Approximation algorithms for constructing wavelength routing networks

Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that...

Full description

Saved in:
Bibliographic Details
Published inNetworks Vol. 40; no. 1; pp. 32 - 37
Main Authors Hassin, Refael, Levin, Asaf
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 01.08.2002
John Wiley & Sons
Subjects
Online AccessGet full text
ISSN0028-3045
1097-0037
DOI10.1002/net.10036

Cover

Abstract Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that it is possible to route simultaneously all of the required flows in such a way that no edge is used more than K times. The SYNTHESIS OF WAVELENGTH ROUTING NETWORK (SWRN) problem is to compute a solution network of a minimum number of edges. This problem has significant importance in the world of fiber‐optic networks where a link can carry a limited amount of different wavelengths and one is interested in finding a minimum‐cost network such that all the requirements can be carried in the network without changing the wavelength of a path at any of its internal vertices. In this paper, we prove that the SWRN problem is NP‐hard for any constant K (K ≥ 2). Then, we assume that GR is a clique with n vertices and we find an “almost” optimal solution network for all values of K (K = o(n)) and present a Min{(K + 1)/2, 2 + 2/(K − 1)}‐approximation algorithm for the general case and a 2‐approximation algorithm for d‐regular graphs. © 2002 Wiley Periodicals, Inc.
AbstractList Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that it is possible to route simultaneously all of the required flows in such a way that no edge is used more than K times. The SYNTHESIS OF WAVELENGTH ROUTING NETWORK (SWRN) problem is to compute a solution network of a minimum number of edges. This problem has significant importance in the world of fiber‐optic networks where a link can carry a limited amount of different wavelengths and one is interested in finding a minimum‐cost network such that all the requirements can be carried in the network without changing the wavelength of a path at any of its internal vertices. In this paper, we prove that the SWRN problem is NP‐hard for any constant K (K ≥ 2). Then, we assume that GR is a clique with n vertices and we find an “almost” optimal solution network for all values of K (K = o(n)) and present a Min{(K + 1)/2, 2 + 2/(K − 1)}‐approximation algorithm for the general case and a 2‐approximation algorithm for d‐regular graphs. © 2002 Wiley Periodicals, Inc.
Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that it is possible to route simultaneously all of the required flows in such a way that no edge is used more than K times. The SYNTHESIS OF WAVELENGTH ROUTING NETWORK (SWRN) problem is to compute a solution network of a minimum number of edges. This problem has significant importance in the world of fiber‐optic networks where a link can carry a limited amount of different wavelengths and one is interested in finding a minimum‐cost network such that all the requirements can be carried in the network without changing the wavelength of a path at any of its internal vertices. In this paper, we prove that the SWRN problem is NP‐hard for any constant K ( K ≥ 2). Then, we assume that G R is a clique with n vertices and we find an “almost” optimal solution network for all values of K ( K = o ( n )) and present a Min {( K + 1)/2, 2 + 2/( K − 1)}‐approximation algorithm for the general case and a 2‐approximation algorithm for d ‐regular graphs. © 2002 Wiley Periodicals, Inc.
Author Hassin, Refael
Levin, Asaf
Author_xml – sequence: 1
  givenname: Refael
  surname: Hassin
  fullname: Hassin, Refael
  email: hassin@post.tau.ac.il
  organization: Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel
– sequence: 2
  givenname: Asaf
  surname: Levin
  fullname: Levin, Asaf
  organization: Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13830768$$DView record in Pascal Francis
BookMark eNp1kEtPAjEUhRuDiYAu_AezceFipGVmOtMlQUQNwWgwLptOH1AZpqQtAv_e8pCF0dW9ufc7p6e3BRq1qSUA1wjeIQi7nVr6XZPgM9BEkORx6PMGaIZdEScwzS5Ay7lPCBHKUNEEg95yac1GL5jXpo5YNTVW-9nCRcrYiJvaebviXtfTaM2-ZCXrqZ9F1qz2o_Da2ti5uwTnilVOXh1rG7w_DCb9x3j0Mnzq90YxTyHCsYAlRF0SogiBBZSKqK5KlRBhXSpeYJVyIhQikDFRipSVaZFjkotMJUmRsKQNbg6-S-Y4q5RlNdeOLm3Ib7cUBQjmuAhc58Bxa5yzUlGu_f6H3jJdUQTp7lo05Kf7awXF7S_FyfQP9ui-1pXc_g_S8WDyo4gPCu283JwUzM4pzpM8ox_jIb1_xuTtFRNKkm8ceIyt
CODEN NTWKAA
CitedBy_id crossref_primary_10_1111_j_1467_9574_2005_00286_x
crossref_primary_10_5988_jime_53_781
Cites_doi 10.1137/0210054
10.1137/0210055
10.1137/0204043
10.1016/0196-6774(83)90032-9
ContentType Journal Article
Copyright Copyright © 2002 Wiley Periodicals, Inc.
2002 INIST-CNRS
Copyright_xml – notice: Copyright © 2002 Wiley Periodicals, Inc.
– notice: 2002 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/net.10036
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1097-0037
EndPage 37
ExternalDocumentID 13830768
10_1002_net_10036
NET10036
ark_67375_WNG_DJ69RQ69_9
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
6TU
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RXW
SAMSI
SUPJJ
TAE
TN5
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZCA
ZY4
ZZTAW
~IA
~WT
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWM
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c4016-d0b0129028dd6d0ef9f2f4fddc40bfc86f4c9df190aadbd4ab487697d5f3383a3
IEDL.DBID DR2
ISSN 0028-3045
IngestDate Wed Apr 02 07:18:05 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Oct 01 03:44:33 EDT 2025
Wed Jan 22 17:02:59 EST 2025
Sun Sep 21 06:16:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NP hard problem
Connected graph
Wavelength division multiplexing
Routing
Approximation algorithm
Communication network
Wavelength
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4016-d0b0129028dd6d0ef9f2f4fddc40bfc86f4c9df190aadbd4ab487697d5f3383a3
Notes ArticleID:NET10036
ark:/67375/WNG-DJ69RQ69-9
istex:78D5424EFDCE1AC1A0388B9A2163FA4887484450
PageCount 6
ParticipantIDs pascalfrancis_primary_13830768
crossref_citationtrail_10_1002_net_10036
crossref_primary_10_1002_net_10036
wiley_primary_10_1002_net_10036_NET10036
istex_primary_ark_67375_WNG_DJ69RQ69_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2002
PublicationDateYYYYMMDD 2002-08-01
PublicationDate_xml – month: 08
  year: 2002
  text: August 2002
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
PublicationTitle Networks
PublicationTitleAlternate Networks
PublicationYear 2002
Publisher Wiley Subscription Services, Inc., A Wiley Company
John Wiley & Sons
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: John Wiley & Sons
References Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, J Alg 4 (1983), 35-44.
S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J Comput 4 (1975), 507-518.
I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing of symmetric communication requests in directed fiber trees, Also, Symmetric communication in all-optical tree networks, Parallel Process Lett, to appear.
I. Holyer, The NP-completeness of edge-coloring, SIAM J Comput 10 (1981), 718-720.
L. Lovász and M. D. Plummer, Matching theory, Elsevier, Amsterdam, 1986.
C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1973.
I. Holyer, The NP-completeness of some edge partition problems, SIAM J Comput 10 (1981), 713-717.
I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing in all-optical tree networks: A survey, Comput Artific Intell, to appear.
1998
1986
1996
1973
1975; 4
1981; 10
1983; 4
Berge C. (e_1_2_1_2_2) 1973
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
Lovász L. (e_1_2_1_10_2) 1986
Caragiannis I. (e_1_2_1_3_2)
e_1_2_1_8_2
Caragiannis I. (e_1_2_1_4_3)
e_1_2_1_9_2
References_xml – reference: I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing in all-optical tree networks: A survey, Comput Artific Intell, to appear.
– reference: I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing of symmetric communication requests in directed fiber trees, Also, Symmetric communication in all-optical tree networks, Parallel Process Lett, to appear.
– reference: Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, J Alg 4 (1983), 35-44.
– reference: L. Lovász and M. D. Plummer, Matching theory, Elsevier, Amsterdam, 1986.
– reference: I. Holyer, The NP-completeness of some edge partition problems, SIAM J Comput 10 (1981), 713-717.
– reference: S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J Comput 4 (1975), 507-518.
– reference: C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1973.
– reference: I. Holyer, The NP-completeness of edge-coloring, SIAM J Comput 10 (1981), 718-720.
– year: 1973
– article-title: Wavelength routing in all‐optical tree networks: A survey
  publication-title: Comput Artific Intell
– year: 1986
– volume: 4
  start-page: 507
  year: 1975
  end-page: 518
  article-title: Network flow and testing graph connectivity
  publication-title: SIAM J Comput
– volume: 10
  start-page: 718
  year: 1981
  end-page: 720
  article-title: The NP‐completeness of edge‐coloring
  publication-title: SIAM J Comput
– start-page: 13
  year: 1996
  end-page: 32
– volume: 4
  start-page: 35
  year: 1983
  end-page: 44
  article-title: NP‐completeness of finding the chromatic index of regular graphs
  publication-title: J Alg
– volume: 10
  start-page: 713
  year: 1981
  end-page: 717
  article-title: The NP‐completeness of some edge partition problems
  publication-title: SIAM J Comput
– start-page: 10
  year: 1998
  end-page: 19
  article-title: Wavelength routing of symmetric communication requests in directed fiber trees
  publication-title: Parallel Process Lett
– volume-title: Graphs and hypergraphs
  year: 1973
  ident: e_1_2_1_2_2
– ident: e_1_2_1_5_2
– ident: e_1_2_1_7_2
  doi: 10.1137/0210054
– ident: e_1_2_1_4_3
  article-title: Wavelength routing of symmetric communication requests in directed fiber trees
  publication-title: Parallel Process Lett
– ident: e_1_2_1_8_2
  doi: 10.1137/0210055
– ident: e_1_2_1_6_2
  doi: 10.1137/0204043
– ident: e_1_2_1_9_2
  doi: 10.1016/0196-6774(83)90032-9
– volume-title: Matching theory
  year: 1986
  ident: e_1_2_1_10_2
– ident: e_1_2_1_3_2
  article-title: Wavelength routing in all‐optical tree networks: A survey
  publication-title: Comput Artific Intell
– ident: e_1_2_1_4_2
SSID ssj0011518
Score 1.5879847
Snippet Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single...
Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 32
SubjectTerms Applied sciences
Exact sciences and technology
network synthesis
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teleprocessing networks. Isdn
Transmission and modulation (techniques and equipments)
wavelength routing
WDM
Title Approximation algorithms for constructing wavelength routing networks
URI https://api.istex.fr/ark:/67375/WNG-DJ69RQ69-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnet.10036
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0028-3045
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0037
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011518
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX_TBuzgvo4iIL93ark1bfBq6OQYOHBvuQQhp02xjs5Wtw-Gv9yRZ6yYK4ltpT9IkXy7nJCffQeiK-RyMCuboZpUHus1cU6cujMfAdRyXYsPlvrjg_NjGzZ7d6jv9ArrN7sIofoh8w02MDDlfiwFOg1llhTQ0EuzPMAHD_GtWsTSnOjl1FCg6ppcxMIvTwIxVyLAqecq1tWhTNOtC-EbSGTQPV3Et1nVWueg0dtFLVlzlazIuz9OgHH58Y3L8Z3320M5SGdVqqvfso0IUH6DtFYrCQ1SvCdLxxUjdcNToZJBMR-nwdaaBtquFSUZAGw-0dyqCWMSDdKhNk7l8FSsn89kR6jXq3bumvgy9oIdgcGGdif1RSzC7iIhTRgSIWdzmjMHngIce5nboMw7aBKUsYDYNwPDBPoDOhc1Lq8doI07i6ARprkWj0AwtF9uQAzc822QmdwzqgXLgca-IbjIQSLjkJRfhMSZEMSpbBMpKZMsU0WUu-qbIOH4SupZI5hJ0Ohbea65DntsP5L6F_c4T9olfRKU1qL-yhBqIA0oomQTs93-Rdr0rH07_LnqGtmREGelEeI42AKXoAhSbNCjJHvwJMKn1Lw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-me1Af_Bbnxywi4ku1rW3agi-im_NroEz0RULaNFPUTraJ4l_vXbpWJwriW2kvaZLLx--Sy-8ANmSo0KiQnmnvqsh0pW-bwsfxGPme5wtm-SqkC87nTda4ck9uvJsS7OV3YTJ-iGLDjUaGnq9pgNOG9M4X1tCE6J9xBh6BssvQTiFIdFmQRyHUsYOcg5nOA3NeIcvZKZIOrUZlatg38o4UPWwglUW2GEatetmpT8FtXuDM2-Rh-6Ufbcfv37gc_1ujaZgc4FFjP-tAM1BK0lmY-MJSOAe1feIdf7vPLjka4rHd6d737556BgJeI-7kHLRp23gVFMcibffvjG7nRb9KMz_z3jxc1Wutg4Y5iL5gxmhzMVPSFqlD5C4UdMpKUGmOcpWU-DlSccCUG4dSIaAQQkbSFRHaPixEvSsye8XuAoymnTRZBMN3RBLbseMzF3NQVuDa0laeJQLEB4EKKrCVa4HHA2pyipDxyDNSZYdjWblumQqsF6LPGR_HT0KbWpWFhOg-kAOb7_Hr5hE_PGHh5QULeViB6pCuP7PEGtAZJZZMa-z3f_FmraUflv4uugZjjdb5GT87bp4uw7gOMKN9CldgFDWWrCLO6UdV3Z0_AIjk-VA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90guiD3-L8mEVEfKlraz_BF3GbOnWoKPoiIW2aOTY72SaKf7136VqdKIhvpb2kSX75uEsuvwPYFoFEo0I4urkvQ90WnqlzD8dj6DmOx13DkwFdcL5ouCe3dv3euR-Dg-wuTMoPkW-40chQ8zUN8PhZyPIX1tCY6J9xBh6HCdsJfHLoq1zn5FGo6ph-xsFM54EZr5BhlfOkI6vRBDXsG3lH8j42kEwjW4xqrWrZqc3CQ1bg1NukvfcyCPei929cjv-t0RzMDPVR7TDtQPMwFicLMP2FpXARqofEO_7WSi85arzT7PZag8envoYKrxZ1Mw7apKm9copjkTQHj1qv-6JeJamfeX8JbmvVm6MTfRh9QY_Q5nJ1QVukFpG7UNApI0bQLGlLIfBzKCPflXYUCIkKBeciFDYP0fZxA8RdktnL95ehkHSTeAU0z-JxZEaW59qYgzR82xSmdAzuo37gS78IuxkKLBpSk1OEjA5LSZUthmVlqmWKsJWLPqd8HD8J7Sgocwnea5MDm-ewu8Yxq9Td4PrKDVhQhNII1p9ZYg3ojBJLphD7_V-sUb1RD6t_F92EyctKjZ2fNs7WYErFl1EuhetQQMDiDVRzBmFJ9eYPO0D41A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithms+for+constructing+wavelength+routing+networks&rft.jtitle=Networks&rft.au=Hassin%2C+Refael&rft.au=Levin%2C+Asaf&rft.date=2002-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0028-3045&rft.eissn=1097-0037&rft.volume=40&rft.issue=1&rft.spage=32&rft.epage=37&rft_id=info:doi/10.1002%2Fnet.10036&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DJ69RQ69_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3045&client=summon