Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand

We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM 2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations...

Full description

Saved in:
Bibliographic Details
Published inAerosol and air quality research Vol. 21; no. 11; pp. 210105 - 13
Main Authors Gupta, Pawan, Zhan, Shanshan, Mishra, Vikalp, Aekakkararungroj, Aekkapol, Markert, Amanda, Paibong, Sarawut, Chishtie, Farrukh
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2021
Taiwan Association of Aerosol Research
Springer
Subjects
Online AccessGet full text
ISSN1680-8584
2071-1409
2071-1409
DOI10.4209/aaqr.210105

Cover

Abstract We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM 2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA’ random forest’ to estimate hourly and daily PM 2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM 2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM 2.5 . The MLA also shows underestimation at hourly scale under very clean conditions (PM 2.5 < 10 µg m −3 ) and overestimation during high loading (PM 2.5 > 80 µg m −3 ). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM 2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m −3 ), showing high value during winter months (November– February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region.
AbstractList We have used NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA' random forest' to estimate hourly and daily PM2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM2.5. The MLA also shows underestimation at hourly scale under very clean conditions (PM2.5 < 10 µg m–3) and overestimation during high loading (PM2.5 > 80 µg m–3). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m–3), showing high value during winter months (November–February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region.
We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM 2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA’ random forest’ to estimate hourly and daily PM 2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM 2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM 2.5 . The MLA also shows underestimation at hourly scale under very clean conditions (PM 2.5 < 10 µg m −3 ) and overestimation during high loading (PM 2.5 > 80 µg m −3 ). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM 2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m −3 ), showing high value during winter months (November– February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region.
Abstract We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a machine learning algorithm (MLA) to estimate surface PM2.5 concentration in Thailand. One year of hourly data from 51 ground monitoring stations in Thailand was spatiotemporally collocated with MERRA2 fields. The integrated data then used to train and validate a supervised MLA’ random forest’ to estimate hourly and daily PM2.5 concentrations. The MLA is cross-validated using a 10-fold random sampling approach. The trained MLA can estimate PM2.5 with close to zero mean bias across the country. The correlation coefficient of 0.95 with slope and intercept values of 0.95 and 0.88 are achieved between observed and estimated PM2.5. The MLA also shows underestimation at hourly scale under very clean conditions (PM2.5 < 10 µg m−3) and overestimation during high loading (PM2.5 > 80 µg m−3). The hourly data also demonstrate high skill in following the diurnal cycle during different seasons of the year. The daily mean PM2.5 (24-hour) values follow day-to-day variability very well (correlation coefficient of 0.98, RMSE = 3.14 µg m−3), showing high value during winter months (November– February) and lower during other seasons. The trained MLA has the potential to reprocess the MERRA2 timeseries for the region, and the bias corrected data can be used in other applications such as long-term trend analysis and health exposure studies. The MLA can also be applied to GEOS forecasted fields to generate bias corrected air quality forecasts for the region.
Author Mishra, Vikalp
Gupta, Pawan
Markert, Amanda
Aekakkararungroj, Aekkapol
Chishtie, Farrukh
Zhan, Shanshan
Paibong, Sarawut
Author_xml – sequence: 1
  givenname: Pawan
  surname: Gupta
  fullname: Gupta, Pawan
  email: pawan.gupta@nasa.gov
  organization: Universities Space Research Association (USRA), Marshall Space Flight Center
– sequence: 2
  givenname: Shanshan
  surname: Zhan
  fullname: Zhan, Shanshan
  organization: Earth System Science Center, The University of Alabama in Huntsville
– sequence: 3
  givenname: Vikalp
  surname: Mishra
  fullname: Mishra, Vikalp
  organization: Earth System Science Center, The University of Alabama in Huntsville, SERVIR Science Coordination Office, NASA Marshall Space Flight Center
– sequence: 4
  givenname: Aekkapol
  surname: Aekakkararungroj
  fullname: Aekakkararungroj, Aekkapol
  organization: Asian Disaster Preparedness Center
– sequence: 5
  givenname: Amanda
  surname: Markert
  fullname: Markert, Amanda
  organization: Earth System Science Center, The University of Alabama in Huntsville, SERVIR Science Coordination Office, NASA Marshall Space Flight Center
– sequence: 6
  givenname: Sarawut
  surname: Paibong
  fullname: Paibong, Sarawut
  organization: Thai Pollution Control Department
– sequence: 7
  givenname: Farrukh
  surname: Chishtie
  fullname: Chishtie, Farrukh
  organization: Asian Disaster Preparedness Center, Spatial Informatics Group
BookMark eNqFkF1rFDEUhoNUcK298g8MeKmznpNJZjKXZam2sEXBeh3O5mM3yzTZZmaR_nuznaIgirkJJM95eM_7mp3FFB1jbxGWgkP_keghLzkCgnzBFhw6rFFAf8YW2CqolVTiFbsYxz2U0yrRdrhgq1syuxBdtXaUY4jb6nLYphym3X3lU66uxinc03T6-HbMnoyrvt7ypaxCrO52FAaK9g176WkY3cXzfc6-f7q6W13X6y-fb1aX69oIwKnmHUcEi87ZxlrpJacNqMZ1m74VskUHprGmg94ACL8Ba0lJbwmdajoEas7Zzey1ifb6kEuw_KgTBf30kPJWU56CGZzusTPOWCEay4VqvbK250Z4Y0wPHcni-jC7jvFAjz9oGH4JEfSpT33qU899FvzdjB9yeji6cdL7dMyxbKt5Cc-F7AUv1PuZMjmNY3b-P078gzZhKlWnOOVS7D9mnmOPxRy3Lv_O8Tf8JxOnotI
CitedBy_id crossref_primary_10_1007_s11356_024_34548_4
crossref_primary_10_1016_j_procs_2022_12_099
crossref_primary_10_3390_atmos14071073
crossref_primary_10_1016_j_scitotenv_2023_169027
crossref_primary_10_1016_j_envpol_2023_123082
crossref_primary_10_1016_j_apr_2023_101781
crossref_primary_10_1016_j_atmosenv_2024_120396
crossref_primary_10_1088_2515_7620_ad352d
crossref_primary_10_3390_ijerph20021490
crossref_primary_10_1007_s11869_024_01524_3
crossref_primary_10_1016_j_apr_2023_102027
crossref_primary_10_3390_rs15082064
crossref_primary_10_1021_acs_est_4c03795
crossref_primary_10_3390_rs14143434
crossref_primary_10_1029_2024EA004012
crossref_primary_10_3390_ijerph20186770
crossref_primary_10_1016_j_apr_2023_101834
crossref_primary_10_1016_j_chemosphere_2023_139966
crossref_primary_10_3389_fenvs_2023_1303152
crossref_primary_10_1016_j_envres_2024_120363
crossref_primary_10_1016_j_scitotenv_2022_153849
crossref_primary_10_1029_2022EA002375
crossref_primary_10_1186_s40537_025_01079_9
crossref_primary_10_3390_technologies12100198
ContentType Journal Article
Copyright The Author(s) 2021
2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
ADTOC
UNPAY
DOA
DOI 10.4209/aaqr.210105
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2071-1409
EndPage 13
ExternalDocumentID oai_doaj_org_article_917cecd443d2486f8dd92c4fccc907a5
10.4209/aaqr.210105
10_4209_aaqr_210105
GeographicLocations Thailand
United States--US
GeographicLocations_xml – name: Thailand
– name: United States--US
GroupedDBID 0R~
188
23M
2UF
5GY
AAJSJ
AASML
ABEEZ
ACULB
AENEX
AEUYN
AFGXO
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ATCPS
ATFKH
BENPR
BHPHI
C6C
CAHYU
CCPQU
CNMHZ
EBS
EJD
FRP
GROUPED_DOAJ
HCIFZ
OK1
P2P
PATMY
PHGZM
PHGZT
PIMPY
PYCSY
SOJ
TR2
TUXDW
UGNYK
W2D
AAYXX
CITATION
EBLON
PUEGO
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c401t-272110d1eed3dd5f52ab083e7b964561e0c3dc709c004fb0dda85fda1e83710a3
IEDL.DBID BENPR
ISSN 1680-8584
2071-1409
IngestDate Fri Oct 03 12:52:07 EDT 2025
Wed Oct 01 16:52:12 EDT 2025
Mon Jun 30 06:38:19 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Wed Oct 01 06:36:10 EDT 2025
Mon Jul 21 06:08:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Air quality
Thailand
PM
MERRA2
Machine learning
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-272110d1eed3dd5f52ab083e7b964561e0c3dc709c004fb0dda85fda1e83710a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2645245942?pq-origsite=%requestingapplication%&accountid=15518
PQID 2645245942
PQPubID 5255276
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_917cecd443d2486f8dd92c4fccc907a5
unpaywall_primary_10_4209_aaqr_210105
proquest_journals_2645245942
crossref_primary_10_4209_aaqr_210105
crossref_citationtrail_10_4209_aaqr_210105
springer_journals_10_4209_aaqr_210105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Taoyuan City
PublicationTitle Aerosol and air quality research
PublicationTitleAbbrev Aerosol Air Qual. Res
PublicationYear 2021
Publisher Springer International Publishing
Taiwan Association of Aerosol Research
Springer
Publisher_xml – name: Springer International Publishing
– name: Taiwan Association of Aerosol Research
– name: Springer
SSID ssj0000684671
Score 2.4460309
Snippet We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a...
We have used NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology into a...
Abstract We have used NASA’s Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data of aerosols and meteorology...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 210105
SubjectTerms Aerosols
Air pollution
Air quality
Algorithms
Bias
Carbon
Chemistry
Correlation coefficient
Correlation coefficients
Data assimilation
Datasets
Diurnal variations
Ground stations
Industrial plant emissions
Learning algorithms
Machine learning
MERRA2
Meteorology
Original Research
Particulate matter
PM2.5
Random sampling
Satellites
Sensors
Statistical sampling
Thailand
Trend analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4MF_VgNGpE0fQAF5PB1rXQHpFAiAnGREi4LV1_AAkORIjxv_d1GzgTohevaw8v31v73te-fg-hqmQQoxjjHmPWerD7UU-EvvG0DLVpxVJy44ji4KnZH9HHMRsXWn25mrBMHjgDrgF0QhmlKQ01obxpudaCKGqVUsDrZKpe6nNRIFPZHuziasq2mtz3OITZ7HEeJb5oSPm2qgPXCVzTukI4SlX7f6Sau9vRY3S4SZby80PO54UA1DtFJ3nmiNuZxWfowCTnqDNIiyENznVSJ7g9nyyA8E9fMaSjuAsr2OWkMPCyWVmpDH4ekDrDswQPp3Lm6hov0KjXHXb6Xt4XwVPAhtYeSVmbDiC8hVozy4iMIZMCaEXT5UPGV6FWLV8oWAE29rWWnFktAwNsNPBleIlKySIxVwgTSWlMY3eUYSk1grOWFgZYQ2hhCxW6jO638EQqFw13vSvmEZAHh2XksIwyLMuoupu8zLQy9k97cDjvpjiB6_QDuD3K3R795fYyqmy9FOWr7j0i7paWMkFJGdW2nvse3mtLbefW32y-_g-bb9ARcRUx6UvGCiqtVxtzCynNOr5L_94vaBrxEA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5jHtSDKCpOpwTcLkJnmyZdc5xjYwgTwQ12K2l-bIPazbkh_ve-dF2dMsRrk4bwXpLv-_KSF4RqggFGMRY6jBnjwOpHHe672lHCV7oZCxFqKxT7T0FvSB9HbFRCt5u7MFvxe0pcfi_E26IBssSzeUr3AJ2CLCIbtIuNFDewEJoJqyB0nRAQdX0P7_f_P5AnS9D_g1UWgdBDtL9K5-LzQyTJFtZ0j9FRThJxa-3VE1TS6Slq97NzjxrnKVHHuJWMZ6DtJ68YmCfuwGS19BMKXlYLI6TGz33SYHia4sFETO0RxjM07HYG7Z6TP4HgSBA-S4dkAk15gGS-UswwImIgTWBFHljqo13pK9l0uYTBbmJXKREyo4SnQXh6rvDPUTmdpfoCYSIojWlsdy0MpZqHrKm4BoHgG1gtuaqgu415IpnnB7fPVCQR6ARry8jaMlrbsoJqReX5Oi3G7moP1s5FFZvLOvsALo7yqRGBYJRaKkp9RWgYmFApTiQ1UkpQ7gIaqW68FOUT7D0iNiBLGaekguobz30X7-xLvXDrX32-_Gd7V-iA2PMt2b3EKiovFyt9DQRlGd9kA_QLuaHeYg
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9AAceAgQKQX50F6QHHm99mZ9DFWrCilVEY1UTqtZP9qIsAlhowp-PeN9hIIqBFd7ZHlnbM986_E3AAeoyUdpnXOtQ-B0-iluUuG5w9T5cYmY-wgUp2fZ6Uy9v9SXOyD6tzCIX9ctPXCXF9a0cJnEG9sl8ljQcbRy4R7sZpqi7wHszs7OJ58irspywXPdFBmW5Dl55HJqn-QpKUw7NCGcJJaqu-WEGq7-3wLM7Z3oQ7i_qVb4_QYXi1tu5-QxfOgn3GabfB5t6nJkf_zB5fg_X_QEHnUxKJu0kk9hx1fP4GjapFV61jGuXrHJ4mq5ntfXXxgFtuyYzoIY3VLHx806oPXsfCpHms0rdnGN85gh-RxmJ8cXR6e8q7DALeGqmssG_7mEHGXqnA5aYkkxGRnJZDGy8sKmzo6FsbSXQimcw1wHh4knXJsITF_AoFpW_iUwiUqVqow_RYJS3uR67Iwn_JEGOoyNG8LbXuWF7ejHYxWMRUEwJNqniGopWvsM4WArvGpZN-4WexdttxWJVNlNA6m76NRdEB613jqlUidVnoXcOSOtCtZaI8ZIg-z3li-6_futkPG-V2mj5BAO-9Xwq_vOuRxul8rf5rz3j3Kv4IGM6TPNs8d9GNTrjX9N8U9dvumW_E9s-QCJ
  priority: 102
  providerName: Unpaywall
Title Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand
URI https://link.springer.com/article/10.4209/aaqr.210105
https://www.proquest.com/docview/2645245942
https://aaqr.org/articles/aaqr-21-05-oa-0105.pdf
https://doaj.org/article/917cecd443d2486f8dd92c4fccc907a5
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2071-1409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000684671
  issn: 1680-8584
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2071-1409
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0000684671
  issn: 1680-8584
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2071-1409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000684671
  issn: 1680-8584
  databaseCode: AAJSJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2071-1409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000684671
  issn: 1680-8584
  databaseCode: C6C
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9KHbw9gny9YFPbQvA7WOLDn2wxipSSmDhLA10D0ZWR9pIXPSLGHsv9-dYrsdlL5Ksi2fdB-_0-kO4Fgr1FFKpVwp7zlKP8mzOHLc6ti6Qal16ggojifJ5Ux-u1bXezBp7sJQWGUjE4OgtktDPvIzQSdwUmVSfF3dcaoaRaerTQkNXZdWsF9CirF9OBCUGasDB-ejyfR763WJEtK3AYUlacRTVL-7S3tSRNmZ1nfrU3ysT8XsHqipkM3_PxO0PTV9DofbaqX__tGLxQPFdPESXtQWJRvutsAr2HPVazjMm0JubyAfh4BJx-pcqnM2XMzx1zY3vxiarGyEXE52K3b82K69No5Nx-JUsduKXd3oW4p9fAuzi9FVfsnr2gncIGLacBGQne2jCoytVV4JXaK1heTPErKZXGRiawZRZpBLfBlZq1Plre47RKz9SMfvoFMtK_cemNBSlrIkd4eX0mWpGtjMIbKIPYrZzHbhc0OqwtSJxam-xaJAgEF0LYiuxY6uXThuB692-TQeH3ZONG-HUBLs0LBcz4uapwpEmsYZK2VshUwTn1qbCSO9MQYhv8aXHDUrVtSc-bu430ddOGlW8b770bmctEv81Jw_PP25j_BMUDxMuMd4BJ3Neus-oUGzKXv1Lu3Bfp7kveAWwLbZZDr8-Q_npfV1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5ROKQ9VH2KtLT1gVwqLThee7M-oArSoFBIhNogcXO9fgSkdBNCIsSf62_reLO7UAlx47q2vNbMeGY-ex4A21qgjRIijYTwPkLtxyMZUxdZHVvXybROXQCKg2HSP-M_zsX5GvytcmFCWGWlEwtFbacm3JHvsvACx4Xk7NvsKgpdo8LratVCQ5etFexeUWKsTOw4drc3COGu946-I79bjB32Rt1-VHYZiAxii0XECgxk22gsYmuFF0xn6JfgRmUSvAtHTWxNh0qD8uQzaq1Ohbe67RDbtamOcd1nsMFjLhH8bRz0hqc_61semgT7XqC-JKVRiuZ-lSTIGZW7Wl_NdxBztUPzvHtmsege8J_LW7_SvoDGMp_p2xs9mdwzhIev4GXpwZL9lci9hjWXv4FGt2oc9xa6gyJA05GyduuY7E_GSMrFxR-CLjLpoVYJfjIO_FrOvTaOnA7YjiCXORld6MsQa_kOzp6Eiu9hPZ_mbhMI05xnPAvXK55zJ1PRsdIhkok9qnVpm_C1IpUyZSHz0E9johDQBLqqQFe1omsTtuvJs1X9joenHQSa11NC0e3iw3Q-VuUZVohsjTOW89gyniY-tVYyw70xRtKOxkW2Ko6pUhNcqzu5bUKr4uLd8IN7adUsfmzPHx7_3Rdo9EeDE3VyNDz-CM9ZiMUpcii3YH0xX7pP6Ewtss-lxBL4_dSH5B-X5y8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoSKU9VH2qaWnrA7lUWuJ47c36gCoIiaA0UdSCxG3r9SMgpZsQEiH-Yn9VZzbehUqIG9e15bVmxjPz2fMgZFtLsFFSppGU3keg_USkYuYiq2PrOrnWqUOgOBgmh6fi-5k8WyN_q1wYDKusdGKpqO3U4B15i-MLnJBK8JYPYRGjg_632WWEHaTwpbVqp6FDmwW7W5YbC0kex-7mGuDc1e7RAfC-yXm_d9I9jELHgcgAzlhEvMRDtg2GI7ZWesl1Dj4KbFol6Gk4ZmJrOkwZkC2fM2t1Kr3VbQc4r810DOs-IRv4-AVKYmO_Nxz9rG98WIK2vkSAScqiFEz_KmFQcKZaWl_OdwB_tbGR3h0TWXYS-M_9rV9sn5PNZTHTN9d6MrljFPsvyYvgzdK9lfi9ImuueE02u1UTuTekOyiDNR0NdVzHdG8yBlIuzv9QcJdpDzQM-sww8Gs599o4OhrwHUkvCnpyri8w7vItOX0UKr4j68W0cO8J5VqIXOR41eKFcCqVHascoJrYg4pXtkG-VqTKTChqjr01JhmAG6RrhnTNVnRtkO168mxVy-P-aftI83oKFuAuP0zn4yyc5wxQrnHGChFbLtLEp9YqboQ3xijW0bDIVsWxLGiFq-xWhhukWXHxdvjevTRrFj-05w8P_-4LeQqHJftxNDz-SJ5xDMsp0ym3yPpivnSfwK9a5J-DwFLy-7HPyD-rUTNf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6V9AAceAgQKQX50F6QHHm99mZ9DFWrCilVEY1UTqtZP9qIsAlhowp-PeN9hIIqBFd7ZHlnbM986_E3AAeoyUdpnXOtQ-B0-iluUuG5w9T5cYmY-wgUp2fZ6Uy9v9SXOyD6tzCIX9ctPXCXF9a0cJnEG9sl8ljQcbRy4R7sZpqi7wHszs7OJ58irspywXPdFBmW5Dl55HJqn-QpKUw7NCGcJJaqu-WEGq7-3wLM7Z3oQ7i_qVb4_QYXi1tu5-QxfOgn3GabfB5t6nJkf_zB5fg_X_QEHnUxKJu0kk9hx1fP4GjapFV61jGuXrHJ4mq5ntfXXxgFtuyYzoIY3VLHx806oPXsfCpHms0rdnGN85gh-RxmJ8cXR6e8q7DALeGqmssG_7mEHGXqnA5aYkkxGRnJZDGy8sKmzo6FsbSXQimcw1wHh4knXJsITF_AoFpW_iUwiUqVqow_RYJS3uR67Iwn_JEGOoyNG8LbXuWF7ejHYxWMRUEwJNqniGopWvsM4WArvGpZN-4WexdttxWJVNlNA6m76NRdEB613jqlUidVnoXcOSOtCtZaI8ZIg-z3li-6_futkPG-V2mj5BAO-9Xwq_vOuRxul8rf5rz3j3Kv4IGM6TPNs8d9GNTrjX9N8U9dvumW_E9s-QCJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithm+for+Estimating+Surface+PM2.5+in+Thailand&rft.jtitle=Aerosol+and+air+quality+research&rft.au=Gupta%2C+Pawan&rft.au=Zhan%2C+Shanshan&rft.au=Mishra%2C+Vikalp&rft.au=Aekakkararungroj%2C+Aekkapol&rft.date=2021-11-01&rft.issn=1680-8584&rft.eissn=2071-1409&rft.volume=21&rft.issue=11&rft.spage=210105&rft_id=info:doi/10.4209%2Faaqr.210105&rft.externalDBID=n%2Fa&rft.externalDocID=10_4209_aaqr_210105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-8584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-8584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-8584&client=summon