A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems
SUMMARY An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combi...
Saved in:
| Published in | International journal for numerical methods in engineering Vol. 91; no. 6; pp. 622 - 643 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
10.08.2012
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-5981 1097-0207 1097-0207 |
| DOI | 10.1002/nme.4285 |
Cover
| Abstract | SUMMARY
An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post‐shock oscillations, and the central difference method that intrinsically filters front‐shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front‐shock and post‐shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. Copyright © 2012 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post‐shock oscillations, and the central difference method that intrinsically filters front‐shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front‐shock and post‐shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. Copyright © 2012 John Wiley & Sons, Ltd. SUMMARY An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post‐shock oscillations, and the central difference method that intrinsically filters front‐shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front‐shock and post‐shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. Copyright © 2012 John Wiley & Sons, Ltd. An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post-shock oscillations, and the central difference method that intrinsically filters front-shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front-shock and post-shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. |
| Author | Huh, H. Park, K. C. Lim, S. J |
| Author_xml | – sequence: 1 givenname: K. C. surname: Park fullname: Park, K. C. email: kcpark@colorado.edu, K. C. Park, Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309-429, USA., kcpark@colorado.edu organization: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 80309-429, Boulder, CO, USA – sequence: 2 givenname: S. J surname: Lim fullname: Lim, S. J organization: Division of Mechanical Engineering, School of Mechanical, Aerospace and Ocean Engineering, KAIST, 305-701, Daejeon, Korea – sequence: 3 givenname: H. surname: Huh fullname: Huh, H. organization: Division of Mechanical Engineering, School of Mechanical, Aerospace and Ocean Engineering, KAIST, 305-701, Daejeon, Korea |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26122149$$DView record in Pascal Francis https://hal.science/hal-01443190$$DView record in HAL |
| BookMark | eNp90VFv0zAQAGALDYluIPET_IIED-nsOGkS3so0ukndAKkIiRfr4lxag2NHtrvS38KfJSFoEwh4snz-7nw-n5IT6ywS8pyzOWcsPbcdzrO0zB-RGWdVkbCUFSdkNhxVSV6V_Ak5DeELY5znTMzI9yXtMO5cQ1vnqXJdv48QtbPUtbTRQTkbtd27faAHuEPae9fDdhLa0h1G9G6LFkcRnNFNeE1rCFpRMFvnddx1tMGgvO5_JoFtKPS90WoqEh0dHpA0ukMbhgCY8Y7aYBeeksctmIDPfq1n5OPby83FVbJ-t7q-WK4TlTGeJ3VZKMhFgXUpFENRq6LhpQChqpTlmOdV1apCYQk18pZBJRZKYDvsy2yYDhNn5NVUd297OB7AGNl73YE_Ss7kOFU5TFWOU32wO3hQDrS8Wq7lGGM8ywSv2B0f7IvJ9hAUmNaDVTrcZ6ULnqY8qwY3n5zyLgSPrVR6-oToQZu_NfHyj4T_9JtM9KANHv_p5O3N5e9eh4jf7j34r3JRiCKXn25Xcv3h8_vNzWoj34gfIeXHTQ |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1002_nme_7638 crossref_primary_10_1002_nme_6739 crossref_primary_10_1016_j_finel_2014_05_007 crossref_primary_10_1016_j_camwa_2015_06_022 crossref_primary_10_1002_nme_5820 crossref_primary_10_1016_j_apm_2019_10_053 crossref_primary_10_1016_j_cma_2012_12_012 crossref_primary_10_1016_j_cma_2022_115772 crossref_primary_10_1016_j_finel_2016_07_004 crossref_primary_10_1002_nme_5613 crossref_primary_10_1002_nme_7614 crossref_primary_10_1038_s41598_019_56724_0 crossref_primary_10_1016_j_ijsolstr_2022_111422 crossref_primary_10_1002_nme_6282 crossref_primary_10_1016_j_compstruct_2018_07_055 crossref_primary_10_7227_IJMEE_41_1_6 crossref_primary_10_1002_pamm_201410056 crossref_primary_10_1002_nme_4495 crossref_primary_10_1002_nme_6027 crossref_primary_10_1016_j_matcom_2021_03_023 crossref_primary_10_1002_nme_5174 crossref_primary_10_1002_nme_6064 crossref_primary_10_1002_nme_4680 crossref_primary_10_1002_nme_5010 |
| Cites_doi | 10.1002/nme.958 10.1121/1.2011149 10.1007/s10915-005-9044-x 10.1137/S0036144503432862 10.1016/0045-7825(80)90087-0 10.1002/nme.741 10.1115/1.3426777 10.1137/S1064827597310609 10.1137/S0036142998345499 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W 10.1002/cpa.3160130205 10.1016/j.chaos.2008.06.009 10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9 10.1016/j.jcp.2005.10.005 10.1016/0045-7825(90)90082-W 10.1016/j.wavemoti.2003.12.005 10.1016/S0045-7825(01)00297-3 10.1002/nme.1620180103 10.1002/cpa.3160100406 10.1016/S0045-7825(02)00460-7 10.1016/j.compfluid.2009.06.007 10.1190/1.1441689 10.1016/j.cma.2003.09.010 10.1016/S0045-7825(98)00088-7 10.1016/j.cma.2010.09.011 10.1016/0045-7949(77)90072-4 10.1016/0045-7825(88)90082-5 10.1016/j.cma.2007.11.006 10.1016/j.wavemoti.2007.11.007 10.1016/S0167-2789(97)00051-1 10.1016/S0045-7825(02)00619-9 10.1006/jcph.1996.0029 10.1137/S0036142901388627 10.1007/s004660050480 10.1016/j.jcp.2009.08.027 10.1016/S0045-7930(02)00014-2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 John Wiley & Sons, Ltd. 2015 INIST-CNRS Attribution |
| Copyright_xml | – notice: Copyright © 2012 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS – notice: Attribution |
| DBID | BSCLL AAYXX CITATION IQODW 1XC VOOES ADTOC UNPAY |
| DOI | 10.1002/nme.4285 |
| DatabaseName | Istex CrossRef Pascal-Francis Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 |
| EndPage | 643 |
| ExternalDocumentID | oai:HAL:hal-01443190v1 26122149 10_1002_nme_4285 NME4285 ark_67375_WNG_LQZPTMGT_B |
| Genre | article |
| GrantInformation_xml | – fundername: Ministry of Education, Science and Technology, Korea funderid: R31‐2008‐000‐10045‐0 – fundername: Brain Korea 21 Program (KAIST Valufacture Institute of Mechanical Engineering), Ministry of Education, Science and Technology |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWS WRC AAYXX CITATION 31~ 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. GBZZK IQODW M6O PALCI RIWAO SAMSI VH1 VOH ZY4 ~A~ 1XC AIQQE VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4015-b87ca537eb83c0e3bc7d183a3c9205e5599fc7ce8abe1f0a936c3efe8a8402003 |
| IEDL.DBID | DR2 |
| ISSN | 0029-5981 1097-0207 |
| IngestDate | Sun Oct 26 03:59:56 EDT 2025 Tue Oct 14 20:32:24 EDT 2025 Mon Jul 21 09:15:00 EDT 2025 Thu Apr 24 23:13:44 EDT 2025 Wed Oct 01 05:10:31 EDT 2025 Wed Jan 22 16:37:47 EST 2025 Tue Sep 09 05:32:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Performance evaluation Numerical integration minimal spurious oscillations Stress wave Elastic wave explicit integrator Modeling Shock front Wavefront propagation of stress waves Strain wave Filter heterogeneous bar Finite difference method |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Attribution: http://creativecommons.org/licenses/by cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4015-b87ca537eb83c0e3bc7d183a3c9205e5599fc7ce8abe1f0a936c3efe8a8402003 |
| Notes | Ministry of Education, Science and Technology, Korea - No. R31-2008-000-10045-0 ArticleID:NME4285 istex:D37756100D959C1F5ADE9E3F52D7FF7872A47106 Brain Korea 21 Program (KAIST Valufacture Institute of Mechanical Engineering), Ministry of Education, Science and Technology ark:/67375/WNG-LQZPTMGT-B |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01443190 |
| PageCount | 22 |
| ParticipantIDs | unpaywall_primary_10_1002_nme_4285 hal_primary_oai_HAL_hal_01443190v1 pascalfrancis_primary_26122149 crossref_citationtrail_10_1002_nme_4285 crossref_primary_10_1002_nme_4285 wiley_primary_10_1002_nme_4285_NME4285 istex_primary_ark_67375_WNG_LQZPTMGT_B |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 10 August 2012 |
| PublicationDateYYYYMMDD | 2012-08-10 |
| PublicationDate_xml | – month: 08 year: 2012 text: 10 August 2012 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2012 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Dehghana M, Saadatmandi A. Variational iteration method for solving the wave equation subject to an integral conservation condition. Chaos, Solitons and Fractals 2009; 41:1448-1453. Mao D-K. Toward front tracking based on conservation in two-dimensional space. SIAM Journal on Scientific Computing 2000; 22(1):113-151. Nguyen V-T, Peraire J, Khoo BC, Persson P-O. A discontinuous Galerkin front tracking method for two-phase flows with surface tension. Computers & Fluids 2010; 39:1-14. Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics, Proceedings of ASCE 1959; 85:67-94. Li X, Yao D, Lewis RW. A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media. International Journal of Numerical Methods in Engineering 2003; 57:1775-1800. Leveque RJ, Shyue KM. Two-dimensional front tracking based on high resolution wave propagation methods. Journal of Computational Physics 1996; 123:354-361. Yue B, Guddati MN. Dispersion-reducing finite elements for transient acoustics. Journal of the Acoustical Society of America 2005; 118(4):2132-2141. Lax PD, Wendroff B. Systems of conservation laws. Communications on Pure and Applied Mathematics 1960; 13(2):217-237. Krenk S. Dispersion-corrected explicit integration of the wave equation. Computer Methods in Applied Mechanics and Engineering 2001; 191:975-987. Xing Y, Shu C-W. High-order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physic 2006; 214:567-598. Hulbert GM, Hughes TRJ. Space-time finite element methods for second-order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering 1990; 84:327-347. Codina R. Finite element approximation of the hyperbolic wave equation in mixed form. Computer Methods in Applied Mechanics and Engineering 2008; 197:1305-1322. Mabssout M, Pastor M. A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Computer Methods in Applied Mechanics and Engineering 2003; 192:955-971. Idesman A. Accurate time integration of linear elastodynamics problems. CMES 2011; 71(2):111-148. Zahradnik J, Moczo P, Hron T. Testing four elastic finite-difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America 1993; 83:107-129. Marfurt KJ. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation. Geophysics 1984; 49:533-549. Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal of Numerical Methods in Engineering 2004; 60:153-212. Guddati MN, Yue B. Modified integration rules for reducing dispersion error in finite element method. Computer Methods in Applied Mechanics and Engineering 2004; 193:275-287. Smith JM. Recent developments in numerical integration. Journal of Dynamic Systems, Measurement and Control 96, Ser. G-1 1974; 1:61-70. Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Physica D 1997; 106:223-246. Liu Y, Sen MK. A new timespace domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics 2009; 228:8779-8806. Gloth O, Hanel D, Tran L, Vilsmeier R. A front tracking method on unstructured grids. Computers & Fluids 2003; 32:547-570. Mullen R, Belytschko T. Dispersion analysis of finite element semi-discretizations of the two-dimensional wave equation. International Journal for Numerical Methods in Engineering 1982; 18:11-29. Zuazua E. Optimal and approximate control of finite difference approximation schemes for the 1D wave equation. Rendiconti di Matematica e delle sue Applicazioni 2004; 24:201-237. Huang H, Costanzo F. On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities. Computer Methods in Applied Mechanics and Engineering 2002; 191:5315-5343. Richtmyer RD, Morton KW. Difference Methods for Initial-Value Problems. 2nd edn. Wiley-Interscience: New York, 1967. Ainsworth M, Monk P, Muniz W. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing 2006; 27(1-3). Park KC, Felippa CA. A variational principle for the formulation of partitioned structural systems. International Journal of Numerical Methods in Engineering 2000; 47:395-418. Kane C, Marsden JE, Ortiz M, West M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal of Numerical Methods in Engineering 2000; 49:1295-1325. Glimm J, Li XL, Liu Y, Xu Z, Zhao N. Conservative front tracking with improved accuracy. SIAM Journal on Numerical Analysis 2003; 41(5):1926-1947. Seriani G, Oliveira SP. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 2008; 45(6):729-744. Harari I, Haham S. Improved finite element methods for elastic waves. Computer Methods in Applied Mechanics and Engineering 1998; 166:143-164. Park KC, Underwood PG. A variable-step central difference method for structural dynamic analysis, I: theoretical aspects. Computer Methods in Applied Mechanics and Engineering 1980; 22:241-258. Cherukuri HP. Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid. Computational Mechanics 2000; 25(4):317-328. TAMMA KK, NAMBURU RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150. Becache E, Joly P, Tsogka C. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM Journal on Numerical Analysis 2000; 37:1175-1201. Harari I. Special issue on new computational methods for wave propagation. Wave Motion 2004; 39(4):279-280. Park KC. Practical aspects of numerical time integration. Computers and Structures 1977; 7:343-353. Cho SS, Huh H, Park KC. A time-discontinuous implicit variational integrator for stress wave propagation analysis in solids. Computer Methods in Applied Mechanics and Engineering 2011; 200:649-664. Lax P. Hyperbolic systems of conservation laws, II. Communications on Pure and Applied Mathematics 1957; 10:537. Zuazua E. Propagation, observation, and control of waves approximated by finite difference methods. SIAM REVIEW 2005; 47(2):197-243. Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM Journal, March 1967, pp. 215-234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 1928; 100(1):32-74. 1957; 10 1959; 85 2009; 41 2002; 191 1982; 18 2000; 49 2004; 60 2000; 25 2000; 47 1993; 83 2011 1984; 49 1960; 13 2010; 39 2000; 22 1980; 22 1928; 100 2004; 24 2005; 118 2003; 57 1974; 1 2003; 192 2006; 214 1996; 123 1988; 71 2003; 32 2005; 47 1990; 84 1997; 106 2001; 191 2000; 37 2004; 39 2006; 27 2011; 71 2004; 193 2008; 45 2009; 228 1998; 166 2003; 41 2008; 197 1977; 7 2011; 200 1967 e_1_2_9_30_1 e_1_2_9_31_1 Idesman A (e_1_2_9_35_1) 2011; 71 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_33_1 Newmark NM (e_1_2_9_42_1) 1959; 85 Zahradnik J (e_1_2_9_10_1) 1993; 83 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 Zuazua E (e_1_2_9_12_1) 2004; 24 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 Richtmyer RD (e_1_2_9_5_1) 1967 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 Courant R (e_1_2_9_2_1) 1928; 100 e_1_2_9_29_1 |
| References_xml | – reference: Hulbert GM, Hughes TRJ. Space-time finite element methods for second-order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering 1990; 84:327-347. – reference: Leveque RJ, Shyue KM. Two-dimensional front tracking based on high resolution wave propagation methods. Journal of Computational Physics 1996; 123:354-361. – reference: Park KC, Underwood PG. A variable-step central difference method for structural dynamic analysis, I: theoretical aspects. Computer Methods in Applied Mechanics and Engineering 1980; 22:241-258. – reference: Guddati MN, Yue B. Modified integration rules for reducing dispersion error in finite element method. Computer Methods in Applied Mechanics and Engineering 2004; 193:275-287. – reference: Lax PD, Wendroff B. Systems of conservation laws. Communications on Pure and Applied Mathematics 1960; 13(2):217-237. – reference: Zahradnik J, Moczo P, Hron T. Testing four elastic finite-difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America 1993; 83:107-129. – reference: Park KC. Practical aspects of numerical time integration. Computers and Structures 1977; 7:343-353. – reference: Huang H, Costanzo F. On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities. Computer Methods in Applied Mechanics and Engineering 2002; 191:5315-5343. – reference: Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM Journal, March 1967, pp. 215-234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 1928; 100(1):32-74. – reference: Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics, Proceedings of ASCE 1959; 85:67-94. – reference: Becache E, Joly P, Tsogka C. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM Journal on Numerical Analysis 2000; 37:1175-1201. – reference: Ainsworth M, Monk P, Muniz W. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing 2006; 27(1-3). – reference: Idesman A. Accurate time integration of linear elastodynamics problems. CMES 2011; 71(2):111-148. – reference: Codina R. Finite element approximation of the hyperbolic wave equation in mixed form. Computer Methods in Applied Mechanics and Engineering 2008; 197:1305-1322. – reference: Li X, Yao D, Lewis RW. A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media. International Journal of Numerical Methods in Engineering 2003; 57:1775-1800. – reference: Harari I, Haham S. Improved finite element methods for elastic waves. Computer Methods in Applied Mechanics and Engineering 1998; 166:143-164. – reference: Kane C, Marsden JE, Ortiz M, West M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal of Numerical Methods in Engineering 2000; 49:1295-1325. – reference: Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal of Numerical Methods in Engineering 2004; 60:153-212. – reference: Marfurt KJ. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation. Geophysics 1984; 49:533-549. – reference: Xing Y, Shu C-W. High-order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physic 2006; 214:567-598. – reference: Smith JM. Recent developments in numerical integration. Journal of Dynamic Systems, Measurement and Control 96, Ser. G-1 1974; 1:61-70. – reference: Cherukuri HP. Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid. Computational Mechanics 2000; 25(4):317-328. – reference: Yue B, Guddati MN. Dispersion-reducing finite elements for transient acoustics. Journal of the Acoustical Society of America 2005; 118(4):2132-2141. – reference: Glimm J, Li XL, Liu Y, Xu Z, Zhao N. Conservative front tracking with improved accuracy. SIAM Journal on Numerical Analysis 2003; 41(5):1926-1947. – reference: Liu Y, Sen MK. A new timespace domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics 2009; 228:8779-8806. – reference: Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Physica D 1997; 106:223-246. – reference: Cho SS, Huh H, Park KC. A time-discontinuous implicit variational integrator for stress wave propagation analysis in solids. Computer Methods in Applied Mechanics and Engineering 2011; 200:649-664. – reference: Mao D-K. Toward front tracking based on conservation in two-dimensional space. SIAM Journal on Scientific Computing 2000; 22(1):113-151. – reference: Seriani G, Oliveira SP. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 2008; 45(6):729-744. – reference: Mullen R, Belytschko T. Dispersion analysis of finite element semi-discretizations of the two-dimensional wave equation. International Journal for Numerical Methods in Engineering 1982; 18:11-29. – reference: Gloth O, Hanel D, Tran L, Vilsmeier R. A front tracking method on unstructured grids. Computers & Fluids 2003; 32:547-570. – reference: Park KC, Felippa CA. A variational principle for the formulation of partitioned structural systems. International Journal of Numerical Methods in Engineering 2000; 47:395-418. – reference: Lax P. Hyperbolic systems of conservation laws, II. Communications on Pure and Applied Mathematics 1957; 10:537. – reference: Zuazua E. Optimal and approximate control of finite difference approximation schemes for the 1D wave equation. Rendiconti di Matematica e delle sue Applicazioni 2004; 24:201-237. – reference: Zuazua E. Propagation, observation, and control of waves approximated by finite difference methods. SIAM REVIEW 2005; 47(2):197-243. – reference: Harari I. Special issue on new computational methods for wave propagation. Wave Motion 2004; 39(4):279-280. – reference: Mabssout M, Pastor M. A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Computer Methods in Applied Mechanics and Engineering 2003; 192:955-971. – reference: Dehghana M, Saadatmandi A. Variational iteration method for solving the wave equation subject to an integral conservation condition. Chaos, Solitons and Fractals 2009; 41:1448-1453. – reference: Krenk S. Dispersion-corrected explicit integration of the wave equation. Computer Methods in Applied Mechanics and Engineering 2001; 191:975-987. – reference: Richtmyer RD, Morton KW. Difference Methods for Initial-Value Problems. 2nd edn. Wiley-Interscience: New York, 1967. – reference: Nguyen V-T, Peraire J, Khoo BC, Persson P-O. A discontinuous Galerkin front tracking method for two-phase flows with surface tension. Computers & Fluids 2010; 39:1-14. – reference: TAMMA KK, NAMBURU RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150. – volume: 166 start-page: 143 year: 1998 end-page: 164 article-title: Improved finite element methods for elastic waves publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 191 start-page: 975 year: 2001 end-page: 987 article-title: Dispersion‐corrected explicit integration of the wave equation publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 49 start-page: 533 year: 1984 end-page: 549 article-title: Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation publication-title: Geophysics – volume: 118 start-page: 2132 issue: 4 year: 2005 end-page: 2141 article-title: Dispersion‐reducing finite elements for transient acoustics publication-title: Journal of the Acoustical Society of America – volume: 13 start-page: 217 issue: 2 year: 1960 end-page: 237 article-title: Systems of conservation laws publication-title: Communications on Pure and Applied Mathematics – volume: 71 start-page: 137 year: 1988 end-page: 150 article-title: A new finite element based Lax–Wendroff/Taylor–Galerkin methodology for computational dynamics publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 29 year: 2011 end-page: 31 – volume: 25 start-page: 317 issue: 4 year: 2000 end-page: 328 article-title: Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid publication-title: Computational Mechanics – volume: 24 start-page: 201 year: 2004 end-page: 237 article-title: Optimal and approximate control of finite difference approximation schemes for the 1D wave equation publication-title: Rendiconti di Matematica e delle sue Applicazioni – volume: 191 start-page: 5315 year: 2002 end-page: 5343 article-title: On the use of space–time finite elements in the solution of elasto‐dynamic problems with strain discontinuities publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 214 start-page: 567 year: 2006 end-page: 598 article-title: High‐order well‐balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms publication-title: Journal of Computational Physic – volume: 49 start-page: 1295 year: 2000 end-page: 1325 article-title: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems publication-title: International Journal of Numerical Methods in Engineering – volume: 85 start-page: 67 year: 1959 end-page: 94 article-title: A method of computation for structural dynamics publication-title: Journal of Engineering Mechanics, Proceedings of ASCE – volume: 22 start-page: 241 year: 1980 end-page: 258 article-title: A variable‐step central difference method for structural dynamic analysis, I: theoretical aspects publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 39 start-page: 1 year: 2010 end-page: 14 article-title: A discontinuous Galerkin front tracking method for two‐phase flows with surface tension publication-title: Computers & Fluids – volume: 22 start-page: 113 issue: 1 year: 2000 end-page: 151 article-title: Toward front tracking based on conservation in two‐dimensional space publication-title: SIAM Journal on Scientific Computing – volume: 100 start-page: 32 issue: 1 year: 1928 end-page: 74 article-title: On the partial difference equations of mathematical physics publication-title: IBM Journal, March 1967, pp. 215‐234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen – volume: 10 start-page: 537 year: 1957 article-title: Hyperbolic systems of conservation laws, II publication-title: Communications on Pure and Applied Mathematics – volume: 45 start-page: 729 issue: 6 year: 2008 end-page: 744 article-title: Dispersion analysis of spectral element methods for elastic wave propagation publication-title: Wave Motion – volume: 47 start-page: 395 year: 2000 end-page: 418 article-title: A variational principle for the formulation of partitioned structural systems publication-title: International Journal of Numerical Methods in Engineering – volume: 123 start-page: 354 year: 1996 end-page: 361 article-title: Two‐dimensional front tracking based on high resolution wave propagation methods publication-title: Journal of Computational Physics – volume: 197 start-page: 1305 year: 2008 end-page: 1322 article-title: Finite element approximation of the hyperbolic wave equation in mixed form publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 71 start-page: 111 issue: 2 year: 2011 end-page: 148 article-title: Accurate time integration of linear elastodynamics problems publication-title: CMES – volume: 47 start-page: 197 issue: 2 year: 2005 end-page: 243 article-title: Propagation, observation, and control of waves approximated by finite difference methods publication-title: SIAM REVIEW – volume: 193 start-page: 275 year: 2004 end-page: 287 article-title: Modified integration rules for reducing dispersion error in finite element method publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 106 start-page: 223 year: 1997 end-page: 246 article-title: Mechanical integrators derived from a discrete variational principle publication-title: Physica D – volume: 7 start-page: 343 year: 1977 end-page: 353 article-title: Practical aspects of numerical time integration publication-title: Computers and Structures – volume: 83 start-page: 107 year: 1993 end-page: 129 article-title: Testing four elastic finite‐difference schemes for behavior at discontinuities publication-title: Bulletin of the Seismological Society of America – volume: 41 start-page: 1448 year: 2009 end-page: 1453 article-title: Variational iteration method for solving the wave equation subject to an integral conservation condition publication-title: Chaos, Solitons and Fractals – volume: 57 start-page: 1775 year: 2003 end-page: 1800 article-title: A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non‐linear solids and saturated porous media publication-title: International Journal of Numerical Methods in Engineering – volume: 228 start-page: 8779 year: 2009 end-page: 8806 article-title: A new timespace domain high‐order finite‐difference method for the acoustic wave equation publication-title: Journal of Computational Physics – volume: 27 issue: 1‐3 year: 2006 article-title: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second‐order wave equation publication-title: Journal of Scientific Computing – year: 1967 – volume: 192 start-page: 955 year: 2003 end-page: 971 article-title: A Taylor–Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 84 start-page: 327 year: 1990 end-page: 347 article-title: Space–time finite element methods for second‐order hyperbolic equations publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 41 start-page: 1926 issue: 5 year: 2003 end-page: 1947 article-title: Conservative front tracking with improved accuracy publication-title: SIAM Journal on Numerical Analysis – volume: 32 start-page: 547 year: 2003 end-page: 570 article-title: A front tracking method on unstructured grids publication-title: Computers & Fluids – volume: 60 start-page: 153 year: 2004 end-page: 212 article-title: Variational time integrators publication-title: International Journal of Numerical Methods in Engineering – volume: 37 start-page: 1175 year: 2000 end-page: 1201 article-title: An analysis of new mixed finite elements for the approximation of wave propagation problems publication-title: SIAM Journal on Numerical Analysis – volume: 200 start-page: 649 year: 2011 end-page: 664 article-title: A time‐discontinuous implicit variational integrator for stress wave propagation analysis in solids publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 18 start-page: 11 year: 1982 end-page: 29 article-title: Dispersion analysis of finite element semi‐discretizations of the two‐dimensional wave equation publication-title: International Journal for Numerical Methods in Engineering – volume: 39 start-page: 279 issue: 4 year: 2004 end-page: 280 article-title: Special issue on new computational methods for wave propagation publication-title: Wave Motion – start-page: 25 year: 2011 end-page: 28 – volume: 1 start-page: 61 year: 1974 end-page: 70 article-title: Recent developments in numerical integration publication-title: Journal of Dynamic Systems, Measurement and Control 96, Ser. G‐1 – ident: e_1_2_9_40_1 doi: 10.1002/nme.958 – ident: e_1_2_9_27_1 doi: 10.1121/1.2011149 – ident: e_1_2_9_31_1 doi: 10.1007/s10915-005-9044-x – volume: 85 start-page: 67 year: 1959 ident: e_1_2_9_42_1 article-title: A method of computation for structural dynamics publication-title: Journal of Engineering Mechanics, Proceedings of ASCE – ident: e_1_2_9_11_1 doi: 10.1137/S0036144503432862 – ident: e_1_2_9_24_1 doi: 10.1016/0045-7825(80)90087-0 – volume: 71 start-page: 111 issue: 2 year: 2011 ident: e_1_2_9_35_1 article-title: Accurate time integration of linear elastodynamics problems publication-title: CMES – ident: e_1_2_9_32_1 doi: 10.1002/nme.741 – ident: e_1_2_9_36_1 doi: 10.1115/1.3426777 – ident: e_1_2_9_16_1 doi: 10.1137/S1064827597310609 – volume-title: Difference Methods for Initial‐Value Problems year: 1967 ident: e_1_2_9_5_1 – ident: e_1_2_9_18_1 doi: 10.1137/S0036142998345499 – ident: e_1_2_9_39_1 doi: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W – volume: 100 start-page: 32 issue: 1 year: 1928 ident: e_1_2_9_2_1 article-title: On the partial difference equations of mathematical physics publication-title: IBM Journal, March 1967, pp. 215‐234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen – ident: e_1_2_9_4_1 doi: 10.1002/cpa.3160130205 – ident: e_1_2_9_38_1 doi: 10.1016/j.chaos.2008.06.009 – ident: e_1_2_9_43_1 doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9 – ident: e_1_2_9_34_1 doi: 10.1016/j.jcp.2005.10.005 – ident: e_1_2_9_29_1 doi: 10.1016/0045-7825(90)90082-W – volume: 24 start-page: 201 year: 2004 ident: e_1_2_9_12_1 article-title: Optimal and approximate control of finite difference approximation schemes for the 1D wave equation publication-title: Rendiconti di Matematica e delle sue Applicazioni – ident: e_1_2_9_22_1 doi: 10.1016/j.wavemoti.2003.12.005 – ident: e_1_2_9_7_1 doi: 10.1016/S0045-7825(01)00297-3 – ident: e_1_2_9_30_1 doi: 10.1002/nme.1620180103 – ident: e_1_2_9_3_1 doi: 10.1002/cpa.3160100406 – ident: e_1_2_9_28_1 doi: 10.1016/S0045-7825(02)00460-7 – volume: 83 start-page: 107 year: 1993 ident: e_1_2_9_10_1 article-title: Testing four elastic finite‐difference schemes for behavior at discontinuities publication-title: Bulletin of the Seismological Society of America – ident: e_1_2_9_17_1 doi: 10.1016/j.compfluid.2009.06.007 – ident: e_1_2_9_9_1 doi: 10.1190/1.1441689 – ident: e_1_2_9_44_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.cma.2003.09.010 – ident: e_1_2_9_21_1 doi: 10.1016/S0045-7825(98)00088-7 – ident: e_1_2_9_37_1 doi: 10.1016/j.cma.2010.09.011 – ident: e_1_2_9_23_1 doi: 10.1016/0045-7949(77)90072-4 – ident: e_1_2_9_26_1 doi: 10.1016/0045-7825(88)90082-5 – ident: e_1_2_9_19_1 doi: 10.1016/j.cma.2007.11.006 – ident: e_1_2_9_25_1 doi: 10.1016/j.wavemoti.2007.11.007 – ident: e_1_2_9_41_1 doi: 10.1016/S0167-2789(97)00051-1 – ident: e_1_2_9_33_1 doi: 10.1016/S0045-7825(02)00619-9 – ident: e_1_2_9_15_1 doi: 10.1006/jcph.1996.0029 – ident: e_1_2_9_13_1 doi: 10.1137/S0036142901388627 – ident: e_1_2_9_6_1 doi: 10.1007/s004660050480 – ident: e_1_2_9_8_1 doi: 10.1016/j.jcp.2009.08.027 – ident: e_1_2_9_14_1 doi: 10.1016/S0045-7930(02)00014-2 – ident: e_1_2_9_45_1 |
| SSID | ssj0011503 |
| Score | 2.1996984 |
| Snippet | SUMMARY
An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing... An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing... |
| SourceID | unpaywall hal pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Index Database Enrichment Source Publisher |
| StartPage | 622 |
| SubjectTerms | Engineering Sciences Exact sciences and technology explicit integrator Fundamental areas of phenomenology (including applications) heterogeneous bar Mechanics minimal spurious oscillations Physics propagation of stress waves Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtNAFB2VZAFdUCggwqO6IFRWDn50_GAXUNsINVGRElHYWOOZMYma2lVst8Cqn9Af6M_1S7jXLzUIKlaJ4-v4Mcd3zpWvz2HsjQosR9rcN5RysUAJRGREWGcYwlIu4ifwzNI6YTR2h9OdT0f8aI1B8y7MDBlnnfvpu0GEH1GCRXnX5ci2O6w7HR8OvjadGzwofUjpOaqBzMdr9GVN-11yovtIrvnKjHNnRv2OXbqEP6gPUmR4KeLKw2Kd3S2SU_HzXCwWq1y1nGz2Nqqmx6zUKKQek-N-kUd9-esPBcfbzuMBu18zTRhU0HjI1nSyyTZq1gn1PZ1tsvUbkoS4NGp1XLNH7GoAlcU0ILcFWTpAlEMJaQz0Qm9KRhNFWmRwLs404AFjgqoi5gnMqNcmRYhqikCUz1X2HnDinEsQi-_pcp7PTkDpNnWBSBTceKYOeQppoq8vLhW5EFQKIlCb4GSP2XRvd_JxaNSGDobEMo4bke9JwR1PR74jTe1E0lOYUoQjA9vkmsTPYulJ7YtIW7EpAseVjo5x2acy13SesE6Ce33KAFPRDle-H5kkIG8p4foWFtbcd02BW9o99rYZ9FDWaudkurEIK51mO0R4hASPHnvVRp5WCh9_iXmNg9iuJknu4eAgpN-agT2zemy7hFUbJpbH1Dbn8fDLeD88-PztcDLan4QfemxrBXftBiTnZmPJirtrgXjLMW2XCP1nQDge7dLns__5t-fsHlJB2yjFfl-wTr4s9EukW3m0Vd9xvwGY8ipH priority: 102 providerName: Unpaywall |
| Title | A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems |
| URI | https://api.istex.fr/ark:/67375/WNG-LQZPTMGT-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4285 https://hal.science/hal-01443190 |
| UnpaywallVersion | submittedVersion |
| Volume | 91 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0207 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5Be4AeWiggUiBaEConp7a3ttfcAmoboSYqKBEFDtb-mURN7Sq2W-DEI_ACvBxPwoz_lCBAiJNle1b-2W9nZ-zZ7yPkqQ4dplyPW1r7kKCEQloS8gxLONoH_ISBXUonDEf-YLL_6tQ7rasqcS1MxQ_RfnDDkVH6axzgQmZ7S6Sh56YHsTOuL3eYX2ZTb1rmKIxzWFPd4YXcaXhnbXevabgyE12fYh3kOr7aT1gfKTJ4RXGlbbFBbhTJhfh8Jebz1Ri2nIQOt8iH5var2pOzXpHLnvryC7Pj_z3fLbJZx6a0X4HpNrlmkm2yVceptPYC2TbZWCIxhL1hy_ya3SHf-7QSpaYQDVNVakaUnU_TmOIS4BSlKYq0yOiVuDQUHgVcWmUxS-gUq3NSALVBCxgXM509pzDVzhQV84_pYpZPz6k2rbOjItF06S88zVOaJubH128adQsqzhFay-Zkd8nk8GD8cmDVEhCWgsTPsyQPlPBYYCRnyjZMqkCDExJMha7tGaRLi1WgDBfSOLEtQuYrZmLY55gY2-weWUvgqvcJBee172nOpY2U844WPncgFfe4bwto6XbIswYOkar50VGmYx5VzM5uBD0SYY90yOPW8qLiBPmNzRNAVHsaSbwH_eMIj2EOC47PvnQ6ZLcEXGsmFmdYaBd40dvRUXT8-v3JeHg0jl50SHcFkW0DJIBzIcmFy7UQ_cs97ZaA-6NBNBoe4HbnXw0fkJsQQLpWSRH8kKzli8I8giAtl91yOHbJ-mR00n_3E0XdPbk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB318lD6QKGACJeyIFSenPoS3-ApoLYB4ghQqlYIyVrvrknU1K5iuwWe-AR-gJ_jS5jxTQkChHiybM_KXu_s7Bl7fA7AY-kbljBtT5PSwQTF55EWYZ6hcUM66D--q5fSCcHIGRz1Xp3YJyvwrPkXpuKHaF-40cwo4zVNcHohvbfAGnqmugie7VVY7zmYphAietdyRxHSsZr6Dtv3jIZ5Vjf3mpZLa9HqhCoh1-nhfqIKSZ7hQ4ordYtN2CiSc_75ks9myyi2XIYOtuBD04Gq-uS0W-RRV3z5hdvxP3t4Da7W8JT1K3-6Disq2YatGqqyOhBk27C5wGOIe0FL_prdgO99VulSMwTETJSyEeX4szRm9BdwSuoURVpk7JJfKIZ9wahWWUwTNqECnRT9WpEFTo2pzJ4yXG2ngvHZx3Q-zSdnTKo23jGeSLbwIZ7lKUsT9ePrN0nSBRXtCKuVc7KbcHSwP34x0GoVCE1g7mdrkecKbluuijxL6MqKhCsxDnFL-KZuK2JMi4UrlMcjZcQ69y1HWCrGfY9yY926BWsJXvU2MIxfPVt6XqQT67whueMZmI3bnqNzbGl24EnjD6GoKdJJqWMWVuTOZogjEtKIdOBha3le0YL8xuYRulR7mni8B_1hSMcojcXYp18YHdgtPa414_NTqrVz7fB4dBgO375_Mw4Ox-HzDuwsuWTbgDjgTMxz8XKtj_7lnnZLj_ujQTgK9ml7518NH8DGYBwMw-HL0eu7cAXxpKmVjMH3YC2fF-o-YrY82inn5k_9A0Aq |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB31IkH7QKFQES5lQag8OfUlvsFToE0DJFFBqagQkrXeXZOoqR3FcQs88Qn8AD_HlzDjmxIECPFk2Z6Vvd6zszP2-ByAx9I3LGHanialgwmKz0MtxDxD44Z0ED--q-fSCf2B0z1pvTq1T1fgWfUvTMEPUb9wo5mR-2ua4Goqo_0F1tBz1cTg2V6F9Zbte1TPd_C25o6iSMeq6jvwtFExz-rmftVyaS1aHVEl5Do93E9UIclTfEhRoW6xCVezeMo_X_LJZDmKzZehzhZ8qDpQVJ-cNbN52BRffuF2_M8eXodrZXjK2gWebsCKirdhqwxVWekI0m3YXOAxxL1-Tf6a3oTvbVboUjMMiJnIZSPy8WdJxOgv4ITUKbIkS9klv1AM-4JerbAYx2xEBToJ4lqRBU6NsUyfMlxtx4LxycdkNp6PzplUtb9jPJZs4UM8mycsidWPr98kSRcUtCOsVM5Jb8FJ53D4oquVKhCawNzP1kLPFdy2XBV6ltCVFQpXoh_ilvBN3VbEmBYJVyiPh8qIdO5bjrBUhPse5ca6tQNrMV71NjD0Xy1bel6oE-u8IbnjGZiN256jc2xpNuBJhYdAlBTppNQxCQpyZzPAEQloRBrwsLacFrQgv7F5hJCqTxOPd7fdC-gYpbHo-_QLowF7OeJqMz47o1o71w7eDY6C3pv3x8P-0TB43oDdJUjWDYgDzsQ8Fy9XY_Qv97SXI-6PBsGgf0jbO_9q-ACuHB90gt7Lweu7sIHhpKnlhMH3YG0-y9R9DNnm4W4-NX8CUF0_rg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtNAFB2VZAFdUCggwqO6IFRWDn50_GAXUNsINVGRElHYWOOZMYma2lVst8Cqn9Af6M_1S7jXLzUIKlaJ4-v4Mcd3zpWvz2HsjQosR9rcN5RysUAJRGREWGcYwlIu4ifwzNI6YTR2h9OdT0f8aI1B8y7MDBlnnfvpu0GEH1GCRXnX5ci2O6w7HR8OvjadGzwofUjpOaqBzMdr9GVN-11yovtIrvnKjHNnRv2OXbqEP6gPUmR4KeLKw2Kd3S2SU_HzXCwWq1y1nGz2Nqqmx6zUKKQek-N-kUd9-esPBcfbzuMBu18zTRhU0HjI1nSyyTZq1gn1PZ1tsvUbkoS4NGp1XLNH7GoAlcU0ILcFWTpAlEMJaQz0Qm9KRhNFWmRwLs404AFjgqoi5gnMqNcmRYhqikCUz1X2HnDinEsQi-_pcp7PTkDpNnWBSBTceKYOeQppoq8vLhW5EFQKIlCb4GSP2XRvd_JxaNSGDobEMo4bke9JwR1PR74jTe1E0lOYUoQjA9vkmsTPYulJ7YtIW7EpAseVjo5x2acy13SesE6Ce33KAFPRDle-H5kkIG8p4foWFtbcd02BW9o99rYZ9FDWaudkurEIK51mO0R4hASPHnvVRp5WCh9_iXmNg9iuJknu4eAgpN-agT2zemy7hFUbJpbH1Dbn8fDLeD88-PztcDLan4QfemxrBXftBiTnZmPJirtrgXjLMW2XCP1nQDge7dLns__5t-fsHlJB2yjFfl-wTr4s9EukW3m0Vd9xvwGY8ipH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+computation+of+discontinuous+wave+propagation+in+heterogeneous+solids%3A+basic+algorithm+description+and+application+to+one%E2%80%90dimensional+problems&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Park%2C+K.+C.&rft.au=Lim%2C+S.+J&rft.au=Huh%2C+H.&rft.date=2012-08-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=91&rft.issue=6&rft.spage=622&rft.epage=643&rft_id=info:doi/10.1002%2Fnme.4285&rft.externalDBID=10.1002%252Fnme.4285&rft.externalDocID=NME4285 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |