MSM: a scaling-based feature matching algorithm for images with large-scale differences

Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of digital earth Vol. 18; no. 1
Main Authors Ge, Qifeng, Du, Xiaoping, Xu, Chen, Xu, Jianhao, Yan, Zhenzhen, Fan, Xiangtao
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2025
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1753-8947
1753-8955
1753-8955
DOI10.1080/17538947.2025.2543562

Cover

Abstract Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale differences. In light of limitations, this study proposed a feature matching algorithm based on scaling, MSM (Multi-Scale Matching), which enhances feature matching performance in images with large-scale variations. This algorithm extract feature points across multiple scales, identifying them as scale-invariant keypoints. In addition, it combines descriptors from different scales to construct composite descriptors, to improve the robustness and accuracy of the matching process. For a more comprehensive evaluation of the MSM, we have meticulously devised a scale difference index (SDI) and constructed a multi-scale dataset (MSD) by SDI. The results of feature matching experiments demonstrated that the MSM algorithm outperforms current state-of-the-art methods regarding generality and effectiveness in several benchmark tests. This study presents a novel approach to feature matching in the context of large-scale differences, which can fulfill the requirements of feature matching for large-scale differences in UAV images, satellite images, etc. The MSD is accessible at https://github.com/KevenGe/MSD-Datasets .
AbstractList Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale differences. In light of limitations, this study proposed a feature matching algorithm based on scaling, MSM (Multi-Scale Matching), which enhances feature matching performance in images with large-scale variations. This algorithm extract feature points across multiple scales, identifying them as scale-invariant keypoints. In addition, it combines descriptors from different scales to construct composite descriptors, to improve the robustness and accuracy of the matching process. For a more comprehensive evaluation of the MSM, we have meticulously devised a scale difference index (SDI) and constructed a multi-scale dataset (MSD) by SDI. The results of feature matching experiments demonstrated that the MSM algorithm outperforms current state-of-the-art methods regarding generality and effectiveness in several benchmark tests. This study presents a novel approach to feature matching in the context of large-scale differences, which can fulfill the requirements of feature matching for large-scale differences in UAV images, satellite images, etc. The MSD is accessible at https://github.com/KevenGe/MSD-Datasets.
Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale differences. In light of limitations, this study proposed a feature matching algorithm based on scaling, MSM (Multi-Scale Matching), which enhances feature matching performance in images with large-scale variations. This algorithm extract feature points across multiple scales, identifying them as scale-invariant keypoints. In addition, it combines descriptors from different scales to construct composite descriptors, to improve the robustness and accuracy of the matching process. For a more comprehensive evaluation of the MSM, we have meticulously devised a scale difference index (SDI) and constructed a multi-scale dataset (MSD) by SDI. The results of feature matching experiments demonstrated that the MSM algorithm outperforms current state-of-the-art methods regarding generality and effectiveness in several benchmark tests. This study presents a novel approach to feature matching in the context of large-scale differences, which can fulfill the requirements of feature matching for large-scale differences in UAV images, satellite images, etc. The MSD is accessible at https://github.com/KevenGe/MSD-Datasets .
Author Fan, Xiangtao
Du, Xiaoping
Yan, Zhenzhen
Xu, Jianhao
Ge, Qifeng
Xu, Chen
Author_xml – sequence: 1
  givenname: Qifeng
  orcidid: 0009-0006-4920-5076
  surname: Ge
  fullname: Ge, Qifeng
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Xiaoping
  surname: Du
  fullname: Du, Xiaoping
  email: duxp@aircas.ac.cn
  organization: International Research Center of Big Data for Sustainable Development Goals
– sequence: 3
  givenname: Chen
  surname: Xu
  fullname: Xu, Chen
  organization: International Research Center of Big Data for Sustainable Development Goals
– sequence: 4
  givenname: Jianhao
  surname: Xu
  fullname: Xu, Jianhao
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Zhenzhen
  surname: Yan
  fullname: Yan, Zhenzhen
  organization: International Research Center of Big Data for Sustainable Development Goals
– sequence: 6
  givenname: Xiangtao
  surname: Fan
  fullname: Fan, Xiangtao
  organization: International Research Center of Big Data for Sustainable Development Goals
BookMark eNqNkF1rFDEUhgepYFv9CULA61mTydfEK6X4UWjxQsXLcJKcTGeZnazJLMv-e7NO7aWYm4SX8z5JnqvmYk4zNs1rRjeM9vQt05L3RuhNRzu56aTgUnXPmstz3vZGyouns9AvmqtStpQqKgS_bH7ef7t_R4AUD9M4D62DgoFEhOWQkexg8Q81JjANKY_Lw47ElMm4gwELOdaATJAHbM91JGGMETPOHsvL5nmEqeCrx_26-fHp4_ebL-3d18-3Nx_uWi8oW9qORW4cM84r7ngAHV10nAXn0fhe6CgDKgpOc1QyGhc0pZ0TQTkPERXy6-Z25YYEW7vP9Wn5ZBOM9k-Q8mAhL6Of0OrYKREo0gBKGO97po1D7REpZdKxylIr6zDv4XSEaXoCMmrPqu1f1fas2j6qrsU3a3Gf068DlsVu0yHP9d-Wd1KbuoSqU3Kd8jmVkjH-N_392hvnKn8Hx5SnYBc4TSnHDLMf6zX_RvwGLUOkpQ
Cites_doi 10.1109/CVPR.2017.649
10.1109/TRO.2012.2197158
10.1109/CVPR.2015.7298948
10.1109/TPAMI.2011.103
10.3390/s24030855
10.1109/CVPR.2019.00828
10.1109/CVPR42600.2020.00499
10.5220/0001787803310340
10.1145/358669.358692
10.1109/CVPR.2019.01127
10.1109/ICCV48922.2021.00600
10.48550/arXiv.1804.05312
10.1007/s11263-020-01385-0
10.1109/CVPR.2019.01044
10.1007/s11263-019-01280-3
10.1016/j.patrec.2020.04.005
10.1109/CVPRW.2018.00060
10.1007/978-3-642-15558-1_49
10.1109/TMM.2022.3155927
10.1016/j.isprsjprs.2023.10.021
10.1023/B:VISI.0000029664.99615.94
10.48550/arXiv.2505.08013
10.1007/s11263-005-3848-x
10.1007/s11263-018-1117-z
10.1016/j.cviu.2007.09.014
10.1109/CVPR42600.2020.00662
10.1109/CVPR.2017.302
10.48550/arXiv.2407.15791
10.1109/ICCV51070.2023.01616
10.48550/arXiv.2312.02152
10.1109/CVPR.2016.445
10.1109/CVPR.2012.6248018
10.1109/CVPR.2018.00218
10.1109/CVPR52729.2023.01705
10.1109/ICCV51070.2023.00050
10.1016/j.isprsjprs.2023.01.016
10.1109/CVPR.2004.1315206
10.1109/CVPR.2017.410
10.1109/CVPR52733.2024.00259
10.1007/978-3-030-69535-4_25
10.1109/ICCV.2011.6126544
10.5244/C.30.119
10.48550/arXiv.1705.10872
10.1109/CVPR52729.2023.00737
10.48550/arXiv.2006.05077
10.1109/CVPR52733.2024.01878
ContentType Journal Article
Copyright 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025
2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025
– notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
SOI
ADTOC
UNPAY
DOA
DOI 10.1080/17538947.2025.2543562
DatabaseName Taylor & Francis Open Access
CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1753-8955
ExternalDocumentID oai_doaj_org_article_7f264d0e0da649cc8179be7cee0015b1
10.1080/17538947.2025.2543562
10_1080_17538947_2025_2543562
2543562
Genre Research Article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  grantid: XDA19080100
– fundername: National Natural Science Foundation of China
  grantid: 41974108
– fundername: Innovation Drive Development Special Project of Guangxi
  grantid: GuikeAA20302022
– fundername: China Postdoctoral Science Foundation
  grantid: 2023M743586
– fundername: National Key Research and Development Program of China
  grantid: 2022YFC3800704
– fundername: Special Research Foundation on Water Resources Allocation Project in the Pearl River Delta
  grantid: CD88-QT01-2022-0085
GroupedDBID .7F
0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABDBF
ABFIM
ABPEM
ABTAI
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADMSI
AEISY
AENEX
AEYOC
AFKVX
AFRAH
AHDSZ
AHDZW
AIJEM
AIYEW
AJWEG
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
ESX
GROUPED_DOAJ
GTTXZ
H13
HZ~
J~4
KYCEM
LJTGL
M4Z
ML.
O9-
OK1
SNACF
TDBHL
TFL
TFW
TTHFI
TWF
TWN
UU3
VAE
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
SOI
ADTOC
CAG
COF
EJD
HF~
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c401t-21f39b19bc63b3da7fbfb31dbce9c847f5de60ab73e65f9bd7002b4d6bcafe6e3
IEDL.DBID UNPAY
ISSN 1753-8947
1753-8955
IngestDate Fri Oct 03 12:52:14 EDT 2025
Sun Sep 07 11:25:43 EDT 2025
Wed Oct 08 03:02:26 EDT 2025
Wed Oct 01 05:32:05 EDT 2025
Mon Oct 20 23:46:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-21f39b19bc63b3da7fbfb31dbce9c847f5de60ab73e65f9bd7002b4d6bcafe6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0006-4920-5076
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1080/17538947.2025.2543562
PQID 3257999946
PQPubID 176143
ParticipantIDs unpaywall_primary_10_1080_17538947_2025_2543562
doaj_primary_oai_doaj_org_article_7f264d0e0da649cc8179be7cee0015b1
crossref_primary_10_1080_17538947_2025_2543562
proquest_journals_3257999946
informaworld_taylorfrancis_310_1080_17538947_2025_2543562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of digital earth
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_5_29_1
e_1_3_5_27_1
e_1_3_5_25_1
e_1_3_5_23_1
e_1_3_5_44_1
e_1_3_5_46_1
e_1_3_5_48_1
e_1_3_5_3_1
e_1_3_5_40_1
e_1_3_5_42_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_5_1
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_37_1
e_1_3_5_14_1
e_1_3_5_35_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_50_1
e_1_3_5_52_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_28_1
e_1_3_5_26_1
e_1_3_5_24_1
e_1_3_5_22_1
e_1_3_5_45_1
e_1_3_5_47_1
e_1_3_5_49_1
e_1_3_5_2_1
e_1_3_5_41_1
e_1_3_5_43_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_4_1
e_1_3_5_6_1
e_1_3_5_17_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_19_1
e_1_3_5_51_1
e_1_3_5_32_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_44_1
  doi: 10.1109/CVPR.2017.649
– ident: e_1_3_5_17_1
  doi: 10.1109/TRO.2012.2197158
– ident: e_1_3_5_18_1
  doi: 10.1109/CVPR.2015.7298948
– ident: e_1_3_5_41_1
  doi: 10.1109/TPAMI.2011.103
– ident: e_1_3_5_43_1
  doi: 10.3390/s24030855
– ident: e_1_3_5_13_1
  doi: 10.1109/CVPR.2019.00828
– ident: e_1_3_5_38_1
  doi: 10.1109/CVPR42600.2020.00499
– ident: e_1_3_5_46_1
– ident: e_1_3_5_50_1
– ident: e_1_3_5_31_1
  doi: 10.5220/0001787803310340
– ident: e_1_3_5_15_1
– ident: e_1_3_5_16_1
  doi: 10.1145/358669.358692
– ident: e_1_3_5_45_1
  doi: 10.1109/CVPR.2019.01127
– ident: e_1_3_5_12_1
  doi: 10.1109/ICCV48922.2021.00600
– ident: e_1_3_5_19_1
  doi: 10.48550/arXiv.1804.05312
– ident: e_1_3_5_22_1
  doi: 10.1007/s11263-020-01385-0
– ident: e_1_3_5_5_1
  doi: 10.1109/CVPR.2019.01044
– ident: e_1_3_5_8_1
  doi: 10.1007/s11263-019-01280-3
– ident: e_1_3_5_42_1
  doi: 10.1016/j.patrec.2020.04.005
– ident: e_1_3_5_11_1
  doi: 10.1109/CVPRW.2018.00060
– ident: e_1_3_5_33_1
  doi: 10.1007/978-3-642-15558-1_49
– ident: e_1_3_5_51_1
  doi: 10.1109/TMM.2022.3155927
– ident: e_1_3_5_14_1
– ident: e_1_3_5_52_1
  doi: 10.1016/j.isprsjprs.2023.10.021
– ident: e_1_3_5_26_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_3_5_10_1
  doi: 10.48550/arXiv.2505.08013
– ident: e_1_3_5_29_1
  doi: 10.1007/s11263-005-3848-x
– ident: e_1_3_5_28_1
  doi: 10.1007/s11263-018-1117-z
– ident: e_1_3_5_6_1
  doi: 10.1016/j.cviu.2007.09.014
– ident: e_1_3_5_27_1
  doi: 10.1109/CVPR42600.2020.00662
– ident: e_1_3_5_7_1
  doi: 10.1109/CVPR.2017.302
– ident: e_1_3_5_20_1
  doi: 10.48550/arXiv.2407.15791
– ident: e_1_3_5_25_1
  doi: 10.1109/ICCV51070.2023.01616
– ident: e_1_3_5_9_1
  doi: 10.48550/arXiv.2312.02152
– ident: e_1_3_5_35_1
– ident: e_1_3_5_39_1
  doi: 10.1109/CVPR.2016.445
– ident: e_1_3_5_2_1
  doi: 10.1109/CVPR.2012.6248018
– ident: e_1_3_5_24_1
  doi: 10.1109/CVPR.2018.00218
– ident: e_1_3_5_32_1
  doi: 10.1109/CVPR52729.2023.01705
– ident: e_1_3_5_36_1
  doi: 10.1109/ICCV51070.2023.00050
– ident: e_1_3_5_48_1
  doi: 10.1016/j.isprsjprs.2023.01.016
– ident: e_1_3_5_23_1
  doi: 10.1109/CVPR.2004.1315206
– ident: e_1_3_5_3_1
  doi: 10.1109/CVPR.2017.410
– ident: e_1_3_5_34_1
  doi: 10.1109/CVPR52733.2024.00259
– ident: e_1_3_5_49_1
  doi: 10.1007/978-3-030-69535-4_25
– ident: e_1_3_5_37_1
  doi: 10.1109/ICCV.2011.6126544
– ident: e_1_3_5_4_1
  doi: 10.5244/C.30.119
– ident: e_1_3_5_30_1
  doi: 10.48550/arXiv.1705.10872
– ident: e_1_3_5_47_1
  doi: 10.1109/CVPR52729.2023.00737
– ident: e_1_3_5_40_1
  doi: 10.48550/arXiv.2006.05077
– ident: e_1_3_5_21_1
  doi: 10.1109/CVPR52733.2024.01878
SSID ssj0060443
Score 2.3636694
Snippet Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and...
SourceID doaj
unpaywall
proquest
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Datasets
Feature matching
Image quality
Image reconstruction
local feature
Matching
multi-scale dataset
multi-scale feature matching
Remote sensing
Satellite imagery
Simultaneous localization and mapping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECbGi16Mr8ZqNRy8YrfLLize1NgYk3pRY29kgUFNam3abYz_3mEftXqpB6_sQoAZZr4hwzeEnFrJuXIxMG65ZYlCDKecjxnENgEFIhNl0b7Bnbh5TG6H6XCp1FfICavogauN60qPLttFELlcJMraDDXIgETbHty9KQOfKFNNMFXZYBElVWo9gnGWqUQ2b3eyqBvaQhPGhnF6Ft6CpyL-4ZVK8v5f1KU_AOjGfDzJPz_y0WjJF_W3yVYNIulFNfkdsgbjXdK6_n6zhh_rQzvbI0-D-8E5zekMxYGOigXH5aiHktKTImIt0ylpPnp-n74WL28U50Nf39DQzGi4pqWjkC3OQnegTUEVHHmfPPavH65uWF1PgVmMogoW9zxXpqeMFdxwl0tvvOE9Zywoi17Kpw5ElBvJQaReGSfRXJrECWNzDwJ4i6yP38dwQKjnAIgkMTrEcMul3ghpsjSTiN8gUly1yVmzn3pS0WboXs1G2ghABwHoWgBtchl2ffFzYL0uG1AXdK0LepUutIlalpkuyksPX1Uo0XzFBDqNgHV9jLELGjRE0CoRbdJdCP1vKzr8jxUdkc0wZsUs2SHrxXQOx4iCCnNSKvwXazT-Tg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHOCCSsuKBYp86NWQxIkdc4MKtKq0vbSocLL8GC8r7UubINR_zzgPHpUqKvWYx0SOxzPzjTX-hpAvTnKufAaMO-5YrhDDKR8yBpnLQYEoRdO0b_xdjG7yb7dFX01YdWWVMYcOLVFE46ujcRtb9RVxZ5FcslS5xOwuK07jae4ieuGtTKYqLuzkbtQ7Y5HkbY09irAo0x_i-dtn3oSnhsX_Dw7TN0h0-2GxMr8fzWz2KihdfyC7HZqkF63698gGLD6SwdXL4TV82Flv9Yn8Gv8Yn1NDK9QLRiwWI5inARpuT4rQtamrpGY2Wa6n9f2c4njodI4ep6Jxv5bOYtk4i-JA-84q-OV9cnN99fPriHWNFZjDdKpmWRq4sqmyTnDLvZHBBstTbx0oh-EqFB5EYqzkIIqgrJfoN23uhXUmgAA-IJuL5QIOCA0cACElpomYd_kiWCFtWZQSgRwkiqshOe3nU69a_gyddrSkvQJ0VIDuFDAkl3HWn1-O9NfNjeV6ojtr0jIgjvMJJN6IXDlXoluxIDHgRwxo0yFRr3Wm62b3I7StSjR_ZwDHvYJ1Z88ogp4NobTKxZCcPSv93_7o8D8Gc0R24mXLLHlMNuv1A3xGFFTbk2adPwEMTfrS
  priority: 102
  providerName: Taylor & Francis
Title MSM: a scaling-based feature matching algorithm for images with large-scale differences
URI https://www.tandfonline.com/doi/abs/10.1080/17538947.2025.2543562
https://www.proquest.com/docview/3257999946
https://doi.org/10.1080/17538947.2025.2543562
https://doaj.org/article/7f264d0e0da649cc8179be7cee0015b1
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: ABDBF
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: AHDZW
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: 0YH
  dateStart: 20221201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1753-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060443
  issn: 1753-8955
  databaseCode: 30N
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AL5VWxUFY-cPU2iWM77q1FrVZIu0KCFe3Jiu0xVGy3VTcrRH8948Rpu5UQ5RLlYVt-jGc-O55vCPngFOfaF8C4446VGjGc9qFgULgSNMhKtkH7pjM5mZefTsRJclaPvjAb_--rbC8SSVa6VLiSK8Q4em6LqHG3pEDoPSBb89nng9PW6VFwFhPe3gvRe-z8rZwNW9RS9t8jLN2AnU_Wy8v69696sbhjgY63yayve3fw5Od43dixu75H6_jgxj0nzxIWpQed8Lwgj2D5kuwc3bq-4cc091evyLfpl-k-rekKRxXtHYv2z9MALTMoReDbnsqk9eL7xdVZ8-OcYgPp2TnqqxWNu710EQ-ds5gdaB-XBUt-TebHR18_TlgKy8AcLsYaVuSBa5tr6yS33Ncq2GB57q0D7dDYBeFBZrVVHKQI2nqFWteWXlpXB5DAd8hgebGEN4QGDoCAFBeZuGrzIlipbCUqhTAQMs31kIz7ATKXHfuGyROpad95JnaeSZ03JIdxGG8SR_Ls9gV2u0lz0aiAKNBnkPlaltq5CpWSBYVwISJImw-JvisEpmn3TkIX6MTwf1Rgt5cYk7QBZkG9iEBcl3JI9m6k6GEtevvfOd6Rp_GxY6PcJYPmag3vETk1dkQeZ6cTvPJsNmp3H0ZpBv0B4xcKlA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqeqAXBG0RW5bWh14NSZzYcW9QLVpalktB0JMV22OKtOyi3aCq_74z-aBLpQqkXuOM5XjimTfWzBvGPnotpQkZCOmlF7lBDGdCzARkPgcDqlRN077JmRpf5F-uiquVWhhKq6QYOrZEEY2tpsNNl9F9StwBsUuWJtcY3mXFPpVzF2SGXxYIF6l9Q_J93FtjleRtkj2KCJLpq3j-Nc0j_9TQ-P9FYvoIiq7fz-6qXz-r6XTFKx1vso0OTvLDVv9b7AXMXrPt0Z_qNRzsju_yDbucfJt84hVfomLQZQlyYYFHaMg9OWLXJrGSV9Pr-eKm_nHLcT385hZNzpLThS2fUt64IHHgfWsVnPktuzgenX8ei66zgvAYT9UiS6M0LjXOK-lkqHR00ck0OA_Go7-KRQCVVE5LUEU0Lmg0nC4PyvkqggK5zdZm8xnsMB4lAGJKjBMx8ApFdEq7sig1IjlIjDQDtt_vp71rCTRs2vGS9gqwpADbKWDAjmjXH14m_uvmwXxxbbvjZHVEIBcSSEKlcuN9iXbFgUaPTyDQpQNmVnVm6-b6I7a9Sqx8YgHDXsG2O9AogqYNsbTJ1YAdPCj9eV_07j8W84Gtj88np_b05OzrLntFQy3N5JCt1Yt72ENIVLv3zT__G4XJ_jU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQSG0vLf1AbAvFh169JHFix9xKywpod1WpRe3Niu0xIJbd1W5WiP56xklMAalqJa5xxoq_3rxxxs-EfLCSc-UyYNxyy3KFHE45nzHIbA4KRCmaS_uGI3F4kh__KmI24aJLqwwxtG-FIhqsDot75nzMiNsN4pKlyiVGd1nRD6e5i4DCayL8FQunOJJRBGOR5G2OPZqwYBMP8fytmnvuqVHxf6Bheo-JPl1OZtX1VTUe33FKgxfExOa0uSgX_WVt-vb3A6XHR7V3nTzvKCv92M6xl2QFJq_IxsGfE3JY2EHE4jX5Ofw-3KMVXeDgo1tkwU066qEREKXIj5vkTVqNT6fz8_rskmKj6fklwtqChk1hOg656SyYA43Xt2DNb8jJ4ODHp0PW3d7ALMZsNctSz5VJlbGCG-4q6Y03PHXGgrLoE33hQCSVkRxE4ZVxEsHZ5E4YW3kQwDfI6mQ6gU1CPQdA3oqxKAZ3rvBGSFMWpUS2CIniqkf6cdD0rBXp0GmnfRo7T4fO013n9ch-GNrbl4PGdvNgOj_V3ZLV0iNZdAkkrhK5srZE7DIgkVUEomnSHlF3J4aumy0W396Hovk_PmArziLdgQaaIHwiX1e56JHd25n1fy16-4iP2SFPvn0e6K9Hoy_vyLNQ0ipZbpHVer6EbWRdtXnfrKsbg5gc_A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXQcqCX0tKiLqWVD1y9JHFsx73RCoQq7aoSrEpPVmyPW8SyIDYrRH99x4kDLFJVesuHHdnj8cwbx_NMyJ5TnGtfAOOOO1ZqxHDah4JB4UrQICvZHto3nsjjafn1TJylZPWYC7Py_77K9iORZKVLhZFcIUYxc1tEi7suBULvAVmfTr4d_GiTHgVnseDDtRB9xs7fvrPii1rK_ieEpSuwc2M5v67vbuvZ7JEHOtokk77t3caTi9GysSP3-wmt47M794q8TFiUHnTK85qswXyLbB8-pL7hyzT3F2_I9_HJ-BOt6QJHFf0di_7P0wAtMyhF4NvuyqT17OfVzXnz65JiB-n5JdqrBY2rvXQWN52zWB1ofy4LfvktmR4dnn45ZulYBuYwGGtYkQeuba6tk9xyX6tgg-W5tw60Q2cXhAeZ1VZxkCJo6xVaXVt6aV0dQALfJoP51RzeERo4AAJSDDIxavMiWKlsJSqFMBAyzfWQjPoBMtcd-4bJE6lpLzwThWeS8IbkcxzG-8KRPLt9gGI3aS4aFRAF-gwyX8tSO1ehUbKgEC5EBGnzIdGPlcA07dpJ6A46MfwfDdjtNcYka4BV0C4iENelHJL9ey16Xo92_rvGe_Ii3nZslLtk0Nws4QMip8Z-TPPlD0dJB9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSM%3A+a+scaling-based+feature+matching+algorithm+for+images+with+large-scale+differences&rft.jtitle=International+journal+of+digital+earth&rft.au=Ge%2C+Qifeng&rft.au=Du%2C+Xiaoping&rft.au=Xu%2C+Chen&rft.au=Xu%2C+Jianhao&rft.date=2025-12-31&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1080%2F17538947.2025.2543562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2025_2543562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon