Approximation algorithms for constructing wavelength routing networks
Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that...
        Saved in:
      
    
          | Published in | Networks Vol. 40; no. 1; pp. 32 - 37 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Wiley Subscription Services, Inc., A Wiley Company
    
        01.08.2002
     John Wiley & Sons  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0028-3045 1097-0037  | 
| DOI | 10.1002/net.10036 | 
Cover
| Abstract | Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that it is possible to route simultaneously all of the required flows in such a way that no edge is used more than K times. The SYNTHESIS OF WAVELENGTH ROUTING NETWORK (SWRN) problem is to compute a solution network of a minimum number of edges. This problem has significant importance in the world of fiber‐optic networks where a link can carry a limited amount of different wavelengths and one is interested in finding a minimum‐cost network such that all the requirements can be carried in the network without changing the wavelength of a path at any of its internal vertices. In this paper, we prove that the SWRN problem is NP‐hard for any constant K (K ≥ 2). Then, we assume that GR is a clique with n vertices and we find an “almost” optimal solution network for all values of K (K = o(n)) and present a Min{(K + 1)/2, 2 + 2/(K − 1)}‐approximation algorithm for the general case and a 2‐approximation algorithm for d‐regular graphs. © 2002 Wiley Periodicals, Inc. | 
    
|---|---|
| AbstractList | Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that it is possible to route simultaneously all of the required flows in such a way that no edge is used more than K times. The SYNTHESIS OF WAVELENGTH ROUTING NETWORK (SWRN) problem is to compute a solution network of a minimum number of edges. This problem has significant importance in the world of fiber‐optic networks where a link can carry a limited amount of different wavelengths and one is interested in finding a minimum‐cost network such that all the requirements can be carried in the network without changing the wavelength of a path at any of its internal vertices. In this paper, we prove that the SWRN problem is NP‐hard for any constant K (K ≥ 2). Then, we assume that GR is a clique with n vertices and we find an “almost” optimal solution network for all values of K (K = o(n)) and present a Min{(K + 1)/2, 2 + 2/(K − 1)}‐approximation algorithm for the general case and a 2‐approximation algorithm for d‐regular graphs. © 2002 Wiley Periodicals, Inc. Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single path. All these flows are to be routed simultaneously. A solution network consists of a (multi)graph on the same set of vertices, such that it is possible to route simultaneously all of the required flows in such a way that no edge is used more than K times. The SYNTHESIS OF WAVELENGTH ROUTING NETWORK (SWRN) problem is to compute a solution network of a minimum number of edges. This problem has significant importance in the world of fiber‐optic networks where a link can carry a limited amount of different wavelengths and one is interested in finding a minimum‐cost network such that all the requirements can be carried in the network without changing the wavelength of a path at any of its internal vertices. In this paper, we prove that the SWRN problem is NP‐hard for any constant K ( K ≥ 2). Then, we assume that G R is a clique with n vertices and we find an “almost” optimal solution network for all values of K ( K = o ( n )) and present a Min {( K + 1)/2, 2 + 2/( K − 1)}‐approximation algorithm for the general case and a 2‐approximation algorithm for d ‐regular graphs. © 2002 Wiley Periodicals, Inc.  | 
    
| Author | Hassin, Refael Levin, Asaf  | 
    
| Author_xml | – sequence: 1 givenname: Refael surname: Hassin fullname: Hassin, Refael email: hassin@post.tau.ac.il organization: Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel – sequence: 2 givenname: Asaf surname: Levin fullname: Levin, Asaf organization: Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv 69978, Israel  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13830768$$DView record in Pascal Francis | 
    
| BookMark | eNp1kEtPAjEUhRuDiYAu_AezceFipGVmOtMlQUQNwWgwLptOH1AZpqQtAv_e8pCF0dW9ufc7p6e3BRq1qSUA1wjeIQi7nVr6XZPgM9BEkORx6PMGaIZdEScwzS5Ay7lPCBHKUNEEg95yac1GL5jXpo5YNTVW-9nCRcrYiJvaebviXtfTaM2-ZCXrqZ9F1qz2o_Da2ti5uwTnilVOXh1rG7w_DCb9x3j0Mnzq90YxTyHCsYAlRF0SogiBBZSKqK5KlRBhXSpeYJVyIhQikDFRipSVaZFjkotMJUmRsKQNbg6-S-Y4q5RlNdeOLm3Ib7cUBQjmuAhc58Bxa5yzUlGu_f6H3jJdUQTp7lo05Kf7awXF7S_FyfQP9ui-1pXc_g_S8WDyo4gPCu283JwUzM4pzpM8ox_jIb1_xuTtFRNKkm8ceIyt | 
    
| CODEN | NTWKAA | 
    
| CitedBy_id | crossref_primary_10_1111_j_1467_9574_2005_00286_x crossref_primary_10_5988_jime_53_781  | 
    
| Cites_doi | 10.1137/0210054 10.1137/0210055 10.1137/0204043 10.1016/0196-6774(83)90032-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2002 Wiley Periodicals, Inc. 2002 INIST-CNRS  | 
    
| Copyright_xml | – notice: Copyright © 2002 Wiley Periodicals, Inc. – notice: 2002 INIST-CNRS  | 
    
| DBID | BSCLL AAYXX CITATION IQODW  | 
    
| DOI | 10.1002/net.10036 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Applied Sciences  | 
    
| EISSN | 1097-0037 | 
    
| EndPage | 37 | 
    
| ExternalDocumentID | 13830768 10_1002_net_10036 NET10036 ark_67375_WNG_DJ69RQ69_9  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 6TU 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RXW SAMSI SUPJJ TAE TN5 TUS TWZ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZCA ZY4 ZZTAW ~IA ~WT AAHHS ABTAH ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWM AAYXX CITATION IQODW  | 
    
| ID | FETCH-LOGICAL-c4016-d0b0129028dd6d0ef9f2f4fddc40bfc86f4c9df190aadbd4ab487697d5f3383a3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0028-3045 | 
    
| IngestDate | Wed Apr 02 07:18:05 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Oct 01 03:44:33 EDT 2025 Wed Jan 22 17:02:59 EST 2025 Sun Sep 21 06:16:55 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | NP hard problem Connected graph Wavelength division multiplexing Routing Approximation algorithm Communication network Wavelength  | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4016-d0b0129028dd6d0ef9f2f4fddc40bfc86f4c9df190aadbd4ab487697d5f3383a3 | 
    
| Notes | ArticleID:NET10036 ark:/67375/WNG-DJ69RQ69-9 istex:78D5424EFDCE1AC1A0388B9A2163FA4887484450  | 
    
| PageCount | 6 | 
    
| ParticipantIDs | pascalfrancis_primary_13830768 crossref_citationtrail_10_1002_net_10036 crossref_primary_10_1002_net_10036 wiley_primary_10_1002_net_10036_NET10036 istex_primary_ark_67375_WNG_DJ69RQ69_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2002 | 
    
| PublicationDateYYYYMMDD | 2002-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2002 text: August 2002  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: New York, NY  | 
    
| PublicationTitle | Networks | 
    
| PublicationTitleAlternate | Networks | 
    
| PublicationYear | 2002 | 
    
| Publisher | Wiley Subscription Services, Inc., A Wiley Company John Wiley & Sons  | 
    
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: John Wiley & Sons  | 
    
| References | Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, J Alg 4 (1983), 35-44. S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J Comput 4 (1975), 507-518. I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing of symmetric communication requests in directed fiber trees, Also, Symmetric communication in all-optical tree networks, Parallel Process Lett, to appear. I. Holyer, The NP-completeness of edge-coloring, SIAM J Comput 10 (1981), 718-720. L. Lovász and M. D. Plummer, Matching theory, Elsevier, Amsterdam, 1986. C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1973. I. Holyer, The NP-completeness of some edge partition problems, SIAM J Comput 10 (1981), 713-717. I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing in all-optical tree networks: A survey, Comput Artific Intell, to appear. 1998 1986 1996 1973 1975; 4 1981; 10 1983; 4 Berge C. (e_1_2_1_2_2) 1973 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 Lovász L. (e_1_2_1_10_2) 1986 Caragiannis I. (e_1_2_1_3_2) e_1_2_1_8_2 Caragiannis I. (e_1_2_1_4_3) e_1_2_1_9_2  | 
    
| References_xml | – reference: I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing in all-optical tree networks: A survey, Comput Artific Intell, to appear. – reference: I. Caragiannis, C. Kaklamanis, and P. Persiano, Wavelength routing of symmetric communication requests in directed fiber trees, Also, Symmetric communication in all-optical tree networks, Parallel Process Lett, to appear. – reference: Z. Galil and D. Leven, NP-completeness of finding the chromatic index of regular graphs, J Alg 4 (1983), 35-44. – reference: L. Lovász and M. D. Plummer, Matching theory, Elsevier, Amsterdam, 1986. – reference: I. Holyer, The NP-completeness of some edge partition problems, SIAM J Comput 10 (1981), 713-717. – reference: S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J Comput 4 (1975), 507-518. – reference: C. Berge, Graphs and hypergraphs, North-Holland, Amsterdam, 1973. – reference: I. Holyer, The NP-completeness of edge-coloring, SIAM J Comput 10 (1981), 718-720. – year: 1973 – article-title: Wavelength routing in all‐optical tree networks: A survey publication-title: Comput Artific Intell – year: 1986 – volume: 4 start-page: 507 year: 1975 end-page: 518 article-title: Network flow and testing graph connectivity publication-title: SIAM J Comput – volume: 10 start-page: 718 year: 1981 end-page: 720 article-title: The NP‐completeness of edge‐coloring publication-title: SIAM J Comput – start-page: 13 year: 1996 end-page: 32 – volume: 4 start-page: 35 year: 1983 end-page: 44 article-title: NP‐completeness of finding the chromatic index of regular graphs publication-title: J Alg – volume: 10 start-page: 713 year: 1981 end-page: 717 article-title: The NP‐completeness of some edge partition problems publication-title: SIAM J Comput – start-page: 10 year: 1998 end-page: 19 article-title: Wavelength routing of symmetric communication requests in directed fiber trees publication-title: Parallel Process Lett – volume-title: Graphs and hypergraphs year: 1973 ident: e_1_2_1_2_2 – ident: e_1_2_1_5_2 – ident: e_1_2_1_7_2 doi: 10.1137/0210054 – ident: e_1_2_1_4_3 article-title: Wavelength routing of symmetric communication requests in directed fiber trees publication-title: Parallel Process Lett – ident: e_1_2_1_8_2 doi: 10.1137/0210055 – ident: e_1_2_1_6_2 doi: 10.1137/0204043 – ident: e_1_2_1_9_2 doi: 10.1016/0196-6774(83)90032-9 – volume-title: Matching theory year: 1986 ident: e_1_2_1_10_2 – ident: e_1_2_1_3_2 article-title: Wavelength routing in all‐optical tree networks: A survey publication-title: Comput Artific Intell – ident: e_1_2_1_4_2  | 
    
| SSID | ssj0011518 | 
    
| Score | 1.5879847 | 
    
| Snippet | Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single... Consider a requirement graph whose vertices represent customers and an edge represents the need to route a unit of flow between its end vertices along a single...  | 
    
| SourceID | pascalfrancis crossref wiley istex  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 32 | 
    
| SubjectTerms | Applied sciences Exact sciences and technology network synthesis Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Teleprocessing networks. Isdn Transmission and modulation (techniques and equipments) wavelength routing WDM  | 
    
| Title | Approximation algorithms for constructing wavelength routing networks | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-DJ69RQ69-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnet.10036  | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0028-3045 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0037 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011518 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX_TBuzgvo4iIL93ark1bfBq6OQYOHBvuQQhp02xjs5Wtw-Gv9yRZ6yYK4ltpT9IkXy7nJCffQeiK-RyMCuboZpUHus1cU6cujMfAdRyXYsPlvrjg_NjGzZ7d6jv9ArrN7sIofoh8w02MDDlfiwFOg1llhTQ0EuzPMAHD_GtWsTSnOjl1FCg6ppcxMIvTwIxVyLAqecq1tWhTNOtC-EbSGTQPV3Et1nVWueg0dtFLVlzlazIuz9OgHH58Y3L8Z3320M5SGdVqqvfso0IUH6DtFYrCQ1SvCdLxxUjdcNToZJBMR-nwdaaBtquFSUZAGw-0dyqCWMSDdKhNk7l8FSsn89kR6jXq3bumvgy9oIdgcGGdif1RSzC7iIhTRgSIWdzmjMHngIce5nboMw7aBKUsYDYNwPDBPoDOhc1Lq8doI07i6ARprkWj0AwtF9uQAzc822QmdwzqgXLgca-IbjIQSLjkJRfhMSZEMSpbBMpKZMsU0WUu-qbIOH4SupZI5hJ0Ohbea65DntsP5L6F_c4T9olfRKU1qL-yhBqIA0oomQTs93-Rdr0rH07_LnqGtmREGelEeI42AKXoAhSbNCjJHvwJMKn1Lw | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED-me1Af_Bbnxywi4ku1rW3agi-im_NroEz0RULaNFPUTraJ4l_vXbpWJwriW2kvaZLLx--Sy-8ANmSo0KiQnmnvqsh0pW-bwsfxGPme5wtm-SqkC87nTda4ck9uvJsS7OV3YTJ-iGLDjUaGnq9pgNOG9M4X1tCE6J9xBh6BssvQTiFIdFmQRyHUsYOcg5nOA3NeIcvZKZIOrUZlatg38o4UPWwglUW2GEatetmpT8FtXuDM2-Rh-6Ufbcfv37gc_1ujaZgc4FFjP-tAM1BK0lmY-MJSOAe1feIdf7vPLjka4rHd6d737556BgJeI-7kHLRp23gVFMcibffvjG7nRb9KMz_z3jxc1Wutg4Y5iL5gxmhzMVPSFqlD5C4UdMpKUGmOcpWU-DlSccCUG4dSIaAQQkbSFRHaPixEvSsye8XuAoymnTRZBMN3RBLbseMzF3NQVuDa0laeJQLEB4EKKrCVa4HHA2pyipDxyDNSZYdjWblumQqsF6LPGR_HT0KbWpWFhOg-kAOb7_Hr5hE_PGHh5QULeViB6pCuP7PEGtAZJZZMa-z3f_FmraUflv4uugZjjdb5GT87bp4uw7gOMKN9CldgFDWWrCLO6UdV3Z0_AIjk-VA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90guiD3-L8mEVEfKlraz_BF3GbOnWoKPoiIW2aOTY72SaKf7136VqdKIhvpb2kSX75uEsuvwPYFoFEo0I4urkvQ90WnqlzD8dj6DmOx13DkwFdcL5ouCe3dv3euR-Dg-wuTMoPkW-40chQ8zUN8PhZyPIX1tCY6J9xBh6HCdsJfHLoq1zn5FGo6ph-xsFM54EZr5BhlfOkI6vRBDXsG3lH8j42kEwjW4xqrWrZqc3CQ1bg1NukvfcyCPei929cjv-t0RzMDPVR7TDtQPMwFicLMP2FpXARqofEO_7WSi85arzT7PZag8envoYKrxZ1Mw7apKm9copjkTQHj1qv-6JeJamfeX8JbmvVm6MTfRh9QY_Q5nJ1QVukFpG7UNApI0bQLGlLIfBzKCPflXYUCIkKBeciFDYP0fZxA8RdktnL95ehkHSTeAU0z-JxZEaW59qYgzR82xSmdAzuo37gS78IuxkKLBpSk1OEjA5LSZUthmVlqmWKsJWLPqd8HD8J7Sgocwnea5MDm-ewu8Yxq9Td4PrKDVhQhNII1p9ZYg3ojBJLphD7_V-sUb1RD6t_F92EyctKjZ2fNs7WYErFl1EuhetQQMDiDVRzBmFJ9eYPO0D41A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+algorithms+for+constructing+wavelength+routing+networks&rft.jtitle=Networks&rft.au=Hassin%2C+Refael&rft.au=Levin%2C+Asaf&rft.date=2002-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0028-3045&rft.eissn=1097-0037&rft.volume=40&rft.issue=1&rft.spage=32&rft.epage=37&rft_id=info:doi/10.1002%2Fnet.10036&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DJ69RQ69_9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3045&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3045&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3045&client=summon |