A patch-based real-time six degrees of freedom object pose refinement method for robotic manipulation

A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement appro...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced robotic systems Vol. 21; no. 2
Main Authors Yang, Yang, Jiang, Qian, Mu, Quan, Huang, Hanlin, Yang, Tian, Li, Wenbo, Yuan, Yilin, Wen, Jian, Liu, Fei
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text
ISSN1729-8806
1729-8814
1729-8814
DOI10.1177/17298806241229270

Cover

Abstract A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement approaches have been proposed to improve the accuracy by utilizing rendered images from a 3D model. Nevertheless, balancing speed and accuracy in an industrial setting remains a challenge for these methods. In this study, we propose a novel six degrees of freedom pose refinement approach centered around matching real image patches. Unlike previous approaches, our method does not rely on a 3D model, resulting in increased speed and accuracy. In the offline phase, we construct an offline database using image patches obtained from real images. During the inference phase, our method initially identifies the image patch within the offline database that is closest to the initial pose. Subsequently, we refine the six degrees of freedom pose by matching the corresponding image patches from the offline database. Experimental results indicate that our six degrees of freedom pose refinement method achieves real-time capability with a frame rate of 71 Frames Per Second (FPS), along with high precision. When the threshold is set to 0.5% of the object diameter, the average distance of dots score on the test data surpasses 70%. Moreover, experiments involving gripping and assembling tasks on an industrial robot demonstrate the ability of our method to autonomously select appropriate grasping angles and positions in real time. It further generates suitable motion paths, ultimately ensuring production efficiency.
AbstractList A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the direct estimation of the six degrees of freedom object pose solely from a single image is subject to limited accuracy. Various refinement approaches have been proposed to improve the accuracy by utilizing rendered images from a 3D model. Nevertheless, balancing speed and accuracy in an industrial setting remains a challenge for these methods. In this study, we propose a novel six degrees of freedom pose refinement approach centered around matching real image patches. Unlike previous approaches, our method does not rely on a 3D model, resulting in increased speed and accuracy. In the offline phase, we construct an offline database using image patches obtained from real images. During the inference phase, our method initially identifies the image patch within the offline database that is closest to the initial pose. Subsequently, we refine the six degrees of freedom pose by matching the corresponding image patches from the offline database. Experimental results indicate that our six degrees of freedom pose refinement method achieves real-time capability with a frame rate of 71 Frames Per Second (FPS), along with high precision. When the threshold is set to 0.5% of the object diameter, the average distance of dots score on the test data surpasses 70%. Moreover, experiments involving gripping and assembling tasks on an industrial robot demonstrate the ability of our method to autonomously select appropriate grasping angles and positions in real time. It further generates suitable motion paths, ultimately ensuring production efficiency.
Author Wen, Jian
Yuan, Yilin
Liu, Fei
Huang, Hanlin
Yang, Yang
Jiang, Qian
Yang, Tian
Mu, Quan
Li, Wenbo
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 2
  givenname: Qian
  surname: Jiang
  fullname: Jiang, Qian
– sequence: 3
  givenname: Quan
  surname: Mu
  fullname: Mu, Quan
– sequence: 4
  givenname: Hanlin
  surname: Huang
  fullname: Huang, Hanlin
– sequence: 5
  givenname: Tian
  surname: Yang
  fullname: Yang, Tian
– sequence: 6
  givenname: Wenbo
  surname: Li
  fullname: Li, Wenbo
  email: fei_liu@cqu.edu.cn
– sequence: 7
  givenname: Yilin
  surname: Yuan
  fullname: Yuan, Yilin
– sequence: 8
  givenname: Jian
  surname: Wen
  fullname: Wen, Jian
– sequence: 9
  givenname: Fei
  orcidid: 0000-0002-8526-1239
  surname: Liu
  fullname: Liu, Fei
  email: fei_liu@cqu.edu.cn
BookMark eNqNkE9v1DAQxSNUJErpB-BmiXOKx_HG9rGq-FOpUi_lbI3t8TarJA52VtBvj5egckAg5jKj0Xu_sd_r5mxOMzXNW-BXAEq9ByWM1rwXEoQwQvEXzflp12oN8ux55v2r5rKUAz-V4jujzhu6Zguu_rF1WCiwTDi26zARK8N3FmifiQpLkcU6hDSx5A7kV7akQlUch5kmmlc20fqYAosps5xcWgfPJpyH5TjiOqT5TfMy4ljo8le_aL58_PBw87m9u_90e3N913rJYW0hmB4CRS27GERHHByoqF2IIH2AXefQoFIiSuUDGVDcd14jolRaCs-7i-Z244aEB7vkYcL8ZBMO9uci5b3FXB83kuVGoOtBONHvpBPR1WtKiw4N9Fq4UFliYx3nBZ--4Tg-A4HbU-72j9yr6d1mWnL6eqSy2kM65rn-2XZcGgFgOPxLJUzXSV51uqpgU_mcSqlh_9f9q81TcE-_qX83_ABbKqq5
Cites_doi 10.1177/0278364911436018
10.1177/17298806221076978
10.1023/B:VISI.0000029664.99615.94
10.1016/j.patcog.2014.01.005
10.1177/09544062221113262
10.1109/JSEN.2020.2968477
10.1007/978-3-030-01246-5_20
10.1109/TCSVT.2020.3011737
10.1007/978-3-319-10605-2_35
10.1177/0278364919846551
10.1007/s11263-008-0152-6
10.1007/978-3-030-01231-1_42
10.1007/978-3-319-48881-3_56
10.1109/TMECH.2021.3109344
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID AFRWT
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1177/17298806241229270
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (selected full-text)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: AFRWT
  name: Sage Open Access Journals (Free internet resource, activated by CARLI)
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1729-8814
ExternalDocumentID oai_doaj_org_article_092ab612b2654b2fbe017823a91682bd
10.1177/17298806241229270
10_1177_17298806241229270
10.1177_17298806241229270
GroupedDBID 0R~
29J
2WC
54M
5VS
8VB
AAJPV
AASGM
ABAWP
ABQXT
ACGFO
ACGFS
ACIWK
ACROE
ADBBV
ADMLS
ADOGD
AEDFJ
AENEX
AEWDL
AFCOW
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
E3Z
EBO
EBS
GROUPED_DOAJ
H13
IAO
ICD
J8X
K.F
K1G
KQ8
M~E
O9-
OK1
P2P
QWB
RNS
ROL
SAUOL
SCDPB
SCNPE
SFC
TH9
TR2
ZL0
AAYXX
ACHEB
CITATION
OVT
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
8FE
8FG
ABJCF
ABUWG
ADTOC
AFKRA
ARAPS
AZQEC
BGLVJ
BPHCQ
BYOGL
C1A
CCPQU
DWQXO
EJD
GNUQQ
HCIFZ
IPNFZ
ITC
K6V
K7-
L6V
M7S
N95
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c401t-1d961def843fd23e01b17f8bdf14cd153ba9a772f47cde9170c3c8aaa47842c03
IEDL.DBID DOA
ISSN 1729-8806
1729-8814
IngestDate Fri Oct 03 12:44:29 EDT 2025
Sun Sep 07 10:57:10 EDT 2025
Mon Jun 30 09:57:39 EDT 2025
Mon Jun 30 09:59:27 EDT 2025
Tue Jul 01 03:07:00 EDT 2025
Tue Jun 17 22:27:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
6 DOF pose estimation
monocular image
Robot vision systems
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c401t-1d961def843fd23e01b17f8bdf14cd153ba9a772f47cde9170c3c8aaa47842c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8526-1239
OpenAccessLink https://doaj.org/article/092ab612b2654b2fbe017823a91682bd
PQID 2933402118
PQPubID 2029541
ParticipantIDs doaj_primary_oai_doaj_org_article_092ab612b2654b2fbe017823a91682bd
unpaywall_primary_10_1177_17298806241229270
proquest_journals_3049211901
proquest_journals_2933402118
crossref_primary_10_1177_17298806241229270
sage_journals_10_1177_17298806241229270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle International journal of advanced robotic systems
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Lepetit, Moreno-Noguer, Fua 2009; 81
Muja, Lowe 2009; 2
Liu, Tuzel, Veeraraghavan 2012; 31
Lowe 2004; 60
Zhuang, Zhao, Li, Ding 2023; 237
Dong, Ji, Wang 2021; 31
Mitash, Boularias, Bekris 2022; 41
Zhou, Wang, Bao 2022; 19
Cao, Zheng, Liu 2020; 20
Bromley, Guyon, LeCun 1993; 6
He, Wu, Zhao 2021; 27
bibr25-17298806241229270
bibr12-17298806241229270
Zakharov S (bibr19-17298806241229270)
bibr28-17298806241229270
Redmon J (bibr15-17298806241229270)
Rad M (bibr14-17298806241229270)
bibr5-17298806241229270
Rad M (bibr1-17298806241229270)
bibr2-17298806241229270
Li Z (bibr13-17298806241229270)
Pavlakos G (bibr10-17298806241229270)
Peng S (bibr18-17298806241229270)
Tekin B (bibr16-17298806241229270)
bibr26-17298806241229270
bibr3-17298806241229270
bibr9-17298806241229270
Valmadre J (bibr22-17298806241229270)
bibr23-17298806241229270
bibr6-17298806241229270
bibr21-17298806241229270
bibr11-17298806241229270
Gupta K (bibr17-17298806241229270)
bibr24-17298806241229270
bibr27-17298806241229270
Stevšić S (bibr20-17298806241229270)
bibr4-17298806241229270
Muja M (bibr7-17298806241229270) 2009; 2
Bromley J (bibr8-17298806241229270) 1993; 6
References_xml – volume: 2
  start-page: 2
  issue: 331–340
  year: 2009
  article-title: Fast approximate nearest neighbors with automatic algorithm configuration
  publication-title: VISAPP (1)
– volume: 31
  start-page: 1834
  issue: 5
  year: 2021
  end-page: 1848
  article-title: Accurate 6 DOF pose tracking for texture-less objects
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 41
  start-page: 615
  issue: 6
  year: 2022
  end-page: 636
  article-title: Physics-based scene-level reasoning for object pose estimation in clutter
  publication-title: Int J Rob Res
– volume: 31
  start-page: 951
  issue: 8
  year: 2012
  end-page: 973
  article-title: Fast object localization and pose estimation in heavy clutter for robotic bin picking
  publication-title: Int J Rob Res
– volume: 6
  start-page: 737
  year: 1993
  end-page: 744
  article-title: Signature verification using a “siamese” time delay neural network
  publication-title: Adv Neural Inf Process
– volume: 27
  start-page: 3198
  issue: 5
  year: 2021
  end-page: 3209
  article-title: A generative feature-to-image robotic vision framework for 6d pose measurement of metal parts
  publication-title: IEEE ASME Trans Mechatron
– volume: 81
  start-page: 155
  issue: 2
  year: 2009
  end-page: 166
  article-title: EPnP: an accurate (n) solution to the PnP problem
  publication-title: Int J Comput Vis
– volume: 20
  start-page: 12049
  issue: 20
  year: 2020
  end-page: 12056
  article-title: Single view 3D reconstruction based on improved RGB-D image
  publication-title: IEEE Sens J
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int J Comput Vis
– volume: 19
  issue: 1
  year: 2022
  article-title: Robust monocular 3D object pose tracking for large visual range variation in robotic manipulation via scale-adaptive region-based method
  publication-title: Int J Adv Robot Syst
– volume: 237
  start-page: 449
  issue: 2
  year: 2023
  end-page: 464
  article-title: Pose prediction of textureless objects for robot bin picking with deep learning approach
  publication-title: Proc Inst Mech Eng Part C
– ident: bibr25-17298806241229270
  doi: 10.1177/0278364911436018
– start-page: 1941
  volume-title: Proceedings of the IEEE/CVF international conference on computer vision
  ident: bibr19-17298806241229270
– start-page: 3828
  volume-title: Proceedings of the IEEE international conference on computer vision
  ident: bibr14-17298806241229270
– ident: bibr28-17298806241229270
  doi: 10.1177/17298806221076978
– ident: bibr6-17298806241229270
  doi: 10.1023/B:VISI.0000029664.99615.94
– start-page: 4561
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  ident: bibr18-17298806241229270
– start-page: 2805
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr22-17298806241229270
– start-page: 7678
  volume-title: Proceedings of the IEEE/CVF international conference on computer vision
  ident: bibr13-17298806241229270
– volume: 2
  start-page: 2
  issue: 331
  year: 2009
  ident: bibr7-17298806241229270
  publication-title: VISAPP (1)
– start-page: 2011
  volume-title: 2017 IEEE international conference on robotics and automation (ICRA)
  ident: bibr10-17298806241229270
– ident: bibr23-17298806241229270
  doi: 10.1016/j.patcog.2014.01.005
– ident: bibr3-17298806241229270
  doi: 10.1177/09544062221113262
– start-page: 1070
  volume-title: 2020 international conference on 3D vision (3DV)
  ident: bibr20-17298806241229270
– ident: bibr21-17298806241229270
  doi: 10.1109/JSEN.2020.2968477
– start-page: 0
  volume-title: Proceedings of the IEEE/CVF international conference on computer vision workshops
  ident: bibr17-17298806241229270
– ident: bibr11-17298806241229270
  doi: 10.1007/978-3-030-01246-5_20
– ident: bibr27-17298806241229270
  doi: 10.1109/TCSVT.2020.3011737
– start-page: 3828
  volume-title: Proceedings of the IEEE international conference on computer vision
  ident: bibr1-17298806241229270
– start-page: 292
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr16-17298806241229270
– ident: bibr24-17298806241229270
– volume: 6
  start-page: 737
  year: 1993
  ident: bibr8-17298806241229270
  publication-title: Adv Neural Inf Process
– ident: bibr12-17298806241229270
  doi: 10.1007/978-3-319-10605-2_35
– ident: bibr2-17298806241229270
  doi: 10.1177/0278364919846551
– ident: bibr4-17298806241229270
  doi: 10.1007/s11263-008-0152-6
– ident: bibr5-17298806241229270
  doi: 10.1007/978-3-030-01231-1_42
– ident: bibr9-17298806241229270
  doi: 10.1007/978-3-319-48881-3_56
– start-page: 7263
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  ident: bibr15-17298806241229270
– ident: bibr26-17298806241229270
  doi: 10.1109/TMECH.2021.3109344
SSID ssj0000070597
Score 2.3128874
Snippet A fundamental vision technique for industrial robots involves the six degrees of freedom pose estimation of target objects from a single image. However, the...
SourceID doaj
unpaywall
proquest
crossref
sage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Degrees of freedom
Frames per second
Industrial robots
Manufacturing engineering
Matching
Pose estimation
Real time
Three dimensional models
SummonAdditionalLinks – databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB616YFyQLwqAgX5gIQEMl17nX2cUEBEFQcOqBW9rTx-UKQkG-Uh6L9nJusNraiA28q2bO947Plmxp4BeFmRGuGVVtKPjJUGa5RWeSUJPLu8tljq7pbv5-L03Hy6GF3sQdu_hUkUXL3la1U0o-1hzbubrdEnycl4QlK3JsYrSPxoXesye7dZz5rO3N1n1eAS9k9vZuzadnwh8kr2z9v24UCXpBoN4GA8-fL1bGeW4fA3oy4lC40heZDkC7113BvSbBv0_wZSTS_372zmC3v1w06n12TX5D7cS6BTjDsueQB7Yf4Q7l4LRfgIwlgs6FS-lCzWvCAoOZWcd16svv8UPpBWHlaijSLSh29nokU24IhFuwrUOFJHbGYUXUJqQUhYLFtsaTzBATb6JGGP4Xzy8ezDqUwpGKQjxWstla8L5UOsTB69zkOmUJWxQh-VcZ5OS7S1JYAeTel8INUvc7mrrLWmrIx2WX4Eg3k7D09A0Eb3uUZEnTnjDNoyWFtUmfGEGEiRGsLrnpTNoou00agUjPwPug_hPRN715CDZG8L2uW3Ju25Jqu1RUJwqIuRQR2Rpk-AKLcEiSuNfgjH_VI1Pd81BH9y0qlJ77q1mr2SHBQvU0N4xav7u-ovk32zY4B__9rT_-73GRxqglidQegYBuvlJjwniLTGF4mtfwFjqwXS
  priority: 102
  providerName: SAGE Publications
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTxsxFLZQcmg5FLqgBkLlA1IlkNHY48xyDAiEeog4EAlOIz8vakXIRJlELL-e54yzAWrpzRpbHi_v-X3Py_cIOcjQjTBccGY6UjEJOTDFDWcInnWcK0hFfcu3l1z05a_rznUgi_ZvYVbP7z0xEtrXHEUsQUMjRC5S9M6bSQdhd4M0-73L7s3swaPImS-0THMZTjDfrGPNBs2o-tfwZXhv_2E6HKnHezUYrFic8636rlY1Iyr0F01uj6cTONZPL2gc39WZbfIp4E7arQXlM9mwwy9kc4WN8CuxXTrChfk385bNUESTA-ZDz9PqzwM1Fh1zW9HSUYcJU97REvweDh2VlcXCDivyO420jklNEQzTcQkl_o96jo15nLBvpH9-dnV6wUIUBqbR95owbvKEG-syGTsjYhtx4KnLwDgutcEFE1SuEKM7mWpj0fuLdKwzpZRMMyl0FO-QxrAc2u-Eoq6bWACAiLTUElRqlUqySBoEDehLtcjhfF6KUU22UfDAR_5q7FrkxM_coqDnyZ59wBEvgtoVUS4UIIgDkXQkCAfYfMREsUJUnAkwLdKez3sRlLcqEAHF6Faj6_Vmtj-Y9Lx4EW-Rn15Ulll_aezRQpr-3bXd_yq9Rz4KRFr1vlCbNCbjqd1HpDSBH0FHngH9DQFQ
  priority: 102
  providerName: Unpaywall
Title A patch-based real-time six degrees of freedom object pose refinement method for robotic manipulation
URI https://journals.sagepub.com/doi/full/10.1177/17298806241229270
https://www.proquest.com/docview/2933402118
https://www.proquest.com/docview/3049211901
https://doi.org/10.1177/17298806241229270
https://doaj.org/article/092ab612b2654b2fbe017823a91682bd
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1729-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070597
  issn: 1729-8814
  databaseCode: KQ8
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1729-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070597
  issn: 1729-8814
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (selected full-text)
  customDbUrl:
  eissn: 1729-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070597
  issn: 1729-8814
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1729-8814
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070597
  issn: 1729-8814
  databaseCode: ADMLS
  dateStart: 20060601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVSPB
  databaseName: Sage Open Access Journals (Free internet resource, activated by CARLI)
  customDbUrl:
  eissn: 1729-8814
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070597
  issn: 1729-8814
  databaseCode: AFRWT
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://journals.sagepub.com/
  providerName: SAGE Publications
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA6iD-qDeMXpHHkQBCXYpFkvj1Mc4sMQ2VCfSk4uKMx17IL67z1Zu1lR9MW3tgltek6S831p-h1CjhOkEYYLzkxTKiYhBaa44QzBsw5TBbEodvl2ouuevHloPlRSffk9YYU8cGG48yAVCjAMg4iaEoQD6xPKi1AhrkkEGD_7BklaIVMF8I0RN8TlZ0yvsISBOsW-GmHEEiIVPjlxJRDN9Pq_gMzyp_vV6WCo3l9Vv18JO-1NslHiRdoq2rlFluxgm6xXVAR3iG3RIU6oT8xHJEMRBfaZTxlPx89v1Fgk1HZMc0cdHpj8hebg117oMB9brOzwRn6FkBa5pCmCWDrKIcfnUa-NMc_vtUt67avu5TUrsycwjZxpwrhJI26sS2TojAjRbMBjl4BxXGqDEx2oVCG2djLWxiJrC3SoE6WUjBMpdBDukeVBPrD7hOIYNaEAABFoqSWo2CoVJYE0GOyRA9XI6dyU2bAQych4qSP-ze41cuGNvajo9a1nF9DrWen17C-v10h97qqsHHTjDJFLiHQYKdOPxf6DotezC3iNnHjvfhb90tizRQf4-9UO_uPVDsmaQOBULPPUyfJkNLVHCHwm0CArrfbdfbcx6-t41uvcth4_AC8k-0k
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB5V4QAcUFtApNDWh0pIIKO11_s6plWjtAUOKAhuK48ftFKajZKgtv--46wTQEXQ22r9WO947Pk-P2YAPpREI6yQgttMaa6wQq6FFZzAs0krjYVsT_me54NL9fU6u46nKsNdmCjB2Uk4VkUtWkzWq9Ed7okTGiSdy8nySFnJguj6msrIcndgrde_uBquVliCJ5usja5CZXgoFLc1H63ngWFa-O9_ADrjJfz12_FE__mlR6N7Zqj_ErYifmS9tsNfwQs3fg2b97wKboPrsQlNsN95sFCWESoc8RBCns1-_GbWEcF2M9Z45unBNj9Zg2Ethk2amaPMnioKK4asjS3NCNSyaYMNfY8FXxnLeF87cNn_PPw04DGaAjfEoeZc2CoX1vlSpd7K1CUCReFLtF4oY2niQ11pwtpeFcY6YnGJSU2ptVZFqaRJ0l3ojJux2wNGY9amEhFlYpRRqAundV4mypLxJ07UhaOlKOtJ6zSjFtGv-D9y78LHIOxVxuDvevGimd7UcfjUSSU1EhhDmWcKpUdqPmGbVBO6LSXaLhwsu6peqlBNSCYlekwU6tHksMEY_NsloguHoXfvkp5o7PFKAZ7_tTf_Xe97WB8Mz07r0y_n3_ZhQxJyatd5DqAzn966t4R85vguqvhfsizzIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFA7SgtoHqTfc2moeBEGJnVx2Lo_b6lIvFJEW-zbkTJIqrDvD7hb13_tlJ7u2WNS3YXKZzMnlfN9Jcg5jz0rQCCeVFG5orDBUkbDSSQHw3OjKUqH6U77H-dGpeXc2PEsGt3gXJklw_ioeq0KLlot1nN2dC_tpj3EfSrfCuMuhfZSqVAHKvglao0G-NkfjT59P1laW6M1m2EdYQRkRC6WtzWvruaKclj78rwDPdBH_1sW0sz-_28nkkioab7M7CUPyUd_pd9kNP73Hti55FrzP_Ih3WGS_iKilHAcynIgYRp7Pv_7gzoNk-zlvAw94cO033lK0x_CunXtkDqgoWg15H1-aA9jyWUstvsejv4xVzK8H7HT85uTwSKSICqIBj1oI6apcOh9Ko4NT2meSZBFKckGaxmHxI1tZ4O1gisZ5MLms0U1prTVFaVST6YdsY9pO_SPGMW-dVkSkssY0hmzhrc3LzDgAAPCiAXuxEmXd9Y4zapl8i_8h9wE7iMJeZ4w-r5cv2tl5naZQnVXKEgAZqXxoSAVC84FvtAXCLRW5AdtddVW9GkY10IwGRQaNujY5bjJGH3eZHLDnsXd_J_2lsS_XA-Dfv7bz3_U-ZTc_vh7XH94ev3_MbiuAp97Us8s2FrMLvwfws6AnaYT_Ao6E9Do
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTxsxFLZQcmg5FLqgBkLlA1IlkNHY48xyDAiEeog4EAlOIz8vakXIRJlELL-e54yzAWrpzRpbHi_v-X3Py_cIOcjQjTBccGY6UjEJOTDFDWcInnWcK0hFfcu3l1z05a_rznUgi_ZvYVbP7z0xEtrXHEUsQUMjRC5S9M6bSQdhd4M0-73L7s3swaPImS-0THMZTjDfrGPNBs2o-tfwZXhv_2E6HKnHezUYrFic8636rlY1Iyr0F01uj6cTONZPL2gc39WZbfIp4E7arQXlM9mwwy9kc4WN8CuxXTrChfk385bNUESTA-ZDz9PqzwM1Fh1zW9HSUYcJU97REvweDh2VlcXCDivyO420jklNEQzTcQkl_o96jo15nLBvpH9-dnV6wUIUBqbR95owbvKEG-syGTsjYhtx4KnLwDgutcEFE1SuEKM7mWpj0fuLdKwzpZRMMyl0FO-QxrAc2u-Eoq6bWACAiLTUElRqlUqySBoEDehLtcjhfF6KUU22UfDAR_5q7FrkxM_coqDnyZ59wBEvgtoVUS4UIIgDkXQkCAfYfMREsUJUnAkwLdKez3sRlLcqEAHF6Faj6_Vmtj-Y9Lx4EW-Rn15Ulll_aezRQpr-3bXd_yq9Rz4KRFr1vlCbNCbjqd1HpDSBH0FHngH9DQFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+patch-based+real-time+six+degrees+of+freedom+object+pose+refinement+method+for+robotic+manipulation&rft.jtitle=International+journal+of+advanced+robotic+systems&rft.au=Yang%2C+Yang&rft.au=Jiang%2C+Qian&rft.au=Mu+Quan&rft.au=Huang+Hanlin&rft.date=2024-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1729-8806&rft.eissn=1729-8814&rft.volume=21&rft.issue=2&rft_id=info:doi/10.1177%2F17298806241229270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1729-8806&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1729-8806&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1729-8806&client=summon