A patch-based real-time six degrees of freedom object pose refinement method for robotic manipulation
A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement appro...
Saved in:
| Published in | International journal of advanced robotic systems Vol. 21; no. 2 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London, England
SAGE Publications
01.01.2024
Sage Publications Ltd SAGE Publishing |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1729-8806 1729-8814 1729-8814 |
| DOI | 10.1177/17298806241229270 |
Cover
| Abstract | A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement approaches have been proposed to improve the accuracy by utilizing rendered images from a 3D model. Nevertheless, balancing speed and accuracy in an industrial setting remains a challenge for these methods. In this study, we propose a novel six degrees of freedom pose refinement approach centered around matching real image patches. Unlike previous approaches, our method does not rely on a 3D model, resulting in increased speed and accuracy. In the offline phase, we construct an offline database using image patches obtained from real images. During the inference phase, our method initially identifies the image patch within the offline database that is closest to the initial pose. Subsequently, we refine the six degrees of freedom pose by matching the corresponding image patches from the offline database. Experimental results indicate that our six degrees of freedom pose refinement method achieves real-time capability with a frame rate of 71 Frames Per Second (FPS), along with high precision. When the threshold is set to 0.5% of the object diameter, the average distance of dots score on the test data surpasses 70%. Moreover, experiments involving gripping and assembling tasks on an industrial robot demonstrate the ability of our method to autonomously select appropriate grasping angles and positions in real time. It further generates suitable motion paths, ultimately ensuring production efficiency. |
|---|---|
| AbstractList | A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement approaches have been proposed to improve the accuracy by utilizing rendered images from a 3D model. Nevertheless, balancing speed and accuracy in an industrial setting remains a challenge for these methods. In this study, we propose a novel six degrees of freedom pose refinement approach centered around matching real image patches. Unlike previous approaches, our method does not rely on a 3D model, resulting in increased speed and accuracy. In the offline phase, we construct an offline database using image patches obtained from real images. During the inference phase, our method initially identifies the image patch within the offline database that is closest to the initial pose. Subsequently, we refine the six degrees of freedom pose by matching the corresponding image patches from the offline database. Experimental results indicate that our six degrees of freedom pose refinement method achieves real-time capability with a frame rate of 71 Frames Per Second (FPS), along with high precision. When the threshold is set to 0.5% of the object diameter, the average distance of dots score on the test data surpasses 70%. Moreover, experiments involving gripping and assembling tasks on an industrial robot demonstrate the ability of our method to autonomously select appropriate grasping angles and positions in real time. It further generates suitable motion paths, ultimately ensuring production efficiency. |
| Author | Wen, Jian Yuan, Yilin Liu, Fei Huang, Hanlin Yang, Yang Jiang, Qian Yang, Tian Mu, Quan Li, Wenbo |
| Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 2 givenname: Qian surname: Jiang fullname: Jiang, Qian – sequence: 3 givenname: Quan surname: Mu fullname: Mu, Quan – sequence: 4 givenname: Hanlin surname: Huang fullname: Huang, Hanlin – sequence: 5 givenname: Tian surname: Yang fullname: Yang, Tian – sequence: 6 givenname: Wenbo surname: Li fullname: Li, Wenbo email: fei_liu@cqu.edu.cn – sequence: 7 givenname: Yilin surname: Yuan fullname: Yuan, Yilin – sequence: 8 givenname: Jian surname: Wen fullname: Wen, Jian – sequence: 9 givenname: Fei orcidid: 0000-0002-8526-1239 surname: Liu fullname: Liu, Fei email: fei_liu@cqu.edu.cn |
| BookMark | eNqNkE9v1DAQxSNUJErpB-BmiXOKx_HG9rGq-FOpUi_lbI3t8TarJA52VtBvj5egckAg5jKj0Xu_sd_r5mxOMzXNW-BXAEq9ByWM1rwXEoQwQvEXzflp12oN8ux55v2r5rKUAz-V4jujzhu6Zguu_rF1WCiwTDi26zARK8N3FmifiQpLkcU6hDSx5A7kV7akQlUch5kmmlc20fqYAosps5xcWgfPJpyH5TjiOqT5TfMy4ljo8le_aL58_PBw87m9u_90e3N913rJYW0hmB4CRS27GERHHByoqF2IIH2AXefQoFIiSuUDGVDcd14jolRaCs-7i-Z244aEB7vkYcL8ZBMO9uci5b3FXB83kuVGoOtBONHvpBPR1WtKiw4N9Fq4UFliYx3nBZ--4Tg-A4HbU-72j9yr6d1mWnL6eqSy2kM65rn-2XZcGgFgOPxLJUzXSV51uqpgU_mcSqlh_9f9q81TcE-_qX83_ABbKqq5 |
| Cites_doi | 10.1177/0278364911436018 10.1177/17298806221076978 10.1023/B:VISI.0000029664.99615.94 10.1016/j.patcog.2014.01.005 10.1177/09544062221113262 10.1109/JSEN.2020.2968477 10.1007/978-3-030-01246-5_20 10.1109/TCSVT.2020.3011737 10.1007/978-3-319-10605-2_35 10.1177/0278364919846551 10.1007/s11263-008-0152-6 10.1007/978-3-030-01231-1_42 10.1007/978-3-319-48881-3_56 10.1109/TMECH.2021.3109344 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 |
| Copyright_xml | – notice: The Author(s) 2024 |
| DBID | AFRWT AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1177/17298806241229270 |
| DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (selected full-text) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: AFRWT name: Sage Open Access Journals (Free internet resource, activated by CARLI) url: http://journals.sagepub.com/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1729-8814 |
| ExternalDocumentID | oai_doaj_org_article_092ab612b2654b2fbe017823a91682bd 10.1177/17298806241229270 10_1177_17298806241229270 10.1177_17298806241229270 |
| GroupedDBID | 0R~ 29J 2WC 54M 5VS 8VB AAJPV AASGM ABAWP ABQXT ACGFO ACGFS ACIWK ACROE ADBBV ADMLS ADOGD AEDFJ AENEX AEWDL AFCOW AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS ARCSS AUTPY AYAKG BCNDV BDDNI BENPR E3Z EBO EBS GROUPED_DOAJ H13 IAO ICD J8X K.F K1G KQ8 M~E O9- OK1 P2P QWB RNS ROL SAUOL SCDPB SCNPE SFC TH9 TR2 ZL0 AAYXX ACHEB CITATION OVT 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 8FE 8FG ABJCF ABUWG ADTOC AFKRA ARAPS AZQEC BGLVJ BPHCQ BYOGL C1A CCPQU DWQXO EJD GNUQQ HCIFZ IPNFZ ITC K6V K7- L6V M7S N95 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c401t-1d961def843fd23e01b17f8bdf14cd153ba9a772f47cde9170c3c8aaa47842c03 |
| IEDL.DBID | DOA |
| ISSN | 1729-8806 1729-8814 |
| IngestDate | Fri Oct 03 12:44:29 EDT 2025 Sun Sep 07 10:57:10 EDT 2025 Mon Jun 30 09:57:39 EDT 2025 Mon Jun 30 09:59:27 EDT 2025 Tue Jul 01 03:07:00 EDT 2025 Tue Jun 17 22:27:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | deep learning 6 DOF pose estimation monocular image Robot vision systems |
| Language | English |
| License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c401t-1d961def843fd23e01b17f8bdf14cd153ba9a772f47cde9170c3c8aaa47842c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8526-1239 |
| OpenAccessLink | https://doaj.org/article/092ab612b2654b2fbe017823a91682bd |
| PQID | 2933402118 |
| PQPubID | 2029541 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_092ab612b2654b2fbe017823a91682bd unpaywall_primary_10_1177_17298806241229270 proquest_journals_3049211901 proquest_journals_2933402118 crossref_primary_10_1177_17298806241229270 sage_journals_10_1177_17298806241229270 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: London |
| PublicationTitle | International journal of advanced robotic systems |
| PublicationYear | 2024 |
| Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
| References | Lepetit, Moreno-Noguer, Fua 2009; 81 Muja, Lowe 2009; 2 Liu, Tuzel, Veeraraghavan 2012; 31 Lowe 2004; 60 Zhuang, Zhao, Li, Ding 2023; 237 Dong, Ji, Wang 2021; 31 Mitash, Boularias, Bekris 2022; 41 Zhou, Wang, Bao 2022; 19 Cao, Zheng, Liu 2020; 20 Bromley, Guyon, LeCun 1993; 6 He, Wu, Zhao 2021; 27 bibr25-17298806241229270 bibr12-17298806241229270 Zakharov S (bibr19-17298806241229270) bibr28-17298806241229270 Redmon J (bibr15-17298806241229270) Rad M (bibr14-17298806241229270) bibr5-17298806241229270 Rad M (bibr1-17298806241229270) bibr2-17298806241229270 Li Z (bibr13-17298806241229270) Pavlakos G (bibr10-17298806241229270) Peng S (bibr18-17298806241229270) Tekin B (bibr16-17298806241229270) bibr26-17298806241229270 bibr3-17298806241229270 bibr9-17298806241229270 Valmadre J (bibr22-17298806241229270) bibr23-17298806241229270 bibr6-17298806241229270 bibr21-17298806241229270 bibr11-17298806241229270 Gupta K (bibr17-17298806241229270) bibr24-17298806241229270 bibr27-17298806241229270 Stevšić S (bibr20-17298806241229270) bibr4-17298806241229270 Muja M (bibr7-17298806241229270) 2009; 2 Bromley J (bibr8-17298806241229270) 1993; 6 |
| References_xml | – volume: 2 start-page: 2 issue: 331–340 year: 2009 article-title: Fast approximate nearest neighbors with automatic algorithm configuration publication-title: VISAPP (1) – volume: 31 start-page: 1834 issue: 5 year: 2021 end-page: 1848 article-title: Accurate 6 DOF pose tracking for texture-less objects publication-title: IEEE Trans Circuits Syst Video Technol – volume: 41 start-page: 615 issue: 6 year: 2022 end-page: 636 article-title: Physics-based scene-level reasoning for object pose estimation in clutter publication-title: Int J Rob Res – volume: 31 start-page: 951 issue: 8 year: 2012 end-page: 973 article-title: Fast object localization and pose estimation in heavy clutter for robotic bin picking publication-title: Int J Rob Res – volume: 6 start-page: 737 year: 1993 end-page: 744 article-title: Signature verification using a “siamese” time delay neural network publication-title: Adv Neural Inf Process – volume: 27 start-page: 3198 issue: 5 year: 2021 end-page: 3209 article-title: A generative feature-to-image robotic vision framework for 6d pose measurement of metal parts publication-title: IEEE ASME Trans Mechatron – volume: 81 start-page: 155 issue: 2 year: 2009 end-page: 166 article-title: EPnP: an accurate (n) solution to the PnP problem publication-title: Int J Comput Vis – volume: 20 start-page: 12049 issue: 20 year: 2020 end-page: 12056 article-title: Single view 3D reconstruction based on improved RGB-D image publication-title: IEEE Sens J – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int J Comput Vis – volume: 19 issue: 1 year: 2022 article-title: Robust monocular 3D object pose tracking for large visual range variation in robotic manipulation via scale-adaptive region-based method publication-title: Int J Adv Robot Syst – volume: 237 start-page: 449 issue: 2 year: 2023 end-page: 464 article-title: Pose prediction of textureless objects for robot bin picking with deep learning approach publication-title: Proc Inst Mech Eng Part C – ident: bibr25-17298806241229270 doi: 10.1177/0278364911436018 – start-page: 1941 volume-title: Proceedings of the IEEE/CVF international conference on computer vision ident: bibr19-17298806241229270 – start-page: 3828 volume-title: Proceedings of the IEEE international conference on computer vision ident: bibr14-17298806241229270 – ident: bibr28-17298806241229270 doi: 10.1177/17298806221076978 – ident: bibr6-17298806241229270 doi: 10.1023/B:VISI.0000029664.99615.94 – start-page: 4561 volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition ident: bibr18-17298806241229270 – start-page: 2805 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition ident: bibr22-17298806241229270 – start-page: 7678 volume-title: Proceedings of the IEEE/CVF international conference on computer vision ident: bibr13-17298806241229270 – volume: 2 start-page: 2 issue: 331 year: 2009 ident: bibr7-17298806241229270 publication-title: VISAPP (1) – start-page: 2011 volume-title: 2017 IEEE international conference on robotics and automation (ICRA) ident: bibr10-17298806241229270 – ident: bibr23-17298806241229270 doi: 10.1016/j.patcog.2014.01.005 – ident: bibr3-17298806241229270 doi: 10.1177/09544062221113262 – start-page: 1070 volume-title: 2020 international conference on 3D vision (3DV) ident: bibr20-17298806241229270 – ident: bibr21-17298806241229270 doi: 10.1109/JSEN.2020.2968477 – start-page: 0 volume-title: Proceedings of the IEEE/CVF international conference on computer vision workshops ident: bibr17-17298806241229270 – ident: bibr11-17298806241229270 doi: 10.1007/978-3-030-01246-5_20 – ident: bibr27-17298806241229270 doi: 10.1109/TCSVT.2020.3011737 – start-page: 3828 volume-title: Proceedings of the IEEE international conference on computer vision ident: bibr1-17298806241229270 – start-page: 292 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition ident: bibr16-17298806241229270 – ident: bibr24-17298806241229270 – volume: 6 start-page: 737 year: 1993 ident: bibr8-17298806241229270 publication-title: Adv Neural Inf Process – ident: bibr12-17298806241229270 doi: 10.1007/978-3-319-10605-2_35 – ident: bibr2-17298806241229270 doi: 10.1177/0278364919846551 – ident: bibr4-17298806241229270 doi: 10.1007/s11263-008-0152-6 – ident: bibr5-17298806241229270 doi: 10.1007/978-3-030-01231-1_42 – ident: bibr9-17298806241229270 doi: 10.1007/978-3-319-48881-3_56 – start-page: 7263 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition ident: bibr15-17298806241229270 – ident: bibr26-17298806241229270 doi: 10.1109/TMECH.2021.3109344 |
| SSID | ssj0000070597 |
| Score | 2.3128874 |
| Snippet | A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the... |
| SourceID | doaj unpaywall proquest crossref sage |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Accuracy Degrees of freedom Frames per second Industrial robots Manufacturing engineering Matching Pose estimation Real time Three dimensional models |
| SummonAdditionalLinks | – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB616YFyQLwqAgX5gIQEMl17nX2cUEBEFQcOqBW9rTx-UKQkG-Uh6L9nJusNraiA28q2bO947Plmxp4BeFmRGuGVVtKPjJUGa5RWeSUJPLu8tljq7pbv5-L03Hy6GF3sQdu_hUkUXL3la1U0o-1hzbubrdEnycl4QlK3JsYrSPxoXesye7dZz5rO3N1n1eAS9k9vZuzadnwh8kr2z9v24UCXpBoN4GA8-fL1bGeW4fA3oy4lC40heZDkC7113BvSbBv0_wZSTS_372zmC3v1w06n12TX5D7cS6BTjDsueQB7Yf4Q7l4LRfgIwlgs6FS-lCzWvCAoOZWcd16svv8UPpBWHlaijSLSh29nokU24IhFuwrUOFJHbGYUXUJqQUhYLFtsaTzBATb6JGGP4Xzy8ezDqUwpGKQjxWstla8L5UOsTB69zkOmUJWxQh-VcZ5OS7S1JYAeTel8INUvc7mrrLWmrIx2WX4Eg3k7D09A0Eb3uUZEnTnjDNoyWFtUmfGEGEiRGsLrnpTNoou00agUjPwPug_hPRN715CDZG8L2uW3Ju25Jqu1RUJwqIuRQR2Rpk-AKLcEiSuNfgjH_VI1Pd81BH9y0qlJ77q1mr2SHBQvU0N4xav7u-ovk32zY4B__9rT_-73GRxqglidQegYBuvlJjwniLTGF4mtfwFjqwXS priority: 102 providerName: SAGE Publications – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTxsxFLZQcmg5FLqgBkLlA1IlkNHY48xyDAiEeog4EAlOIz8vakXIRJlELL-e54yzAWrpzRpbHi_v-X3Py_cIOcjQjTBccGY6UjEJOTDFDWcInnWcK0hFfcu3l1z05a_rznUgi_ZvYVbP7z0xEtrXHEUsQUMjRC5S9M6bSQdhd4M0-73L7s3swaPImS-0THMZTjDfrGPNBs2o-tfwZXhv_2E6HKnHezUYrFic8636rlY1Iyr0F01uj6cTONZPL2gc39WZbfIp4E7arQXlM9mwwy9kc4WN8CuxXTrChfk385bNUESTA-ZDz9PqzwM1Fh1zW9HSUYcJU97REvweDh2VlcXCDivyO420jklNEQzTcQkl_o96jo15nLBvpH9-dnV6wUIUBqbR95owbvKEG-syGTsjYhtx4KnLwDgutcEFE1SuEKM7mWpj0fuLdKwzpZRMMyl0FO-QxrAc2u-Eoq6bWACAiLTUElRqlUqySBoEDehLtcjhfF6KUU22UfDAR_5q7FrkxM_coqDnyZ59wBEvgtoVUS4UIIgDkXQkCAfYfMREsUJUnAkwLdKez3sRlLcqEAHF6Faj6_Vmtj-Y9Lx4EW-Rn15Ulll_aezRQpr-3bXd_yq9Rz4KRFr1vlCbNCbjqd1HpDSBH0FHngH9DQFQ priority: 102 providerName: Unpaywall |
| Title | A patch-based real-time six degrees of freedom object pose refinement method for robotic manipulation |
| URI | https://journals.sagepub.com/doi/full/10.1177/17298806241229270 https://www.proquest.com/docview/2933402118 https://www.proquest.com/docview/3049211901 https://doi.org/10.1177/17298806241229270 https://doaj.org/article/092ab612b2654b2fbe017823a91682bd |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1729-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070597 issn: 1729-8814 databaseCode: KQ8 dateStart: 20040301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1729-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070597 issn: 1729-8814 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (selected full-text) customDbUrl: eissn: 1729-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070597 issn: 1729-8814 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1729-8814 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070597 issn: 1729-8814 databaseCode: ADMLS dateStart: 20060601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVSPB databaseName: Sage Open Access Journals (Free internet resource, activated by CARLI) customDbUrl: eissn: 1729-8814 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070597 issn: 1729-8814 databaseCode: AFRWT dateStart: 20040301 isFulltext: true titleUrlDefault: http://journals.sagepub.com/ providerName: SAGE Publications |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6iD-qDeMXpHHkQBCXYpFkvj1Mc4sMQ2VCfSk4uKMx17IL67z1Zu1lR9MW3tgltek6S831p-h1CjhOkEYYLzkxTKiYhBaa44QzBsw5TBbEodvl2ouuevHloPlRSffk9YYU8cGG48yAVCjAMg4iaEoQD6xPKi1AhrkkEGD_7BklaIVMF8I0RN8TlZ0yvsISBOsW-GmHEEiIVPjlxJRDN9Pq_gMzyp_vV6WCo3l9Vv18JO-1NslHiRdoq2rlFluxgm6xXVAR3iG3RIU6oT8xHJEMRBfaZTxlPx89v1Fgk1HZMc0cdHpj8hebg117oMB9brOzwRn6FkBa5pCmCWDrKIcfnUa-NMc_vtUt67avu5TUrsycwjZxpwrhJI26sS2TojAjRbMBjl4BxXGqDEx2oVCG2djLWxiJrC3SoE6WUjBMpdBDukeVBPrD7hOIYNaEAABFoqSWo2CoVJYE0GOyRA9XI6dyU2bAQych4qSP-ze41cuGNvajo9a1nF9DrWen17C-v10h97qqsHHTjDJFLiHQYKdOPxf6DotezC3iNnHjvfhb90tizRQf4-9UO_uPVDsmaQOBULPPUyfJkNLVHCHwm0CArrfbdfbcx6-t41uvcth4_AC8k-0k |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5V4QAcUFtApNDWh0pIIKO11_s6plWjtAUOKAhuK48ftFKajZKgtv--46wTQEXQ22r9WO947Pk-P2YAPpREI6yQgttMaa6wQq6FFZzAs0krjYVsT_me54NL9fU6u46nKsNdmCjB2Uk4VkUtWkzWq9Ed7okTGiSdy8nySFnJguj6msrIcndgrde_uBquVliCJ5usja5CZXgoFLc1H63ngWFa-O9_ADrjJfz12_FE__mlR6N7Zqj_ErYifmS9tsNfwQs3fg2b97wKboPrsQlNsN95sFCWESoc8RBCns1-_GbWEcF2M9Z45unBNj9Zg2Ethk2amaPMnioKK4asjS3NCNSyaYMNfY8FXxnLeF87cNn_PPw04DGaAjfEoeZc2CoX1vlSpd7K1CUCReFLtF4oY2niQ11pwtpeFcY6YnGJSU2ptVZFqaRJ0l3ojJux2wNGY9amEhFlYpRRqAundV4mypLxJ07UhaOlKOtJ6zSjFtGv-D9y78LHIOxVxuDvevGimd7UcfjUSSU1EhhDmWcKpUdqPmGbVBO6LSXaLhwsu6peqlBNSCYlekwU6tHksMEY_NsloguHoXfvkp5o7PFKAZ7_tTf_Xe97WB8Mz07r0y_n3_ZhQxJyatd5DqAzn966t4R85vguqvhfsizzIQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA7SgtoHqTfc2moeBEGJnVx2Lo_b6lIvFJEW-zbkTJIqrDvD7hb13_tlJ7u2WNS3YXKZzMnlfN9Jcg5jz0rQCCeVFG5orDBUkbDSSQHw3OjKUqH6U77H-dGpeXc2PEsGt3gXJklw_ioeq0KLlot1nN2dC_tpj3EfSrfCuMuhfZSqVAHKvglao0G-NkfjT59P1laW6M1m2EdYQRkRC6WtzWvruaKclj78rwDPdBH_1sW0sz-_28nkkioab7M7CUPyUd_pd9kNP73Hti55FrzP_Ih3WGS_iKilHAcynIgYRp7Pv_7gzoNk-zlvAw94cO033lK0x_CunXtkDqgoWg15H1-aA9jyWUstvsejv4xVzK8H7HT85uTwSKSICqIBj1oI6apcOh9Ko4NT2meSZBFKckGaxmHxI1tZ4O1gisZ5MLms0U1prTVFaVST6YdsY9pO_SPGMW-dVkSkssY0hmzhrc3LzDgAAPCiAXuxEmXd9Y4zapl8i_8h9wE7iMJeZ4w-r5cv2tl5naZQnVXKEgAZqXxoSAVC84FvtAXCLRW5AdtddVW9GkY10IwGRQaNujY5bjJGH3eZHLDnsXd_J_2lsS_XA-Dfv7bz3_U-ZTc_vh7XH94ev3_MbiuAp97Us8s2FrMLvwfws6AnaYT_Ao6E9Do |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTxsxFLZQcmg5FLqgBkLlA1IlkNHY48xyDAiEeog4EAlOIz8vakXIRJlELL-e54yzAWrpzRpbHi_v-X3Py_cIOcjQjTBccGY6UjEJOTDFDWcInnWcK0hFfcu3l1z05a_rznUgi_ZvYVbP7z0xEtrXHEUsQUMjRC5S9M6bSQdhd4M0-73L7s3swaPImS-0THMZTjDfrGPNBs2o-tfwZXhv_2E6HKnHezUYrFic8636rlY1Iyr0F01uj6cTONZPL2gc39WZbfIp4E7arQXlM9mwwy9kc4WN8CuxXTrChfk385bNUESTA-ZDz9PqzwM1Fh1zW9HSUYcJU97REvweDh2VlcXCDivyO420jklNEQzTcQkl_o96jo15nLBvpH9-dnV6wUIUBqbR95owbvKEG-syGTsjYhtx4KnLwDgutcEFE1SuEKM7mWpj0fuLdKwzpZRMMyl0FO-QxrAc2u-Eoq6bWACAiLTUElRqlUqySBoEDehLtcjhfF6KUU22UfDAR_5q7FrkxM_coqDnyZ59wBEvgtoVUS4UIIgDkXQkCAfYfMREsUJUnAkwLdKez3sRlLcqEAHF6Faj6_Vmtj-Y9Lx4EW-Rn15Ulll_aezRQpr-3bXd_yq9Rz4KRFr1vlCbNCbjqd1HpDSBH0FHngH9DQFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+patch-based+real-time+six+degrees+of+freedom+object+pose+refinement+method+for+robotic+manipulation&rft.jtitle=International+journal+of+advanced+robotic+systems&rft.au=Yang%2C+Yang&rft.au=Jiang%2C+Qian&rft.au=Mu+Quan&rft.au=Huang+Hanlin&rft.date=2024-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1729-8806&rft.eissn=1729-8814&rft.volume=21&rft.issue=2&rft_id=info:doi/10.1177%2F17298806241229270&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1729-8806&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1729-8806&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1729-8806&client=summon |