Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand
We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM 2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations...
        Saved in:
      
    
          | Published in | Aerosol and air quality research Vol. 21; no. 11; pp. 210105 - 13 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.11.2021
     Taiwan Association of Aerosol Research Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1680-8584 2071-1409 2071-1409  | 
| DOI | 10.4209/aaqr.210105 | 
Cover
| Abstract | We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM
2.5
concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA’ random forest’ to estimate hourly and daily PM
2.5
concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM
2.5
with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM
2.5
. The MLA also shows underestimation at hourly scale under very clean conditions (PM
2.5
< 10 µg m
−3
) and overestimation during high loading (PM
2.5
> 80 µg m
−3
). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM
2.5
(24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m
−3
), showing high value during winter months (November– February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region. | 
    
|---|---|
| AbstractList | We have used NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA' random forest' to estimate hourly and daily PM2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM2.5. The MLA also shows underestimation at hourly scale under very clean conditions (PM2.5 < 10 µg m–3) and overestimation during high loading (PM2.5 > 80 µg m–3). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m–3), showing high value during winter months (November–February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region. We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM 2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA’ random forest’ to estimate hourly and daily PM 2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM 2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM 2.5 . The MLA also shows underestimation at hourly scale under very clean conditions (PM 2.5 < 10 µg m −3 ) and overestimation during high loading (PM 2.5 > 80 µg m −3 ). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM 2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m −3 ), showing high value during winter months (November– February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region. Abstract We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA’ random forest’ to estimate hourly and daily PM2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM2.5. The MLA also shows underestimation at hourly scale under very clean conditions (PM2.5 < 10 µg m−3) and overestimation during high loading (PM2.5 > 80 µg m−3). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m−3), showing high value during winter months (November– February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region.  | 
    
| Author | Mishra, Vikalp Gupta, Pawan Markert, Amanda Aekakkararungroj, Aekkapol Chishtie, Farrukh Zhan, Shanshan Paibong, Sarawut  | 
    
| Author_xml | – sequence: 1 givenname: Pawan surname: Gupta fullname: Gupta, Pawan email: pawan.gupta@nasa.gov organization: Universities Space Research Association (USRA), Marshall Space Flight Center – sequence: 2 givenname: Shanshan surname: Zhan fullname: Zhan, Shanshan organization: Earth System Science Center, The University of Alabama in Huntsville – sequence: 3 givenname: Vikalp surname: Mishra fullname: Mishra, Vikalp organization: Earth System Science Center, The University of Alabama in Huntsville, SERVIR Science Coordination Office, NASA Marshall Space Flight Center – sequence: 4 givenname: Aekkapol surname: Aekakkararungroj fullname: Aekakkararungroj, Aekkapol organization: Asian Disaster Preparedness Center – sequence: 5 givenname: Amanda surname: Markert fullname: Markert, Amanda organization: Earth System Science Center, The University of Alabama in Huntsville, SERVIR Science Coordination Office, NASA Marshall Space Flight Center – sequence: 6 givenname: Sarawut surname: Paibong fullname: Paibong, Sarawut organization: Thai Pollution Control Department – sequence: 7 givenname: Farrukh surname: Chishtie fullname: Chishtie, Farrukh organization: Asian Disaster Preparedness Center, Spatial Informatics Group  | 
    
| BookMark | eNqFkF1rFDEUhoNUcK298g8MeKmznpNJZjKXZam2sEXBeh3O5mM3yzTZZmaR_nuznaIgirkJJM95eM_7mp3FFB1jbxGWgkP_keghLzkCgnzBFhw6rFFAf8YW2CqolVTiFbsYxz2U0yrRdrhgq1syuxBdtXaUY4jb6nLYphym3X3lU66uxinc03T6-HbMnoyrvt7ypaxCrO52FAaK9g176WkY3cXzfc6-f7q6W13X6y-fb1aX69oIwKnmHUcEi87ZxlrpJacNqMZ1m74VskUHprGmg94ACL8Ba0lJbwmdajoEas7Zzey1ifb6kEuw_KgTBf30kPJWU56CGZzusTPOWCEay4VqvbK250Z4Y0wPHcni-jC7jvFAjz9oGH4JEfSpT33qU899FvzdjB9yeji6cdL7dMyxbKt5Cc-F7AUv1PuZMjmNY3b-P078gzZhKlWnOOVS7D9mnmOPxRy3Lv_O8Tf8JxOnotI | 
    
| CitedBy_id | crossref_primary_10_1007_s11356_024_34548_4 crossref_primary_10_1016_j_procs_2022_12_099 crossref_primary_10_3390_atmos14071073 crossref_primary_10_1016_j_scitotenv_2023_169027 crossref_primary_10_1016_j_envpol_2023_123082 crossref_primary_10_1016_j_apr_2023_101781 crossref_primary_10_1016_j_atmosenv_2024_120396 crossref_primary_10_1088_2515_7620_ad352d crossref_primary_10_3390_ijerph20021490 crossref_primary_10_1007_s11869_024_01524_3 crossref_primary_10_1016_j_apr_2023_102027 crossref_primary_10_3390_rs15082064 crossref_primary_10_1021_acs_est_4c03795 crossref_primary_10_3390_rs14143434 crossref_primary_10_1029_2024EA004012 crossref_primary_10_3390_ijerph20186770 crossref_primary_10_1016_j_apr_2023_101834 crossref_primary_10_1016_j_chemosphere_2023_139966 crossref_primary_10_3389_fenvs_2023_1303152 crossref_primary_10_1016_j_envres_2024_120363 crossref_primary_10_1016_j_scitotenv_2022_153849 crossref_primary_10_1029_2022EA002375 crossref_primary_10_1186_s40537_025_01079_9 crossref_primary_10_3390_technologies12100198  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY ADTOC UNPAY DOA  | 
    
| DOI | 10.4209/aaqr.210105 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 2071-1409 | 
    
| EndPage | 13 | 
    
| ExternalDocumentID | oai_doaj_org_article_917cecd443d2486f8dd92c4fccc907a5 10.4209/aaqr.210105 10_4209_aaqr_210105  | 
    
| GeographicLocations | Thailand United States--US  | 
    
| GeographicLocations_xml | – name: Thailand – name: United States--US  | 
    
| GroupedDBID | 0R~ 188 23M 2UF 5GY AAJSJ AASML ABEEZ ACULB AENEX AEUYN AFGXO AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ATCPS ATFKH BENPR BHPHI C6C CAHYU CCPQU CNMHZ EBS EJD FRP GROUPED_DOAJ HCIFZ OK1 P2P PATMY PHGZM PHGZT PIMPY PYCSY SOJ TR2 TUXDW UGNYK W2D AAYXX CITATION EBLON PUEGO ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c401t-272110d1eed3dd5f52ab083e7b964561e0c3dc709c004fb0dda85fda1e83710a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1680-8584 2071-1409  | 
    
| IngestDate | Fri Oct 03 12:52:07 EDT 2025 Wed Oct 01 16:52:12 EDT 2025 Mon Jun 30 06:38:19 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Wed Oct 01 06:36:10 EDT 2025 Mon Jul 21 06:08:50 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Air quality Thailand PM MERRA2 Machine learning  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c401t-272110d1eed3dd5f52ab083e7b964561e0c3dc709c004fb0dda85fda1e83710a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2645245942?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2645245942 | 
    
| PQPubID | 5255276 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_917cecd443d2486f8dd92c4fccc907a5 unpaywall_primary_10_4209_aaqr_210105 proquest_journals_2645245942 crossref_primary_10_4209_aaqr_210105 crossref_citationtrail_10_4209_aaqr_210105 springer_journals_10_4209_aaqr_210105  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-11-01 | 
    
| PublicationDateYYYYMMDD | 2021-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: Taoyuan City  | 
    
| PublicationTitle | Aerosol and air quality research | 
    
| PublicationTitleAbbrev | Aerosol Air Qual. Res | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer International Publishing Taiwan Association of Aerosol Research Springer  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Taiwan Association of Aerosol Research – name: Springer  | 
    
| SSID | ssj0000684671 | 
    
| Score | 2.4460309 | 
    
| Snippet | We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a... We have used NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a... Abstract We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 210105 | 
    
| SubjectTerms | Aerosols Air pollution Air quality Algorithms Bias Carbon Chemistry Correlation coefficient Correlation coefficients Data assimilation Datasets Diurnal variations Ground stations Industrial plant emissions Learning algorithms Machine learning MERRA2 Meteorology Original Research Particulate matter PM2.5 Random sampling Satellites Sensors Statistical sampling Thailand Trend analysis  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4MF_VgNGpE0fQAF5PB1rXQHpFAiAnGREi4LV1_AAkORIjxv_d1GzgTohevaw8v31v73te-fg-hqmQQoxjjHmPWerD7UU-EvvG0DLVpxVJy44ji4KnZH9HHMRsXWn25mrBMHjgDrgF0QhmlKQ01obxpudaCKGqVUsDrZKpe6nNRIFPZHuziasq2mtz3OITZ7HEeJb5oSPm2qgPXCVzTukI4SlX7f6Sau9vRY3S4SZby80PO54UA1DtFJ3nmiNuZxWfowCTnqDNIiyENznVSJ7g9nyyA8E9fMaSjuAsr2OWkMPCyWVmpDH4ekDrDswQPp3Lm6hov0KjXHXb6Xt4XwVPAhtYeSVmbDiC8hVozy4iMIZMCaEXT5UPGV6FWLV8oWAE29rWWnFktAwNsNPBleIlKySIxVwgTSWlMY3eUYSk1grOWFgZYQ2hhCxW6jO638EQqFw13vSvmEZAHh2XksIwyLMuoupu8zLQy9k97cDjvpjiB6_QDuD3K3R795fYyqmy9FOWr7j0i7paWMkFJGdW2nvse3mtLbefW32y-_g-bb9ARcRUx6UvGCiqtVxtzCynNOr5L_94vaBrxEA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHtSDKCpOpwTcLkJnmyZdc5xjYwgTwQ12K2l-bIPazbkh_ve-dF2dMsRrk4bwXpLv-_KSF4RqggFGMRY6jBnjwOpHHe672lHCV7oZCxFqKxT7T0FvSB9HbFRCt5u7MFvxe0pcfi_E26IBssSzeUr3AJ2CLCIbtIuNFDewEJoJqyB0nRAQdX0P7_f_P5AnS9D_g1UWgdBDtL9K5-LzQyTJFtZ0j9FRThJxa-3VE1TS6Slq97NzjxrnKVHHuJWMZ6DtJ68YmCfuwGS19BMKXlYLI6TGz33SYHia4sFETO0RxjM07HYG7Z6TP4HgSBA-S4dkAk15gGS-UswwImIgTWBFHljqo13pK9l0uYTBbmJXKREyo4SnQXh6rvDPUTmdpfoCYSIojWlsdy0MpZqHrKm4BoHgG1gtuaqgu415IpnnB7fPVCQR6ARry8jaMlrbsoJqReX5Oi3G7moP1s5FFZvLOvsALo7yqRGBYJRaKkp9RWgYmFApTiQ1UkpQ7gIaqW68FOUT7D0iNiBLGaekguobz30X7-xLvXDrX32-_Gd7V-iA2PMt2b3EKiovFyt9DQRlGd9kA_QLuaHeYg priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9AAceAgQKQX50F6QHHm99mZ9DFWrCilVEY1UTqtZP9qIsAlhowp-PeN9hIIqBFd7ZHlnbM986_E3AAeoyUdpnXOtQ-B0-iluUuG5w9T5cYmY-wgUp2fZ6Uy9v9SXOyD6tzCIX9ctPXCXF9a0cJnEG9sl8ljQcbRy4R7sZpqi7wHszs7OJ58irspywXPdFBmW5Dl55HJqn-QpKUw7NCGcJJaqu-WEGq7-3wLM7Z3oQ7i_qVb4_QYXi1tu5-QxfOgn3GabfB5t6nJkf_zB5fg_X_QEHnUxKJu0kk9hx1fP4GjapFV61jGuXrHJ4mq5ntfXXxgFtuyYzoIY3VLHx806oPXsfCpHms0rdnGN85gh-RxmJ8cXR6e8q7DALeGqmssG_7mEHGXqnA5aYkkxGRnJZDGy8sKmzo6FsbSXQimcw1wHh4knXJsITF_AoFpW_iUwiUqVqow_RYJS3uR67Iwn_JEGOoyNG8LbXuWF7ejHYxWMRUEwJNqniGopWvsM4WArvGpZN-4WexdttxWJVNlNA6m76NRdEB613jqlUidVnoXcOSOtCtZaI8ZIg-z3li-6_futkPG-V2mj5BAO-9Xwq_vOuRxul8rf5rz3j3Kv4IGM6TPNs8d9GNTrjX9N8U9dvumW_E9s-QCJ priority: 102 providerName: Unpaywall  | 
    
| Title | Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand | 
    
| URI | https://link.springer.com/article/10.4209/aaqr.210105 https://www.proquest.com/docview/2645245942 https://aaqr.org/articles/aaqr-21-05-oa-0105.pdf https://doaj.org/article/917cecd443d2486f8dd92c4fccc907a5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2071-1409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000684671 issn: 1680-8584 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1409 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0000684671 issn: 1680-8584 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2071-1409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000684671 issn: 1680-8584 databaseCode: AAJSJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2071-1409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000684671 issn: 1680-8584 databaseCode: C6C dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9KHbw9gny9YFPbQvA7WOLDn2wxipSSmDhLA10D0ZWR9pIXPSLGHsv9-dYrsdlL5Ksi2fdB-_0-kO4Fgr1FFKpVwp7zlKP8mzOHLc6ti6Qal16ggojifJ5Ux-u1bXezBp7sJQWGUjE4OgtktDPvIzQSdwUmVSfF3dcaoaRaerTQkNXZdWsF9CirF9OBCUGasDB-ejyfR763WJEtK3AYUlacRTVL-7S3tSRNmZ1nfrU3ysT8XsHqipkM3_PxO0PTV9DofbaqX__tGLxQPFdPESXtQWJRvutsAr2HPVazjMm0JubyAfh4BJx-pcqnM2XMzx1zY3vxiarGyEXE52K3b82K69No5Nx-JUsduKXd3oW4p9fAuzi9FVfsnr2gncIGLacBGQne2jCoytVV4JXaK1heTPErKZXGRiawZRZpBLfBlZq1Plre47RKz9SMfvoFMtK_cemNBSlrIkd4eX0mWpGtjMIbKIPYrZzHbhc0OqwtSJxam-xaJAgEF0LYiuxY6uXThuB692-TQeH3ZONG-HUBLs0LBcz4uapwpEmsYZK2VshUwTn1qbCSO9MQYhv8aXHDUrVtSc-bu430ddOGlW8b770bmctEv81Jw_PP25j_BMUDxMuMd4BJ3Neus-oUGzKXv1Lu3Bfp7kveAWwLbZZDr8-Q_npfV1 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROKQ9VH2KtLT1gVwqLThee7M-oArSoFBIhNogcXO9fgSkdBNCIsSf62_reLO7UAlx47q2vNbMeGY-ex4A21qgjRIijYTwPkLtxyMZUxdZHVvXybROXQCKg2HSP-M_zsX5GvytcmFCWGWlEwtFbacm3JHvsvACx4Xk7NvsKgpdo8LratVCQ5etFexeUWKsTOw4drc3COGu946-I79bjB32Rt1-VHYZiAxii0XECgxk22gsYmuFF0xn6JfgRmUSvAtHTWxNh0qD8uQzaq1Ohbe67RDbtamOcd1nsMFjLhH8bRz0hqc_61semgT7XqC-JKVRiuZ-lSTIGZW7Wl_NdxBztUPzvHtmsege8J_LW7_SvoDGMp_p2xs9mdwzhIev4GXpwZL9lci9hjWXv4FGt2oc9xa6gyJA05GyduuY7E_GSMrFxR-CLjLpoVYJfjIO_FrOvTaOnA7YjiCXORld6MsQa_kOzp6Eiu9hPZ_mbhMI05xnPAvXK55zJ1PRsdIhkok9qnVpm_C1IpUyZSHz0E9johDQBLqqQFe1omsTtuvJs1X9joenHQSa11NC0e3iw3Q-VuUZVohsjTOW89gyniY-tVYyw70xRtKOxkW2Ko6pUhNcqzu5bUKr4uLd8IN7adUsfmzPHx7_3Rdo9EeDE3VyNDz-CM9ZiMUpcii3YH0xX7pP6Ewtss-lxBL4_dSH5B-X5y8w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoSKU9VH2qaWnrA7lUWuJ47c36gCoIiaA0UdSCxG3r9SMgpZsQEiH-Yn9VZzbehUqIG9e15bVmxjPz2fMgZFtLsFFSppGU3keg_USkYuYiq2PrOrnWqUOgOBgmh6fi-5k8WyN_q1wYDKusdGKpqO3U4B15i-MLnJBK8JYPYRGjg_632WWEHaTwpbVqp6FDmwW7W5YbC0kex-7mGuDc1e7RAfC-yXm_d9I9jELHgcgAzlhEvMRDtg2GI7ZWesl1Dj4KbFol6Gk4ZmJrOkwZkC2fM2t1Kr3VbQc4r810DOs-IRv4-AVKYmO_Nxz9rG98WIK2vkSAScqiFEz_KmFQcKZaWl_OdwB_tbGR3h0TWXYS-M_9rV9sn5PNZTHTN9d6MrljFPsvyYvgzdK9lfi9ImuueE02u1UTuTekOyiDNR0NdVzHdG8yBlIuzv9QcJdpDzQM-sww8Gs599o4OhrwHUkvCnpyri8w7vItOX0UKr4j68W0cO8J5VqIXOR41eKFcCqVHascoJrYg4pXtkG-VqTKTChqjr01JhmAG6RrhnTNVnRtkO168mxVy-P-aftI83oKFuAuP0zn4yyc5wxQrnHGChFbLtLEp9YqboQ3xijW0bDIVsWxLGiFq-xWhhukWXHxdvjevTRrFj-05w8P_-4LeQqHJftxNDz-SJ5xDMsp0ym3yPpivnSfwK9a5J-DwFLy-7HPyD-rUTNf | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9AAceAgQKQX50F6QHHm99mZ9DFWrCilVEY1UTqtZP9qIsAlhowp-PeN9hIIqBFd7ZHlnbM986_E3AAeoyUdpnXOtQ-B0-iluUuG5w9T5cYmY-wgUp2fZ6Uy9v9SXOyD6tzCIX9ctPXCXF9a0cJnEG9sl8ljQcbRy4R7sZpqi7wHszs7OJ58irspywXPdFBmW5Dl55HJqn-QpKUw7NCGcJJaqu-WEGq7-3wLM7Z3oQ7i_qVb4_QYXi1tu5-QxfOgn3GabfB5t6nJkf_zB5fg_X_QEHnUxKJu0kk9hx1fP4GjapFV61jGuXrHJ4mq5ntfXXxgFtuyYzoIY3VLHx806oPXsfCpHms0rdnGN85gh-RxmJ8cXR6e8q7DALeGqmssG_7mEHGXqnA5aYkkxGRnJZDGy8sKmzo6FsbSXQimcw1wHh4knXJsITF_AoFpW_iUwiUqVqow_RYJS3uR67Iwn_JEGOoyNG8LbXuWF7ejHYxWMRUEwJNqniGopWvsM4WArvGpZN-4WexdttxWJVNlNA6m76NRdEB613jqlUidVnoXcOSOtCtZaI8ZIg-z3li-6_futkPG-V2mj5BAO-9Xwq_vOuRxul8rf5rz3j3Kv4IGM6TPNs8d9GNTrjX9N8U9dvumW_E9s-QCJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithm+for+Estimating+Surface+PM2.5+in+Thailand&rft.jtitle=Aerosol+and+air+quality+research&rft.au=Gupta%2C+Pawan&rft.au=Zhan%2C+Shanshan&rft.au=Mishra%2C+Vikalp&rft.au=Aekakkararungroj%2C+Aekkapol&rft.date=2021-11-01&rft.issn=1680-8584&rft.eissn=2071-1409&rft.volume=21&rft.issue=11&rft.spage=210105&rft_id=info:doi/10.4209%2Faaqr.210105&rft.externalDBID=n%2Fa&rft.externalDocID=10_4209_aaqr_210105 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-8584&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-8584&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-8584&client=summon |