Chiral analysis of β‐alanyl‐d,l‐tyrosine and its derivatives and estimation of binding constants of their complexes with 2‐hydroxypropyl‐β‐cyclodextrin by capillary electrophoresis
Chiral CE methods were developed for the elucidation of l‐ or d‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β‐Ala‐d‐...
Saved in:
Published in | Journal of separation science Vol. 45; no. 17; pp. 3328 - 3338 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1615-9306 1615-9314 1615-9314 |
DOI | 10.1002/jssc.202200158 |
Cover
Abstract | Chiral CE methods were developed for the elucidation of l‐ or d‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β‐Ala‐d‐Tyr and β‐Ala‐l‐Tyr), and enantiomers of their amidated and acetylated derivatives, β‐Ala‐d,l‐Tyr‐NH2 and N‐Ac‐β‐Ala‐d,l‐Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β‐Ala‐d,l‐Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3PO4, pH 2.5, and 20 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin as chiral selector; (ii) for β‐Ala‐d,l‐Tyr‐NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3PO4, pH 3.5, and 30 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin; and (iii) for enantiomers of N‐Ac‐β‐Ala‐d,l‐Tyr in alkaline background electrolyte composed of 50/49 mM Na2B4O7/NaOH, pH 10.5, and 60 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin. From CE analyses of mixed samples of isolated β‐Ala‐Tyr and synthetic standards β‐Ala‐l‐Tyr and β‐Ala‐d‐Tyr, it turned out that isolated β‐Ala‐Tyr was pure l‐enantiomer. In addition, the average apparent binding constants, Kb, and average actual ionic mobilities of the complexes of β‐Ala‐d,l‐Tyr and its above derivatives with 2‐hydroxypropyl‐β‐cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6–9.2) × 10–9 m2/V/s, and anionic mobilities to (‐1.3–1.6) × 10–9 m2/V/s. |
---|---|
AbstractList | Chiral CE methods were developed for the elucidation of
l
‐ or
d
‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr) isolated from the hemolymph of larvae of fleshfly
Neobellieria bullata
and for the evaluation of enantiopurity of its synthetic isomers (β
‐
Ala
‐d‐
Tyr and β
‐
Ala‐
l
‐Tyr), and enantiomers of their amidated and acetylated derivatives, β‐Ala‐
d
,
l
‐Tyr‐NH
2
and
N
‐Ac‐β‐Ala‐
d
,
l
‐Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β‐Ala‐
d
,
l
‐Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H
3
PO
4
, pH 2.5, and 20 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin as chiral selector; (ii) for β‐Ala‐
d,l
‐Tyr‐NH
2
enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H
3
PO
4
, pH 3.5, and 30 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin; and (iii) for enantiomers of
N
‐Ac‐β‐Ala‐
d
,
l
‐Tyr in alkaline background electrolyte composed of 50/49 mM Na
2
B
4
O
7
/NaOH, pH 10.5, and 60 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin. From CE analyses of mixed samples of isolated β‐Ala‐Tyr and synthetic standards β‐Ala‐
l
‐Tyr and β‐Ala‐
d
‐Tyr, it turned out that isolated β‐Ala‐Tyr was pure
l
‐enantiomer. In addition, the average apparent binding constants,
K
b
, and average actual ionic mobilities of the complexes of β‐Ala‐
d
,
l
‐Tyr and its above derivatives with 2‐hydroxypropyl‐β‐cyclodextrin were determined. These complexes were weak, with
K
b
values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6–9.2) × 10
–9
m
2
/V/s, and anionic mobilities to (‐1.3–1.6) × 10
–9
m
2
/V/s. Chiral CE methods were developed for the elucidation of l- or d-configuration of tyrosine residue in antimicrobial dipeptide β-alanyl-tyrosine (β-Ala-Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β-Ala-d-Tyr and β-Ala-l-Tyr), and enantiomers of their amidated and acetylated derivatives, β-Ala-d,l-Tyr-NH2 and N-Ac-β-Ala-d,l-Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β-Ala-d,l-Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 2.5, and 20 mg/mL 2-hydroxypropyl-β-cyclodextrin as chiral selector; (ii) for β-Ala-d,l-Tyr-NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 3.5, and 30 mg/mL 2-hydroxypropyl-β-cyclodextrin; and (iii) for enantiomers of N-Ac-β-Ala-d,l-Tyr in alkaline background electrolyte composed of 50/49 mM Na2 B4 O7 /NaOH, pH 10.5, and 60 mg/mL 2-hydroxypropyl-β-cyclodextrin. From CE analyses of mixed samples of isolated β-Ala-Tyr and synthetic standards β-Ala-l-Tyr and β-Ala-d-Tyr, it turned out that isolated β-Ala-Tyr was pure l-enantiomer. In addition, the average apparent binding constants, Kb , and average actual ionic mobilities of the complexes of β-Ala-d,l-Tyr and its above derivatives with 2-hydroxypropyl-β-cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6-9.2) × 10-9 m2 /V/s, and anionic mobilities to (-1.3-1.6) × 10-9 m2 /V/s.Chiral CE methods were developed for the elucidation of l- or d-configuration of tyrosine residue in antimicrobial dipeptide β-alanyl-tyrosine (β-Ala-Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β-Ala-d-Tyr and β-Ala-l-Tyr), and enantiomers of their amidated and acetylated derivatives, β-Ala-d,l-Tyr-NH2 and N-Ac-β-Ala-d,l-Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β-Ala-d,l-Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 2.5, and 20 mg/mL 2-hydroxypropyl-β-cyclodextrin as chiral selector; (ii) for β-Ala-d,l-Tyr-NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3 PO4 , pH 3.5, and 30 mg/mL 2-hydroxypropyl-β-cyclodextrin; and (iii) for enantiomers of N-Ac-β-Ala-d,l-Tyr in alkaline background electrolyte composed of 50/49 mM Na2 B4 O7 /NaOH, pH 10.5, and 60 mg/mL 2-hydroxypropyl-β-cyclodextrin. From CE analyses of mixed samples of isolated β-Ala-Tyr and synthetic standards β-Ala-l-Tyr and β-Ala-d-Tyr, it turned out that isolated β-Ala-Tyr was pure l-enantiomer. In addition, the average apparent binding constants, Kb , and average actual ionic mobilities of the complexes of β-Ala-d,l-Tyr and its above derivatives with 2-hydroxypropyl-β-cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6-9.2) × 10-9 m2 /V/s, and anionic mobilities to (-1.3-1.6) × 10-9 m2 /V/s. Chiral CE methods were developed for the elucidation of l‐ or d‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β‐Ala‐d‐Tyr and β‐Ala‐l‐Tyr), and enantiomers of their amidated and acetylated derivatives, β‐Ala‐d,l‐Tyr‐NH2 and N‐Ac‐β‐Ala‐d,l‐Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β‐Ala‐d,l‐Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3PO4, pH 2.5, and 20 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin as chiral selector; (ii) for β‐Ala‐d,l‐Tyr‐NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3PO4, pH 3.5, and 30 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin; and (iii) for enantiomers of N‐Ac‐β‐Ala‐d,l‐Tyr in alkaline background electrolyte composed of 50/49 mM Na2B4O7/NaOH, pH 10.5, and 60 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin. From CE analyses of mixed samples of isolated β‐Ala‐Tyr and synthetic standards β‐Ala‐l‐Tyr and β‐Ala‐d‐Tyr, it turned out that isolated β‐Ala‐Tyr was pure l‐enantiomer. In addition, the average apparent binding constants, Kb, and average actual ionic mobilities of the complexes of β‐Ala‐d,l‐Tyr and its above derivatives with 2‐hydroxypropyl‐β‐cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6–9.2) × 10–9 m2/V/s, and anionic mobilities to (‐1.3–1.6) × 10–9 m2/V/s. Chiral CE methods were developed for the elucidation of l- or d-configuration of tyrosine residue in antimicrobial dipeptide β-alanyl-tyrosine (β-Ala-Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β-Ala-d-Tyr and β-Ala-l-Tyr), and enantiomers of their amidated and acetylated derivatives, β-Ala-d,l-Tyr-NH and N-Ac-β-Ala-d,l-Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β-Ala-d,l-Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H PO , pH 2.5, and 20 mg/mL 2-hydroxypropyl-β-cyclodextrin as chiral selector; (ii) for β-Ala-d,l-Tyr-NH enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H PO , pH 3.5, and 30 mg/mL 2-hydroxypropyl-β-cyclodextrin; and (iii) for enantiomers of N-Ac-β-Ala-d,l-Tyr in alkaline background electrolyte composed of 50/49 mM Na B O /NaOH, pH 10.5, and 60 mg/mL 2-hydroxypropyl-β-cyclodextrin. From CE analyses of mixed samples of isolated β-Ala-Tyr and synthetic standards β-Ala-l-Tyr and β-Ala-d-Tyr, it turned out that isolated β-Ala-Tyr was pure l-enantiomer. In addition, the average apparent binding constants, K , and average actual ionic mobilities of the complexes of β-Ala-d,l-Tyr and its above derivatives with 2-hydroxypropyl-β-cyclodextrin were determined. These complexes were weak, with K values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6-9.2) × 10 m /V/s, and anionic mobilities to (-1.3-1.6) × 10 m /V/s. Chiral CE methods were developed for the elucidation of l‐ or d‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β‐Ala‐d‐Tyr and β‐Ala‐l‐Tyr), and enantiomers of their amidated and acetylated derivatives, β‐Ala‐d,l‐Tyr‐NH₂ and N‐Ac‐β‐Ala‐d,l‐Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β‐Ala‐d,l‐Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H₃PO₄, pH 2.5, and 20 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin as chiral selector; (ii) for β‐Ala‐d,l‐Tyr‐NH₂ enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H₃PO₄, pH 3.5, and 30 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin; and (iii) for enantiomers of N‐Ac‐β‐Ala‐d,l‐Tyr in alkaline background electrolyte composed of 50/49 mM Na₂B₄O₇/NaOH, pH 10.5, and 60 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin. From CE analyses of mixed samples of isolated β‐Ala‐Tyr and synthetic standards β‐Ala‐l‐Tyr and β‐Ala‐d‐Tyr, it turned out that isolated β‐Ala‐Tyr was pure l‐enantiomer. In addition, the average apparent binding constants, Kb, and average actual ionic mobilities of the complexes of β‐Ala‐d,l‐Tyr and its above derivatives with 2‐hydroxypropyl‐β‐cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6–9.2) × 10–⁹ m²/V/s, and anionic mobilities to (‐1.3–1.6) × 10–⁹ m²/V/s. Chiral CE methods were developed for the elucidation of l‐ or d‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr) isolated from the hemolymph of larvae of fleshfly Neobellieria bullata and for the evaluation of enantiopurity of its synthetic isomers (β‐Ala‐d‐Tyr and β‐Ala‐l‐Tyr), and enantiomers of their amidated and acetylated derivatives, β‐Ala‐d,l‐Tyr‐NH2 and N‐Ac‐β‐Ala‐d,l‐Tyr, respectively. Baseline separations were achieved for all three pairs of enantiomers: (i) for β‐Ala‐d,l‐Tyr in acidic background electrolyte composed of 32/50 mM tris(hydroxymethyl)aminomethane/H3PO4, pH 2.5, and 20 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin as chiral selector; (ii) for β‐Ala‐d,l‐Tyr‐NH2 enantiomers in acidic background electrolyte consisting of 48/50 mM tris(hydroxymethyl)aminomethane/H3PO4, pH 3.5, and 30 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin; and (iii) for enantiomers of N‐Ac‐β‐Ala‐d,l‐Tyr in alkaline background electrolyte composed of 50/49 mM Na2B4O7/NaOH, pH 10.5, and 60 mg/mL 2‐hydroxypropyl‐β‐cyclodextrin. From CE analyses of mixed samples of isolated β‐Ala‐Tyr and synthetic standards β‐Ala‐l‐Tyr and β‐Ala‐d‐Tyr, it turned out that isolated β‐Ala‐Tyr was pure l‐enantiomer. In addition, the average apparent binding constants, Kb, and average actual ionic mobilities of the complexes of β‐Ala‐d,l‐Tyr and its above derivatives with 2‐hydroxypropyl‐β‐cyclodextrin were determined. These complexes were weak, with Kb values ranging from 11.2 to 79.1 L/mol. Their cationic mobilities were equal to (5.6–9.2) × 10–9 m2/V/s, and anionic mobilities to (‐1.3–1.6) × 10–9 m2/V/s. |
Author | Schimperková, Tereza Jiráček, Jiří Šolínová, Veronika Kašička, Václav Sázelová, Petra |
Author_xml | – sequence: 1 givenname: Petra surname: Sázelová fullname: Sázelová, Petra organization: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences – sequence: 2 givenname: Veronika surname: Šolínová fullname: Šolínová, Veronika organization: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences – sequence: 3 givenname: Tereza surname: Schimperková fullname: Schimperková, Tereza organization: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences – sequence: 4 givenname: Jiří surname: Jiráček fullname: Jiráček, Jiří organization: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences – sequence: 5 givenname: Václav orcidid: 0000-0003-1719-1432 surname: Kašička fullname: Kašička, Václav email: kasicka@uochb.cas.cz organization: Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35462458$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1u1DAUxy1URNuBLUsUiQ0LZvBHnI8lGpUCqsSisLYc54V45LGD7WknO47AWXoEDsAhOAlOOu2iEqoX9rP1e38_-_9O0ZF1FhB6SfCKYEzfbUJQK4opxZjw6gk6IQXhy5qR_Og-xsUxOg1hk5CyqvEzdMx4XtCcVyfo97rXXppMWmnGoEPmuuzPzd-fv6SRdjQpaN9Ocxy9C9pCAttMx5C14PWVjPoKwnwGIept2js7STTattp-z5SzIUobZ93Yg_bpaDsY2Ke0ax37jCbxfmy924-Dd8N85VyAGpVxLeyj1zZrxkzJQRsj_ZiBARUT2zsPqeTn6GknTYAXh3WBvn04-7r-uLz4cv5p_f5iqXJM2JKyoskVZmVDa1VDhbmqyw4DVZSohvGCtV0pW1LUAKrrCqbKqiStIph3dV4xtkBvbnVTnT926b1iq4OCVJMFtwuClpQRwsuKPo4WnBPMprFArx-gG7fzyY1JMFlM6orhRL06ULtmC60YfPpsP4o7IxOQ3wIq-RQ8dELpONsRvdRGECymfhFTv4j7fklpqwdpd8r_TTjcc60NjI_Q4vPl5bos0iv_AaDh3dU |
CitedBy_id | crossref_primary_10_1002_jssc_202400352 crossref_primary_10_1016_j_talanta_2025_128004 crossref_primary_10_1002_jssc_70043 crossref_primary_10_1039_D2AY02111K crossref_primary_10_1002_elps_202300152 crossref_primary_10_1002_jssc_202400174 crossref_primary_10_1002_elps_202200279 crossref_primary_10_1016_j_chroma_2023_464214 crossref_primary_10_1002_jssc_202200453 |
Cites_doi | 10.1042/bj1130837 10.3390/molecules26102841 10.1016/S0021-9673(98)00602-5 10.3390/molecules26185636 10.1006/bbrc.1998.8644 10.1002/elps.200900023 10.1002/elps.202100243 10.1016/S0021-9673(00)00527-6 10.1021/j100011a065 10.1016/S0021-9673(97)01114-X 10.1002/elps.201700295 10.1002/1522-2683(200107)22:12<2416::AID-ELPS2416>3.0.CO;2-S 10.1002/elps.201900269 10.1002/1522-2683(200105)22:7<1385::AID-ELPS1385>3.0.CO;2-A 10.1002/elps.200305402 10.1007/s00018-021-03784-z 10.3390/molecules24061135 10.1016/0021-9673(92)87101-D 10.1016/j.trac.2020.115807 10.1002/jssc.201700852 10.1002/elps.201400145 10.1080/07388551.2020.1796576 10.1016/j.bbamem.2007.09.019 10.1016/j.trac.2019.115639 10.1002/jssc.201400825 10.1002/elps.200390124 10.1002/elps.201900144 10.1002/elps.1150180615 10.1016/j.chroma.2015.07.005 10.1016/S0021-9673(98)00667-0 10.1038/415389a 10.1002/jssc.201800817 10.1016/0378-4347(91)80228-5 10.1098/rstb.2015.0290 10.1002/1522-2683(200109)22:15<3163::AID-ELPS3163>3.0.CO;2-A 10.1002/psc.967 10.1016/j.chroma.2020.461158 10.1007/s10989-020-10110-x 10.1016/j.chroma.2020.461585 10.1016/S0022-1910(98)00026-2 10.1002/jssc.202100116 10.1016/j.chroma.2021.462342 10.2174/1381612033392279 10.1002/elps.202000151 10.1093/database/baaa061 10.1002/jssc.201400587 10.1002/elps.202100053 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH. 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH. – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7U5 8FD L7M 7X8 7S9 L.6 |
DOI | 10.1002/jssc.202200158 |
DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1615-9314 |
EndPage | 3338 |
ExternalDocumentID | 35462458 10_1002_jssc_202200158 JSSC7633 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Czech Science Foundation funderid: 20–03899S – fundername: European Regional Development Fund funderid: CZ.02.1.01/0.0/0.0/16_019/0000729 – fundername: Czech Academy of Sciences funderid: RVO 61388963 – fundername: Czech Academy of Sciences grantid: RVO 61388963 – fundername: Czech Science Foundation grantid: 20-03899S – fundername: European Regional Development Fund grantid: CZ.02.1.01/0.0/0.0/16_019/0000729 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TUS UB1 UPT VH1 W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WXSBR WYISQ XG1 XPP XV2 YQT ~IA ~KM ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT NPM RWI 1OB 7U5 8FD L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4013-236b4c037b29c9e805c97f0e2c21cb3563df7ad169eecff63c7871dc105f94833 |
IEDL.DBID | DR2 |
ISSN | 1615-9306 1615-9314 |
IngestDate | Fri Sep 05 17:26:40 EDT 2025 Fri Sep 05 09:40:09 EDT 2025 Wed Aug 13 06:20:06 EDT 2025 Wed Feb 19 02:26:12 EST 2025 Tue Jul 01 01:26:56 EDT 2025 Thu Apr 24 23:09:53 EDT 2025 Sun Jul 06 04:45:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | enantioseparation 2-hydroxypropyl-β-cyclodextrin chiral separation capillary electrophoresis Binding constant β-alanyl-tyrosine |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4013-236b4c037b29c9e805c97f0e2c21cb3563df7ad169eecff63c7871dc105f94833 |
Notes | All authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1719-1432 |
PMID | 35462458 |
PQID | 2710019830 |
PQPubID | 105495 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2723115782 proquest_miscellaneous_2655103333 proquest_journals_2710019830 pubmed_primary_35462458 crossref_citationtrail_10_1002_jssc_202200158 crossref_primary_10_1002_jssc_202200158 wiley_primary_10_1002_jssc_202200158_JSSC7633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Journal of separation science |
PublicationTitleAlternate | J Sep Sci |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 2021; 26 2021; 1652 2021; 42 2021; 44 2000; 894 2020; 41 2020; 40 1995; 99 2008; 14 2002; 415 2018; 41 1998; 796 2020; 124 2022; 43 2008; 1778 1992; 608 2001; 22 1998; 44 2019; 120 2018; 39 2009; 30 2020; 2020 2021; 78 2019; 40 2019; 42 2015; 1408 2020 2019; 24 2003; 9 2003; 24 2014; 37 1997; 18 1998; 822 2014; 35 1998; 824 1998; 246 1991; 569 1969; 113 2020; 1623 2016; 371 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 9 start-page: 159 year: 2003 end-page: 74 article-title: Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of beta‐alanyl‐tyrosine publication-title: Curr Pharm Design – volume: 608 start-page: 13 year: 1992 end-page: 22 article-title: Conversion of capillary zone electrophoresis to free‐flow zone electrophoresis using a simple model of their correlation: application to synthetic enkephalin‐type peptide analysis and preparation publication-title: J Chromatogr – volume: 24 start-page: 1069 year: 2003 end-page: 76 article-title: Migration order of dipeptide and tripeptide enantiomers in the presence of single isomer and randomly sulfated cyclodextrins as a function of pH publication-title: Electrophoresis – volume: 120 year: 2019 article-title: Chiral recognition in separation sciences. Part I: polysaccharide and cyclodextrin selectors publication-title: Trends Anal Chem – volume: 40 start-page: 2420 year: 2019 end-page: 37 article-title: Some thoughts about enantioseparations in capillary electrophoresis publication-title: Electrophoresis – volume: 44 start-page: 405 year: 1998 end-page: 11 article-title: Insect larvae contain substances toxic to adults: the discovery of paralysins publication-title: J Insect Physiol – volume: 2020 year: 2020 – volume: 78 start-page: 4259 year: 2021 end-page: 82 article-title: Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance publication-title: Cell Mol Life Sci – volume: 1652 year: 2021 article-title: Effects of amino acid‐derived chiral ionic liquids on cyclodextrin‐mediated capillary electrophoresis enantioseparations of dipeptides publication-title: J Chromatogr A. – volume: 37 start-page: 3548 year: 2014 end-page: 54 article-title: Capillary electrophoresis separation of peptide diastereomers that contain methionine sulfoxide by dual cyclodextrin‐crown ether systems publication-title: J Sep Sci – volume: 14 start-page: 670 year: 2008 end-page: 82 article-title: Mapping the peptide and protein immune response in the larvae of the fleshfly publication-title: J Pept Sci – volume: 113 start-page: 837 year: 1969 end-page: 41 article-title: Beta‐alanyl‐ ‐tyrosine: chemical synthesis, properties and occurrence in larvae of fleshfly Parker publication-title: Biochem J – volume: 822 start-page: 137 year: 1998 end-page: 45 article-title: Electrophoretic stereoisomer separation of aspartyl dipeptides and tripeptides in untreated fused‐silica and polyacrylamide‐coated capillaries using charged cyclodextrins publication-title: J Chromatogr A – volume: 246 start-page: 457 year: 1998 end-page: 62 article-title: Purification of toxic compounds from larvae of the gray fleshfly: the identification of paralysins publication-title: Biochem Biophys Res Commun – volume: 124 year: 2020 article-title: Chiral capillary electrophoresis publication-title: Trends Anal Chem. – volume: 18 start-page: 943 year: 1997 end-page: 9 article-title: Chiral separation of DL‐peptides and enantioselective interactions between teicoplanin and ‐peptides in capillary electrophoresis publication-title: Electrophoresis – volume: 39 start-page: 209 year: 2018 end-page: 34 article-title: Recent developments in capillary and microchip electroseparations of peptides (2015–mid 2017) publication-title: Electrophoresis – volume: 824 start-page: 91 year: 1998 end-page: 7 article-title: Evaluation of the enantioselective possibilities of sulfated cyclodextrins for the separation of aspartyl di‐ and tripeptides in capillary electrophoresis publication-title: J Chromatogr A – volume: 24 start-page: 2674 year: 2003 end-page: 9 article-title: Fast enantiomeric separation with vancomycin as chiral additive by co‐electroosmotic flow capillary electrophoresis: increase of the detection sensitivity by the partial filling technique publication-title: Electrophoresis – volume: 415 start-page: 389 year: 2002 end-page: 95 article-title: Antimicrobial peptides of multicellular organisms publication-title: Nature – volume: 894 start-page: 267 year: 2000 end-page: 72 article-title: Influence of the structure of cyclodextrins and amino acid sequence of dipeptides and tripeptides on the pH‐dependent reversal of the migration order in capillary electrophoresis publication-title: J Chromatogr A – volume: 1408 start-page: 243 year: 2015 end-page: 9 article-title: Determination of acid dissociation constants of triazole fungicides by pressure assisted capillary electrophoresis publication-title: J Chromatogr A – volume: 42 start-page: 385 year: 2019 end-page: 97 article-title: Coupling of CE‐MS for protein and peptide analysis publication-title: J Sep Sci – volume: 796 start-page: 211 year: 1998 end-page: 20 article-title: Theory of the correlation between capillary and free‐flow zone electrophoresis and its use for the conversion of analytical capillary separations to continuous free‐flow preparative processes: application to analysis and preparation of fragments of insulin publication-title: J Chromatogr A – volume: 37 start-page: 2447 year: 2014 end-page: 66 article-title: Advances in chiral separations of small peptides by capillary electrophoresis and chromatography publication-title: J Sep Sci – volume: 569 start-page: 123 year: 1991 end-page: 74 article-title: Application of capillary isotachophoresis in peptide analysis publication-title: J Chromatogr – volume: 41 start-page: 385 year: 2018 end-page: 97 article-title: Strategies for analysis of isomeric peptides publication-title: J Sep Sci – volume: 99 start-page: 3875 year: 1995 end-page: 80 article-title: Capillary electrophoresis as a method for determining binding constants: application to the binding of cyclodextrins and nitrophenolates publication-title: J Phys Chem – volume: 1778 start-page: 113 year: 2008 end-page: 24 article-title: Interactions of the dipeptide paralysin beta‐Ala‐Tyr and the amino acid Glu with phospholipid bilayers publication-title: Biochim Biophys Acta‐Biomembr – volume: 1623 year: 2020 article-title: Enantioseparation of analogs of the dipeptide alanyl‐phenylalanine by capillary electrophoresis using neutral cyclodextrins as chiral selectors publication-title: J Chromatogr A – volume: 30 start-page: S222 year: 2009 end-page: 8 article-title: Recent developments in peptide stereoisomer separations by capillary electromigration techniques publication-title: Electrophoresis – volume: 44 start-page: 2602 year: 2021 end-page: 11 article-title: Mixed‐mode open tubular column for peptide separations by capillary electrochromatography publication-title: J Sep Sci – volume: 40 start-page: 978 year: 2020 end-page: 92 article-title: Antimicrobial peptides as therapeutic agents: opportunities and challenges publication-title: Crit Rev Biotechnol – volume: 43 start-page: 82 year: 2022 end-page: 108 article-title: Recent developments in capillary and microchip electroseparations of peptides (2019–mid 2021) publication-title: Electrophoresis – volume: 42 start-page: 1676 year: 2021 end-page: 708 article-title: Native and substituted cyclodextrins as chiral selectors for capillary electrophoresis enantioseparations: structures, features, application, and molecular modeling publication-title: Electrophoresis – volume: 26 start-page: 5636 year: 2021 article-title: Application of capillary and free‐flow zone electrophoresis for analysis and purification of antimicrobial beta‐alanyl‐tyrosine from hemolymph of fleshfly publication-title: Molecules – volume: 26 start-page: 2841 year: 2021 article-title: Chiral capillary electrokinetic chromatography: principle and applications, detection and identification, design of experiment, and exploration of chiral recognition using molecular modeling publication-title: Molecules – year: 2020 – volume: 22 start-page: 1385 year: 2001 end-page: 93 article-title: Separation of dipeptide and tripeptide enantiomers in capillary electrophoresis using carboxymethyl‐beta‐cyclodextrin and succinyl‐beta‐cyclodextrin: influence of the amino acid sequence, nature of the cyclodextrin and pH publication-title: Electrophoresis – volume: 22 start-page: 2416 year: 2001 end-page: 23 article-title: Influence of the amino acid sequence and nature of the cyclodextrin on the separation of small peptide enantiomers by capillary electrophoresis using randomly substituted and single isomer sulfated and sulfonated cyclodextrins publication-title: Electrophoresis – volume: 27 start-page: 555 year: 2021 end-page: 77 article-title: Antimicrobial peptides as potential therapeutic agents: a review publication-title: Int J Pept Res Ther – volume: 35 start-page: 2701 year: 2014 end-page: 21 article-title: Application of cyclodextrins in chiral capillary electrophoresis publication-title: Electrophoresis – volume: 1623 year: 2020 article-title: Enantioseparation of alanyl‐phenylalanine analogs by capillary electrophoresis using negatively charged cyclodextrins as chiral selectors publication-title: J Chromatogr A – volume: 24 start-page: 1135 year: 2019 article-title: Chiral selectors in capillary electrophoresis: trends during 2017–2018 publication-title: Molecules – volume: 371 year: 2016 article-title: Diversity, evolution and medical applications of insect antimicrobial peptides publication-title: Philos Trans R Soc B‐Biol Sci – volume: 42 start-page: 38 year: 2021 end-page: 57 article-title: Past, present, and future developments in enantioselective analysis using capillary electromigration techniques publication-title: Electrophoresis – volume: 41 start-page: 10 year: 2020 end-page: 35 article-title: Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019) publication-title: Electrophoresis – volume: 22 start-page: 3163 year: 2001 end-page: 70 article-title: pH‐dependence of complexation constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers publication-title: Electrophoresis – ident: e_1_2_9_4_1 doi: 10.1042/bj1130837 – ident: e_1_2_9_20_1 doi: 10.3390/molecules26102841 – ident: e_1_2_9_36_1 doi: 10.1016/S0021-9673(98)00602-5 – ident: e_1_2_9_14_1 doi: 10.3390/molecules26185636 – ident: e_1_2_9_2_1 doi: 10.1006/bbrc.1998.8644 – ident: e_1_2_9_21_1 doi: 10.1002/elps.200900023 – ident: e_1_2_9_27_1 doi: 10.1002/elps.202100243 – ident: e_1_2_9_37_1 doi: 10.1016/S0021-9673(00)00527-6 – ident: e_1_2_9_48_1 doi: 10.1021/j100011a065 – ident: e_1_2_9_16_1 doi: 10.1016/S0021-9673(97)01114-X – ident: e_1_2_9_47_1 doi: 10.1002/elps.201700295 – ident: e_1_2_9_41_1 doi: 10.1002/1522-2683(200107)22:12<2416::AID-ELPS2416>3.0.CO;2-S – ident: e_1_2_9_26_1 doi: 10.1002/elps.201900269 – ident: e_1_2_9_38_1 doi: 10.1002/1522-2683(200105)22:7<1385::AID-ELPS1385>3.0.CO;2-A – ident: e_1_2_9_33_1 doi: 10.1002/elps.200305402 – ident: e_1_2_9_10_1 doi: 10.1007/s00018-021-03784-z – ident: e_1_2_9_45_1 doi: 10.3390/molecules24061135 – ident: e_1_2_9_15_1 doi: 10.1016/0021-9673(92)87101-D – ident: e_1_2_9_18_1 doi: 10.1016/j.trac.2020.115807 – ident: e_1_2_9_23_1 doi: 10.1002/jssc.201700852 – ident: e_1_2_9_28_1 doi: 10.1002/elps.201400145 – ident: e_1_2_9_7_1 doi: 10.1080/07388551.2020.1796576 – ident: e_1_2_9_13_1 doi: 10.1016/j.bbamem.2007.09.019 – ident: e_1_2_9_29_1 doi: 10.1016/j.trac.2019.115639 – ident: e_1_2_9_31_1 doi: 10.1002/jssc.201400825 – ident: e_1_2_9_40_1 doi: 10.1002/elps.200390124 – ident: e_1_2_9_17_1 doi: 10.1002/elps.201900144 – ident: e_1_2_9_34_1 doi: 10.1002/elps.1150180615 – ident: e_1_2_9_49_1 doi: 10.1016/j.chroma.2015.07.005 – ident: e_1_2_9_35_1 doi: 10.1016/S0021-9673(98)00667-0 – ident: e_1_2_9_8_1 doi: 10.1038/415389a – ident: e_1_2_9_24_1 doi: 10.1002/jssc.201800817 – ident: e_1_2_9_46_1 doi: 10.1016/0378-4347(91)80228-5 – ident: e_1_2_9_11_1 doi: 10.1098/rstb.2015.0290 – ident: e_1_2_9_39_1 doi: 10.1002/1522-2683(200109)22:15<3163::AID-ELPS3163>3.0.CO;2-A – ident: e_1_2_9_5_1 – ident: e_1_2_9_44_1 doi: 10.1002/psc.967 – ident: e_1_2_9_42_1 doi: 10.1016/j.chroma.2020.461158 – ident: e_1_2_9_6_1 doi: 10.1007/s10989-020-10110-x – ident: e_1_2_9_43_1 doi: 10.1016/j.chroma.2020.461585 – ident: e_1_2_9_3_1 doi: 10.1016/S0022-1910(98)00026-2 – ident: e_1_2_9_25_1 doi: 10.1002/jssc.202100116 – ident: e_1_2_9_32_1 doi: 10.1016/j.chroma.2021.462342 – ident: e_1_2_9_12_1 doi: 10.2174/1381612033392279 – ident: e_1_2_9_19_1 doi: 10.1002/elps.202000151 – ident: e_1_2_9_9_1 doi: 10.1093/database/baaa061 – ident: e_1_2_9_22_1 doi: 10.1002/jssc.201400587 – ident: e_1_2_9_30_1 doi: 10.1002/elps.202100053 |
SSID | ssj0017890 |
Score | 2.4036202 |
Snippet | Chiral CE methods were developed for the elucidation of l‐ or d‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr)... Chiral CE methods were developed for the elucidation of l ‐ or d ‐configuration of tyrosine residue in antimicrobial dipeptide β‐alanyl‐tyrosine (β‐Ala‐Tyr)... Chiral CE methods were developed for the elucidation of l- or d-configuration of tyrosine residue in antimicrobial dipeptide β-alanyl-tyrosine (β-Ala-Tyr)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3328 |
SubjectTerms | 2‐hydroxypropyl‐β‐cyclodextrin Antiinfectives and antibacterials Binding Binding constant capillary electrophoresis chiral separation Cyclodextrins dipeptides Electrolytes Electrophoresis Enantiomers enantioseparation hemolymph Larvae Sarcophaga bullata separation Tyrosine β‐alanyl‐tyrosine |
Title | Chiral analysis of β‐alanyl‐d,l‐tyrosine and its derivatives and estimation of binding constants of their complexes with 2‐hydroxypropyl‐β‐cyclodextrin by capillary electrophoresis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjssc.202200158 https://www.ncbi.nlm.nih.gov/pubmed/35462458 https://www.proquest.com/docview/2710019830 https://www.proquest.com/docview/2655103333 https://www.proquest.com/docview/2723115782 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1615-9314 dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0017890 issn: 1615-9306 databaseCode: ABDBF dateStart: 20121001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1615-9314 dateEnd: 20240929 omitProxy: false ssIdentifier: ssj0017890 issn: 1615-9306 databaseCode: ADMLS dateStart: 20121001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1615-9306 databaseCode: DR2 dateStart: 20010101 customDbUrl: isFulltext: true eissn: 1615-9314 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017890 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQL4UDlPK3UJCRkLjgNrHj_BzRiqqqBAdKpd4i_0W7dLW72mQR4cQj8Cw8Qh-gD8GTMGMnoQsChMghipzxZBKP7XE88w0hz3JrrXJcwuiXJixxuWJaupxpkUkpXCSkweDk12_So9Pk-EyeXYniD_gQww837Bl-vMYOrnR98AM09H1dIwQhR6cgidG-sZB-n_btgB8VY5Qnrrhg2mYFGMc9amPEDzarb85Kv5iam5arn3oObxHVCx08Ts73143eN59-wnP8n7faITc7u5S-DIp0m1xz812yPe7Twe2SG1eQC--Qi_FkugJ61WGa0EVFL79--_wFPSXbGVzYF3huWnhfqAaElk6bmlpg8MGDjde-DEE-QvQkstBTH2RDTbBaG8_X72VQ7_vuPkI1_HVMOTCftBY_CXyXpX-kF8C0ZoZh-g0ISnVLjVpiYqVVS7uMP8vJYuVA5Lvk9PDVu_ER69JBMIOLQMZFqhMTiUzzwhQuj6Qpsipy3PDYaGh8YatM2TgtnDNVlQoDg1FsDViQVZHkQtwjW_PF3D0gFBM5CFnZzEUqqXLgY7XUkqsCVsdKyBFhvTqUpsNKx5QdszKgPPMS26kc2mlEng_0y4AS8lvKvV67ym60qEuOEEtxkYtoRJ4Ot6F9cfNGzd1iDTSpRPBDOP5Ak3EPnpTzEbkfNHcQR8gk5QkKwLz-_UXO8vjkZAxzj3j4j_SPyHUsDG54e2SrWa3dY7DbGv3E983v7yVHpg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BORQO_BQKCwWMhMSFtIkd5-eIFqqltD3QVuIWxT_RLqx2V5ssIpx4BJ6FR-ABeAiehBnnBxYECJFDFCXjySQe22N75huAh4kxJrdcYu8XhV5ok9xT0iaeErGUwvpCagpOPjqORmfhwSvZeRNSLEyDD9EvuFHLcP01NXBakN77jhr6uiwJg5CTV5BMzsMF2qSjtvn0ZY8gFVCcJ825cOD2UjSPO9xGn--tl18fl34xNtdtVzf47F8B1Ynd-Jy82V1Vale__wnR8b--6ypcbk1T9qTRpWtwzs62YHPYZYTbgks_gBdeh8_D8WSJ9HkLa8LmBfvy6euHj-QsWU_xwjymc1XjB2MxJDRsUpXMIIO3Dm-8dPcI56MJoCQWauLibJhuDNfK8XXbGcy5v9t3WIxWjxlH5uPa0D_BH7Nwr3QC6FpPKVK_QkGZqpnOF5RbaVmzNunPYjxfWhT5BpztPzsdjrw2I4SnaR7ocRGpUPsiVjzVqU18qdO48C3XPNBKyEiYIs5NEKXW6qKIhMb-KDAajcgiDRMhtmFjNp_ZW8Aol4OQhYmtn4dFgnyMkkryPMUJci7kALxOHzLdwqVT1o5p1gA984zqKevraQCPevpFAxTyW8qdTr2ytsMoM04oS0GaCH8AD_rHWL-0f5PP7HyFNJEk_EM8_kATc4eflPAB3GxUtxdHyDDiIQngOQX8i5zZwcnJEIcfcfsf6e_D5uj06DA7fH784g5cJILGK28HNqrlyt5FM65S91xD_QYgF0vC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSPwcCpQCWwoYCYkLaRM7zs8RLaxKgQpRKvUW-S_ahdVutMkiwolH4Fn6CH0AHoInYcb5oQsChMghipLxZBKP7bE98w0hDxNjjLRMQO8XhV5oE-kpYRNP8VgIbn0uNAYnvzqI9o7C_WNxfCaKv8GH6BfcsGW4_hobeGHy3R-goe_KEiEIGToFieQ8uRBGMMVCs-hNDyAVYJgnTrlg3PZSsI472Eaf7a6WXx2WfrE1V01XN_aMrhLZSd24nLzfWVZqR3_6CdDxfz7rGllvDVP6pNGk6-ScnW2QS8MuH9wGuXIGuvAGOR2OJwugly2oCZ3n9OvJt89f0FWynsKFeYznqobvhWJAaOikKqkBBh8c2njp7iHKRxM-iSzUxEXZUN2YrZXj6zYzqHN-tx-hGK4dUwbMx7XBXwL_pXCvdALoWk8xTr8CQamqqZYFZlZa1LRN-VOM5wsLIm-So9Gzt8M9r80H4WmcBXqMRyrUPo8VS3VqE1_oNM59yzQLtOIi4iaPpQmi1Fqd5xHX0BsFRoMJmadhwvlNsjabz-xtQjGTAxe5ia0vwzwBPkYJJZhMYXosuRgQr1OHTLdg6ZizY5o1MM8sw3rK-noakEc9fdHAhPyWcrvTrqztLsqMIcZSkCbcH5AH_WOoX9y9kTM7XwJNJBD9EI4_0MTMoSclbEBuNZrbi8NFGLEQBfCc_v1Fzmz_8HAIgw_f-kf6--Ti66ej7OXzgxd3yGV83rjkbZO1arG0d8GGq9Q910y_Ax2oSnE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chiral+analysis+of+%CE%B2%E2%80%90alanyl%E2%80%90d%2Cl%E2%80%90tyrosine+and+its+derivatives+and+estimation+of+binding+constants+of+their+complexes+with+2%E2%80%90hydroxypropyl%E2%80%90%CE%B2%E2%80%90cyclodextrin+by+capillary+electrophoresis&rft.jtitle=Journal+of+separation+science&rft.au=S%C3%A1zelov%C3%A1%2C+Petra&rft.au=%C5%A0ol%C3%ADnov%C3%A1%2C+Veronika&rft.au=Schimperkov%C3%A1%2C+Tereza&rft.au=Jir%C3%A1%C4%8Dek%2C+Ji%C5%99%C3%AD&rft.date=2022-09-01&rft.issn=1615-9306&rft.volume=45&rft.issue=17+p.3328-3338&rft.spage=3328&rft.epage=3338&rft_id=info:doi/10.1002%2Fjssc.202200158&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9306&client=summon |