Natural polymers-based surface engineering of bone scaffolds – A review

Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely re...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 282; no. Pt 2; p. 136840
Main Authors Sathiya, K., Ganesamoorthi, Srinidhi, Mohan, Sahithya, Shanmugavadivu, Abinaya, Selvamurugan, Nagarajan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text
ISSN0141-8130
1879-0003
1879-0003
DOI10.1016/j.ijbiomac.2024.136840

Cover

More Information
Summary:Critical-sized bone defects present a major challenge in healthcare, necessitating innovative solutions like bone tissue engineering (BTE) to address these issues. Surface engineering of bone scaffolds plays a crucial role in BTE by integrating natural polymers with advanced techniques to closely replicate the bone microenvironment, enhancing cellular responses such as adhesion, proliferation, and osteogenic differentiation. Natural polymers like collagen, chitosan, gelatin, hyaluronic acid, and alginate are used in various surface modification methods, including physical adsorption, covalent immobilization, electrospinning, and layer-by-layer assembly. This review provides a thorough analysis of these surface modification strategies across metallic, ceramic, and polymeric scaffolds, along with characterization methodologies, preclinical studies, and future prospects. By analysing recent research, the review offers valuable insights for advancing natural polymer-based surface engineering and developing next-generation scaffolds with improved bone regenerative capabilities.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.136840