A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems

SUMMARY An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 91; no. 6; pp. 622 - 643
Main Authors Park, K. C., Lim, S. J, Huh, H.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.08.2012
Wiley
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
1097-0207
DOI10.1002/nme.4285

Cover

Abstract SUMMARY An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post‐shock oscillations, and the central difference method that intrinsically filters front‐shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front‐shock and post‐shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post‐shock oscillations, and the central difference method that intrinsically filters front‐shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front‐shock and post‐shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. Copyright © 2012 John Wiley & Sons, Ltd.
SUMMARY An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post‐shock oscillations, and the central difference method that intrinsically filters front‐shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front‐shock and post‐shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars. Copyright © 2012 John Wiley & Sons, Ltd.
An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing spurious oscillations when the wave fronts pass through several zones of different wave speeds. The essence of the present method is a combination of two wave capturing characteristics: a new integration formula that is obtained by pushforward–pullback operations in time designed to filter post-shock oscillations, and the central difference method that intrinsically filters front-shock oscillations. It is shown that a judicious combination of these two characteristics substantially reduces both spurious front-shock and post-shock oscillations. The performance of the new method is demonstrated as applied to wave propagation through a uniform bar with varying courant numbers, then to heterogeneous bars.
Author Huh, H.
Park, K. C.
Lim, S. J
Author_xml – sequence: 1
  givenname: K. C.
  surname: Park
  fullname: Park, K. C.
  email: kcpark@colorado.edu, K. C. Park, Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309-429, USA., kcpark@colorado.edu
  organization: Department of Aerospace Engineering Sciences, University of Colorado at Boulder, 80309-429, Boulder, CO, USA
– sequence: 2
  givenname: S. J
  surname: Lim
  fullname: Lim, S. J
  organization: Division of Mechanical Engineering, School of Mechanical, Aerospace and Ocean Engineering, KAIST, 305-701, Daejeon, Korea
– sequence: 3
  givenname: H.
  surname: Huh
  fullname: Huh, H.
  organization: Division of Mechanical Engineering, School of Mechanical, Aerospace and Ocean Engineering, KAIST, 305-701, Daejeon, Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26122149$$DView record in Pascal Francis
https://hal.science/hal-01443190$$DView record in HAL
BookMark eNp90VFv0zAQAGALDYluIPET_IIED-nsOGkS3so0ukndAKkIiRfr4lxag2NHtrvS38KfJSFoEwh4snz-7nw-n5IT6ywS8pyzOWcsPbcdzrO0zB-RGWdVkbCUFSdkNhxVSV6V_Ak5DeELY5znTMzI9yXtMO5cQ1vnqXJdv48QtbPUtbTRQTkbtd27faAHuEPae9fDdhLa0h1G9G6LFkcRnNFNeE1rCFpRMFvnddx1tMGgvO5_JoFtKPS90WoqEh0dHpA0ukMbhgCY8Y7aYBeeksctmIDPfq1n5OPby83FVbJ-t7q-WK4TlTGeJ3VZKMhFgXUpFENRq6LhpQChqpTlmOdV1apCYQk18pZBJRZKYDvsy2yYDhNn5NVUd297OB7AGNl73YE_Ss7kOFU5TFWOU32wO3hQDrS8Wq7lGGM8ywSv2B0f7IvJ9hAUmNaDVTrcZ6ULnqY8qwY3n5zyLgSPrVR6-oToQZu_NfHyj4T_9JtM9KANHv_p5O3N5e9eh4jf7j34r3JRiCKXn25Xcv3h8_vNzWoj34gfIeXHTQ
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_nme_7638
crossref_primary_10_1002_nme_6739
crossref_primary_10_1016_j_finel_2014_05_007
crossref_primary_10_1016_j_camwa_2015_06_022
crossref_primary_10_1002_nme_5820
crossref_primary_10_1016_j_apm_2019_10_053
crossref_primary_10_1016_j_cma_2012_12_012
crossref_primary_10_1016_j_cma_2022_115772
crossref_primary_10_1016_j_finel_2016_07_004
crossref_primary_10_1002_nme_5613
crossref_primary_10_1002_nme_7614
crossref_primary_10_1038_s41598_019_56724_0
crossref_primary_10_1016_j_ijsolstr_2022_111422
crossref_primary_10_1002_nme_6282
crossref_primary_10_1016_j_compstruct_2018_07_055
crossref_primary_10_7227_IJMEE_41_1_6
crossref_primary_10_1002_pamm_201410056
crossref_primary_10_1002_nme_4495
crossref_primary_10_1002_nme_6027
crossref_primary_10_1016_j_matcom_2021_03_023
crossref_primary_10_1002_nme_5174
crossref_primary_10_1002_nme_6064
crossref_primary_10_1002_nme_4680
crossref_primary_10_1002_nme_5010
Cites_doi 10.1002/nme.958
10.1121/1.2011149
10.1007/s10915-005-9044-x
10.1137/S0036144503432862
10.1016/0045-7825(80)90087-0
10.1002/nme.741
10.1115/1.3426777
10.1137/S1064827597310609
10.1137/S0036142998345499
10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
10.1002/cpa.3160130205
10.1016/j.chaos.2008.06.009
10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9
10.1016/j.jcp.2005.10.005
10.1016/0045-7825(90)90082-W
10.1016/j.wavemoti.2003.12.005
10.1016/S0045-7825(01)00297-3
10.1002/nme.1620180103
10.1002/cpa.3160100406
10.1016/S0045-7825(02)00460-7
10.1016/j.compfluid.2009.06.007
10.1190/1.1441689
10.1016/j.cma.2003.09.010
10.1016/S0045-7825(98)00088-7
10.1016/j.cma.2010.09.011
10.1016/0045-7949(77)90072-4
10.1016/0045-7825(88)90082-5
10.1016/j.cma.2007.11.006
10.1016/j.wavemoti.2007.11.007
10.1016/S0167-2789(97)00051-1
10.1016/S0045-7825(02)00619-9
10.1006/jcph.1996.0029
10.1137/S0036142901388627
10.1007/s004660050480
10.1016/j.jcp.2009.08.027
10.1016/S0045-7930(02)00014-2
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Attribution
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Attribution
DBID BSCLL
AAYXX
CITATION
IQODW
1XC
VOOES
ADTOC
UNPAY
DOI 10.1002/nme.4285
DatabaseName Istex
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 643
ExternalDocumentID oai:HAL:hal-01443190v1
26122149
10_1002_nme_4285
NME4285
ark_67375_WNG_LQZPTMGT_B
Genre article
GrantInformation_xml – fundername: Ministry of Education, Science and Technology, Korea
  funderid: R31‐2008‐000‐10045‐0
– fundername: Brain Korea 21 Program (KAIST Valufacture Institute of Mechanical Engineering), Ministry of Education, Science and Technology
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
1XC
AIQQE
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c4015-b87ca537eb83c0e3bc7d183a3c9205e5599fc7ce8abe1f0a936c3efe8a8402003
IEDL.DBID DR2
ISSN 0029-5981
1097-0207
IngestDate Sun Oct 26 03:59:56 EDT 2025
Tue Oct 14 20:32:24 EDT 2025
Mon Jul 21 09:15:00 EDT 2025
Thu Apr 24 23:13:44 EDT 2025
Wed Oct 01 05:10:31 EDT 2025
Wed Jan 22 16:37:47 EST 2025
Tue Sep 09 05:32:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Performance evaluation
Numerical integration
minimal spurious oscillations
Stress wave
Elastic wave
explicit integrator
Modeling
Shock front
Wavefront
propagation of stress waves
Strain wave
Filter
heterogeneous bar
Finite difference method
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4015-b87ca537eb83c0e3bc7d183a3c9205e5599fc7ce8abe1f0a936c3efe8a8402003
Notes Ministry of Education, Science and Technology, Korea - No. R31-2008-000-10045-0
ArticleID:NME4285
istex:D37756100D959C1F5ADE9E3F52D7FF7872A47106
Brain Korea 21 Program (KAIST Valufacture Institute of Mechanical Engineering), Ministry of Education, Science and Technology
ark:/67375/WNG-LQZPTMGT-B
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01443190
PageCount 22
ParticipantIDs unpaywall_primary_10_1002_nme_4285
hal_primary_oai_HAL_hal_01443190v1
pascalfrancis_primary_26122149
crossref_citationtrail_10_1002_nme_4285
crossref_primary_10_1002_nme_4285
wiley_primary_10_1002_nme_4285_NME4285
istex_primary_ark_67375_WNG_LQZPTMGT_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 August 2012
PublicationDateYYYYMMDD 2012-08-10
PublicationDate_xml – month: 08
  year: 2012
  text: 10 August 2012
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Dehghana M, Saadatmandi A. Variational iteration method for solving the wave equation subject to an integral conservation condition. Chaos, Solitons and Fractals 2009; 41:1448-1453.
Mao D-K. Toward front tracking based on conservation in two-dimensional space. SIAM Journal on Scientific Computing 2000; 22(1):113-151.
Nguyen V-T, Peraire J, Khoo BC, Persson P-O. A discontinuous Galerkin front tracking method for two-phase flows with surface tension. Computers & Fluids 2010; 39:1-14.
Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics, Proceedings of ASCE 1959; 85:67-94.
Li X, Yao D, Lewis RW. A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media. International Journal of Numerical Methods in Engineering 2003; 57:1775-1800.
Leveque RJ, Shyue KM. Two-dimensional front tracking based on high resolution wave propagation methods. Journal of Computational Physics 1996; 123:354-361.
Yue B, Guddati MN. Dispersion-reducing finite elements for transient acoustics. Journal of the Acoustical Society of America 2005; 118(4):2132-2141.
Lax PD, Wendroff B. Systems of conservation laws. Communications on Pure and Applied Mathematics 1960; 13(2):217-237.
Krenk S. Dispersion-corrected explicit integration of the wave equation. Computer Methods in Applied Mechanics and Engineering 2001; 191:975-987.
Xing Y, Shu C-W. High-order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physic 2006; 214:567-598.
Hulbert GM, Hughes TRJ. Space-time finite element methods for second-order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering 1990; 84:327-347.
Codina R. Finite element approximation of the hyperbolic wave equation in mixed form. Computer Methods in Applied Mechanics and Engineering 2008; 197:1305-1322.
Mabssout M, Pastor M. A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Computer Methods in Applied Mechanics and Engineering 2003; 192:955-971.
Idesman A. Accurate time integration of linear elastodynamics problems. CMES 2011; 71(2):111-148.
Zahradnik J, Moczo P, Hron T. Testing four elastic finite-difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America 1993; 83:107-129.
Marfurt KJ. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation. Geophysics 1984; 49:533-549.
Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal of Numerical Methods in Engineering 2004; 60:153-212.
Guddati MN, Yue B. Modified integration rules for reducing dispersion error in finite element method. Computer Methods in Applied Mechanics and Engineering 2004; 193:275-287.
Smith JM. Recent developments in numerical integration. Journal of Dynamic Systems, Measurement and Control 96, Ser. G-1 1974; 1:61-70.
Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Physica D 1997; 106:223-246.
Liu Y, Sen MK. A new timespace domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics 2009; 228:8779-8806.
Gloth O, Hanel D, Tran L, Vilsmeier R. A front tracking method on unstructured grids. Computers & Fluids 2003; 32:547-570.
Mullen R, Belytschko T. Dispersion analysis of finite element semi-discretizations of the two-dimensional wave equation. International Journal for Numerical Methods in Engineering 1982; 18:11-29.
Zuazua E. Optimal and approximate control of finite difference approximation schemes for the 1D wave equation. Rendiconti di Matematica e delle sue Applicazioni 2004; 24:201-237.
Huang H, Costanzo F. On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities. Computer Methods in Applied Mechanics and Engineering 2002; 191:5315-5343.
Richtmyer RD, Morton KW. Difference Methods for Initial-Value Problems. 2nd edn. Wiley-Interscience: New York, 1967.
Ainsworth M, Monk P, Muniz W. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing 2006; 27(1-3).
Park KC, Felippa CA. A variational principle for the formulation of partitioned structural systems. International Journal of Numerical Methods in Engineering 2000; 47:395-418.
Kane C, Marsden JE, Ortiz M, West M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal of Numerical Methods in Engineering 2000; 49:1295-1325.
Glimm J, Li XL, Liu Y, Xu Z, Zhao N. Conservative front tracking with improved accuracy. SIAM Journal on Numerical Analysis 2003; 41(5):1926-1947.
Seriani G, Oliveira SP. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 2008; 45(6):729-744.
Harari I, Haham S. Improved finite element methods for elastic waves. Computer Methods in Applied Mechanics and Engineering 1998; 166:143-164.
Park KC, Underwood PG. A variable-step central difference method for structural dynamic analysis, I: theoretical aspects. Computer Methods in Applied Mechanics and Engineering 1980; 22:241-258.
Cherukuri HP. Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid. Computational Mechanics 2000; 25(4):317-328.
TAMMA KK, NAMBURU RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150.
Becache E, Joly P, Tsogka C. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM Journal on Numerical Analysis 2000; 37:1175-1201.
Harari I. Special issue on new computational methods for wave propagation. Wave Motion 2004; 39(4):279-280.
Park KC. Practical aspects of numerical time integration. Computers and Structures 1977; 7:343-353.
Cho SS, Huh H, Park KC. A time-discontinuous implicit variational integrator for stress wave propagation analysis in solids. Computer Methods in Applied Mechanics and Engineering 2011; 200:649-664.
Lax P. Hyperbolic systems of conservation laws, II. Communications on Pure and Applied Mathematics 1957; 10:537.
Zuazua E. Propagation, observation, and control of waves approximated by finite difference methods. SIAM REVIEW 2005; 47(2):197-243.
Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM Journal, March 1967, pp. 215-234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 1928; 100(1):32-74.
1957; 10
1959; 85
2009; 41
2002; 191
1982; 18
2000; 49
2004; 60
2000; 25
2000; 47
1993; 83
2011
1984; 49
1960; 13
2010; 39
2000; 22
1980; 22
1928; 100
2004; 24
2005; 118
2003; 57
1974; 1
2003; 192
2006; 214
1996; 123
1988; 71
2003; 32
2005; 47
1990; 84
1997; 106
2001; 191
2000; 37
2004; 39
2006; 27
2011; 71
2004; 193
2008; 45
2009; 228
1998; 166
2003; 41
2008; 197
1977; 7
2011; 200
1967
e_1_2_9_30_1
e_1_2_9_31_1
Idesman A (e_1_2_9_35_1) 2011; 71
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Newmark NM (e_1_2_9_42_1) 1959; 85
Zahradnik J (e_1_2_9_10_1) 1993; 83
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
Zuazua E (e_1_2_9_12_1) 2004; 24
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
Richtmyer RD (e_1_2_9_5_1) 1967
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Courant R (e_1_2_9_2_1) 1928; 100
e_1_2_9_29_1
References_xml – reference: Hulbert GM, Hughes TRJ. Space-time finite element methods for second-order hyperbolic equations. Computer Methods in Applied Mechanics and Engineering 1990; 84:327-347.
– reference: Leveque RJ, Shyue KM. Two-dimensional front tracking based on high resolution wave propagation methods. Journal of Computational Physics 1996; 123:354-361.
– reference: Park KC, Underwood PG. A variable-step central difference method for structural dynamic analysis, I: theoretical aspects. Computer Methods in Applied Mechanics and Engineering 1980; 22:241-258.
– reference: Guddati MN, Yue B. Modified integration rules for reducing dispersion error in finite element method. Computer Methods in Applied Mechanics and Engineering 2004; 193:275-287.
– reference: Lax PD, Wendroff B. Systems of conservation laws. Communications on Pure and Applied Mathematics 1960; 13(2):217-237.
– reference: Zahradnik J, Moczo P, Hron T. Testing four elastic finite-difference schemes for behavior at discontinuities. Bulletin of the Seismological Society of America 1993; 83:107-129.
– reference: Park KC. Practical aspects of numerical time integration. Computers and Structures 1977; 7:343-353.
– reference: Huang H, Costanzo F. On the use of space-time finite elements in the solution of elasto-dynamic problems with strain discontinuities. Computer Methods in Applied Mechanics and Engineering 2002; 191:5315-5343.
– reference: Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM Journal, March 1967, pp. 215-234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen 1928; 100(1):32-74.
– reference: Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics, Proceedings of ASCE 1959; 85:67-94.
– reference: Becache E, Joly P, Tsogka C. An analysis of new mixed finite elements for the approximation of wave propagation problems. SIAM Journal on Numerical Analysis 2000; 37:1175-1201.
– reference: Ainsworth M, Monk P, Muniz W. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing 2006; 27(1-3).
– reference: Idesman A. Accurate time integration of linear elastodynamics problems. CMES 2011; 71(2):111-148.
– reference: Codina R. Finite element approximation of the hyperbolic wave equation in mixed form. Computer Methods in Applied Mechanics and Engineering 2008; 197:1305-1322.
– reference: Li X, Yao D, Lewis RW. A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non-linear solids and saturated porous media. International Journal of Numerical Methods in Engineering 2003; 57:1775-1800.
– reference: Harari I, Haham S. Improved finite element methods for elastic waves. Computer Methods in Applied Mechanics and Engineering 1998; 166:143-164.
– reference: Kane C, Marsden JE, Ortiz M, West M. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal of Numerical Methods in Engineering 2000; 49:1295-1325.
– reference: Lew A, Marsden JE, Ortiz M, West M. Variational time integrators. International Journal of Numerical Methods in Engineering 2004; 60:153-212.
– reference: Marfurt KJ. Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation. Geophysics 1984; 49:533-549.
– reference: Xing Y, Shu C-W. High-order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Journal of Computational Physic 2006; 214:567-598.
– reference: Smith JM. Recent developments in numerical integration. Journal of Dynamic Systems, Measurement and Control 96, Ser. G-1 1974; 1:61-70.
– reference: Cherukuri HP. Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid. Computational Mechanics 2000; 25(4):317-328.
– reference: Yue B, Guddati MN. Dispersion-reducing finite elements for transient acoustics. Journal of the Acoustical Society of America 2005; 118(4):2132-2141.
– reference: Glimm J, Li XL, Liu Y, Xu Z, Zhao N. Conservative front tracking with improved accuracy. SIAM Journal on Numerical Analysis 2003; 41(5):1926-1947.
– reference: Liu Y, Sen MK. A new timespace domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics 2009; 228:8779-8806.
– reference: Wendlandt JM, Marsden JE. Mechanical integrators derived from a discrete variational principle. Physica D 1997; 106:223-246.
– reference: Cho SS, Huh H, Park KC. A time-discontinuous implicit variational integrator for stress wave propagation analysis in solids. Computer Methods in Applied Mechanics and Engineering 2011; 200:649-664.
– reference: Mao D-K. Toward front tracking based on conservation in two-dimensional space. SIAM Journal on Scientific Computing 2000; 22(1):113-151.
– reference: Seriani G, Oliveira SP. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 2008; 45(6):729-744.
– reference: Mullen R, Belytschko T. Dispersion analysis of finite element semi-discretizations of the two-dimensional wave equation. International Journal for Numerical Methods in Engineering 1982; 18:11-29.
– reference: Gloth O, Hanel D, Tran L, Vilsmeier R. A front tracking method on unstructured grids. Computers & Fluids 2003; 32:547-570.
– reference: Park KC, Felippa CA. A variational principle for the formulation of partitioned structural systems. International Journal of Numerical Methods in Engineering 2000; 47:395-418.
– reference: Lax P. Hyperbolic systems of conservation laws, II. Communications on Pure and Applied Mathematics 1957; 10:537.
– reference: Zuazua E. Optimal and approximate control of finite difference approximation schemes for the 1D wave equation. Rendiconti di Matematica e delle sue Applicazioni 2004; 24:201-237.
– reference: Zuazua E. Propagation, observation, and control of waves approximated by finite difference methods. SIAM REVIEW 2005; 47(2):197-243.
– reference: Harari I. Special issue on new computational methods for wave propagation. Wave Motion 2004; 39(4):279-280.
– reference: Mabssout M, Pastor M. A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua. Computer Methods in Applied Mechanics and Engineering 2003; 192:955-971.
– reference: Dehghana M, Saadatmandi A. Variational iteration method for solving the wave equation subject to an integral conservation condition. Chaos, Solitons and Fractals 2009; 41:1448-1453.
– reference: Krenk S. Dispersion-corrected explicit integration of the wave equation. Computer Methods in Applied Mechanics and Engineering 2001; 191:975-987.
– reference: Richtmyer RD, Morton KW. Difference Methods for Initial-Value Problems. 2nd edn. Wiley-Interscience: New York, 1967.
– reference: Nguyen V-T, Peraire J, Khoo BC, Persson P-O. A discontinuous Galerkin front tracking method for two-phase flows with surface tension. Computers & Fluids 2010; 39:1-14.
– reference: TAMMA KK, NAMBURU RR. A new finite element based Lax-Wendroff/Taylor-Galerkin methodology for computational dynamics. Computer Methods in Applied Mechanics and Engineering 1988; 71:137-150.
– volume: 166
  start-page: 143
  year: 1998
  end-page: 164
  article-title: Improved finite element methods for elastic waves
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 191
  start-page: 975
  year: 2001
  end-page: 987
  article-title: Dispersion‐corrected explicit integration of the wave equation
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 49
  start-page: 533
  year: 1984
  end-page: 549
  article-title: Accuracy of finite difference and finite element modeling of the scalar and elastic wave equation
  publication-title: Geophysics
– volume: 118
  start-page: 2132
  issue: 4
  year: 2005
  end-page: 2141
  article-title: Dispersion‐reducing finite elements for transient acoustics
  publication-title: Journal of the Acoustical Society of America
– volume: 13
  start-page: 217
  issue: 2
  year: 1960
  end-page: 237
  article-title: Systems of conservation laws
  publication-title: Communications on Pure and Applied Mathematics
– volume: 71
  start-page: 137
  year: 1988
  end-page: 150
  article-title: A new finite element based Lax–Wendroff/Taylor–Galerkin methodology for computational dynamics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 29
  year: 2011
  end-page: 31
– volume: 25
  start-page: 317
  issue: 4
  year: 2000
  end-page: 328
  article-title: Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid
  publication-title: Computational Mechanics
– volume: 24
  start-page: 201
  year: 2004
  end-page: 237
  article-title: Optimal and approximate control of finite difference approximation schemes for the 1D wave equation
  publication-title: Rendiconti di Matematica e delle sue Applicazioni
– volume: 191
  start-page: 5315
  year: 2002
  end-page: 5343
  article-title: On the use of space–time finite elements in the solution of elasto‐dynamic problems with strain discontinuities
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 214
  start-page: 567
  year: 2006
  end-page: 598
  article-title: High‐order well‐balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms
  publication-title: Journal of Computational Physic
– volume: 49
  start-page: 1295
  year: 2000
  end-page: 1325
  article-title: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 85
  start-page: 67
  year: 1959
  end-page: 94
  article-title: A method of computation for structural dynamics
  publication-title: Journal of Engineering Mechanics, Proceedings of ASCE
– volume: 22
  start-page: 241
  year: 1980
  end-page: 258
  article-title: A variable‐step central difference method for structural dynamic analysis, I: theoretical aspects
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 39
  start-page: 1
  year: 2010
  end-page: 14
  article-title: A discontinuous Galerkin front tracking method for two‐phase flows with surface tension
  publication-title: Computers & Fluids
– volume: 22
  start-page: 113
  issue: 1
  year: 2000
  end-page: 151
  article-title: Toward front tracking based on conservation in two‐dimensional space
  publication-title: SIAM Journal on Scientific Computing
– volume: 100
  start-page: 32
  issue: 1
  year: 1928
  end-page: 74
  article-title: On the partial difference equations of mathematical physics
  publication-title: IBM Journal, March 1967, pp. 215‐234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen
– volume: 10
  start-page: 537
  year: 1957
  article-title: Hyperbolic systems of conservation laws, II
  publication-title: Communications on Pure and Applied Mathematics
– volume: 45
  start-page: 729
  issue: 6
  year: 2008
  end-page: 744
  article-title: Dispersion analysis of spectral element methods for elastic wave propagation
  publication-title: Wave Motion
– volume: 47
  start-page: 395
  year: 2000
  end-page: 418
  article-title: A variational principle for the formulation of partitioned structural systems
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 123
  start-page: 354
  year: 1996
  end-page: 361
  article-title: Two‐dimensional front tracking based on high resolution wave propagation methods
  publication-title: Journal of Computational Physics
– volume: 197
  start-page: 1305
  year: 2008
  end-page: 1322
  article-title: Finite element approximation of the hyperbolic wave equation in mixed form
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 71
  start-page: 111
  issue: 2
  year: 2011
  end-page: 148
  article-title: Accurate time integration of linear elastodynamics problems
  publication-title: CMES
– volume: 47
  start-page: 197
  issue: 2
  year: 2005
  end-page: 243
  article-title: Propagation, observation, and control of waves approximated by finite difference methods
  publication-title: SIAM REVIEW
– volume: 193
  start-page: 275
  year: 2004
  end-page: 287
  article-title: Modified integration rules for reducing dispersion error in finite element method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 106
  start-page: 223
  year: 1997
  end-page: 246
  article-title: Mechanical integrators derived from a discrete variational principle
  publication-title: Physica D
– volume: 7
  start-page: 343
  year: 1977
  end-page: 353
  article-title: Practical aspects of numerical time integration
  publication-title: Computers and Structures
– volume: 83
  start-page: 107
  year: 1993
  end-page: 129
  article-title: Testing four elastic finite‐difference schemes for behavior at discontinuities
  publication-title: Bulletin of the Seismological Society of America
– volume: 41
  start-page: 1448
  year: 2009
  end-page: 1453
  article-title: Variational iteration method for solving the wave equation subject to an integral conservation condition
  publication-title: Chaos, Solitons and Fractals
– volume: 57
  start-page: 1775
  year: 2003
  end-page: 1800
  article-title: A discontinuous Galerkin finite element method for dynamic and wave propagation problems in non‐linear solids and saturated porous media
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 228
  start-page: 8779
  year: 2009
  end-page: 8806
  article-title: A new timespace domain high‐order finite‐difference method for the acoustic wave equation
  publication-title: Journal of Computational Physics
– volume: 27
  issue: 1‐3
  year: 2006
  article-title: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second‐order wave equation
  publication-title: Journal of Scientific Computing
– year: 1967
– volume: 192
  start-page: 955
  year: 2003
  end-page: 971
  article-title: A Taylor–Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 84
  start-page: 327
  year: 1990
  end-page: 347
  article-title: Space–time finite element methods for second‐order hyperbolic equations
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 41
  start-page: 1926
  issue: 5
  year: 2003
  end-page: 1947
  article-title: Conservative front tracking with improved accuracy
  publication-title: SIAM Journal on Numerical Analysis
– volume: 32
  start-page: 547
  year: 2003
  end-page: 570
  article-title: A front tracking method on unstructured grids
  publication-title: Computers & Fluids
– volume: 60
  start-page: 153
  year: 2004
  end-page: 212
  article-title: Variational time integrators
  publication-title: International Journal of Numerical Methods in Engineering
– volume: 37
  start-page: 1175
  year: 2000
  end-page: 1201
  article-title: An analysis of new mixed finite elements for the approximation of wave propagation problems
  publication-title: SIAM Journal on Numerical Analysis
– volume: 200
  start-page: 649
  year: 2011
  end-page: 664
  article-title: A time‐discontinuous implicit variational integrator for stress wave propagation analysis in solids
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 18
  start-page: 11
  year: 1982
  end-page: 29
  article-title: Dispersion analysis of finite element semi‐discretizations of the two‐dimensional wave equation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 39
  start-page: 279
  issue: 4
  year: 2004
  end-page: 280
  article-title: Special issue on new computational methods for wave propagation
  publication-title: Wave Motion
– start-page: 25
  year: 2011
  end-page: 28
– volume: 1
  start-page: 61
  year: 1974
  end-page: 70
  article-title: Recent developments in numerical integration
  publication-title: Journal of Dynamic Systems, Measurement and Control 96, Ser. G‐1
– ident: e_1_2_9_40_1
  doi: 10.1002/nme.958
– ident: e_1_2_9_27_1
  doi: 10.1121/1.2011149
– ident: e_1_2_9_31_1
  doi: 10.1007/s10915-005-9044-x
– volume: 85
  start-page: 67
  year: 1959
  ident: e_1_2_9_42_1
  article-title: A method of computation for structural dynamics
  publication-title: Journal of Engineering Mechanics, Proceedings of ASCE
– ident: e_1_2_9_11_1
  doi: 10.1137/S0036144503432862
– ident: e_1_2_9_24_1
  doi: 10.1016/0045-7825(80)90087-0
– volume: 71
  start-page: 111
  issue: 2
  year: 2011
  ident: e_1_2_9_35_1
  article-title: Accurate time integration of linear elastodynamics problems
  publication-title: CMES
– ident: e_1_2_9_32_1
  doi: 10.1002/nme.741
– ident: e_1_2_9_36_1
  doi: 10.1115/1.3426777
– ident: e_1_2_9_16_1
  doi: 10.1137/S1064827597310609
– volume-title: Difference Methods for Initial‐Value Problems
  year: 1967
  ident: e_1_2_9_5_1
– ident: e_1_2_9_18_1
  doi: 10.1137/S0036142998345499
– ident: e_1_2_9_39_1
  doi: 10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W
– volume: 100
  start-page: 32
  issue: 1
  year: 1928
  ident: e_1_2_9_2_1
  article-title: On the partial difference equations of mathematical physics
  publication-title: IBM Journal, March 1967, pp. 215‐234. English translation of the 1928 German original, ″R. Courant, K. Friedrichs and H. Lewy, ber die partiellen Differenzengleichungen der mathematischen Physik, Mathematische Annalen
– ident: e_1_2_9_4_1
  doi: 10.1002/cpa.3160130205
– ident: e_1_2_9_38_1
  doi: 10.1016/j.chaos.2008.06.009
– ident: e_1_2_9_43_1
  doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jcp.2005.10.005
– ident: e_1_2_9_29_1
  doi: 10.1016/0045-7825(90)90082-W
– volume: 24
  start-page: 201
  year: 2004
  ident: e_1_2_9_12_1
  article-title: Optimal and approximate control of finite difference approximation schemes for the 1D wave equation
  publication-title: Rendiconti di Matematica e delle sue Applicazioni
– ident: e_1_2_9_22_1
  doi: 10.1016/j.wavemoti.2003.12.005
– ident: e_1_2_9_7_1
  doi: 10.1016/S0045-7825(01)00297-3
– ident: e_1_2_9_30_1
  doi: 10.1002/nme.1620180103
– ident: e_1_2_9_3_1
  doi: 10.1002/cpa.3160100406
– ident: e_1_2_9_28_1
  doi: 10.1016/S0045-7825(02)00460-7
– volume: 83
  start-page: 107
  year: 1993
  ident: e_1_2_9_10_1
  article-title: Testing four elastic finite‐difference schemes for behavior at discontinuities
  publication-title: Bulletin of the Seismological Society of America
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compfluid.2009.06.007
– ident: e_1_2_9_9_1
  doi: 10.1190/1.1441689
– ident: e_1_2_9_44_1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.cma.2003.09.010
– ident: e_1_2_9_21_1
  doi: 10.1016/S0045-7825(98)00088-7
– ident: e_1_2_9_37_1
  doi: 10.1016/j.cma.2010.09.011
– ident: e_1_2_9_23_1
  doi: 10.1016/0045-7949(77)90072-4
– ident: e_1_2_9_26_1
  doi: 10.1016/0045-7825(88)90082-5
– ident: e_1_2_9_19_1
  doi: 10.1016/j.cma.2007.11.006
– ident: e_1_2_9_25_1
  doi: 10.1016/j.wavemoti.2007.11.007
– ident: e_1_2_9_41_1
  doi: 10.1016/S0167-2789(97)00051-1
– ident: e_1_2_9_33_1
  doi: 10.1016/S0045-7825(02)00619-9
– ident: e_1_2_9_15_1
  doi: 10.1006/jcph.1996.0029
– ident: e_1_2_9_13_1
  doi: 10.1137/S0036142901388627
– ident: e_1_2_9_6_1
  doi: 10.1007/s004660050480
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jcp.2009.08.027
– ident: e_1_2_9_14_1
  doi: 10.1016/S0045-7930(02)00014-2
– ident: e_1_2_9_45_1
SSID ssj0011503
Score 2.1996984
Snippet SUMMARY An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing...
An explicit integration algorithm for computations of discontinuous wave propagation in heterogeneous solids is presented, which is aimed at minimizing...
SourceID unpaywall
hal
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 622
SubjectTerms Engineering Sciences
Exact sciences and technology
explicit integrator
Fundamental areas of phenomenology (including applications)
heterogeneous bar
Mechanics
minimal spurious oscillations
Physics
propagation of stress waves
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtNAFB2VZAFdUCggwqO6IFRWDn50_GAXUNsINVGRElHYWOOZMYma2lVst8Cqn9Af6M_1S7jXLzUIKlaJ4-v4Mcd3zpWvz2HsjQosR9rcN5RysUAJRGREWGcYwlIu4ifwzNI6YTR2h9OdT0f8aI1B8y7MDBlnnfvpu0GEH1GCRXnX5ci2O6w7HR8OvjadGzwofUjpOaqBzMdr9GVN-11yovtIrvnKjHNnRv2OXbqEP6gPUmR4KeLKw2Kd3S2SU_HzXCwWq1y1nGz2Nqqmx6zUKKQek-N-kUd9-esPBcfbzuMBu18zTRhU0HjI1nSyyTZq1gn1PZ1tsvUbkoS4NGp1XLNH7GoAlcU0ILcFWTpAlEMJaQz0Qm9KRhNFWmRwLs404AFjgqoi5gnMqNcmRYhqikCUz1X2HnDinEsQi-_pcp7PTkDpNnWBSBTceKYOeQppoq8vLhW5EFQKIlCb4GSP2XRvd_JxaNSGDobEMo4bke9JwR1PR74jTe1E0lOYUoQjA9vkmsTPYulJ7YtIW7EpAseVjo5x2acy13SesE6Ce33KAFPRDle-H5kkIG8p4foWFtbcd02BW9o99rYZ9FDWaudkurEIK51mO0R4hASPHnvVRp5WCh9_iXmNg9iuJknu4eAgpN-agT2zemy7hFUbJpbH1Dbn8fDLeD88-PztcDLan4QfemxrBXftBiTnZmPJirtrgXjLMW2XCP1nQDge7dLns__5t-fsHlJB2yjFfl-wTr4s9EukW3m0Vd9xvwGY8ipH
  priority: 102
  providerName: Unpaywall
Title A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems
URI https://api.istex.fr/ark:/67375/WNG-LQZPTMGT-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4285
https://hal.science/hal-01443190
UnpaywallVersion submittedVersion
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0207
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5Be4AeWiggUiBaEConp7a3ttfcAmoboSYqKBEFDtb-mURN7Sq2W-DEI_ACvBxPwoz_lCBAiJNle1b-2W9nZ-zZ7yPkqQ4dplyPW1r7kKCEQloS8gxLONoH_ISBXUonDEf-YLL_6tQ7rasqcS1MxQ_RfnDDkVH6axzgQmZ7S6Sh56YHsTOuL3eYX2ZTb1rmKIxzWFPd4YXcaXhnbXevabgyE12fYh3kOr7aT1gfKTJ4RXGlbbFBbhTJhfh8Jebz1Ri2nIQOt8iH5var2pOzXpHLnvryC7Pj_z3fLbJZx6a0X4HpNrlmkm2yVceptPYC2TbZWCIxhL1hy_ya3SHf-7QSpaYQDVNVakaUnU_TmOIS4BSlKYq0yOiVuDQUHgVcWmUxS-gUq3NSALVBCxgXM509pzDVzhQV84_pYpZPz6k2rbOjItF06S88zVOaJubH128adQsqzhFay-Zkd8nk8GD8cmDVEhCWgsTPsyQPlPBYYCRnyjZMqkCDExJMha7tGaRLi1WgDBfSOLEtQuYrZmLY55gY2-weWUvgqvcJBee172nOpY2U844WPncgFfe4bwto6XbIswYOkar50VGmYx5VzM5uBD0SYY90yOPW8qLiBPmNzRNAVHsaSbwH_eMIj2EOC47PvnQ6ZLcEXGsmFmdYaBd40dvRUXT8-v3JeHg0jl50SHcFkW0DJIBzIcmFy7UQ_cs97ZaA-6NBNBoe4HbnXw0fkJsQQLpWSRH8kKzli8I8giAtl91yOHbJ-mR00n_3E0XdPbk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB318lD6QKGACJeyIFSenPoS3-ApoLYB4ghQqlYIyVrvrknU1K5iuwWe-AR-gJ_jS5jxTQkChHiybM_KXu_s7Bl7fA7AY-kbljBtT5PSwQTF55EWYZ6hcUM66D--q5fSCcHIGRz1Xp3YJyvwrPkXpuKHaF-40cwo4zVNcHohvbfAGnqmugie7VVY7zmYphAietdyRxHSsZr6Dtv3jIZ5Vjf3mpZLa9HqhCoh1-nhfqIKSZ7hQ4ordYtN2CiSc_75ks9myyi2XIYOtuBD04Gq-uS0W-RRV3z5hdvxP3t4Da7W8JT1K3-6Disq2YatGqqyOhBk27C5wGOIe0FL_prdgO99VulSMwTETJSyEeX4szRm9BdwSuoURVpk7JJfKIZ9wahWWUwTNqECnRT9WpEFTo2pzJ4yXG2ngvHZx3Q-zSdnTKo23jGeSLbwIZ7lKUsT9ePrN0nSBRXtCKuVc7KbcHSwP34x0GoVCE1g7mdrkecKbluuijxL6MqKhCsxDnFL-KZuK2JMi4UrlMcjZcQ69y1HWCrGfY9yY926BWsJXvU2MIxfPVt6XqQT67whueMZmI3bnqNzbGl24EnjD6GoKdJJqWMWVuTOZogjEtKIdOBha3le0YL8xuYRulR7mni8B_1hSMcojcXYp18YHdgtPa414_NTqrVz7fB4dBgO375_Mw4Ox-HzDuwsuWTbgDjgTMxz8XKtj_7lnnZLj_ujQTgK9ml7518NH8DGYBwMw-HL0eu7cAXxpKmVjMH3YC2fF-o-YrY82inn5k_9A0Aq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB31IkH7QKFQES5lQag8OfUlvsFToE0DJFFBqagQkrXeXZOoqR3FcQs88Qn8AD_HlzDjmxIECPFk2Z6Vvd6zszP2-ByAx9I3LGHanialgwmKz0MtxDxD44Z0ED--q-fSCf2B0z1pvTq1T1fgWfUvTMEPUb9wo5mR-2ua4Goqo_0F1tBz1cTg2V6F9Zbte1TPd_C25o6iSMeq6jvwtFExz-rmftVyaS1aHVEl5Do93E9UIclTfEhRoW6xCVezeMo_X_LJZDmKzZehzhZ8qDpQVJ-cNbN52BRffuF2_M8eXodrZXjK2gWebsCKirdhqwxVWekI0m3YXOAxxL1-Tf6a3oTvbVboUjMMiJnIZSPy8WdJxOgv4ITUKbIkS9klv1AM-4JerbAYx2xEBToJ4lqRBU6NsUyfMlxtx4LxycdkNp6PzplUtb9jPJZs4UM8mycsidWPr98kSRcUtCOsVM5Jb8FJ53D4oquVKhCawNzP1kLPFdy2XBV6ltCVFQpXoh_ilvBN3VbEmBYJVyiPh8qIdO5bjrBUhPse5ca6tQNrMV71NjD0Xy1bel6oE-u8IbnjGZiN256jc2xpNuBJhYdAlBTppNQxCQpyZzPAEQloRBrwsLacFrQgv7F5hJCqTxOPd7fdC-gYpbHo-_QLowF7OeJqMz47o1o71w7eDY6C3pv3x8P-0TB43oDdJUjWDYgDzsQ8Fy9XY_Qv97SXI-6PBsGgf0jbO_9q-ACuHB90gt7Lweu7sIHhpKnlhMH3YG0-y9R9DNnm4W4-NX8CUF0_rg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtNAFB2VZAFdUCggwqO6IFRWDn50_GAXUNsINVGRElHYWOOZMYma2lVst8Cqn9Af6M_1S7jXLzUIKlaJ4-v4Mcd3zpWvz2HsjQosR9rcN5RysUAJRGREWGcYwlIu4ifwzNI6YTR2h9OdT0f8aI1B8y7MDBlnnfvpu0GEH1GCRXnX5ci2O6w7HR8OvjadGzwofUjpOaqBzMdr9GVN-11yovtIrvnKjHNnRv2OXbqEP6gPUmR4KeLKw2Kd3S2SU_HzXCwWq1y1nGz2Nqqmx6zUKKQek-N-kUd9-esPBcfbzuMBu18zTRhU0HjI1nSyyTZq1gn1PZ1tsvUbkoS4NGp1XLNH7GoAlcU0ILcFWTpAlEMJaQz0Qm9KRhNFWmRwLs404AFjgqoi5gnMqNcmRYhqikCUz1X2HnDinEsQi-_pcp7PTkDpNnWBSBTceKYOeQppoq8vLhW5EFQKIlCb4GSP2XRvd_JxaNSGDobEMo4bke9JwR1PR74jTe1E0lOYUoQjA9vkmsTPYulJ7YtIW7EpAseVjo5x2acy13SesE6Ce33KAFPRDle-H5kkIG8p4foWFtbcd02BW9o99rYZ9FDWaudkurEIK51mO0R4hASPHnvVRp5WCh9_iXmNg9iuJknu4eAgpN-agT2zemy7hFUbJpbH1Dbn8fDLeD88-PztcDLan4QfemxrBXftBiTnZmPJirtrgXjLMW2XCP1nQDge7dLns__5t-fsHlJB2yjFfl-wTr4s9EukW3m0Vd9xvwGY8ipH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+computation+of+discontinuous+wave+propagation+in+heterogeneous+solids%3A+basic+algorithm+description+and+application+to+one%E2%80%90dimensional+problems&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Park%2C+K.+C.&rft.au=Lim%2C+S.+J&rft.au=Huh%2C+H.&rft.date=2012-08-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=91&rft.issue=6&rft.spage=622&rft.epage=643&rft_id=info:doi/10.1002%2Fnme.4285&rft.externalDBID=10.1002%252Fnme.4285&rft.externalDocID=NME4285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon