterkamp%2C+Christian&rft.au=Brinza%2C+Ovidiu&rft.au=Rollo%2C+Maxime&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=194&rft.spage=282&rft_id=info:doi/10.1016%2Fj.carbon.2022.04.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |