Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond

In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEE...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 194; pp. 282 - 289
Main Authors Balasubramanian, Priyadharshini, Osterkamp, Christian, Brinza, Ovidiu, Rollo, Maxime, Robert-Philip, Isabelle, Goldner, Philippe, Jacques, Vincent, Jelezko, Fedor, Achard, Jocelyn, Tallaire, Alexandre
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.07.2022
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0008-6223
1873-3891
DOI10.1016/j.carbon.2022.04.005

Cover

Abstract In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV− ratio with respect to substitutional nitrogen impurities (Ns0) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV− ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N2O) and with exceptionally high NV−/ Ns0 ratios of up to 25% can be achieved. This NV− creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV− density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity. [Display omitted] •Dense NV ensembles up to 800 ppb obtained on [113]-oriented diamond with N2O as a dopant.•Low temperature growth promotes nitrogen incorporation in the NV form.•NV−/ Ns0 creation yield measured by double electron-electron resonance.•Highest NV−/ Ns0 yield ever obtained in as-grown diamond of 25%.
AbstractList In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV− ratio with respect to substitutional nitrogen impurities (N0s) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV− ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N2O) and with exceptionally high NV−/N0s ratios of up to 25% can be achieved. This NV− creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV− density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity.
In this work we investigate the properties of negatively charged nitrogen-vacancy (NV⁻) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N₂O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV⁻ ratio with respect to substitutional nitrogen impurities (Ns0) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV⁻ ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N₂O) and with exceptionally high NV⁻/ Ns0 ratios of up to 25% can be achieved. This NV⁻ creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV⁻ density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity.
In this work we investigate the properties of negatively charged nitrogen-vacancy (NV À) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N 2 O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV À ratio with respect to substitutional nitrogen impurities (N 0 s) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 C), dense NV À ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N 2 O) and with exceptionally high NV À / N 0 s ratios of up to 25% can be achieved. This NV À creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV À density, high creation yield, long coherence times of several tens of ms together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity.
In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour deposition (CVD) on [113]-oriented substrates and with N2O as a dopant gas. The use of spin echo and double electron-electron resonance (DEER) allows us to assess NV− ratio with respect to substitutional nitrogen impurities (Ns0) incorporated during growth, a critical figure of merit for quantum technologies. We demonstrate that, at moderate growth temperatures (800 °C), dense NV− ensembles of several hundreds of ppb (800 ppb for 50 ppm of added N2O) and with exceptionally high NV−/ Ns0 ratios of up to 25% can be achieved. This NV− creation yield is higher by at least an order of magnitude to that typically obtained on standard [100]-grown diamonds and comparable to the best values reported for electron-irradiated diamonds. The material obtained here thus advantageously combines a high NV− density, high creation yield, long coherence times of several tens of μs together with a partial preferential orientation. These are highly desirable requirements for diamond-based quantum sensors that may spur new developments with this crystalline orientation leading to improved performance and sensitivity. [Display omitted] •Dense NV ensembles up to 800 ppb obtained on [113]-oriented diamond with N2O as a dopant.•Low temperature growth promotes nitrogen incorporation in the NV form.•NV−/ Ns0 creation yield measured by double electron-electron resonance.•Highest NV−/ Ns0 yield ever obtained in as-grown diamond of 25%.
Author Balasubramanian, Priyadharshini
Osterkamp, Christian
Rollo, Maxime
Robert-Philip, Isabelle
Jelezko, Fedor
Achard, Jocelyn
Jacques, Vincent
Goldner, Philippe
Tallaire, Alexandre
Brinza, Ovidiu
Author_xml – sequence: 1
  givenname: Priyadharshini
  orcidid: 0000-0003-3699-8864
  surname: Balasubramanian
  fullname: Balasubramanian, Priyadharshini
  organization: Institute for Quantum Optics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081, Ulm, Germany
– sequence: 2
  givenname: Christian
  orcidid: 0000-0002-4893-027X
  surname: Osterkamp
  fullname: Osterkamp, Christian
  organization: Institute for Quantum Optics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081, Ulm, Germany
– sequence: 3
  givenname: Ovidiu
  surname: Brinza
  fullname: Brinza, Ovidiu
  organization: Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, Université Sorbonne Paris-Nord, Villetaneuse, 93430, France
– sequence: 4
  givenname: Maxime
  surname: Rollo
  fullname: Rollo, Maxime
  organization: Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, 34095, France
– sequence: 5
  givenname: Isabelle
  surname: Robert-Philip
  fullname: Robert-Philip, Isabelle
  organization: Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, 34095, France
– sequence: 6
  givenname: Philippe
  surname: Goldner
  fullname: Goldner, Philippe
  organization: Institut de Recherche de Chimie Paris, IRCP, Chimie ParisTech, PSL University, CNRS, Paris 75005, France
– sequence: 7
  givenname: Vincent
  surname: Jacques
  fullname: Jacques, Vincent
  organization: Laboratoire Charles Coulomb, Université de Montpellier, CNRS, Montpellier, 34095, France
– sequence: 8
  givenname: Fedor
  surname: Jelezko
  fullname: Jelezko, Fedor
  organization: Institute for Quantum Optics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, 89081, Ulm, Germany
– sequence: 9
  givenname: Jocelyn
  surname: Achard
  fullname: Achard, Jocelyn
  organization: Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, Université Sorbonne Paris-Nord, Villetaneuse, 93430, France
– sequence: 10
  givenname: Alexandre
  orcidid: 0000-0002-0663-6662
  surname: Tallaire
  fullname: Tallaire, Alexandre
  email: alexandre.tallaire@chimieparistech.psl.eu
  organization: Institut de Recherche de Chimie Paris, IRCP, Chimie ParisTech, PSL University, CNRS, Paris 75005, France
BackLink https://hal.science/hal-03865721$$DView record in HAL
BookMark eNqFkU1v1DAQhi1UJLYt_4CDJS5wSPBnEnNAqqpCkVbl0nLgYjn2ROtVYi-2d6X99yQEcegBTpZHzzv2zHOJLkIMgNAbSmpKaPNhX1uT-hhqRhiriagJkS_QhnYtr3in6AXaEEK6qmGMv0KXOe_nq-io2KAfd2FngoUJQsFxwGUH2CYwxceAzx5Gt1QfvmMIGaZ-hIx9wAbbHUzemnE845M5xGPCDg4x-wIOO2-mGNw1ejmYMcPrP-cVevp893h7X22_ffl6e7OtrCC0VJwOxkpgMMihI6x3hKneuL53vOeC2l5xI6igTjYgrSMSWiWUsMoMFFpH-BV6v_bdmVEfkp9MOutovL6_2eqlRnjXyJbRE53Zdyt7SPHnEXLRk88WxtEEiMesWUs7xhmXzYy-fYbu5zHDPIlmTaOkUo1cHhcrZVPMOcHw9weU6EWO3utVjl7kaCL0LGeOfXwWs778XnpJxo__C39awzBv9eQh6Ww9zBKdT2CLdtH_u8EvysOucw
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118689
crossref_primary_10_1063_5_0117951
crossref_primary_10_1063_5_0196719
crossref_primary_10_1364_OME_478924
crossref_primary_10_3390_photonics11020188
crossref_primary_10_1002_adfm_202309586
crossref_primary_10_1063_5_0148067
crossref_primary_10_1063_5_0101215
crossref_primary_10_1103_PhysRevMaterials_8_026204
crossref_primary_10_1007_s00339_023_06655_5
crossref_primary_10_3390_ma17061311
crossref_primary_10_1016_j_diamond_2024_111659
crossref_primary_10_1038_s41534_023_00724_6
crossref_primary_10_1103_PhysRevMaterials_8_026203
Cites_doi 10.1021/acs.nanolett.9b01402
10.1103/PhysRevMaterials.3.113802
10.1016/j.carbon.2020.08.048
10.1103/PhysRevApplied.14.014009
10.1126/sciadv.1602429
10.1016/j.physrep.2013.02.001
10.1063/1.4915305
10.1063/1.4868128
10.1088/2633-4356/abd88a
10.1088/0034-4885/77/5/056503
10.1016/j.diamond.2006.02.005
10.1103/PhysRevB.94.024421
10.1038/ncomms1856
10.1016/j.diamond.2015.05.003
10.1016/j.diamond.2019.04.022
10.1063/1.4748280
10.5741/GEMS.46.1.4
10.1063/5.0079687
10.1126/science.aaw4329
10.1103/PhysRevB.86.121202
10.1016/j.crhy.2012.10.008
10.1021/acs.nanolett.9b02993
10.1063/1.4869103
10.1038/srep00382
10.1063/1.5004106
10.1038/nmat2420
10.1038/nature25781
10.1016/j.diamond.2013.11.002
10.1088/1361-6463/ab81d1
10.1103/PhysRevB.86.035201
10.1063/1.4904988
10.1103/PhysRevB.102.134210
10.1103/RevModPhys.92.015004
10.1038/nphys1969
10.1016/j.carbon.2021.12.032
10.1016/j.diamond.2014.11.010
10.1038/nature12373
10.1016/j.diamond.2006.09.012
10.1103/PhysRevB.100.174103
10.1016/j.diamond.2020.107794
10.1088/1367-2630/aaec58
10.1038/nature23656
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 2022
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2022
– notice: Attribution - NonCommercial - NoDerivatives
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
1XC
VOOES
DOI 10.1016/j.carbon.2022.04.005
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 289
ExternalDocumentID oai_HAL_hal_03865721v1
10_1016_j_carbon_2022_04_005
S0008622322002755
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
8FD
AFXIZ
AGRNS
BNPGV
JG9
SSH
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c401t-31fac5e2ef5f802bd029badbbd3b341cb93a4141d56e5cd05e79494c9af1e7d03
IEDL.DBID AIKHN
ISSN 0008-6223
IngestDate Fri Sep 12 12:27:29 EDT 2025
Fri Sep 05 10:50:30 EDT 2025
Fri Jul 25 08:29:09 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Thu Sep 18 00:23:48 EDT 2025
Fri Feb 23 02:39:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NV yield
CVD growth
Colour centres in diamond
Single crystal diamond
Quantum technologies
Language English
License Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-31fac5e2ef5f802bd029badbbd3b341cb93a4141d56e5cd05e79494c9af1e7d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3699-8864
0000-0002-4893-027X
0000-0002-0663-6662
0000-0002-1586-2194
0009-0007-0975-713X
0000-0001-7000-7230
0000-0001-5471-6061
0000-0001-8517-0911
OpenAccessLink https://hal.science/hal-03865721
PQID 2669599650
PQPubID 2045273
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_03865721v1
proquest_miscellaneous_2718232356
proquest_journals_2669599650
crossref_primary_10_1016_j_carbon_2022_04_005
crossref_citationtrail_10_1016_j_carbon_2022_04_005
elsevier_sciencedirect_doi_10_1016_j_carbon_2022_04_005
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
2022-07
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Achard, Silva, Brinza, Tallaire, Gicquel (bib24) 2007; 16
de Lange, van der Sar, Blok, Wang, Dobrovitski, Hanson (bib35) 2012; 2
Kucsko, Maurer, Yao, Kubo, Noh, Lo, Park, Lukin (bib2) 2013; 500
Tallaire, Collins, Charles, Achard, Sussmann, Gicquel, Newton, Edmonds, Cruddace (bib13) 2006; 15
Lesik, Plays, Tallaire, Achard, Brinza, William, Chipaux, Toraille, Debuisschert, Gicquel, Roch, Jacques (bib18) 2015; 56
Balasubramanian, Neumann, Twitchen, Markham, Kolesov, Mizuochi, Isoya, Achard, Beck, Tissler, Jacques, Hemmer, Jelezko, Wrachtrup (bib14) 2009; 8
Aude Craik, Kehayias, Greenspon, Zhang, Turner, Schloss, Bauch, Hart, Hu, Walsworth (bib43) 2020; 14
Miyazaki, Miyamoto, Makino, Kato, Yamasaki, Fukui, Doi, Tokuda, Hatano, Mizuochi (bib38) 2014; 105
Broadway, Johnson, Barson, Lillie, Dontschuk, McCloskey, Tsai, Teraji, Simpson, Stacey, McCallum, Bradby, Doherty, Hollenberg, Tetienne (bib5) 2019; 19
Rondin, Tetienne, Hingant, Roch, Maletinsky, Jacques (bib6) 2014; 77
Chouaieb, Martínez, Akhtar, Robert-Philip, Dréau, Brinza, Achard, Tallaire, Jacques (bib22) 2019; 96
Bar-Gill, Pham, Belthangady, Le Sage, Cappellaro, Maze, Lukin, Yacoby, Walsworth (bib29) 2012; 3
Kollarics, Simon, Bojtor, Koltai, Klujber, Szieberth, Márkus, Beke, Kamarás, Gali, Amirari, Berry, Boucher, Gavryushkin, Jeschke, Cleveland, Takahashi, Szirmai, Forró, Emmanouilidou, Singh, Holczer (bib32) 2022; 188
Zaitsev, Kazuchits, Kazuchits, Moe, Rusetsky, Korolik, Kitajima, Butler, Wang (bib39) 2020; 105
Lesik, Plisson, Toraille, Renaud, Occelli, Schmidt, Salord, Delobbe, Debuisschert, Rondin, Loubeyre, Roch (bib3) 2019; 366
Osterkamp, Balasubramanian, Wolff, Teraji, Nesladek, Jelezko (bib31) 2020
Kehayias, Turner, Trubko, Schloss, Hart, Wesson, Glenn, Walsworth (bib4) 2019; 100
Tallaire, Achard, Silva, Brinza, Gicquel (bib34) 2013; 14
Stepanov, Takahashi (bib37) 2016; 94
Michl, Teraji, Zaiser, Jakobi, Waldherr, Dolde, Neumann, Doherty, Manson, Isoya, Wrachtrup (bib19) 2014; 104
Eichhorn, McLellan, Bleszynski Jayich (bib36) 2019; 3
Tallaire, Lesik, Jacques, Pezzagna, Mille, Brinza, Meijer, Abel, Roch, Gicquel, Achard (bib17) 2015; 51
Pham, Bar-Gill, Le Sage, Belthangady, Stacey, Markham, Twitchen, Lukin, Walsworth (bib21) 2013; 86
Bauch, Singh, Lee, Hart, Schloss, Turner, Barry, Pham, Bar-Gill, Yelin, Walsworth (bib30) 2020; 102
Barry, Schloss, Bauch, Turner, Hart, Pham, Walsworth (bib7) 2020; 92
Lesik, Tetienne, Tallaire, Achard, Mille, Gicquel, Roch, Jacques (bib20) 2014; 104
Dolde, Fedder, Doherty, Nöbauer, Rempp, Balasubramanian, Wolf, Reinhard, Hollenberg, Jelezko, Wrachtrup (bib8) 2011; 7
Osterkamp, Lang, Scharpf, Müller, McGuinness, Thomas Diemant (bib16) 2015; 106
Tallaire, Mayer, Brinza, Pinault-Thaury, Debuisschert, Achard (bib25) 2017; 111
Shinei, Miyakawa, Ishii, Saiki, Onoda, Taniguchi, Ohshima, Teraji (bib44) 2021; 119
Doherty, Manson, Delaney, Jelezko, Wrachtrup, Hollenberg (bib1) 2013; 528
Glenn, Bucher, Lee, Lukin, Park, Walsworth (bib11) 2018; 555
Edmonds, D'Haenens-Johansson, Cruddace, Newton, Fu, Santori, Beausoleil, Twitchen, Markham (bib27) 2012; 86
Tetienne, Dontschuk, Broadway, Stacey, Simpson, Hollenberg (bib10) 2017; 3
Achard, Jacques, Tallaire (bib12) 2020; 53
Wang, Doering, Tower, Lu, Eaton-Magaña, Johnson, Emerson, Moses (bib40) 2010; 46
Luo, Lindner, Langer, Cimalla, Hahl, Schreyvogel, Onoda, Ishii, Ohshima, Wang, Simpson, Johnson, Capelli, Blinder, Jeske (bib28) 2021
Balasubramanian, Osterkamp, Chen, Chen, Teraji, Wu, Naydenov, Jelezko (bib33) 2019; 19
Manson, Hedges, Barson, Ahlefeldt, Doherty, Abe, Ohshima, Sellars (bib41) 2018; 20
Edmonds, Hart, Turner, Colard, Schloss, Olsson, Trubko, Markham, Rathmill, Horne-Smith, Lew, Manickam, Bruce, Kaup, Russo, DiMario, South, Hansen, Twitchen, Walsworth (bib23) 2021
Tallaire, Achard, Boussadi, Brinza, Gicquel, Kupriyanov, Palyanov, Sakr, Barjon (bib42) 2014; 41
Gross, Akhtar, Garcia, Martínez, Chouaieb, Garcia, Carrétéro, Barthélémy, Appel, Maletinsky, Kim, Chauleau, Jaouen, Viret, Bibes, Fusil, Jacques (bib9) 2017; 549
Tallaire, Brinza, Huillery, Delord, Pellet-Mary, Staacke, Abel, Pezzagna, Meijer, Touati, Binet, Ferrier, Goldner, Hetet, Achard (bib26) 2020; 170
Ohno, Joseph Heremans, Bassett, Myers, Toyli, Bleszynski Jayich, Palmstrom, Awschalom (bib15) 2012; 101
Michl (10.1016/j.carbon.2022.04.005_bib19) 2014; 104
Manson (10.1016/j.carbon.2022.04.005_bib41) 2018; 20
Kucsko (10.1016/j.carbon.2022.04.005_bib2) 2013; 500
de Lange (10.1016/j.carbon.2022.04.005_bib35) 2012; 2
Achard (10.1016/j.carbon.2022.04.005_bib12) 2020; 53
Tallaire (10.1016/j.carbon.2022.04.005_bib25) 2017; 111
Aude Craik (10.1016/j.carbon.2022.04.005_bib43) 2020; 14
Bauch (10.1016/j.carbon.2022.04.005_bib30) 2020; 102
Barry (10.1016/j.carbon.2022.04.005_bib7) 2020; 92
Achard (10.1016/j.carbon.2022.04.005_bib24) 2007; 16
Wang (10.1016/j.carbon.2022.04.005_bib40) 2010; 46
Shinei (10.1016/j.carbon.2022.04.005_bib44) 2021; 119
Glenn (10.1016/j.carbon.2022.04.005_bib11) 2018; 555
Eichhorn (10.1016/j.carbon.2022.04.005_bib36) 2019; 3
Tallaire (10.1016/j.carbon.2022.04.005_bib13) 2006; 15
Luo (10.1016/j.carbon.2022.04.005_bib28) 2021
Edmonds (10.1016/j.carbon.2022.04.005_bib27) 2012; 86
Pham (10.1016/j.carbon.2022.04.005_bib21) 2013; 86
Tallaire (10.1016/j.carbon.2022.04.005_bib42) 2014; 41
Broadway (10.1016/j.carbon.2022.04.005_bib5) 2019; 19
Osterkamp (10.1016/j.carbon.2022.04.005_bib16) 2015; 106
Tallaire (10.1016/j.carbon.2022.04.005_bib17) 2015; 51
Bar-Gill (10.1016/j.carbon.2022.04.005_bib29) 2012; 3
Kollarics (10.1016/j.carbon.2022.04.005_bib32) 2022; 188
Dolde (10.1016/j.carbon.2022.04.005_bib8) 2011; 7
Miyazaki (10.1016/j.carbon.2022.04.005_bib38) 2014; 105
Lesik (10.1016/j.carbon.2022.04.005_bib3) 2019; 366
Doherty (10.1016/j.carbon.2022.04.005_bib1) 2013; 528
Gross (10.1016/j.carbon.2022.04.005_bib9) 2017; 549
Ohno (10.1016/j.carbon.2022.04.005_bib15) 2012; 101
Osterkamp (10.1016/j.carbon.2022.04.005_bib31) 2020
Stepanov (10.1016/j.carbon.2022.04.005_bib37) 2016; 94
Tetienne (10.1016/j.carbon.2022.04.005_bib10) 2017; 3
Chouaieb (10.1016/j.carbon.2022.04.005_bib22) 2019; 96
Balasubramanian (10.1016/j.carbon.2022.04.005_bib33) 2019; 19
Rondin (10.1016/j.carbon.2022.04.005_bib6) 2014; 77
Tallaire (10.1016/j.carbon.2022.04.005_bib34) 2013; 14
Zaitsev (10.1016/j.carbon.2022.04.005_bib39) 2020; 105
Kehayias (10.1016/j.carbon.2022.04.005_bib4) 2019; 100
Balasubramanian (10.1016/j.carbon.2022.04.005_bib14) 2009; 8
Edmonds (10.1016/j.carbon.2022.04.005_bib23) 2021
Tallaire (10.1016/j.carbon.2022.04.005_bib26) 2020; 170
Lesik (10.1016/j.carbon.2022.04.005_bib18) 2015; 56
Lesik (10.1016/j.carbon.2022.04.005_bib20) 2014; 104
References_xml – volume: 51
  start-page: 55
  year: 2015
  end-page: 60
  ident: bib17
  article-title: Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers
  publication-title: Diam. Relat. Mater.
– volume: 549
  start-page: 252
  year: 2017
  end-page: 256
  ident: bib9
  article-title: Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
  publication-title: Nature
– volume: 20
  start-page: 113037
  year: 2018
  ident: bib41
  article-title: NV−–N+ pair centre in 1b diamond
  publication-title: New J. Phys.
– volume: 77
  year: 2014
  ident: bib6
  article-title: Magnetometry with nitrogen-vacancy defects in diamond
  publication-title: Rep. Prog. Phys.
– volume: 105
  start-page: 261601
  year: 2014
  ident: bib38
  article-title: Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 85
  year: 2019
  end-page: 89
  ident: bib22
  article-title: Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature
  publication-title: Diam. Relat. Mater.
– volume: 3
  year: 2017
  ident: bib10
  article-title: Quantum imaging of current flow in graphene
  publication-title: Sci. Adv.
– volume: 111
  start-page: 143101
  year: 2017
  ident: bib25
  article-title: Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas
  publication-title: Appl. Phys. Lett.
– volume: 170
  start-page: 421
  year: 2020
  end-page: 429
  ident: bib26
  article-title: High NV density in a pink CVD diamond grown with N2O addition
  publication-title: Carbon
– volume: 100
  start-page: 174103
  year: 2019
  ident: bib4
  article-title: Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 383
  year: 2009
  end-page: 387
  ident: bib14
  article-title: Ultralong spin coherence time in isotopically engineered diamond
  publication-title: Nat. Mater.
– volume: 19
  start-page: 4543
  year: 2019
  end-page: 4550
  ident: bib5
  article-title: Microscopic imaging of the stress tensor in diamond using in situ quantum sensors
  publication-title: Nano Lett.
– volume: 366
  start-page: 1359
  year: 2019
  end-page: 1362
  ident: bib3
  article-title: Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers
  publication-title: Science
– volume: 86
  year: 2012
  ident: bib27
  article-title: Production of oriented nitrogen-vacancy color centers in synthetic diamond
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 113802
  year: 2019
  ident: bib36
  article-title: Optimizing the formation of depth-confined nitrogen vacancy center spin ensembles in diamond for quantum sensing
  publication-title: Physical Review Materials
– volume: 46
  start-page: 4
  year: 2010
  end-page: 17
  ident: bib40
  article-title: Strongly colored pink CVD lab-grown diamonds
  publication-title: Gems and Gemmology
– volume: 86
  start-page: 121202
  year: 2013
  ident: bib21
  article-title: Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond
  publication-title: Phys. Rev. B
– volume: 14
  year: 2020
  ident: bib43
  article-title: Microwave-assisted spectroscopy technique for studying charge state in nitrogen-vacancy ensembles in diamond
  publication-title: Phys. Rev. Applied.
– volume: 528
  start-page: 1
  year: 2013
  end-page: 45
  ident: bib1
  article-title: The nitrogen-vacancy colour centre in diamond
  publication-title: Phys. Rep.
– volume: 188
  start-page: 393
  year: 2022
  end-page: 400
  ident: bib32
  article-title: Ultrahigh nitrogen-vacancy center concentration in diamond
  publication-title: Carbon
– volume: 119
  start-page: 254001
  year: 2021
  ident: bib44
  article-title: Equilibrium charge state of NV centers in diamond
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 47
  year: 2015
  end-page: 53
  ident: bib18
  article-title: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates
  publication-title: Diam. Relat. Mater.
– year: 2021
  ident: bib23
  article-title: Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications
  publication-title: Mater. Quantum. Technol.
– volume: 15
  start-page: 1700
  year: 2006
  end-page: 1707
  ident: bib13
  article-title: Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition
  publication-title: Diam. Relat. Mater.
– volume: 106
  start-page: 113109
  year: 2015
  ident: bib16
  article-title: Jürgen Behm, Boris Naydenov, Fedor Jelezko, Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF6 plasma treatment
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 107794
  year: 2020
  ident: bib39
  article-title: Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress
  publication-title: Diam. Relat. Mater.
– volume: 104
  start-page: 113107
  year: 2014
  ident: bib20
  article-title: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 685
  year: 2007
  end-page: 689
  ident: bib24
  article-title: Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals
  publication-title: Diam. Relat. Mater.
– volume: 555
  start-page: 351
  year: 2018
  ident: bib11
  article-title: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor
  publication-title: Nature
– volume: 101
  year: 2012
  ident: bib15
  article-title: Engineering shallow spins in diamond with nitrogen delta-doping
  publication-title: Appl. Phys. Lett.
– volume: 104
  start-page: 102407
  year: 2014
  ident: bib19
  article-title: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 6681
  year: 2019
  end-page: 6686
  ident: bib33
  article-title: Dc magnetometry with engineered nitrogen-vacancy spin ensembles in diamond
  publication-title: Nano Lett.
– volume: 102
  start-page: 134210
  year: 2020
  ident: bib30
  article-title: Decoherence of ensembles of nitrogen-vacancy centers in diamond
  publication-title: Phys. Rev. B
– year: 2021
  ident: bib28
  article-title: Creation of Nitrogen-Vacancy Centers in Chemical Vapor Deposition Diamond for Sensing Applications
– volume: 94
  year: 2016
  ident: bib37
  article-title: Determination of nitrogen spin concentration in diamond using double electron-electron resonance
  publication-title: Phys. Rev. B
– volume: 92
  year: 2020
  ident: bib7
  article-title: Sensitivity optimization for NV-diamond magnetometry
  publication-title: Rev. Mod. Phys.
– volume: 500
  start-page: 54
  year: 2013
  end-page: 58
  ident: bib2
  article-title: Nanometre-scale thermometry in a living cell
  publication-title: Nature
– volume: 3
  start-page: 858
  year: 2012
  ident: bib29
  article-title: Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems
  publication-title: Nat. Commun.
– volume: 2
  start-page: 382
  year: 2012
  ident: bib35
  article-title: Controlling the quantum dynamics of a mesoscopic spin bath in diamond
  publication-title: Sci. Rep.
– year: 2020
  ident: bib31
  article-title: Benchmark for Synthesized Diamond Sensors Based on Isotopically Engineered Nitrogen-Vacancy Spin Ensembles for Magnetometry Applications, Advanced Quantum Technologies
– volume: 53
  year: 2020
  ident: bib12
  article-title: CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications
  publication-title: J. Phys. D Appl. Phys.
– volume: 41
  start-page: 34
  year: 2014
  end-page: 40
  ident: bib42
  article-title: High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates
  publication-title: Diam. Relat. Mater.
– volume: 7
  start-page: 459
  year: 2011
  end-page: 463
  ident: bib8
  article-title: Electric-field sensing using single diamond spins
  publication-title: Nat. Phys.
– volume: 14
  start-page: 169
  year: 2013
  end-page: 184
  ident: bib34
  article-title: Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges
  publication-title: Compt. Rendus Phys.
– volume: 19
  start-page: 4543
  year: 2019
  ident: 10.1016/j.carbon.2022.04.005_bib5
  article-title: Microscopic imaging of the stress tensor in diamond using in situ quantum sensors
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01402
– volume: 3
  start-page: 113802
  year: 2019
  ident: 10.1016/j.carbon.2022.04.005_bib36
  article-title: Optimizing the formation of depth-confined nitrogen vacancy center spin ensembles in diamond for quantum sensing
  publication-title: Physical Review Materials
  doi: 10.1103/PhysRevMaterials.3.113802
– volume: 170
  start-page: 421
  year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib26
  article-title: High NV density in a pink CVD diamond grown with N2O addition
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.08.048
– volume: 14
  year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib43
  article-title: Microwave-assisted spectroscopy technique for studying charge state in nitrogen-vacancy ensembles in diamond
  publication-title: Phys. Rev. Applied.
  doi: 10.1103/PhysRevApplied.14.014009
– volume: 3
  year: 2017
  ident: 10.1016/j.carbon.2022.04.005_bib10
  article-title: Quantum imaging of current flow in graphene
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602429
– volume: 528
  start-page: 1
  year: 2013
  ident: 10.1016/j.carbon.2022.04.005_bib1
  article-title: The nitrogen-vacancy colour centre in diamond
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.02.001
– volume: 106
  start-page: 113109
  year: 2015
  ident: 10.1016/j.carbon.2022.04.005_bib16
  article-title: Jürgen Behm, Boris Naydenov, Fedor Jelezko, Stabilizing shallow color centers in diamond created by nitrogen delta-doping using SF6 plasma treatment
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4915305
– volume: 104
  start-page: 102407
  year: 2014
  ident: 10.1016/j.carbon.2022.04.005_bib19
  article-title: Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4868128
– year: 2021
  ident: 10.1016/j.carbon.2022.04.005_bib23
  article-title: Characterisation of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications
  publication-title: Mater. Quantum. Technol.
  doi: 10.1088/2633-4356/abd88a
– volume: 77
  year: 2014
  ident: 10.1016/j.carbon.2022.04.005_bib6
  article-title: Magnetometry with nitrogen-vacancy defects in diamond
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/77/5/056503
– volume: 15
  start-page: 1700
  year: 2006
  ident: 10.1016/j.carbon.2022.04.005_bib13
  article-title: Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2006.02.005
– volume: 94
  year: 2016
  ident: 10.1016/j.carbon.2022.04.005_bib37
  article-title: Determination of nitrogen spin concentration in diamond using double electron-electron resonance
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.024421
– volume: 3
  start-page: 858
  year: 2012
  ident: 10.1016/j.carbon.2022.04.005_bib29
  article-title: Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1856
– volume: 56
  start-page: 47
  year: 2015
  ident: 10.1016/j.carbon.2022.04.005_bib18
  article-title: Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2015.05.003
– volume: 96
  start-page: 85
  year: 2019
  ident: 10.1016/j.carbon.2022.04.005_bib22
  article-title: Optimizing synthetic diamond samples for quantum sensing technologies by tuning the growth temperature
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2019.04.022
– volume: 101
  year: 2012
  ident: 10.1016/j.carbon.2022.04.005_bib15
  article-title: Engineering shallow spins in diamond with nitrogen delta-doping
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4748280
– volume: 46
  start-page: 4
  year: 2010
  ident: 10.1016/j.carbon.2022.04.005_bib40
  article-title: Strongly colored pink CVD lab-grown diamonds
  publication-title: Gems and Gemmology
  doi: 10.5741/GEMS.46.1.4
– volume: 119
  start-page: 254001
  year: 2021
  ident: 10.1016/j.carbon.2022.04.005_bib44
  article-title: Equilibrium charge state of NV centers in diamond
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0079687
– volume: 366
  start-page: 1359
  year: 2019
  ident: 10.1016/j.carbon.2022.04.005_bib3
  article-title: Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers
  publication-title: Science
  doi: 10.1126/science.aaw4329
– volume: 86
  start-page: 121202
  year: 2013
  ident: 10.1016/j.carbon.2022.04.005_bib21
  article-title: Enhanced metrology using preferential orientation of nitrogen-vacancy centers in diamond
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.121202
– volume: 14
  start-page: 169
  year: 2013
  ident: 10.1016/j.carbon.2022.04.005_bib34
  article-title: Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: recent achievements and remaining challenges
  publication-title: Compt. Rendus Phys.
  doi: 10.1016/j.crhy.2012.10.008
– volume: 19
  start-page: 6681
  year: 2019
  ident: 10.1016/j.carbon.2022.04.005_bib33
  article-title: Dc magnetometry with engineered nitrogen-vacancy spin ensembles in diamond
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02993
– year: 2021
  ident: 10.1016/j.carbon.2022.04.005_bib28
– volume: 104
  start-page: 113107
  year: 2014
  ident: 10.1016/j.carbon.2022.04.005_bib20
  article-title: Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4869103
– volume: 2
  start-page: 382
  year: 2012
  ident: 10.1016/j.carbon.2022.04.005_bib35
  article-title: Controlling the quantum dynamics of a mesoscopic spin bath in diamond
  publication-title: Sci. Rep.
  doi: 10.1038/srep00382
– volume: 111
  start-page: 143101
  year: 2017
  ident: 10.1016/j.carbon.2022.04.005_bib25
  article-title: Highly photostable NV centre ensembles in CVD diamond produced by using N2O as the doping gas
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5004106
– year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib31
– volume: 8
  start-page: 383
  year: 2009
  ident: 10.1016/j.carbon.2022.04.005_bib14
  article-title: Ultralong spin coherence time in isotopically engineered diamond
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2420
– volume: 555
  start-page: 351
  year: 2018
  ident: 10.1016/j.carbon.2022.04.005_bib11
  article-title: High-resolution magnetic resonance spectroscopy using a solid-state spin sensor
  publication-title: Nature
  doi: 10.1038/nature25781
– volume: 41
  start-page: 34
  year: 2014
  ident: 10.1016/j.carbon.2022.04.005_bib42
  article-title: High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2013.11.002
– volume: 53
  year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib12
  article-title: CVD diamond single crystals with NV centres: a review of material synthesis and technology for quantum sensing applications
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/ab81d1
– volume: 86
  year: 2012
  ident: 10.1016/j.carbon.2022.04.005_bib27
  article-title: Production of oriented nitrogen-vacancy color centers in synthetic diamond
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.035201
– volume: 105
  start-page: 261601
  year: 2014
  ident: 10.1016/j.carbon.2022.04.005_bib38
  article-title: Atomistic mechanism of perfect alignment of nitrogen-vacancy centers in diamond
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904988
– volume: 102
  start-page: 134210
  year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib30
  article-title: Decoherence of ensembles of nitrogen-vacancy centers in diamond
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.134210
– volume: 92
  year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib7
  article-title: Sensitivity optimization for NV-diamond magnetometry
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.92.015004
– volume: 7
  start-page: 459
  year: 2011
  ident: 10.1016/j.carbon.2022.04.005_bib8
  article-title: Electric-field sensing using single diamond spins
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1969
– volume: 188
  start-page: 393
  year: 2022
  ident: 10.1016/j.carbon.2022.04.005_bib32
  article-title: Ultrahigh nitrogen-vacancy center concentration in diamond
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.12.032
– volume: 51
  start-page: 55
  year: 2015
  ident: 10.1016/j.carbon.2022.04.005_bib17
  article-title: Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2014.11.010
– volume: 500
  start-page: 54
  year: 2013
  ident: 10.1016/j.carbon.2022.04.005_bib2
  article-title: Nanometre-scale thermometry in a living cell
  publication-title: Nature
  doi: 10.1038/nature12373
– volume: 16
  start-page: 685
  year: 2007
  ident: 10.1016/j.carbon.2022.04.005_bib24
  article-title: Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2006.09.012
– volume: 100
  start-page: 174103
  year: 2019
  ident: 10.1016/j.carbon.2022.04.005_bib4
  article-title: Imaging crystal stress in diamond using ensembles of nitrogen-vacancy centers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.174103
– volume: 105
  start-page: 107794
  year: 2020
  ident: 10.1016/j.carbon.2022.04.005_bib39
  article-title: Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2020.107794
– volume: 20
  start-page: 113037
  year: 2018
  ident: 10.1016/j.carbon.2022.04.005_bib41
  article-title: NV−–N+ pair centre in 1b diamond
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaec58
– volume: 549
  start-page: 252
  year: 2017
  ident: 10.1016/j.carbon.2022.04.005_bib9
  article-title: Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
  publication-title: Nature
  doi: 10.1038/nature23656
SSID ssj0004814
Score 2.5000205
Snippet In this work we investigate the properties of negatively charged nitrogen-vacancy (NV−) centres created during single crystal diamond growth by chemical vapour...
In this work we investigate the properties of negatively charged nitrogen-vacancy (NV⁻) centres created during single crystal diamond growth by chemical vapour...
In this work we investigate the properties of negatively charged nitrogen-vacancy (NV À) centres created during single crystal diamond growth by chemical...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 282
SubjectTerms Chemical vapor deposition
Colour centres in diamond
Condensed Matter
Crystal growth
Crystal structure
crystals
CVD growth
Diamonds
Electron spin
Electrons
Figure of merit
Lattice vacancies
materials
Nitrogen
Nitrous oxide
NV yield
Physics
Quantum sensors
Quantum technologies
Single crystal diamond
Single crystals
Substrates
technology
temperature
vapors
Title Enhancement of the creation yield of NV ensembles in a chemically vapour deposited diamond
URI https://dx.doi.org/10.1016/j.carbon.2022.04.005
https://www.proquest.com/docview/2669599650
https://www.proquest.com/docview/2718232356
https://hal.science/hal-03865721
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-a9GF7Ges-WNauaGOvXm1LcqzHEFrSbsvTOspehD5pRuaENi30pX_77mw5Y2NQ6JOxLGFxd7o7Sb-7A_goaiVtxcssCDq6sejDWWXrjFfWoXmujGiL9n2dV7NzcXYhL3Zg2sfCEKwy6f5Op7faOrUcJWoerRcLivEldxw9AsIZjKUcwG6J1r4ewu7k9PNs_ic8su5SfNNNPw3oI-hamJczV3ZFiVDLss15SnXs_m-hBpcElfxHY7dm6OQ5PEv-I5t0U9yDndC8gCfTvmzbS_hx3FwSJ-nUj60iQweP9Z4huyO8GrXOvzPcv4Zfdhmu2aJhhrmUOWB5x27NGn_DfGgRXcEzlCGUVv8Kzk-Ov01nWSqgkDncNm1Qv0bjZChDlLHOS-vzUlnjrfXcovVyVnEjClF4WQXpfC4Drk4lnDKxCGOf89cwbFZNeANMqMpJMRYi4kP5WMvI8-gLJ3lV1DaOgPdE0y5lF6ciF0vdw8h-6o7Umkitc6GR1CPItqPWXXaNB_qPe37ov6REowF4YOQHZN_2J5RUezb5oqktp7KnuBG-LUZw0HNXp6V8rdGDUZTDRuYjeL_9jEylmxXThNUN9kELj4LIZfX20TPch6f01kGBD2C4uboJ79Dh2dhDGHy6Lw6TWP8GucD-IQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_0fLAvpdqWXrWalr4u7m6Svc3jcShrPe9Ji_Ql5BOvXPcOPQX_e2f240pLQejTQjYhYWYy80syHwBfRamkLXieBEFXNxYxnFW2THhhHZrnwoimaN_lrKiuxbcbebMFkz4WhtwqO93f6vRGW3ctJx01T1bzOcX4EhxHREB-BiMpt2FHUFHrAeyMzy-q2e_wyLJN8U0v_TSgj6Br3LycubNLSoSa503OU6pj928LtX1LrpJ_aezGDJ29gdcdfmTjdol7sBXqfdid9GXb3sKP0_qWOEm3fmwZGQI81iND9kT-atQ6-87w_Bp-2UW4Z_OaGea6zAGLJ_ZoVjgN86Hx6AqeoQyhtPp3cH12ejWpkq6AQuLw2LRG_RqNkyEPUcYyza1Pc2WNt9Zzi9bLWcUNEizzsgjS-VQG3J1KOGViFkY-5e9hUC_r8AGYUIWTYiRExI_ysZSRp9FnTvIiK20cAu-Jpl2XXZyKXCx070b2U7ek1kRqnQqNpB5Cshm1arNrvNB_1PND_yElGg3ACyO_IPs2k1BS7Wo81dSWUtlTPAg_ZkM47Lmru618rxHBKMphI9MhfN78RqbSy4qpw_IB-6CFR0Hksvj43ys8ht3q6nKqp-eziwN4RX9at-BDGKzvHsInBD9re9QJ9zO2agAW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+the+creation+yield+of+NV+ensembles+in+a+chemically+vapour+deposited+diamond&rft.jtitle=Carbon+%28New+York%29&rft.au=Balasubramanian%2C+Priyadharshini&rft.au=Osterkamp%2C+Christian&rft.au=Brinza%2C+Ovidiu&rft.au=Rollo%2C+Maxime&rft.date=2022-07-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=194&rft.spage=282&rft_id=info:doi/10.1016%2Fj.carbon.2022.04.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon