Quantum Branch-and-Bound Algorithm and its Application to the Travelling Salesman Problem
We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 241; no. 2; pp. 168 - 184 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
09.08.2019
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1072-3374 1573-8795 |
DOI | 10.1007/s10958-019-04415-6 |
Cover
Abstract | We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm. |
---|---|
AbstractList | We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm. We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm. Keywords and phrases: quantum computing, quantum computer, quantum search, Grover's algorithm, branch-and-bound method, travelling salesman problem. AMS Subject Classification: 81P68, 68Q12 |
Audience | Academic |
Author | Trushechkin, A. S. Markevich, E. A. |
Author_xml | – sequence: 1 givenname: E. A. surname: Markevich fullname: Markevich, E. A. email: eva-markevich@mail.ru organization: National Research Nuclear University MEPhI, Steklov Mathematical Insitute of the Russian Academy of Sciences, National University of Science and Technology MISiS – sequence: 2 givenname: A. S. surname: Trushechkin fullname: Trushechkin, A. S. organization: National Research Nuclear University MEPhI |
BackLink | https://www.osti.gov/biblio/22921158$$D View this record in Osti.gov |
BookMark | eNp9kktrHSEUgIeSQF79A1kJXXVhqqOOzvImNE0g0EfSRVdiHJ1rcPRWndL--9hM4XLLJbhQDt-nx3POSXMQYjBNc47RBUaIf8gY9UxAhHuIKMUMdm-aY8w4gYL37KCeEW8hIZweNSc5P6EqdYIcNz--ziqUeQKXSQW9hioM8DLOYQArP8bkynoCNQZcyWC12XinVXExgBJBWRvwkNQv470LI7hX3uRJBfAlxUdvprPm0Cqfzdt_-2nz_frjw9UNvPv86fZqdQc1RbiDinZt3xHKRVcDmrFHynvM-la3QuiBEK2RsoxYqxgauFXDwCwS3HCj7EA1OW3eLffGXJzM2hWj1zqGYHSRbdu3GDOxpTYp_pxNLvIpzinUxCrTiVoNTNGWGutnpAs2lqT05LKWqw5RzNFyF9xDjSaYpHzti3U1vMNf7OHrGszk9F7h_Y5QmWJ-l1HNOcvb-2-7bLuwOsWck7Fyk9yk0h-Jkfw7G3KZDVlnQ77MhuyqJP6TatleGlszc_51lSxqru-E0aRtIV-xngE63cwO |
CitedBy_id | crossref_primary_10_1016_j_future_2024_02_016 crossref_primary_10_1007_s10462_022_10190_9 crossref_primary_10_1016_j_ejor_2024_12_016 |
Cites_doi | 10.1214/aop/1176991596 10.1088/1367-2630/18/7/073003 10.1016/S0167-7152(99)00147-9 10.1137/050644719 10.1137/S0097539796300933 10.1016/S0004-3702(96)00030-6 10.1103/PhysRevA.75.032335 10.1007/s00453-002-0976-3 10.4086/toc.2008.v004a008 10.1142/S021974990800361X 10.1103/PhysRevLett.113.210501 10.1145/992287.992296 10.1214/aoap/1034968141 10.1103/PhysRevA.61.032303 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 COPYRIGHT 2019 Springer Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: COPYRIGHT 2019 Springer – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION ISR OTOTI |
DOI | 10.1007/s10958-019-04415-6 |
DatabaseName | CrossRef Science (Gale In Context) OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 184 |
ExternalDocumentID | 22921158 A604170158 10_1007_s10958_019_04415_6 |
GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~8M ~A9 ~EX -Y2 1SB 2.D 2P1 2VQ 5QI 642 AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFNX AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA BBWZM CAG CITATION COF KOW N2Q NDZJH O9- OVD RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI UZXMN VFIZW ZWQNP AEIIB ABRTQ AAFGU ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OTOTI UMP UNUBA |
ID | FETCH-LOGICAL-c4016-a4629634786c40c55b4791592c288cd33cc0af53ffa50d7fadd5f087e7eafd4c3 |
IEDL.DBID | AGYKE |
ISSN | 1072-3374 |
IngestDate | Thu May 18 22:30:54 EDT 2023 Wed Sep 17 23:56:06 EDT 2025 Tue Jun 17 21:47:04 EDT 2025 Thu Jun 12 23:46:45 EDT 2025 Tue Jun 10 20:28:47 EDT 2025 Fri Jun 27 04:53:58 EDT 2025 Thu Apr 24 23:07:27 EDT 2025 Tue Jul 01 01:42:15 EDT 2025 Fri Feb 21 02:34:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | quantum computer quantum search 68Q12 81P68 quantum computing travelling salesman problem Grover’s algorithm branch-and-bound method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4016-a4629634786c40c55b4791592c288cd33cc0af53ffa50d7fadd5f087e7eafd4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2268076140 |
PQPubID | 2043545 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_22921158 proquest_journals_2268076140 gale_infotracmisc_A604170158 gale_infotracgeneralonefile_A604170158 gale_infotracacademiconefile_A604170158 gale_incontextgauss_ISR_A604170158 crossref_primary_10_1007_s10958_019_04415_6 crossref_citationtrail_10_1007_s10958_019_04415_6 springer_journals_10_1007_s10958_019_04415_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190809 |
PublicationDateYYYYMMDD | 2019-08-09 |
PublicationDate_xml | – month: 08 year: 2019 text: 20190809 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2019 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Cortina-BorjaMRobinsonTEstimating the asymptotic constants of the total length of Euclidean minimal spanning trees with power-weighted edgesStat. Probab. Lett.2000472125128174709910.1016/S0167-7152(99)00147-91063.90058 FarhiEGoldstoneJGutmannSA quantum algorithm for the Hamiltonian NAND treeTheory Comput.20084169190248023710.4086/toc.2008.v004a0081213.68284 KestenHLeeSThe central limit theorem for weighted minimal spanning trees on random pointsAnn. Probab.199662495527139805510.1214/aoap/10349681410862.60008 A. Ahuja, S. Kapoor, “A quantum algorithm for finding the maximum,” e-print arxiv.org/abs/quant-ph/9911082 CerfNJGroverLWilliamsCPNested quantum search and structured problemsPhys. Rev. A200061303230310.1103/PhysRevA.61.032303 DürrCHeiligmanMHøyerPMhallaMQuantum query complexity of some graph problemsSIAM J. Comput.200635613101328221714810.1137/0506447191101.81024 AmbainisAQuantum search algorithmSIGACT News2004352223510.1145/992287.992296 C. Dürr and P. Høyer, “A quantum algorithm for finding the minimum,” arxiv.org/abs/quant-ph/9607014 B. W. Reichardt, “Reflections for quantum query algorithms,” in: Proc. 22 ACM-SIAM Symp. on Discrete Algorithms (2011), pp. 560–569; arxiv.org/abs/1005.1601 A. Childs, S. Kimmel, and R. Kothari, “The quantum query complexity of read-many formulas,” Lect. Notes Comput. Sci., 7501, 336–348 (2012). MandràSGuerreschiGGAspuru-GuzikAFaster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problemsNew J. Phys.201618707300310.1088/1367-2630/18/7/073003 BrassardGHøyerPMoscaMTappAQuantum amplitude amplification and estimationQuantum Comput. Quantum Inform. Sci., Contemp. Math. Ser.2002305537419473321063.81024 D. A. Zholobov, Introduction in Mathematical Programming [in Russian], MEPhI, Moscow (2008). T. G. Crainic, B. Le Cun, and C. Roucairol, “Parallel branch-and-bound algorithms,” in: Parallel Combinatorica and Optimization, Wiley, New York (2006), pp. 1–28. WagnerHPrinciples of Operations Research1969Englewood Cliffs, New JerseyPrentice Hall0193.18402 BennettCBernsteinEBrassardGVaziraniUStrengths and weaknesses of quantum computingSIAM J. Comput.199726515101523147199110.1137/S00975397963009330895.68044 R. Cleve, D. Gavinsky, and D. L. Yonge-Mallo, “Quantum algorithms for evaluating min-max trees,” in: Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes Comput. Sci., 5106, (2008), pp. 11–15. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Invariant quantum algorithms for insertion into an ordered list,” arxiv.org/abs/quant-ph/9901059 HøyerPNeerbekJShiYQuantum complexities of ordered searching, sorting, and element distinctnessAlgorithmica2002344429448194351610.1007/s00453-002-0976-31012.68071 YoderTJLowGHChuangILFixed-point quantum search with an optimal number of queriesPhys. Rev. Lett.201411321050110.1103/PhysRevLett.113.210501 ChildsAMLandahlAJParriloPAImproved quantum algorithms for the ordered search problem via semidefinite programmingPhys. Rev. A200775303233510.1103/PhysRevA.75.032335 BillingsleyPProbability and Measure1995New YorkWiley0822.60002 KowadaLABLavorCPortugalRde FigueiredoCMHA new quantum algorithm for solving the minimum searching problemInt. J. Quantum Inform.20086342743610.1142/S021974990800361X1192.81085 W. Zhang, State-Space Search: Algorithms, Complexity, Extensions, and Applications, Springer-Verlag (1999). GentIPWalshTThe TSP phase transitionArtificial Intelligence1996881349358142642510.1016/S0004-3702(96)00030-60907.68177 L. K. Grover, “A fast quantum mechanical algorithm for database search,” in: Proc. 28 Ann. Symp. on the Theory of Computing, ACM Press, New York (1996), pp. 212–219. SteeleMGrowth rates of Euclidean minimal spanning trees with power weighted edgesAnn. Probab.19881641767178795821510.1214/aop/11769915960655.60023 S Mandrà (4415_CR21) 2016; 18 4415_CR11 4415_CR13 4415_CR15 4415_CR17 P Billingsley (4415_CR4) 1995 M Steele (4415_CR23) 1988; 16 M Cortina-Borja (4415_CR10) 2000; 47 G Brassard (4415_CR5) 2002; 305 TJ Yoder (4415_CR25) 2014; 113 P Høyer (4415_CR18) 2002; 34 4415_CR22 AM Childs (4415_CR8) 2007; 75 A Ambainis (4415_CR2) 2004; 35 4415_CR26 4415_CR27 C Bennett (4415_CR3) 1997; 26 4415_CR1 H Wagner (4415_CR24) 1969 H Kesten (4415_CR19) 1996; 6 LAB Kowada (4415_CR20) 2008; 6 4415_CR7 NJ Cerf (4415_CR6) 2000; 61 4415_CR9 IP Gent (4415_CR16) 1996; 88 E Farhi (4415_CR14) 2008; 4 C Dürr (4415_CR12) 2006; 35 |
References_xml | – reference: YoderTJLowGHChuangILFixed-point quantum search with an optimal number of queriesPhys. Rev. Lett.201411321050110.1103/PhysRevLett.113.210501 – reference: C. Dürr and P. Høyer, “A quantum algorithm for finding the minimum,” arxiv.org/abs/quant-ph/9607014 – reference: Cortina-BorjaMRobinsonTEstimating the asymptotic constants of the total length of Euclidean minimal spanning trees with power-weighted edgesStat. Probab. Lett.2000472125128174709910.1016/S0167-7152(99)00147-91063.90058 – reference: D. A. Zholobov, Introduction in Mathematical Programming [in Russian], MEPhI, Moscow (2008). – reference: A. Childs, S. Kimmel, and R. Kothari, “The quantum query complexity of read-many formulas,” Lect. Notes Comput. Sci., 7501, 336–348 (2012). – reference: ChildsAMLandahlAJParriloPAImproved quantum algorithms for the ordered search problem via semidefinite programmingPhys. Rev. A200775303233510.1103/PhysRevA.75.032335 – reference: R. Cleve, D. Gavinsky, and D. L. Yonge-Mallo, “Quantum algorithms for evaluating min-max trees,” in: Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes Comput. Sci., 5106, (2008), pp. 11–15. – reference: BennettCBernsteinEBrassardGVaziraniUStrengths and weaknesses of quantum computingSIAM J. Comput.199726515101523147199110.1137/S00975397963009330895.68044 – reference: BillingsleyPProbability and Measure1995New YorkWiley0822.60002 – reference: KowadaLABLavorCPortugalRde FigueiredoCMHA new quantum algorithm for solving the minimum searching problemInt. J. Quantum Inform.20086342743610.1142/S021974990800361X1192.81085 – reference: DürrCHeiligmanMHøyerPMhallaMQuantum query complexity of some graph problemsSIAM J. Comput.200635613101328221714810.1137/0506447191101.81024 – reference: KestenHLeeSThe central limit theorem for weighted minimal spanning trees on random pointsAnn. Probab.199662495527139805510.1214/aoap/10349681410862.60008 – reference: W. Zhang, State-Space Search: Algorithms, Complexity, Extensions, and Applications, Springer-Verlag (1999). – reference: WagnerHPrinciples of Operations Research1969Englewood Cliffs, New JerseyPrentice Hall0193.18402 – reference: FarhiEGoldstoneJGutmannSA quantum algorithm for the Hamiltonian NAND treeTheory Comput.20084169190248023710.4086/toc.2008.v004a0081213.68284 – reference: B. W. Reichardt, “Reflections for quantum query algorithms,” in: Proc. 22 ACM-SIAM Symp. on Discrete Algorithms (2011), pp. 560–569; arxiv.org/abs/1005.1601 – reference: CerfNJGroverLWilliamsCPNested quantum search and structured problemsPhys. Rev. A200061303230310.1103/PhysRevA.61.032303 – reference: HøyerPNeerbekJShiYQuantum complexities of ordered searching, sorting, and element distinctnessAlgorithmica2002344429448194351610.1007/s00453-002-0976-31012.68071 – reference: AmbainisAQuantum search algorithmSIGACT News2004352223510.1145/992287.992296 – reference: SteeleMGrowth rates of Euclidean minimal spanning trees with power weighted edgesAnn. Probab.19881641767178795821510.1214/aop/11769915960655.60023 – reference: BrassardGHøyerPMoscaMTappAQuantum amplitude amplification and estimationQuantum Comput. Quantum Inform. Sci., Contemp. Math. Ser.2002305537419473321063.81024 – reference: MandràSGuerreschiGGAspuru-GuzikAFaster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problemsNew J. Phys.201618707300310.1088/1367-2630/18/7/073003 – reference: E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Invariant quantum algorithms for insertion into an ordered list,” arxiv.org/abs/quant-ph/9901059 – reference: L. K. Grover, “A fast quantum mechanical algorithm for database search,” in: Proc. 28 Ann. Symp. on the Theory of Computing, ACM Press, New York (1996), pp. 212–219. – reference: T. G. Crainic, B. Le Cun, and C. Roucairol, “Parallel branch-and-bound algorithms,” in: Parallel Combinatorica and Optimization, Wiley, New York (2006), pp. 1–28. – reference: GentIPWalshTThe TSP phase transitionArtificial Intelligence1996881349358142642510.1016/S0004-3702(96)00030-60907.68177 – reference: A. Ahuja, S. Kapoor, “A quantum algorithm for finding the maximum,” e-print arxiv.org/abs/quant-ph/9911082 – volume: 16 start-page: 1767 issue: 4 year: 1988 ident: 4415_CR23 publication-title: Ann. Probab. doi: 10.1214/aop/1176991596 – volume: 18 start-page: 073003 issue: 7 year: 2016 ident: 4415_CR21 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/7/073003 – ident: 4415_CR7 – volume: 47 start-page: 125 issue: 2 year: 2000 ident: 4415_CR10 publication-title: Stat. Probab. Lett. doi: 10.1016/S0167-7152(99)00147-9 – ident: 4415_CR1 – volume: 35 start-page: 1310 issue: 6 year: 2006 ident: 4415_CR12 publication-title: SIAM J. Comput. doi: 10.1137/050644719 – volume: 26 start-page: 1510 issue: 5 year: 1997 ident: 4415_CR3 publication-title: SIAM J. Comput. doi: 10.1137/S0097539796300933 – volume: 88 start-page: 349 issue: 1 year: 1996 ident: 4415_CR16 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(96)00030-6 – ident: 4415_CR27 – volume-title: Probability and Measure year: 1995 ident: 4415_CR4 – volume-title: Principles of Operations Research year: 1969 ident: 4415_CR24 – ident: 4415_CR22 – volume: 75 start-page: 032335 issue: 3 year: 2007 ident: 4415_CR8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.75.032335 – ident: 4415_CR26 – volume: 34 start-page: 429 issue: 4 year: 2002 ident: 4415_CR18 publication-title: Algorithmica doi: 10.1007/s00453-002-0976-3 – volume: 4 start-page: 169 year: 2008 ident: 4415_CR14 publication-title: Theory Comput. doi: 10.4086/toc.2008.v004a008 – volume: 6 start-page: 427 issue: 3 year: 2008 ident: 4415_CR20 publication-title: Int. J. Quantum Inform. doi: 10.1142/S021974990800361X – volume: 113 start-page: 210501 year: 2014 ident: 4415_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.210501 – ident: 4415_CR15 – ident: 4415_CR17 – volume: 35 start-page: 22 issue: 2 year: 2004 ident: 4415_CR2 publication-title: SIGACT News doi: 10.1145/992287.992296 – ident: 4415_CR13 – volume: 305 start-page: 53 year: 2002 ident: 4415_CR5 publication-title: Quantum Comput. Quantum Inform. Sci., Contemp. Math. Ser. – ident: 4415_CR11 – volume: 6 start-page: 495 issue: 2 year: 1996 ident: 4415_CR19 publication-title: Ann. Probab. doi: 10.1214/aoap/1034968141 – volume: 61 start-page: 032303 issue: 3 year: 2000 ident: 4415_CR6 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.032303 – ident: 4415_CR9 |
SSID | ssj0007683 |
Score | 2.159449 |
Snippet | We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and... |
SourceID | osti proquest gale crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 168 |
SubjectTerms | ALGORITHMS COMPARATIVE EVALUATIONS EFFICIENCY Management science MATHEMATICAL METHODS AND COMPUTING Mathematics Mathematics and Statistics Production scheduling QUANTUM COMPUTERS Search algorithms Traveling salesman problem |
Title | Quantum Branch-and-Bound Algorithm and its Application to the Travelling Salesman Problem |
URI | https://link.springer.com/article/10.1007/s10958-019-04415-6 https://www.proquest.com/docview/2268076140 https://www.osti.gov/biblio/22921158 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbo9gIHKC-xUFYWQnAAV6njR3LMtl0KqAhoV2pPluPE24pugprkwq9nnDi7TVWQes1MHp7MjMf2zDcIvU1jK1LLNOEmSgljNCdxKgWB0Dzi2hrDmKsdPvomDufsyyk_9UVhVZ_t3h9Jtp76WrFbzF3ildvMh2mHiA20yWGBAua4mXw6-3qw8sAQQneJ9ZKSMJTMF8vc_pTBhOTd8qgE-xrEnDeOSdvZZ_YIzfvv7pJOfu00dbpj_tyAdLzrwLbQQx-O4qTTn8foXl48QQ-OVliu1VN09qMB6TdLPHU9OM6JLjIydc2YcHK5KK8u6vMlhmv4oq5wsj4Ox3WJ4Sn4xPU3aoG_8TGMulrqAn_vutg8Q_PZwcneIfENGYiBZZggmgkKBstkJOCC4TxlMoZ4iBoaRSYLQ2MCbXloreZBJi34Tm6DSOYy1zZjJnyORkVZ5C8QjoEKc2cqIw4Lmsxow3ZtrGNNY6M5t2O02_8VZTxauWuacanWOMtObArEplqxKTFGH1b3_O6wOv7L_cb9bOVAMAqXZbPQTVWpz8c_VSIC5nDqeTRG7z2TLeH18Jld0QIMwuFmDTjfDTgXHWr4bYzbA0YwZzMkO-VTEAA5FF_j0p1MrSiNYaneknulVN7bVEAUkduPYsEYfex1bE3-twxe3o39FbpPWzV1GTPbaFRfNflriMnqdAImON2fzibeFCdoY06Tv7mVK3Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegPAAPiE9RGGAhBA9gKXNsx37MEFMH6wSslcaT5ThxN2lN0JL-_9zloyVoIPGauzjO2T7f2Xe_I-RNZoLKgnBMep0xIXjBTJYoBqa5li54LwTmDs9P1GwpPp_Jsz4prB6i3YcryVZT_5bsZiQGXuFhPmw7TN0kt_CaEV2uJU-3-hcM6C6sPuEsjhPRp8pc38ZoO-qV8qSC1TWyOP-4JG33nsP75F5vNNK0G-UH5EZRPiR351vE1foR-fFtAzLarOkBVso4Z67M2QGWTKLp5aq6umjO1xSe0Yumpunu0po2FYVW6AKrELXw3PQUelevXUm_drVmHpPl4afFxxnryyYwD86SYk4oDstKJFrBAy9lJhIDVgv3XGufx7H3kQsyDsHJKE8CaDgZIp0USeFCLnz8hEzKqiyeEmqACjtclmgJbkfunRf7wTjjuPFOyjAl-4P0rO8xxbG0xaXdoSGjxC1I3LYSt2pK3m_f-dkhavyT-zUOikWoihJjYVZuU9f26PS7TVUkEE1e6il51zOFCj4P3exSC-AnEN1qxPl2xLnqsL2vY9wbMcKi82MyThILZgpi7XoMSvKN5dyAQ92Sh8lje51QA1FpPDUS0ZR8GCbUjvx3GTz7P_ZX5PZsMT-2x0cnX56TO7yd7RjjskcmzdWmeAFWVJO9bBfNL-eJDwY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_gJiF44HviYECEEDxAti5N0vaxgx0bY9Ngm7Q9RWna3CZ27bS2L_z12P24W6eBhHit3bRx7MRJ7J8JeZtETiVOGCZtmDAheMaiJFAMXPNQGmetEJg7vLunto7E12N5fCWLv4l2768k25wGRGnKq7WL1K1dSXyLJAZh4cE-LEFM3SZLAmtIjMhS_OVkZ3M-G4M73QbZB5z5fiC6xJmbWxksTt0UPSrA1gb-57Ur02Ylmjwgpu9DG4Dyc7WuklX76xq84_908iG537mpNG716hG5leWPyb3dOcZr-YScfK9hVOoZ3cDaHKfM5CnbwCJNND6fFpdn1emMwjN6VpU0XlyT06qg0Ao9xLpHDSA4PQAJlDOT0_22us1TcjTZPPy0xbpCDczC9kwxIxQHQxZBqOCBlTIRQQR-Erc8DG3q-9Z6xknfOSO9NHAwp0rnhUEWZMalwvrLZJQXefaM0AiosKYmQShho5NaY8W6i0xkeGSNlG5M1vsR0rZDMcdiGud6gb-MYtMgNt2ITasx-TB_56LF8Pgr9xsceI3gGDlG30xNXZZ6--CHjpUnEL9ehmPyvmNyBXwefrNNZoBOIJ7WgPPdgHPaoonfxLgyYAQzt0MyKqIGxwjRfS2GQdlKcx7BFr4h9wqqu1moBKIK8ZxKeGPysde3BfnPMnj-b-yvyZ39zxP9bXtv5wW5yxuNxaCaFTKqLuvsJbhtVfKqs8zf7u405w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QUANTUM+BRANCH-AND-BOUND+ALGORITHM+AND+ITS+APPLICATION+TO+THE+TRAVELLING+SALESMAN+PROBLEM&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Markevich%2C+E.A&rft.au=Trushechkin%2C+A.S&rft.date=2019-08-09&rft.pub=Springer&rft.issn=1072-3374&rft.volume=241&rft.issue=2&rft.spage=168&rft_id=info:doi/10.1007%2Fs10958-019-04415-6&rft.externalDocID=A604170158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |