Quantum Branch-and-Bound Algorithm and its Application to the Travelling Salesman Problem

We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 241; no. 2; pp. 168 - 184
Main Authors Markevich, E. A., Trushechkin, A. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 09.08.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1072-3374
1573-8795
DOI10.1007/s10958-019-04415-6

Cover

Abstract We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm.
AbstractList We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm.
We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm. Keywords and phrases: quantum computing, quantum computer, quantum search, Grover's algorithm, branch-and-bound method, travelling salesman problem. AMS Subject Classification: 81P68, 68Q12
Audience Academic
Author Trushechkin, A. S.
Markevich, E. A.
Author_xml – sequence: 1
  givenname: E. A.
  surname: Markevich
  fullname: Markevich, E. A.
  email: eva-markevich@mail.ru
  organization: National Research Nuclear University MEPhI, Steklov Mathematical Insitute of the Russian Academy of Sciences, National University of Science and Technology MISiS
– sequence: 2
  givenname: A. S.
  surname: Trushechkin
  fullname: Trushechkin, A. S.
  organization: National Research Nuclear University MEPhI
BackLink https://www.osti.gov/biblio/22921158$$D View this record in Osti.gov
BookMark eNp9kktrHSEUgIeSQF79A1kJXXVhqqOOzvImNE0g0EfSRVdiHJ1rcPRWndL--9hM4XLLJbhQDt-nx3POSXMQYjBNc47RBUaIf8gY9UxAhHuIKMUMdm-aY8w4gYL37KCeEW8hIZweNSc5P6EqdYIcNz--ziqUeQKXSQW9hioM8DLOYQArP8bkynoCNQZcyWC12XinVXExgBJBWRvwkNQv470LI7hX3uRJBfAlxUdvprPm0Cqfzdt_-2nz_frjw9UNvPv86fZqdQc1RbiDinZt3xHKRVcDmrFHynvM-la3QuiBEK2RsoxYqxgauFXDwCwS3HCj7EA1OW3eLffGXJzM2hWj1zqGYHSRbdu3GDOxpTYp_pxNLvIpzinUxCrTiVoNTNGWGutnpAs2lqT05LKWqw5RzNFyF9xDjSaYpHzti3U1vMNf7OHrGszk9F7h_Y5QmWJ-l1HNOcvb-2-7bLuwOsWck7Fyk9yk0h-Jkfw7G3KZDVlnQ77MhuyqJP6TatleGlszc_51lSxqru-E0aRtIV-xngE63cwO
CitedBy_id crossref_primary_10_1016_j_future_2024_02_016
crossref_primary_10_1007_s10462_022_10190_9
crossref_primary_10_1016_j_ejor_2024_12_016
Cites_doi 10.1214/aop/1176991596
10.1088/1367-2630/18/7/073003
10.1016/S0167-7152(99)00147-9
10.1137/050644719
10.1137/S0097539796300933
10.1016/S0004-3702(96)00030-6
10.1103/PhysRevA.75.032335
10.1007/s00453-002-0976-3
10.4086/toc.2008.v004a008
10.1142/S021974990800361X
10.1103/PhysRevLett.113.210501
10.1145/992287.992296
10.1214/aoap/1034968141
10.1103/PhysRevA.61.032303
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2019 Springer
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2019 Springer
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ISR
OTOTI
DOI 10.1007/s10958-019-04415-6
DatabaseName CrossRef
Science (Gale In Context)
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList






DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 184
ExternalDocumentID 22921158
A604170158
10_1007_s10958_019_04415_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~A9
~EX
-Y2
1SB
2.D
2P1
2VQ
5QI
642
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
KOW
N2Q
NDZJH
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
UZXMN
VFIZW
ZWQNP
AEIIB
ABRTQ
AAFGU
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
UMP
UNUBA
ID FETCH-LOGICAL-c4016-a4629634786c40c55b4791592c288cd33cc0af53ffa50d7fadd5f087e7eafd4c3
IEDL.DBID AGYKE
ISSN 1072-3374
IngestDate Thu May 18 22:30:54 EDT 2023
Wed Sep 17 23:56:06 EDT 2025
Tue Jun 17 21:47:04 EDT 2025
Thu Jun 12 23:46:45 EDT 2025
Tue Jun 10 20:28:47 EDT 2025
Fri Jun 27 04:53:58 EDT 2025
Thu Apr 24 23:07:27 EDT 2025
Tue Jul 01 01:42:15 EDT 2025
Fri Feb 21 02:34:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords quantum computer
quantum search
68Q12
81P68
quantum computing
travelling salesman problem
Grover’s algorithm
branch-and-bound method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4016-a4629634786c40c55b4791592c288cd33cc0af53ffa50d7fadd5f087e7eafd4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2268076140
PQPubID 2043545
PageCount 17
ParticipantIDs osti_scitechconnect_22921158
proquest_journals_2268076140
gale_infotracmisc_A604170158
gale_infotracgeneralonefile_A604170158
gale_infotracacademiconefile_A604170158
gale_incontextgauss_ISR_A604170158
crossref_primary_10_1007_s10958_019_04415_6
crossref_citationtrail_10_1007_s10958_019_04415_6
springer_journals_10_1007_s10958_019_04415_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190809
PublicationDateYYYYMMDD 2019-08-09
PublicationDate_xml – month: 08
  year: 2019
  text: 20190809
  day: 09
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2019
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Cortina-BorjaMRobinsonTEstimating the asymptotic constants of the total length of Euclidean minimal spanning trees with power-weighted edgesStat. Probab. Lett.2000472125128174709910.1016/S0167-7152(99)00147-91063.90058
FarhiEGoldstoneJGutmannSA quantum algorithm for the Hamiltonian NAND treeTheory Comput.20084169190248023710.4086/toc.2008.v004a0081213.68284
KestenHLeeSThe central limit theorem for weighted minimal spanning trees on random pointsAnn. Probab.199662495527139805510.1214/aoap/10349681410862.60008
A. Ahuja, S. Kapoor, “A quantum algorithm for finding the maximum,” e-print arxiv.org/abs/quant-ph/9911082
CerfNJGroverLWilliamsCPNested quantum search and structured problemsPhys. Rev. A200061303230310.1103/PhysRevA.61.032303
DürrCHeiligmanMHøyerPMhallaMQuantum query complexity of some graph problemsSIAM J. Comput.200635613101328221714810.1137/0506447191101.81024
AmbainisAQuantum search algorithmSIGACT News2004352223510.1145/992287.992296
C. Dürr and P. Høyer, “A quantum algorithm for finding the minimum,” arxiv.org/abs/quant-ph/9607014
B. W. Reichardt, “Reflections for quantum query algorithms,” in: Proc. 22 ACM-SIAM Symp. on Discrete Algorithms (2011), pp. 560–569; arxiv.org/abs/1005.1601
A. Childs, S. Kimmel, and R. Kothari, “The quantum query complexity of read-many formulas,” Lect. Notes Comput. Sci., 7501, 336–348 (2012).
MandràSGuerreschiGGAspuru-GuzikAFaster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problemsNew J. Phys.201618707300310.1088/1367-2630/18/7/073003
BrassardGHøyerPMoscaMTappAQuantum amplitude amplification and estimationQuantum Comput. Quantum Inform. Sci., Contemp. Math. Ser.2002305537419473321063.81024
D. A. Zholobov, Introduction in Mathematical Programming [in Russian], MEPhI, Moscow (2008).
T. G. Crainic, B. Le Cun, and C. Roucairol, “Parallel branch-and-bound algorithms,” in: Parallel Combinatorica and Optimization, Wiley, New York (2006), pp. 1–28.
WagnerHPrinciples of Operations Research1969Englewood Cliffs, New JerseyPrentice Hall0193.18402
BennettCBernsteinEBrassardGVaziraniUStrengths and weaknesses of quantum computingSIAM J. Comput.199726515101523147199110.1137/S00975397963009330895.68044
R. Cleve, D. Gavinsky, and D. L. Yonge-Mallo, “Quantum algorithms for evaluating min-max trees,” in: Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes Comput. Sci., 5106, (2008), pp. 11–15.
E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Invariant quantum algorithms for insertion into an ordered list,” arxiv.org/abs/quant-ph/9901059
HøyerPNeerbekJShiYQuantum complexities of ordered searching, sorting, and element distinctnessAlgorithmica2002344429448194351610.1007/s00453-002-0976-31012.68071
YoderTJLowGHChuangILFixed-point quantum search with an optimal number of queriesPhys. Rev. Lett.201411321050110.1103/PhysRevLett.113.210501
ChildsAMLandahlAJParriloPAImproved quantum algorithms for the ordered search problem via semidefinite programmingPhys. Rev. A200775303233510.1103/PhysRevA.75.032335
BillingsleyPProbability and Measure1995New YorkWiley0822.60002
KowadaLABLavorCPortugalRde FigueiredoCMHA new quantum algorithm for solving the minimum searching problemInt. J. Quantum Inform.20086342743610.1142/S021974990800361X1192.81085
W. Zhang, State-Space Search: Algorithms, Complexity, Extensions, and Applications, Springer-Verlag (1999).
GentIPWalshTThe TSP phase transitionArtificial Intelligence1996881349358142642510.1016/S0004-3702(96)00030-60907.68177
L. K. Grover, “A fast quantum mechanical algorithm for database search,” in: Proc. 28 Ann. Symp. on the Theory of Computing, ACM Press, New York (1996), pp. 212–219.
SteeleMGrowth rates of Euclidean minimal spanning trees with power weighted edgesAnn. Probab.19881641767178795821510.1214/aop/11769915960655.60023
S Mandrà (4415_CR21) 2016; 18
4415_CR11
4415_CR13
4415_CR15
4415_CR17
P Billingsley (4415_CR4) 1995
M Steele (4415_CR23) 1988; 16
M Cortina-Borja (4415_CR10) 2000; 47
G Brassard (4415_CR5) 2002; 305
TJ Yoder (4415_CR25) 2014; 113
P Høyer (4415_CR18) 2002; 34
4415_CR22
AM Childs (4415_CR8) 2007; 75
A Ambainis (4415_CR2) 2004; 35
4415_CR26
4415_CR27
C Bennett (4415_CR3) 1997; 26
4415_CR1
H Wagner (4415_CR24) 1969
H Kesten (4415_CR19) 1996; 6
LAB Kowada (4415_CR20) 2008; 6
4415_CR7
NJ Cerf (4415_CR6) 2000; 61
4415_CR9
IP Gent (4415_CR16) 1996; 88
E Farhi (4415_CR14) 2008; 4
C Dürr (4415_CR12) 2006; 35
References_xml – reference: YoderTJLowGHChuangILFixed-point quantum search with an optimal number of queriesPhys. Rev. Lett.201411321050110.1103/PhysRevLett.113.210501
– reference: C. Dürr and P. Høyer, “A quantum algorithm for finding the minimum,” arxiv.org/abs/quant-ph/9607014
– reference: Cortina-BorjaMRobinsonTEstimating the asymptotic constants of the total length of Euclidean minimal spanning trees with power-weighted edgesStat. Probab. Lett.2000472125128174709910.1016/S0167-7152(99)00147-91063.90058
– reference: D. A. Zholobov, Introduction in Mathematical Programming [in Russian], MEPhI, Moscow (2008).
– reference: A. Childs, S. Kimmel, and R. Kothari, “The quantum query complexity of read-many formulas,” Lect. Notes Comput. Sci., 7501, 336–348 (2012).
– reference: ChildsAMLandahlAJParriloPAImproved quantum algorithms for the ordered search problem via semidefinite programmingPhys. Rev. A200775303233510.1103/PhysRevA.75.032335
– reference: R. Cleve, D. Gavinsky, and D. L. Yonge-Mallo, “Quantum algorithms for evaluating min-max trees,” in: Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes Comput. Sci., 5106, (2008), pp. 11–15.
– reference: BennettCBernsteinEBrassardGVaziraniUStrengths and weaknesses of quantum computingSIAM J. Comput.199726515101523147199110.1137/S00975397963009330895.68044
– reference: BillingsleyPProbability and Measure1995New YorkWiley0822.60002
– reference: KowadaLABLavorCPortugalRde FigueiredoCMHA new quantum algorithm for solving the minimum searching problemInt. J. Quantum Inform.20086342743610.1142/S021974990800361X1192.81085
– reference: DürrCHeiligmanMHøyerPMhallaMQuantum query complexity of some graph problemsSIAM J. Comput.200635613101328221714810.1137/0506447191101.81024
– reference: KestenHLeeSThe central limit theorem for weighted minimal spanning trees on random pointsAnn. Probab.199662495527139805510.1214/aoap/10349681410862.60008
– reference: W. Zhang, State-Space Search: Algorithms, Complexity, Extensions, and Applications, Springer-Verlag (1999).
– reference: WagnerHPrinciples of Operations Research1969Englewood Cliffs, New JerseyPrentice Hall0193.18402
– reference: FarhiEGoldstoneJGutmannSA quantum algorithm for the Hamiltonian NAND treeTheory Comput.20084169190248023710.4086/toc.2008.v004a0081213.68284
– reference: B. W. Reichardt, “Reflections for quantum query algorithms,” in: Proc. 22 ACM-SIAM Symp. on Discrete Algorithms (2011), pp. 560–569; arxiv.org/abs/1005.1601
– reference: CerfNJGroverLWilliamsCPNested quantum search and structured problemsPhys. Rev. A200061303230310.1103/PhysRevA.61.032303
– reference: HøyerPNeerbekJShiYQuantum complexities of ordered searching, sorting, and element distinctnessAlgorithmica2002344429448194351610.1007/s00453-002-0976-31012.68071
– reference: AmbainisAQuantum search algorithmSIGACT News2004352223510.1145/992287.992296
– reference: SteeleMGrowth rates of Euclidean minimal spanning trees with power weighted edgesAnn. Probab.19881641767178795821510.1214/aop/11769915960655.60023
– reference: BrassardGHøyerPMoscaMTappAQuantum amplitude amplification and estimationQuantum Comput. Quantum Inform. Sci., Contemp. Math. Ser.2002305537419473321063.81024
– reference: MandràSGuerreschiGGAspuru-GuzikAFaster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problemsNew J. Phys.201618707300310.1088/1367-2630/18/7/073003
– reference: E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Invariant quantum algorithms for insertion into an ordered list,” arxiv.org/abs/quant-ph/9901059
– reference: L. K. Grover, “A fast quantum mechanical algorithm for database search,” in: Proc. 28 Ann. Symp. on the Theory of Computing, ACM Press, New York (1996), pp. 212–219.
– reference: T. G. Crainic, B. Le Cun, and C. Roucairol, “Parallel branch-and-bound algorithms,” in: Parallel Combinatorica and Optimization, Wiley, New York (2006), pp. 1–28.
– reference: GentIPWalshTThe TSP phase transitionArtificial Intelligence1996881349358142642510.1016/S0004-3702(96)00030-60907.68177
– reference: A. Ahuja, S. Kapoor, “A quantum algorithm for finding the maximum,” e-print arxiv.org/abs/quant-ph/9911082
– volume: 16
  start-page: 1767
  issue: 4
  year: 1988
  ident: 4415_CR23
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176991596
– volume: 18
  start-page: 073003
  issue: 7
  year: 2016
  ident: 4415_CR21
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/7/073003
– ident: 4415_CR7
– volume: 47
  start-page: 125
  issue: 2
  year: 2000
  ident: 4415_CR10
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/S0167-7152(99)00147-9
– ident: 4415_CR1
– volume: 35
  start-page: 1310
  issue: 6
  year: 2006
  ident: 4415_CR12
  publication-title: SIAM J. Comput.
  doi: 10.1137/050644719
– volume: 26
  start-page: 1510
  issue: 5
  year: 1997
  ident: 4415_CR3
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796300933
– volume: 88
  start-page: 349
  issue: 1
  year: 1996
  ident: 4415_CR16
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(96)00030-6
– ident: 4415_CR27
– volume-title: Probability and Measure
  year: 1995
  ident: 4415_CR4
– volume-title: Principles of Operations Research
  year: 1969
  ident: 4415_CR24
– ident: 4415_CR22
– volume: 75
  start-page: 032335
  issue: 3
  year: 2007
  ident: 4415_CR8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032335
– ident: 4415_CR26
– volume: 34
  start-page: 429
  issue: 4
  year: 2002
  ident: 4415_CR18
  publication-title: Algorithmica
  doi: 10.1007/s00453-002-0976-3
– volume: 4
  start-page: 169
  year: 2008
  ident: 4415_CR14
  publication-title: Theory Comput.
  doi: 10.4086/toc.2008.v004a008
– volume: 6
  start-page: 427
  issue: 3
  year: 2008
  ident: 4415_CR20
  publication-title: Int. J. Quantum Inform.
  doi: 10.1142/S021974990800361X
– volume: 113
  start-page: 210501
  year: 2014
  ident: 4415_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.210501
– ident: 4415_CR15
– ident: 4415_CR17
– volume: 35
  start-page: 22
  issue: 2
  year: 2004
  ident: 4415_CR2
  publication-title: SIGACT News
  doi: 10.1145/992287.992296
– ident: 4415_CR13
– volume: 305
  start-page: 53
  year: 2002
  ident: 4415_CR5
  publication-title: Quantum Comput. Quantum Inform. Sci., Contemp. Math. Ser.
– ident: 4415_CR11
– volume: 6
  start-page: 495
  issue: 2
  year: 1996
  ident: 4415_CR19
  publication-title: Ann. Probab.
  doi: 10.1214/aoap/1034968141
– volume: 61
  start-page: 032303
  issue: 3
  year: 2000
  ident: 4415_CR6
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.032303
– ident: 4415_CR9
SSID ssj0007683
Score 2.159449
Snippet We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and...
SourceID osti
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 168
SubjectTerms ALGORITHMS
COMPARATIVE EVALUATIONS
EFFICIENCY
Management science
MATHEMATICAL METHODS AND COMPUTING
Mathematics
Mathematics and Statistics
Production scheduling
QUANTUM COMPUTERS
Search algorithms
Traveling salesman problem
Title Quantum Branch-and-Bound Algorithm and its Application to the Travelling Salesman Problem
URI https://link.springer.com/article/10.1007/s10958-019-04415-6
https://www.proquest.com/docview/2268076140
https://www.osti.gov/biblio/22921158
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbo9gIHKC-xUFYWQnAAV6njR3LMtl0KqAhoV2pPluPE24pugprkwq9nnDi7TVWQes1MHp7MjMf2zDcIvU1jK1LLNOEmSgljNCdxKgWB0Dzi2hrDmKsdPvomDufsyyk_9UVhVZ_t3h9Jtp76WrFbzF3ildvMh2mHiA20yWGBAua4mXw6-3qw8sAQQneJ9ZKSMJTMF8vc_pTBhOTd8qgE-xrEnDeOSdvZZ_YIzfvv7pJOfu00dbpj_tyAdLzrwLbQQx-O4qTTn8foXl48QQ-OVliu1VN09qMB6TdLPHU9OM6JLjIydc2YcHK5KK8u6vMlhmv4oq5wsj4Ox3WJ4Sn4xPU3aoG_8TGMulrqAn_vutg8Q_PZwcneIfENGYiBZZggmgkKBstkJOCC4TxlMoZ4iBoaRSYLQ2MCbXloreZBJi34Tm6DSOYy1zZjJnyORkVZ5C8QjoEKc2cqIw4Lmsxow3ZtrGNNY6M5t2O02_8VZTxauWuacanWOMtObArEplqxKTFGH1b3_O6wOv7L_cb9bOVAMAqXZbPQTVWpz8c_VSIC5nDqeTRG7z2TLeH18Jld0QIMwuFmDTjfDTgXHWr4bYzbA0YwZzMkO-VTEAA5FF_j0p1MrSiNYaneknulVN7bVEAUkduPYsEYfex1bE3-twxe3o39FbpPWzV1GTPbaFRfNflriMnqdAImON2fzibeFCdoY06Tv7mVK3Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegPAAPiE9RGGAhBA9gKXNsx37MEFMH6wSslcaT5ThxN2lN0JL-_9zloyVoIPGauzjO2T7f2Xe_I-RNZoLKgnBMep0xIXjBTJYoBqa5li54LwTmDs9P1GwpPp_Jsz4prB6i3YcryVZT_5bsZiQGXuFhPmw7TN0kt_CaEV2uJU-3-hcM6C6sPuEsjhPRp8pc38ZoO-qV8qSC1TWyOP-4JG33nsP75F5vNNK0G-UH5EZRPiR351vE1foR-fFtAzLarOkBVso4Z67M2QGWTKLp5aq6umjO1xSe0Yumpunu0po2FYVW6AKrELXw3PQUelevXUm_drVmHpPl4afFxxnryyYwD86SYk4oDstKJFrBAy9lJhIDVgv3XGufx7H3kQsyDsHJKE8CaDgZIp0USeFCLnz8hEzKqiyeEmqACjtclmgJbkfunRf7wTjjuPFOyjAl-4P0rO8xxbG0xaXdoSGjxC1I3LYSt2pK3m_f-dkhavyT-zUOikWoihJjYVZuU9f26PS7TVUkEE1e6il51zOFCj4P3exSC-AnEN1qxPl2xLnqsL2vY9wbMcKi82MyThILZgpi7XoMSvKN5dyAQ92Sh8lje51QA1FpPDUS0ZR8GCbUjvx3GTz7P_ZX5PZsMT-2x0cnX56TO7yd7RjjskcmzdWmeAFWVJO9bBfNL-eJDwY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDI_gJiF44HviYECEEDxAti5N0vaxgx0bY9Ngm7Q9RWna3CZ27bS2L_z12P24W6eBhHit3bRx7MRJ7J8JeZtETiVOGCZtmDAheMaiJFAMXPNQGmetEJg7vLunto7E12N5fCWLv4l2768k25wGRGnKq7WL1K1dSXyLJAZh4cE-LEFM3SZLAmtIjMhS_OVkZ3M-G4M73QbZB5z5fiC6xJmbWxksTt0UPSrA1gb-57Ur02Ylmjwgpu9DG4Dyc7WuklX76xq84_908iG537mpNG716hG5leWPyb3dOcZr-YScfK9hVOoZ3cDaHKfM5CnbwCJNND6fFpdn1emMwjN6VpU0XlyT06qg0Ao9xLpHDSA4PQAJlDOT0_22us1TcjTZPPy0xbpCDczC9kwxIxQHQxZBqOCBlTIRQQR-Erc8DG3q-9Z6xknfOSO9NHAwp0rnhUEWZMalwvrLZJQXefaM0AiosKYmQShho5NaY8W6i0xkeGSNlG5M1vsR0rZDMcdiGud6gb-MYtMgNt2ITasx-TB_56LF8Pgr9xsceI3gGDlG30xNXZZ6--CHjpUnEL9ehmPyvmNyBXwefrNNZoBOIJ7WgPPdgHPaoonfxLgyYAQzt0MyKqIGxwjRfS2GQdlKcx7BFr4h9wqqu1moBKIK8ZxKeGPysde3BfnPMnj-b-yvyZ39zxP9bXtv5wW5yxuNxaCaFTKqLuvsJbhtVfKqs8zf7u405w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QUANTUM+BRANCH-AND-BOUND+ALGORITHM+AND+ITS+APPLICATION+TO+THE+TRAVELLING+SALESMAN+PROBLEM&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Markevich%2C+E.A&rft.au=Trushechkin%2C+A.S&rft.date=2019-08-09&rft.pub=Springer&rft.issn=1072-3374&rft.volume=241&rft.issue=2&rft.spage=168&rft_id=info:doi/10.1007%2Fs10958-019-04415-6&rft.externalDocID=A604170158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon