Cost, emission and reserve pondered pre-dispatch of thermal power generating units coordinated with real coded grey wolf optimisation

The optimisation of unit commitment (UC) problem in the daily operation and planning of the power system may save the electric utilities millions of dollars per year in production costs. Though many works in the literature uses evolutionary techniques to solve the pre-dispatch of thermal power gener...

Full description

Saved in:
Bibliographic Details
Published inIET generation, transmission & distribution Vol. 10; no. 4; pp. 972 - 985
Main Authors Rameshkumar, Jayaraman, Ganesan, Sivarajan, Abirami, Manoharan, Subramanian, Srikrishna
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 10.03.2016
Subjects
Online AccessGet full text
ISSN1751-8687
1751-8695
DOI10.1049/iet-gtd.2015.0726

Cover

Abstract The optimisation of unit commitment (UC) problem in the daily operation and planning of the power system may save the electric utilities millions of dollars per year in production costs. Though many works in the literature uses evolutionary techniques to solve the pre-dispatch of thermal power generating units, search for optimal generation schedules in order to minimise total operating cost is still an interesting research task. In viewpoint of this, a new population-based bio-inspired algorithm namely grey wolf optimisation (GWO) has been implemented to solve thermal generation scheduling problem and the core objectives such as minimisations of total operating cost, emission level and maximisation of reliability are optimised subject to various prevailing constraints. Additionally, real coding scheme is adopted in order to handle the constraints effectively. The effectiveness of real coded GWO (RCGWO) has been verified on standard 10, 20, 40, 60, 80 and 100 unit systems. Further, a practical 38-unit system has been utilised to show the feasibility of the RCGWO. The simulation results show that RCGWO is very competent in solving the UC problem in comparison to the state-of-the-art methods.
AbstractList The optimisation of unit commitment (UC) problem in the daily operation and planning of the power system may save the electric utilities millions of dollars per year in production costs. Though many works in the literature uses evolutionary techniques to solve the pre‐dispatch of thermal power generating units, search for optimal generation schedules in order to minimise total operating cost is still an interesting research task. In viewpoint of this, a new population‐based bio‐inspired algorithm namely grey wolf optimisation (GWO) has been implemented to solve thermal generation scheduling problem and the core objectives such as minimisations of total operating cost, emission level and maximisation of reliability are optimised subject to various prevailing constraints. Additionally, real coding scheme is adopted in order to handle the constraints effectively. The effectiveness of real coded GWO (RCGWO) has been verified on standard 10, 20, 40, 60, 80 and 100 unit systems. Further, a practical 38‐unit system has been utilised to show the feasibility of the RCGWO. The simulation results show that RCGWO is very competent in solving the UC problem in comparison to the state‐of‐the‐art methods.
Author Rameshkumar, Jayaraman
Ganesan, Sivarajan
Subramanian, Srikrishna
Abirami, Manoharan
Author_xml – sequence: 1
  givenname: Jayaraman
  surname: Rameshkumar
  fullname: Rameshkumar, Jayaraman
  email: rameshwin75@gmail.com
  organization: Department of Electrical Engineering, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
– sequence: 2
  givenname: Sivarajan
  surname: Ganesan
  fullname: Ganesan, Sivarajan
  organization: Department of Electrical Engineering, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
– sequence: 3
  givenname: Manoharan
  surname: Abirami
  fullname: Abirami, Manoharan
  organization: Department of Electrical Engineering, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
– sequence: 4
  givenname: Srikrishna
  surname: Subramanian
  fullname: Subramanian, Srikrishna
  organization: Department of Electrical Engineering, Annamalai University, Annamalai Nagar-608 002, Tamil Nadu, India
BookMark eNqFkM9u1DAQhyPUSrSFB-DmI0hksZ34T7jB0pZKlbgsZ8uJx7uusnawvaz2AXhvnG6FEGrpaTzS982Mf-fViQ8equoNwQuC2-6Dg1yvs1lQTNgCC8pfVGdEMFJL3rGTP28pXlbnKd1hzBhvxVn1axlSfo9g61JywSPtDYqQIP4ENAVvIIJBU4TauDTpPGxQsChvIG71WIA9RLQGD1Fn59do511OaAghGud1Lure5U0ZWOAhmNKvIxzQPowWhSm7srWIwb-qTq0eE7x-qBfV96vL1fJrffvt-mb56bYeWkxEzYamN9RwaTrLW9M1su8ZZVIazS3rNWZU45ZyYQQh2PKeyoYTbqi0vaWAm4vq7XHuFMOPHaSsygUDjKP2EHZJEUkZa5umawpKjugQQ0oRrJqi2-p4UASrOXJVIlclcjVHrubIiyP-cQaX7z-Yo3bjf82PR3PvRjg8v0pdr77Qz1cYCyaK_O4oz9hd2EVfMlQ3l6uZ-suZjC1s_Qj79GG_Afowu7A
CitedBy_id crossref_primary_10_1007_s00521_017_3106_5
crossref_primary_10_1016_j_eswa_2020_113589
crossref_primary_10_1016_j_rser_2021_111072
crossref_primary_10_1016_j_epsr_2017_07_012
crossref_primary_10_1016_j_asoc_2024_112243
crossref_primary_10_1177_0037549718777607
crossref_primary_10_3390_en16124571
crossref_primary_10_1007_s42835_020_00478_7
crossref_primary_10_1016_j_trd_2018_06_003
crossref_primary_10_1016_j_renene_2024_120886
crossref_primary_10_3390_systems12030106
crossref_primary_10_1007_s00521_017_3272_5
crossref_primary_10_1016_j_simpa_2024_100616
crossref_primary_10_1007_s40998_020_00328_2
Cites_doi 10.1016/j.compchemeng.2014.03.009
10.1049/iet‐smt.2013.0252
10.1109/TPWRS.2013.2253136
10.1109/TPWRS.2006.873017
10.1109/TPWRS.2010.2042472
10.1016/j.ijepes.2010.06.022
10.1109/59.801925
10.1016/j.advengsoft.2013.12.007
10.1109/TPWRS.2009.2021216
10.1109/TPWRS.2003.821625
10.1109/TPWRS.2009.2021220
10.1080/15325000801911377
10.1016/j.ins.2013.06.022
10.1109/59.49122
10.1016/j.epsr.2005.10.005
10.1016/j.ijepes.2006.02.011
10.1109/TPWRS.2003.820707
10.1109/TPWRS.2013.2241795
10.1109/TPWRS.2007.907443
10.1016/j.ijepes.2013.04.001
10.1016/j.ijepes.2014.11.025
10.1109/59.867163
10.1049/iet‐gtd.2013.0436
10.1016/j.asoc.2014.05.029
10.1049/iet‐gtd.2012.0096
10.1016/j.asoc.2008.11.010
10.1016/j.ijepes.2014.02.008
10.1109/TPWRS.2010.2052639
10.1109/59.485989
10.1109/59.41687
10.1016/j.ijepes.2012.04.048
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2016 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2016 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
KR7
L7M
DOI 10.1049/iet-gtd.2015.0726
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList

CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 985
ExternalDocumentID 10_1049_iet_gtd_2015_0726
GTD2BF00757
Genre article
GroupedDBID 0R
24P
29I
4IJ
6IK
8VB
AAJGR
ABPTK
ACIWK
ALMA_UNASSIGNED_HOLDINGS
BFFAM
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IGS
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SP
7TB
8FD
F28
FR3
KR7
L7M
ID FETCH-LOGICAL-c4017-5c3bd2d68d9f64d938bb52588da6f5ba052a04267d7110f6b283616d28fbf2e03
IEDL.DBID IDLOA
ISSN 1751-8687
IngestDate Fri Sep 05 12:46:05 EDT 2025
Wed Oct 29 21:13:35 EDT 2025
Thu Apr 24 23:16:01 EDT 2025
Wed Jan 22 16:32:21 EST 2025
Thu May 09 18:26:38 EDT 2019
Tue Jan 05 21:46:11 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords thermal power stations
population-based bio-inspired algorithm
power generation dispatch
optimisation
reliability maximisation
grey systems
thermal power generating units
unit commitment optimisation problem
reserve pondered predispatch
real coded grey wolf optimisation
thermal generation scheduling problem
RCGWO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4017-5c3bd2d68d9f64d938bb52588da6f5ba052a04267d7110f6b283616d28fbf2e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825543393
PQPubID 23500
PageCount 14
ParticipantIDs crossref_primary_10_1049_iet_gtd_2015_0726
iet_journals_10_1049_iet_gtd_2015_0726
crossref_citationtrail_10_1049_iet_gtd_2015_0726
proquest_miscellaneous_1825543393
wiley_primary_10_1049_iet_gtd_2015_0726_GTD2BF00757
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2016-03-10
PublicationDateYYYYMMDD 2016-03-10
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-10
  day: 10
PublicationDecade 2010
PublicationTitle IET generation, transmission & distribution
PublicationYear 2016
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Lau, T.W.; Chung, C.Y.; Wong, K.P. (C19) 2009; 24
Wang, L.; Singh, C. (C31) 2009; 9
Wu, Z.; Chow, T. (C23) 2013; 7
Chandram, K.; Subrahmanam, N.; Sydulu, M. (C5) 2011; 33
Juste, K.A.; Kita, H.; Tanaka, E. (C8) 1999; 14
Eslamian, M.; Hosseinian, S.; Vahidi, B. (C10) 2009; 24
Niknam, T.; Bavafa, F.; Azizipanah-Abarghooee, R. (C28) 2014; 8
Li, Y.-F.; Pedroni, N.; Zio, E. (C30) 2013; 48
Han, D.; Jian, J.; Yang, L. (C27) 2014; 29
Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V. (C7) 1996; 11
Chandrasekaran, K.; Sishaj, P.S.; Padhy, N.P. (C22) 2013; 249
Cheng, C.P.; Liu, C.W.; Liu, G.C. (C15) 2000; 15
Zhao, B.; Guo, C.X.; Bai, B.R. (C18) 2006; 28
Mirjalili, S.; Mirjalili, S.M.; Lewis, A. (C32) 2014; 69
Liyong, S.; Yan, Z.; Chuanwen, J.A. (C17) 2006; 76
Quan, R.; Jian, J.; Yang, L. (C29) 2015; 67
Marian Marcoveccio, G.; Augusto Novals, Q.; Ignacio Grossmann, E. (C26) 2014; 67
Saber, A.Y.; Senjyu, T.; Miyagi, T. (C14) 2006; 21
Dilip, D.; Sapatarshi, D. (C21) 2012; 42
Patra, S.; Goswami, S.K.; Goswami, B. (C9) 2008; 36
Zhuang, F.; Galiana, F.D. (C6) 1990; 5
Ebrahimi, J.; Hosseinian, S.H.; Gevorg, B. (C11) 2011; 26
Roy, P.K.; Sarkar, R. (C13) 2014
Jeong, Y.-W.; Park, J.-B.; Jang, S.-H. (C20) 2010; 25
Yuan, X.; Zhang, B.J.; Tian, H. (C24) 2014; 22
Seyed, H.H.; Amin, K.; Farrokh, A.A. (C4) 2007; 22
Roy, P.K. (C12) 2013; 53
Damousis, I.G.; Bakirtzis, A.G.; Dokopoulos, P.S. (C16) 2004
Ongsakul, W.; Petcharaks, N. (C3) 2004; 19
Barati, M.; Farsangi, M.M. (C25) 2014; 8
Virmani, S.; Adrian, E.C.; Imhif, K. (C2) 1989; 4
1989; 4
2009; 24
2013; 48
2006; 76
2013; 249
2008; 36
2011; 33
2014; 69
2004
2014; 29
2002
2013; 7
2014; 67
2014; 22
1996; 11
2015; 67
2010; 25
2004; 19
2000; 15
2006; 21
2006; 28
2013; 53
1999; 14
2009; 9
2011; 26
2014
2014; 8
2007; 22
2012; 42
1990; 5
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
Wood J. (e_1_2_8_2_2) 2002
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – start-page: 1165
  year: 2004
  end-page: 1172
  ident: C16
  article-title: A solution to the unit commitment problem using integer coded genetic algorithm
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 1503
  issue: 3
  year: 2009
  end-page: 1512
  ident: C19
  article-title: Quantum inspired evolutionary algorithm approach for unit commitment
  publication-title: IEEE Trans. Power Syst.
– volume: 67
  start-page: 53
  year: 2014
  end-page: 68
  ident: C26
  article-title: Deterministic optimization of the thermal unit commitment problem: a branch and cut search
  publication-title: Comput. Chem. Eng.
– volume: 9
  start-page: 947
  year: 2009
  end-page: 953
  ident: C31
  article-title: Unit commitment considering generator outages through a mixed integer particle swarm optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 573
  issue: 2
  year: 2011
  end-page: 581
  ident: C11
  article-title: Unit commitment problem solution using shuffled frog leaping algorithm
  publication-title: IEEE Trans. Power Syst.
– volume: 76
  start-page: 716
  year: 2006
  end-page: 728
  ident: C17
  article-title: Matrix real-coded genetic algorithm to the unit commitment problem
  publication-title: Electr. Power Syst. Res.
– volume: 42
  start-page: 517
  year: 2012
  end-page: 524
  ident: C21
  article-title: A binary-real-coded differential evolution for unit commitment problem
  publication-title: Electr. Power Energy Syst.
– volume: 24
  start-page: 1478
  issue: 3
  year: 2009
  end-page: 1488
  ident: C10
  article-title: Bacterial foraging based solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 7
  start-page: 298
  issue: 3
  year: 2013
  end-page: 308
  ident: C23
  article-title: Binary neighbourhood field optimization for unit commitment problems
  publication-title: IET Gener. Transm. Distrib.
– volume: 48
  start-page: 2660
  year: 2013
  end-page: 2669
  ident: C30
  article-title: A memetic evolutionary multi-objective optimization method for environmental power unit commitment
  publication-title: IEEE Trans. Power Syst.
– volume: 8
  start-page: 1050
  issue: 6
  year: 2014
  end-page: 1060
  ident: C25
  article-title: Solving unit commitment problem by a binary shuffled frog leaping algorithm
  publication-title: IET Gener. Transm. Distrib.
– volume: 8
  start-page: 505
  issue: 6
  year: 2014
  end-page: 517
  ident: C28
  article-title: New self-adaptive bat-inspired algorithm for unit commitment problem
  publication-title: IET Sci. Meas. Technol.
– volume: 36
  start-page: 771
  issue: 8
  year: 2008
  end-page: 787
  ident: C9
  article-title: Differential evolution algorithm for solving unit commitment with ramp constraints
  publication-title: Electr. Power Compon. Syst.
– volume: 249
  start-page: 67
  year: 2013
  end-page: 84
  ident: C22
  article-title: Binary real coded firefly algorithm for solving unit commitment problem
  publication-title: Inf. Sci.
– volume: 19
  start-page: 620
  issue: 1
  year: 2004
  end-page: 628
  ident: C3
  article-title: Unit commitment by enhanced adaptive Lagrangian relaxation
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  start-page: 83
  issue: 1
  year: 1996
  end-page: 92
  ident: C7
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– start-page: 96
  year: 2014
  end-page: 106
  ident: C13
  article-title: Solution of unit commitment problem using quasi-oppositional teaching learning based algorithm
  publication-title: Electr. Power Energy Syst.
– volume: 33
  start-page: 106
  year: 2011
  end-page: 114
  ident: C5
  article-title: Unit commitment by improved pre-prepared power demand table and Muller method
  publication-title: Electr. Power Energy Syst.
– volume: 14
  start-page: 1452
  year: 1999
  end-page: 1459
  ident: C8
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 25
  start-page: 1486
  issue: 3
  year: 2010
  end-page: 1495
  ident: C20
  article-title: A new quantum inspired binary PSO: application to unit commitment problems for power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: C32
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 67
  start-page: 278
  year: 2015
  end-page: 285
  ident: C29
  article-title: An improved priority list and neighborhood search method for unit commitment
  publication-title: Electr. Power Energy Syst.
– volume: 5
  start-page: 311
  year: 1990
  end-page: 317
  ident: C6
  article-title: Unit commitment by simulated annealing
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 482
  issue: 7
  year: 2006
  end-page: 490
  ident: C18
  article-title: An improved particle swarm optimization algorithm for unit commitment
  publication-title: Electr. Power Energy Syst.
– volume: 15
  start-page: 707
  issue: 2
  year: 2000
  end-page: 714
  ident: C15
  article-title: Unit commitment by Lagrangian relaxation and genetic algorithms
  publication-title: IEEE Trans. Power Syst.
– volume: 4
  start-page: 1373
  issue: 4
  year: 1989
  end-page: 1380
  ident: C2
  article-title: Implementation of Lagrangian based unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 22
  start-page: 249
  year: 2014
  end-page: 260
  ident: C24
  article-title: A new approach for unit commitment problem via binary gravitational search algorithm
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 2134
  year: 2007
  end-page: 2143
  ident: C4
  article-title: Novel straightforward unit commitment method for large scale power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 29
  start-page: 505
  issue: 2
  year: 2014
  end-page: 513
  ident: C27
  article-title: Outer approximation and outer-inner approximation approaches for unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 53
  start-page: 85
  year: 2013
  end-page: 94
  ident: C12
  article-title: Solution to the unit commitment problem using gravitational search algorithm
  publication-title: Electr. Power Energy Syst.
– volume: 21
  start-page: 955
  issue: 2
  year: 2006
  end-page: 964
  ident: C14
  article-title: Fuzzy unit commitment scheduling using absolute stochastic simulated annealing
  publication-title: IEEE Trans. Power Syst.
– volume: 5
  start-page: 311
  year: 1990
  end-page: 317
  article-title: Unit commitment by simulated annealing
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 482
  issue: 7
  year: 2006
  end-page: 490
  article-title: An improved particle swarm optimization algorithm for unit commitment
  publication-title: Electr. Power Energy Syst.
– volume: 9
  start-page: 947
  year: 2009
  end-page: 953
  article-title: Unit commitment considering generator outages through a mixed integer particle swarm optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 29
  start-page: 505
  issue: 2
  year: 2014
  end-page: 513
  article-title: Outer approximation and outer‐inner approximation approaches for unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 67
  start-page: 278
  year: 2015
  end-page: 285
  article-title: An improved priority list and neighborhood search method for unit commitment
  publication-title: Electr. Power Energy Syst.
– start-page: 96
  year: 2014
  end-page: 106
  article-title: Solution of unit commitment problem using quasi‐oppositional teaching learning based algorithm
  publication-title: Electr. Power Energy Syst.
– volume: 7
  start-page: 298
  issue: 3
  year: 2013
  end-page: 308
  article-title: Binary neighbourhood field optimization for unit commitment problems
  publication-title: IET Gener. Transm. Distrib.
– volume: 22
  start-page: 2134
  year: 2007
  end-page: 2143
  article-title: Novel straightforward unit commitment method for large scale power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 48
  start-page: 2660
  year: 2013
  end-page: 2669
  article-title: A memetic evolutionary multi‐objective optimization method for environmental power unit commitment
  publication-title: IEEE Trans. Power Syst.
– volume: 53
  start-page: 85
  year: 2013
  end-page: 94
  article-title: Solution to the unit commitment problem using gravitational search algorithm
  publication-title: Electr. Power Energy Syst.
– volume: 4
  start-page: 1373
  issue: 4
  year: 1989
  end-page: 1380
  article-title: Implementation of Lagrangian based unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 36
  start-page: 771
  issue: 8
  year: 2008
  end-page: 787
  article-title: Differential evolution algorithm for solving unit commitment with ramp constraints
  publication-title: Electr. Power Compon. Syst.
– start-page: 1165
  year: 2004
  end-page: 1172
  article-title: A solution to the unit commitment problem using integer coded genetic algorithm
  publication-title: IEEE Trans. Power Syst.
– volume: 22
  start-page: 249
  year: 2014
  end-page: 260
  article-title: A new approach for unit commitment problem via binary gravitational search algorithm
  publication-title: Appl. Soft Comput.
– volume: 26
  start-page: 573
  issue: 2
  year: 2011
  end-page: 581
  article-title: Unit commitment problem solution using shuffled frog leaping algorithm
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 1503
  issue: 3
  year: 2009
  end-page: 1512
  article-title: Quantum inspired evolutionary algorithm approach for unit commitment
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  start-page: 83
  issue: 1
  year: 1996
  end-page: 92
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 21
  start-page: 955
  issue: 2
  year: 2006
  end-page: 964
  article-title: Fuzzy unit commitment scheduling using absolute stochastic simulated annealing
  publication-title: IEEE Trans. Power Syst.
– volume: 76
  start-page: 716
  year: 2006
  end-page: 728
  article-title: Matrix real‐coded genetic algorithm to the unit commitment problem
  publication-title: Electr. Power Syst. Res.
– volume: 42
  start-page: 517
  year: 2012
  end-page: 524
  article-title: A binary‐real‐coded differential evolution for unit commitment problem
  publication-title: Electr. Power Energy Syst.
– volume: 15
  start-page: 707
  issue: 2
  year: 2000
  end-page: 714
  article-title: Unit commitment by Lagrangian relaxation and genetic algorithms
  publication-title: IEEE Trans. Power Syst.
– year: 2002
– volume: 25
  start-page: 1486
  issue: 3
  year: 2010
  end-page: 1495
  article-title: A new quantum inspired binary PSO: application to unit commitment problems for power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  start-page: 106
  year: 2011
  end-page: 114
  article-title: Unit commitment by improved pre‐prepared power demand table and Muller method
  publication-title: Electr. Power Energy Syst.
– volume: 8
  start-page: 1050
  issue: 6
  year: 2014
  end-page: 1060
  article-title: Solving unit commitment problem by a binary shuffled frog leaping algorithm
  publication-title: IET Gener. Transm. Distrib.
– volume: 8
  start-page: 505
  issue: 6
  year: 2014
  end-page: 517
  article-title: New self‐adaptive bat‐inspired algorithm for unit commitment problem
  publication-title: IET Sci. Meas. Technol.
– volume: 19
  start-page: 620
  issue: 1
  year: 2004
  end-page: 628
  article-title: Unit commitment by enhanced adaptive Lagrangian relaxation
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 1478
  issue: 3
  year: 2009
  end-page: 1488
  article-title: Bacterial foraging based solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 14
  start-page: 1452
  year: 1999
  end-page: 1459
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Trans. Power Syst.
– volume: 249
  start-page: 67
  year: 2013
  end-page: 84
  article-title: Binary real coded firefly algorithm for solving unit commitment problem
  publication-title: Inf. Sci.
– volume: 67
  start-page: 53
  year: 2014
  end-page: 68
  article-title: Deterministic optimization of the thermal unit commitment problem: a branch and cut search
  publication-title: Comput. Chem. Eng.
– ident: e_1_2_8_27_2
  doi: 10.1016/j.compchemeng.2014.03.009
– ident: e_1_2_8_29_2
  doi: 10.1049/iet‐smt.2013.0252
– ident: e_1_2_8_28_2
  doi: 10.1109/TPWRS.2013.2253136
– ident: e_1_2_8_15_2
  doi: 10.1109/TPWRS.2006.873017
– ident: e_1_2_8_21_2
  doi: 10.1109/TPWRS.2010.2042472
– ident: e_1_2_8_6_2
  doi: 10.1016/j.ijepes.2010.06.022
– ident: e_1_2_8_9_2
  doi: 10.1109/59.801925
– ident: e_1_2_8_33_2
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: e_1_2_8_11_2
  doi: 10.1109/TPWRS.2009.2021216
– ident: e_1_2_8_17_2
  doi: 10.1109/TPWRS.2003.821625
– ident: e_1_2_8_20_2
  doi: 10.1109/TPWRS.2009.2021220
– ident: e_1_2_8_10_2
  doi: 10.1080/15325000801911377
– ident: e_1_2_8_23_2
  doi: 10.1016/j.ins.2013.06.022
– ident: e_1_2_8_7_2
  doi: 10.1109/59.49122
– ident: e_1_2_8_18_2
  doi: 10.1016/j.epsr.2005.10.005
– ident: e_1_2_8_19_2
  doi: 10.1016/j.ijepes.2006.02.011
– ident: e_1_2_8_4_2
  doi: 10.1109/TPWRS.2003.820707
– ident: e_1_2_8_31_2
  doi: 10.1109/TPWRS.2013.2241795
– ident: e_1_2_8_5_2
  doi: 10.1109/TPWRS.2007.907443
– ident: e_1_2_8_13_2
  doi: 10.1016/j.ijepes.2013.04.001
– ident: e_1_2_8_30_2
  doi: 10.1016/j.ijepes.2014.11.025
– ident: e_1_2_8_16_2
  doi: 10.1109/59.867163
– ident: e_1_2_8_26_2
  doi: 10.1049/iet‐gtd.2013.0436
– ident: e_1_2_8_25_2
  doi: 10.1016/j.asoc.2014.05.029
– volume-title: Power generation operation and control
  year: 2002
  ident: e_1_2_8_2_2
– ident: e_1_2_8_24_2
  doi: 10.1049/iet‐gtd.2012.0096
– ident: e_1_2_8_32_2
  doi: 10.1016/j.asoc.2008.11.010
– ident: e_1_2_8_14_2
  doi: 10.1016/j.ijepes.2014.02.008
– ident: e_1_2_8_12_2
  doi: 10.1109/TPWRS.2010.2052639
– ident: e_1_2_8_8_2
  doi: 10.1109/59.485989
– ident: e_1_2_8_3_2
  doi: 10.1109/59.41687
– ident: e_1_2_8_22_2
  doi: 10.1016/j.ijepes.2012.04.048
SSID ssj0055647
Score 2.2396028
Snippet The optimisation of unit commitment (UC) problem in the daily operation and planning of the power system may save the electric utilities millions of dollars...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 972
SubjectTerms Algorithms
Emission
Evolutionary
grey systems
Operating costs
optimisation
Optimization
population‐based bio‐inspired algorithm
power generation dispatch
RCGWO
real coded grey wolf optimisation
reliability maximisation
reserve pondered predispatch
Reserves
Searching
thermal generation scheduling problem
thermal power generating units
thermal power stations
Thermoelectricity
unit commitment optimisation problem
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoED4im2PGQQ4oAIJHZsx0dYuhQkEIet1JsVZ5xqpTaJdrOtuHHjym_klzDjzS5dIRWJqzMeRR7P-Bs_5mPsee3rFEDVScgxN8mLUiQ2NyGRwaTeEvF0pG_7_EUfHuWfjtXxDhuv38Ks6kNsNtzIM2K8Jgcv_YqFBEEtGnEW-uSkp2KfmXqdGqF32bUMNdM0F_nXdThWSkeWMVwms6TQhdkcbdo3f6nYWpx28fMW7ryMXuPyM7nFbg64kb9dGfo22wnNHXbjUjXBu-zHuF30rzgRuNEWGC8b4PS4aH4eeNc2kZWTd_Pw6_tPmGEgQXvxtuaEAM9QdUd8afwklqGmu9B8id6-4FWL6emsQUgKnDZtUSUK00t44Jirf-MX7WnNW4w8Z8PNoHvsaHIwHR8mA89CUuW0SKlKehCgC7C1zsHKwnslVFFAqWvly1SJklItAwbBQq09QhKdaRAFWlqEVN5ne03bhAeMm8yqSgcIAYGNQjBQgLKl9EIClNJkI5auB9hVQxFy4sI4dfEwPLcOB92hTRzZxJFNRuzlpku3qsBxlfALahv8cHGV4LMtwY8HU_dh-v6PgOugHrGna-s7HEM6Simb0C5RLybWKpfSyhGTcVr8-99Iv3g3IZBm9v-r10N2Hdt1Eq8TPmJ7_XwZHiMm6v2TOOd_A_LUBxs
  priority: 102
  providerName: Wiley-Blackwell
Title Cost, emission and reserve pondered pre-dispatch of thermal power generating units coordinated with real coded grey wolf optimisation
URI http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2015.0726
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2015.0726
https://www.proquest.com/docview/1825543393
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6R9AIHxFOER7UgxAFhau_bR2gbWgSIQyr1tvJ61lGk1o7ahKo_oP-7M7bTNlLVcrPs8cjaWc9-szszH2Mfq1ClALpKosLYRLlCJLmyMZHRpiEn4umWvu33H7N3oH4e6sPr8miYTYkrI1ntuNFueewqDyh1G_3wVj_GHSEJ4tstFEimC-r6memvqRVmwDYERudiyDb2d35RiNV5Zq1NSziGK2aWOOPs1SnnLUrW1qkBPl6DoDeBbLsSjZ-wxz2E5N86mz9lD2L9jD260VjwObvYbk4XXzhxudFuGC9q4FRndPIv8nlTtwSdnBJAYIYeBQ3Hm4oTFDxGxXMiTuPTth81JUXzJf72p7xsME6d1YhNgdPuLSpEYSqJB45B-zk_a44q3qALOu5ThF6wg_HuZHsv6QkXklLRaqVLGUCAcZBXRkEuXQhaaOegMJUORapFQTGXBYuooTIBsYnJDAiHJhcxlS_ZsG7q-Ipxm-W6NBFiRISjERU40Hkhg5AAhbTZiKWr4fVl342cSDGOfHsqrnKPQ-7RIp4s4skiI_b56pV514rjLuFPdG81We4S_LAmuL878T8mO9cCfg7ViL1f2d7jGNKZSlHHZol6McLWSspcjphsJ8X930b6xfcxoTX7-n-_8w17iNemS397y4aLk2V8h3hoETbZQKi_m_1kvwTTUAgU
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacgAOFU-xPA1CHBCBxM_kCG2XLbQVh63UmxXHdrVSm0S72SJu3LjyG_klzHizS1dIReKaTEbRjGfmm7E9Q8jLYEPqnAyJF5CbiLxkSSG0T7jXqS1w8HQc33Z4pEbH4tOJPNkgu8u7MIv-EKuCG1pG9Ndo4FiQXiScAptkTnyXnHbY7TOTb1PN1Ca5JlSmMAVj4svSH0up4pgxiJNZkqtcr_Y2i3d_sViLTpvweg14XoavMf4Mb5HtHjjS9wtN3yYbvr5Dbl5qJ3iX_NhpZt0bihPcsAZGy9pRvF00vfC0beo4lpO2U__r-083AU8CCqNNoAgBz4F1iwPT6GnsQ42HoekczH1Gqwby00kNmNRRrNoCSyDGq_COQrL-jX5tzgJtwPWc90eD7pHj4d54Z5T0gxaSSmCUkhW3jjmVuyIo4QqeWyuZzHNXqiBtmUpWYq6lnQa0EJQFTAKCdiwHVTOf8vtkq25q_4BQnRWyUt55D8hGAhrInSxKbhl3ruQ6G5B0KWBT9V3IcRjGmYm74aIwIHQDOjGoE4M6GZDXq0_aRQuOq4hf4bPeEGdXEb5YI9zfG5uP490_BKZ1YUCeL7VvQIa4l1LWvpkDX8ispeC84APC47L4978hf_ZhiChNP_yvr56R66Px4YE52D_6_IjcABqVxLOFj8lWN537JwCQOvs0rv_fIiEKhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61qYToAfFUw3NBiAPCYHsfXh9L09DyqDgkqOKysr27VaTWthIHxI1br_2N_BJmHCc0QioSV3s8snZ2Zr7Zx3wAz33uQ2ulD5zA2kToLA5SkbiAuyTMUyKebunbPh2pg7F4fyyPN2CwvAuz6A-xWnAjz2jjNTm4q61fFJyCmmROXBOcNNTtM5KvwyRWm7CF-TwUPdja_TL-Ol5GZClVSzSGmTIKtNLJanczffOXkrX8tImv16DnZQDbZqDhTbjRQUe2u7D1Ldhw5W3YvtRQ8A6c71Wz5hUjDjdaBWNZaRndL5p-c6yuypaYk9VT9-vnhZ1gLEGTscozAoFnqLomyjR20naipuPQbI4OP2NFhRXqpERUahmt26JKFKbL8JZhuf6Dfa9OPasw-Jx1h4Puwni4P9o7CDqqhaAQlKdkwXMbW6Vt6pWwKdd5LmOptc2Ul3kWyjijaiuxCeIFr3JEJSpSNtZo7NiF_B70yqp0O8CSKJWFctY5xDYS8YC2Ms14HnNrM55EfQiXA2yKrg850WGcmnY_XKQGB92gTQzZxJBN-vBy9Um9aMJxlfALeta54uwqwWdrgof7I_NuNPgjYHC-9eHp0voGx5B2U7LSVXPUi7W1FJynvA-8nRb__jfSH78dEk5L7v_XV0_g2ufB0Hw8PPrwAK6jiAraw4UPoddM5-4RIqQmf9w5wG_LKAvb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cost%2C+emission+and+reserve+pondered+pre-dispatch+of+thermal+power+generating+units+coordinated+with+real+coded+grey+wolf+optimisation&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Rameshkumar%2C+Jayaraman&rft.au=Ganesan%2C+Sivarajan&rft.au=Abirami%2C+Manoharan&rft.au=Subramanian%2C+Srikrishna&rft.date=2016-03-10&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=10&rft.issue=4&rft.spage=972&rft.epage=985&rft_id=info:doi/10.1049%2Fiet-gtd.2015.0726&rft.externalDocID=10_1049_iet_gtd_2015_0726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon