MSM: a scaling-based feature matching algorithm for images with large-scale differences
Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale...
Saved in:
| Published in | International journal of digital earth Vol. 18; no. 1 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
31.12.2025
Taylor & Francis Ltd Taylor & Francis Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1753-8947 1753-8955 1753-8955 |
| DOI | 10.1080/17538947.2025.2543562 |
Cover
| Abstract | Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale differences. In light of limitations, this study proposed a feature matching algorithm based on scaling, MSM (Multi-Scale Matching), which enhances feature matching performance in images with large-scale variations. This algorithm extract feature points across multiple scales, identifying them as scale-invariant keypoints. In addition, it combines descriptors from different scales to construct composite descriptors, to improve the robustness and accuracy of the matching process. For a more comprehensive evaluation of the MSM, we have meticulously devised a scale difference index (SDI) and constructed a multi-scale dataset (MSD) by SDI. The results of feature matching experiments demonstrated that the MSM algorithm outperforms current state-of-the-art methods regarding generality and effectiveness in several benchmark tests. This study presents a novel approach to feature matching in the context of large-scale differences, which can fulfill the requirements of feature matching for large-scale differences in UAV images, satellite images, etc. The MSD is accessible at
https://github.com/KevenGe/MSD-Datasets
. |
|---|---|
| AbstractList | Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale differences. In light of limitations, this study proposed a feature matching algorithm based on scaling, MSM (Multi-Scale Matching), which enhances feature matching performance in images with large-scale variations. This algorithm extract feature points across multiple scales, identifying them as scale-invariant keypoints. In addition, it combines descriptors from different scales to construct composite descriptors, to improve the robustness and accuracy of the matching process. For a more comprehensive evaluation of the MSM, we have meticulously devised a scale difference index (SDI) and constructed a multi-scale dataset (MSD) by SDI. The results of feature matching experiments demonstrated that the MSM algorithm outperforms current state-of-the-art methods regarding generality and effectiveness in several benchmark tests. This study presents a novel approach to feature matching in the context of large-scale differences, which can fulfill the requirements of feature matching for large-scale differences in UAV images, satellite images, etc. The MSD is accessible at https://github.com/KevenGe/MSD-Datasets. Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and preprocessing for remote sensing images. However, existing methods frequently fail to produce high-quality results on images with large-scale differences. In light of limitations, this study proposed a feature matching algorithm based on scaling, MSM (Multi-Scale Matching), which enhances feature matching performance in images with large-scale variations. This algorithm extract feature points across multiple scales, identifying them as scale-invariant keypoints. In addition, it combines descriptors from different scales to construct composite descriptors, to improve the robustness and accuracy of the matching process. For a more comprehensive evaluation of the MSM, we have meticulously devised a scale difference index (SDI) and constructed a multi-scale dataset (MSD) by SDI. The results of feature matching experiments demonstrated that the MSM algorithm outperforms current state-of-the-art methods regarding generality and effectiveness in several benchmark tests. This study presents a novel approach to feature matching in the context of large-scale differences, which can fulfill the requirements of feature matching for large-scale differences in UAV images, satellite images, etc. The MSD is accessible at https://github.com/KevenGe/MSD-Datasets . |
| Author | Fan, Xiangtao Du, Xiaoping Yan, Zhenzhen Xu, Jianhao Ge, Qifeng Xu, Chen |
| Author_xml | – sequence: 1 givenname: Qifeng orcidid: 0009-0006-4920-5076 surname: Ge fullname: Ge, Qifeng organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Xiaoping surname: Du fullname: Du, Xiaoping email: duxp@aircas.ac.cn organization: International Research Center of Big Data for Sustainable Development Goals – sequence: 3 givenname: Chen surname: Xu fullname: Xu, Chen organization: International Research Center of Big Data for Sustainable Development Goals – sequence: 4 givenname: Jianhao surname: Xu fullname: Xu, Jianhao organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Zhenzhen surname: Yan fullname: Yan, Zhenzhen organization: International Research Center of Big Data for Sustainable Development Goals – sequence: 6 givenname: Xiangtao surname: Fan fullname: Fan, Xiangtao organization: International Research Center of Big Data for Sustainable Development Goals |
| BookMark | eNqNkF1rFDEUhgepYFv9CULA61mTydfEK6X4UWjxQsXLcJKcTGeZnazJLMv-e7NO7aWYm4SX8z5JnqvmYk4zNs1rRjeM9vQt05L3RuhNRzu56aTgUnXPmstz3vZGyouns9AvmqtStpQqKgS_bH7ef7t_R4AUD9M4D62DgoFEhOWQkexg8Q81JjANKY_Lw47ElMm4gwELOdaATJAHbM91JGGMETPOHsvL5nmEqeCrx_26-fHp4_ebL-3d18-3Nx_uWi8oW9qORW4cM84r7ngAHV10nAXn0fhe6CgDKgpOc1QyGhc0pZ0TQTkPERXy6-Z25YYEW7vP9Wn5ZBOM9k-Q8mAhL6Of0OrYKREo0gBKGO97po1D7REpZdKxylIr6zDv4XSEaXoCMmrPqu1f1fas2j6qrsU3a3Gf068DlsVu0yHP9d-Wd1KbuoSqU3Kd8jmVkjH-N_392hvnKn8Hx5SnYBc4TSnHDLMf6zX_RvwGLUOkpQ |
| Cites_doi | 10.1109/CVPR.2017.649 10.1109/TRO.2012.2197158 10.1109/CVPR.2015.7298948 10.1109/TPAMI.2011.103 10.3390/s24030855 10.1109/CVPR.2019.00828 10.1109/CVPR42600.2020.00499 10.5220/0001787803310340 10.1145/358669.358692 10.1109/CVPR.2019.01127 10.1109/ICCV48922.2021.00600 10.48550/arXiv.1804.05312 10.1007/s11263-020-01385-0 10.1109/CVPR.2019.01044 10.1007/s11263-019-01280-3 10.1016/j.patrec.2020.04.005 10.1109/CVPRW.2018.00060 10.1007/978-3-642-15558-1_49 10.1109/TMM.2022.3155927 10.1016/j.isprsjprs.2023.10.021 10.1023/B:VISI.0000029664.99615.94 10.48550/arXiv.2505.08013 10.1007/s11263-005-3848-x 10.1007/s11263-018-1117-z 10.1016/j.cviu.2007.09.014 10.1109/CVPR42600.2020.00662 10.1109/CVPR.2017.302 10.48550/arXiv.2407.15791 10.1109/ICCV51070.2023.01616 10.48550/arXiv.2312.02152 10.1109/CVPR.2016.445 10.1109/CVPR.2012.6248018 10.1109/CVPR.2018.00218 10.1109/CVPR52729.2023.01705 10.1109/ICCV51070.2023.00050 10.1016/j.isprsjprs.2023.01.016 10.1109/CVPR.2004.1315206 10.1109/CVPR.2017.410 10.1109/CVPR52733.2024.00259 10.1007/978-3-030-69535-4_25 10.1109/ICCV.2011.6126544 10.5244/C.30.119 10.48550/arXiv.1705.10872 10.1109/CVPR52729.2023.00737 10.48550/arXiv.2006.05077 10.1109/CVPR52733.2024.01878 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2025 – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M SOI ADTOC UNPAY DOA |
| DOI | 10.1080/17538947.2025.2543562 |
| DatabaseName | Taylor & Francis Open Access CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1753-8955 |
| ExternalDocumentID | oai_doaj_org_article_7f264d0e0da649cc8179be7cee0015b1 10.1080/17538947.2025.2543562 10_1080_17538947_2025_2543562 2543562 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences grantid: XDA19080100 – fundername: National Natural Science Foundation of China grantid: 41974108 – fundername: Innovation Drive Development Special Project of Guangxi grantid: GuikeAA20302022 – fundername: China Postdoctoral Science Foundation grantid: 2023M743586 – fundername: National Key Research and Development Program of China grantid: 2022YFC3800704 – fundername: Special Research Foundation on Water Resources Allocation Project in the Pearl River Delta grantid: CD88-QT01-2022-0085 |
| GroupedDBID | .7F 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABDBF ABFIM ABPEM ABTAI ACGFS ACIWK ACTIO ACUHS ADCVX ADMSI AEISY AENEX AEYOC AFKVX AFRAH AHDSZ AHDZW AIJEM AIYEW AJWEG ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS ESX GROUPED_DOAJ GTTXZ H13 HZ~ J~4 KYCEM LJTGL M4Z ML. O9- OK1 SNACF TDBHL TFL TFW TTHFI TWF TWN UU3 VAE AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M SOI ADTOC CAG COF EJD HF~ IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c401t-21f39b19bc63b3da7fbfb31dbce9c847f5de60ab73e65f9bd7002b4d6bcafe6e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1753-8947 1753-8955 |
| IngestDate | Fri Oct 03 12:52:14 EDT 2025 Sun Sep 07 11:25:43 EDT 2025 Wed Oct 08 03:02:26 EDT 2025 Wed Oct 01 05:32:05 EDT 2025 Mon Oct 20 23:46:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-21f39b19bc63b3da7fbfb31dbce9c847f5de60ab73e65f9bd7002b4d6bcafe6e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0006-4920-5076 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1080/17538947.2025.2543562 |
| PQID | 3257999946 |
| PQPubID | 176143 |
| ParticipantIDs | unpaywall_primary_10_1080_17538947_2025_2543562 doaj_primary_oai_doaj_org_article_7f264d0e0da649cc8179be7cee0015b1 crossref_primary_10_1080_17538947_2025_2543562 proquest_journals_3257999946 informaworld_taylorfrancis_310_1080_17538947_2025_2543562 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-31 |
| PublicationDateYYYYMMDD | 2025-12-31 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of digital earth |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
| References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_25_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_46_1 e_1_3_5_48_1 e_1_3_5_3_1 e_1_3_5_40_1 e_1_3_5_42_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_50_1 e_1_3_5_52_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_47_1 e_1_3_5_49_1 e_1_3_5_2_1 e_1_3_5_41_1 e_1_3_5_43_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_19_1 e_1_3_5_51_1 e_1_3_5_32_1 e_1_3_5_30_1 |
| References_xml | – ident: e_1_3_5_44_1 doi: 10.1109/CVPR.2017.649 – ident: e_1_3_5_17_1 doi: 10.1109/TRO.2012.2197158 – ident: e_1_3_5_18_1 doi: 10.1109/CVPR.2015.7298948 – ident: e_1_3_5_41_1 doi: 10.1109/TPAMI.2011.103 – ident: e_1_3_5_43_1 doi: 10.3390/s24030855 – ident: e_1_3_5_13_1 doi: 10.1109/CVPR.2019.00828 – ident: e_1_3_5_38_1 doi: 10.1109/CVPR42600.2020.00499 – ident: e_1_3_5_46_1 – ident: e_1_3_5_50_1 – ident: e_1_3_5_31_1 doi: 10.5220/0001787803310340 – ident: e_1_3_5_15_1 – ident: e_1_3_5_16_1 doi: 10.1145/358669.358692 – ident: e_1_3_5_45_1 doi: 10.1109/CVPR.2019.01127 – ident: e_1_3_5_12_1 doi: 10.1109/ICCV48922.2021.00600 – ident: e_1_3_5_19_1 doi: 10.48550/arXiv.1804.05312 – ident: e_1_3_5_22_1 doi: 10.1007/s11263-020-01385-0 – ident: e_1_3_5_5_1 doi: 10.1109/CVPR.2019.01044 – ident: e_1_3_5_8_1 doi: 10.1007/s11263-019-01280-3 – ident: e_1_3_5_42_1 doi: 10.1016/j.patrec.2020.04.005 – ident: e_1_3_5_11_1 doi: 10.1109/CVPRW.2018.00060 – ident: e_1_3_5_33_1 doi: 10.1007/978-3-642-15558-1_49 – ident: e_1_3_5_51_1 doi: 10.1109/TMM.2022.3155927 – ident: e_1_3_5_14_1 – ident: e_1_3_5_52_1 doi: 10.1016/j.isprsjprs.2023.10.021 – ident: e_1_3_5_26_1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: e_1_3_5_10_1 doi: 10.48550/arXiv.2505.08013 – ident: e_1_3_5_29_1 doi: 10.1007/s11263-005-3848-x – ident: e_1_3_5_28_1 doi: 10.1007/s11263-018-1117-z – ident: e_1_3_5_6_1 doi: 10.1016/j.cviu.2007.09.014 – ident: e_1_3_5_27_1 doi: 10.1109/CVPR42600.2020.00662 – ident: e_1_3_5_7_1 doi: 10.1109/CVPR.2017.302 – ident: e_1_3_5_20_1 doi: 10.48550/arXiv.2407.15791 – ident: e_1_3_5_25_1 doi: 10.1109/ICCV51070.2023.01616 – ident: e_1_3_5_9_1 doi: 10.48550/arXiv.2312.02152 – ident: e_1_3_5_35_1 – ident: e_1_3_5_39_1 doi: 10.1109/CVPR.2016.445 – ident: e_1_3_5_2_1 doi: 10.1109/CVPR.2012.6248018 – ident: e_1_3_5_24_1 doi: 10.1109/CVPR.2018.00218 – ident: e_1_3_5_32_1 doi: 10.1109/CVPR52729.2023.01705 – ident: e_1_3_5_36_1 doi: 10.1109/ICCV51070.2023.00050 – ident: e_1_3_5_48_1 doi: 10.1016/j.isprsjprs.2023.01.016 – ident: e_1_3_5_23_1 doi: 10.1109/CVPR.2004.1315206 – ident: e_1_3_5_3_1 doi: 10.1109/CVPR.2017.410 – ident: e_1_3_5_34_1 doi: 10.1109/CVPR52733.2024.00259 – ident: e_1_3_5_49_1 doi: 10.1007/978-3-030-69535-4_25 – ident: e_1_3_5_37_1 doi: 10.1109/ICCV.2011.6126544 – ident: e_1_3_5_4_1 doi: 10.5244/C.30.119 – ident: e_1_3_5_30_1 doi: 10.48550/arXiv.1705.10872 – ident: e_1_3_5_47_1 doi: 10.1109/CVPR52729.2023.00737 – ident: e_1_3_5_40_1 doi: 10.48550/arXiv.2006.05077 – ident: e_1_3_5_21_1 doi: 10.1109/CVPR52733.2024.01878 |
| SSID | ssj0060443 |
| Score | 2.3636694 |
| Snippet | Feature matching represents a fundamental and critical problem in various tasks, including 3D reconstruction, simultaneous localization and mapping (SLAM) and... |
| SourceID | doaj unpaywall proquest crossref informaworld |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Datasets Feature matching Image quality Image reconstruction local feature Matching multi-scale dataset multi-scale feature matching Remote sensing Satellite imagery Simultaneous localization and mapping |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTwMhECbGi16Mr8ZqNRy8YrfLLize1NgYk3pRY29kgUFNam3abYz_3mEftXqpB6_sQoAZZr4hwzeEnFrJuXIxMG65ZYlCDKecjxnENgEFIhNl0b7Bnbh5TG6H6XCp1FfICavogauN60qPLttFELlcJMraDDXIgETbHty9KQOfKFNNMFXZYBElVWo9gnGWqUQ2b3eyqBvaQhPGhnF6Ft6CpyL-4ZVK8v5f1KU_AOjGfDzJPz_y0WjJF_W3yVYNIulFNfkdsgbjXdK6_n6zhh_rQzvbI0-D-8E5zekMxYGOigXH5aiHktKTImIt0ylpPnp-n74WL28U50Nf39DQzGi4pqWjkC3OQnegTUEVHHmfPPavH65uWF1PgVmMogoW9zxXpqeMFdxwl0tvvOE9Zywoi17Kpw5ElBvJQaReGSfRXJrECWNzDwJ4i6yP38dwQKjnAIgkMTrEcMul3ghpsjSTiN8gUly1yVmzn3pS0WboXs1G2ghABwHoWgBtchl2ffFzYL0uG1AXdK0LepUutIlalpkuyksPX1Uo0XzFBDqNgHV9jLELGjRE0CoRbdJdCP1vKzr8jxUdkc0wZsUs2SHrxXQOx4iCCnNSKvwXazT-Tg priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHOCCSsuKBYp86NWQxIkdc4MKtKq0vbSocLL8GC8r7UubINR_zzgPHpUqKvWYx0SOxzPzjTX-hpAvTnKufAaMO-5YrhDDKR8yBpnLQYEoRdO0b_xdjG7yb7dFX01YdWWVMYcOLVFE46ujcRtb9RVxZ5FcslS5xOwuK07jae4ieuGtTKYqLuzkbtQ7Y5HkbY09irAo0x_i-dtn3oSnhsX_Dw7TN0h0-2GxMr8fzWz2KihdfyC7HZqkF63698gGLD6SwdXL4TV82Flv9Yn8Gv8Yn1NDK9QLRiwWI5inARpuT4rQtamrpGY2Wa6n9f2c4njodI4ep6Jxv5bOYtk4i-JA-84q-OV9cnN99fPriHWNFZjDdKpmWRq4sqmyTnDLvZHBBstTbx0oh-EqFB5EYqzkIIqgrJfoN23uhXUmgAA-IJuL5QIOCA0cACElpomYd_kiWCFtWZQSgRwkiqshOe3nU69a_gyddrSkvQJ0VIDuFDAkl3HWn1-O9NfNjeV6ojtr0jIgjvMJJN6IXDlXoluxIDHgRwxo0yFRr3Wm62b3I7StSjR_ZwDHvYJ1Z88ogp4NobTKxZCcPSv93_7o8D8Gc0R24mXLLHlMNuv1A3xGFFTbk2adPwEMTfrS priority: 102 providerName: Taylor & Francis |
| Title | MSM: a scaling-based feature matching algorithm for images with large-scale differences |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17538947.2025.2543562 https://www.proquest.com/docview/3257999946 https://doi.org/10.1080/17538947.2025.2543562 https://doaj.org/article/7f264d0e0da649cc8179be7cee0015b1 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1753-8955 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: ABDBF dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: AHDZW dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: 0YH dateStart: 20221201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1753-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060443 issn: 1753-8955 databaseCode: 30N dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge4AL5VWxUFY-cPU2iWM77q1FrVZIu0KCFe3Jiu0xVGy3VTcrRH8948Rpu5UQ5RLlYVt-jGc-O55vCPngFOfaF8C4446VGjGc9qFgULgSNMhKtkH7pjM5mZefTsRJclaPvjAb_--rbC8SSVa6VLiSK8Q4em6LqHG3pEDoPSBb89nng9PW6VFwFhPe3gvRe-z8rZwNW9RS9t8jLN2AnU_Wy8v69696sbhjgY63yayve3fw5Od43dixu75H6_jgxj0nzxIWpQed8Lwgj2D5kuwc3bq-4cc091evyLfpl-k-rekKRxXtHYv2z9MALTMoReDbnsqk9eL7xdVZ8-OcYgPp2TnqqxWNu710EQ-ds5gdaB-XBUt-TebHR18_TlgKy8AcLsYaVuSBa5tr6yS33Ncq2GB57q0D7dDYBeFBZrVVHKQI2nqFWteWXlpXB5DAd8hgebGEN4QGDoCAFBeZuGrzIlipbCUqhTAQMs31kIz7ATKXHfuGyROpad95JnaeSZ03JIdxGG8SR_Ls9gV2u0lz0aiAKNBnkPlaltq5CpWSBYVwISJImw-JvisEpmn3TkIX6MTwf1Rgt5cYk7QBZkG9iEBcl3JI9m6k6GEtevvfOd6Rp_GxY6PcJYPmag3vETk1dkQeZ6cTvPJsNmp3H0ZpBv0B4xcKlA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUqeqAXBG0RW5bWh14NSZzYcW9QLVpalktB0JMV22OKtOyi3aCq_74z-aBLpQqkXuOM5XjimTfWzBvGPnotpQkZCOmlF7lBDGdCzARkPgcDqlRN077JmRpf5F-uiquVWhhKq6QYOrZEEY2tpsNNl9F9StwBsUuWJtcY3mXFPpVzF2SGXxYIF6l9Q_J93FtjleRtkj2KCJLpq3j-Nc0j_9TQ-P9FYvoIiq7fz-6qXz-r6XTFKx1vso0OTvLDVv9b7AXMXrPt0Z_qNRzsju_yDbucfJt84hVfomLQZQlyYYFHaMg9OWLXJrGSV9Pr-eKm_nHLcT385hZNzpLThS2fUt64IHHgfWsVnPktuzgenX8ei66zgvAYT9UiS6M0LjXOK-lkqHR00ck0OA_Go7-KRQCVVE5LUEU0Lmg0nC4PyvkqggK5zdZm8xnsMB4lAGJKjBMx8ApFdEq7sig1IjlIjDQDtt_vp71rCTRs2vGS9gqwpADbKWDAjmjXH14m_uvmwXxxbbvjZHVEIBcSSEKlcuN9iXbFgUaPTyDQpQNmVnVm6-b6I7a9Sqx8YgHDXsG2O9AogqYNsbTJ1YAdPCj9eV_07j8W84Gtj88np_b05OzrLntFQy3N5JCt1Yt72ENIVLv3zT__G4XJ_jU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQSG0vLf1AbAvFh169JHFix9xKywpod1WpRe3Niu0xIJbd1W5WiP56xklMAalqJa5xxoq_3rxxxs-EfLCSc-UyYNxyy3KFHE45nzHIbA4KRCmaS_uGI3F4kh__KmI24aJLqwwxtG-FIhqsDot75nzMiNsN4pKlyiVGd1nRD6e5i4DCayL8FQunOJJRBGOR5G2OPZqwYBMP8fytmnvuqVHxf6Bheo-JPl1OZtX1VTUe33FKgxfExOa0uSgX_WVt-vb3A6XHR7V3nTzvKCv92M6xl2QFJq_IxsGfE3JY2EHE4jX5Ofw-3KMVXeDgo1tkwU066qEREKXIj5vkTVqNT6fz8_rskmKj6fklwtqChk1hOg656SyYA43Xt2DNb8jJ4ODHp0PW3d7ALMZsNctSz5VJlbGCG-4q6Y03PHXGgrLoE33hQCSVkRxE4ZVxEsHZ5E4YW3kQwDfI6mQ6gU1CPQdA3oqxKAZ3rvBGSFMWpUS2CIniqkf6cdD0rBXp0GmnfRo7T4fO013n9ch-GNrbl4PGdvNgOj_V3ZLV0iNZdAkkrhK5srZE7DIgkVUEomnSHlF3J4aumy0W396Hovk_PmArziLdgQaaIHwiX1e56JHd25n1fy16-4iP2SFPvn0e6K9Hoy_vyLNQ0ipZbpHVer6EbWRdtXnfrKsbg5gc_A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELXQcqCX0tKiLqWVD1y9JHFsx73RCoQq7aoSrEpPVmyPW8SyIDYrRH99x4kDLFJVesuHHdnj8cwbx_NMyJ5TnGtfAOOOO1ZqxHDah4JB4UrQICvZHto3nsjjafn1TJylZPWYC7Py_77K9iORZKVLhZFcIUYxc1tEi7suBULvAVmfTr4d_GiTHgVnseDDtRB9xs7fvrPii1rK_ieEpSuwc2M5v67vbuvZ7JEHOtokk77t3caTi9GysSP3-wmt47M794q8TFiUHnTK85qswXyLbB8-pL7hyzT3F2_I9_HJ-BOt6QJHFf0di_7P0wAtMyhF4NvuyqT17OfVzXnz65JiB-n5JdqrBY2rvXQWN52zWB1ofy4LfvktmR4dnn45ZulYBuYwGGtYkQeuba6tk9xyX6tgg-W5tw60Q2cXhAeZ1VZxkCJo6xVaXVt6aV0dQALfJoP51RzeERo4AAJSDDIxavMiWKlsJSqFMBAyzfWQjPoBMtcd-4bJE6lpLzwThWeS8IbkcxzG-8KRPLt9gGI3aS4aFRAF-gwyX8tSO1ehUbKgEC5EBGnzIdGPlcA07dpJ6A46MfwfDdjtNcYka4BV0C4iENelHJL9ey16Xo92_rvGe_Ii3nZslLtk0Nws4QMip8Z-TPPlD0dJB9s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MSM%3A+a+scaling-based+feature+matching+algorithm+for+images+with+large-scale+differences&rft.jtitle=International+journal+of+digital+earth&rft.au=Ge%2C+Qifeng&rft.au=Du%2C+Xiaoping&rft.au=Xu%2C+Chen&rft.au=Xu%2C+Jianhao&rft.date=2025-12-31&rft.issn=1753-8947&rft.eissn=1753-8955&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1080%2F17538947.2025.2543562&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17538947_2025_2543562 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-8947&client=summon |