A Machine Learning Algorithm to Predict the Probability of (Occult) Posterior Malleolar Fractures Associated With Tibial Shaft Fractures to Guide "Malleolus First" Fixation

To develop an accurate machine learning (ML) predictive model incorporating patient, fracture, and trauma characteristics to identify individual patients at risk of an (occult) PMF. Databases of 2 studies including patients with TSFs from 2 Level 1 trauma centers were combined for analysis. Using te...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic trauma Vol. 34; no. 3; p. 131
Main Authors Hendrickx, Laurent A M, Sobol, Garret L, Langerhuizen, David W G, Bulstra, Anne Eva J, Hreha, Jeremy, Sprague, Sheila, Sirkin, Michael S, Ring, David, Kerkhoffs, Gino M M J, Jaarsma, Ruurd L, Doornberg, Job N
Format Journal Article
LanguageEnglish
Published United States 01.03.2020
Online AccessGet more information
ISSN1531-2291
DOI10.1097/BOT.0000000000001663

Cover

Abstract To develop an accurate machine learning (ML) predictive model incorporating patient, fracture, and trauma characteristics to identify individual patients at risk of an (occult) PMF. Databases of 2 studies including patients with TSFs from 2 Level 1 trauma centers were combined for analysis. Using ten-fold cross-validation, 4 supervised ML algorithms were trained in recognizing patterns associated with PMFs: (1) Bayes point machine; (2) support vector machine; (3) neural network; and (4) boosted decision tree. Performance of each ML algorithm was evaluated and compared based on (1) C-statistic; (2) calibration slope and intercept; and (3) Brier score. The best-performing ML algorithm was incorporated into an online open-access prediction tool. Total data set included 263 patients, of which 28% had a PMF. Training of the Bayes point machine resulted in the best-performing prediction model reflected by good C-statistic, calibration slope, calibration intercept, and Brier score of 0.89, 1.02, -0.06, and 0.106, respectively. This prediction model was deployed as an open-access online prediction tool. A ML-based prediction model accurately predicted the probability of a (occult) PMF in patients with a TSF based on patient- and fracture-specific characteristics. This prediction model can guide surgeons in their diagnostic workup and preoperative planning. Further research is required to externally validate the model before implementation in clinical practice. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
AbstractList To develop an accurate machine learning (ML) predictive model incorporating patient, fracture, and trauma characteristics to identify individual patients at risk of an (occult) PMF. Databases of 2 studies including patients with TSFs from 2 Level 1 trauma centers were combined for analysis. Using ten-fold cross-validation, 4 supervised ML algorithms were trained in recognizing patterns associated with PMFs: (1) Bayes point machine; (2) support vector machine; (3) neural network; and (4) boosted decision tree. Performance of each ML algorithm was evaluated and compared based on (1) C-statistic; (2) calibration slope and intercept; and (3) Brier score. The best-performing ML algorithm was incorporated into an online open-access prediction tool. Total data set included 263 patients, of which 28% had a PMF. Training of the Bayes point machine resulted in the best-performing prediction model reflected by good C-statistic, calibration slope, calibration intercept, and Brier score of 0.89, 1.02, -0.06, and 0.106, respectively. This prediction model was deployed as an open-access online prediction tool. A ML-based prediction model accurately predicted the probability of a (occult) PMF in patients with a TSF based on patient- and fracture-specific characteristics. This prediction model can guide surgeons in their diagnostic workup and preoperative planning. Further research is required to externally validate the model before implementation in clinical practice. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.
Author Sprague, Sheila
Kerkhoffs, Gino M M J
Langerhuizen, David W G
Sirkin, Michael S
Sobol, Garret L
Hreha, Jeremy
Jaarsma, Ruurd L
Doornberg, Job N
Ring, David
Bulstra, Anne Eva J
Hendrickx, Laurent A M
Author_xml – sequence: 1
  givenname: Laurent A M
  surname: Hendrickx
  fullname: Hendrickx, Laurent A M
  organization: Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
– sequence: 2
  givenname: Garret L
  surname: Sobol
  fullname: Sobol, Garret L
  organization: Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, NJ
– sequence: 3
  givenname: David W G
  surname: Langerhuizen
  fullname: Langerhuizen, David W G
  organization: Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
– sequence: 4
  givenname: Anne Eva J
  surname: Bulstra
  fullname: Bulstra, Anne Eva J
  organization: Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
– sequence: 5
  givenname: Jeremy
  surname: Hreha
  fullname: Hreha, Jeremy
  organization: Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, NJ
– sequence: 6
  givenname: Sheila
  surname: Sprague
  fullname: Sprague, Sheila
  organization: Department of Surgery, McMaster University, Hamilton, ON, Canada; and
– sequence: 7
  givenname: Michael S
  surname: Sirkin
  fullname: Sirkin, Michael S
  organization: Department of Orthopaedic Surgery, Rutgers New Jersey Medical School, Newark, NJ
– sequence: 8
  givenname: David
  surname: Ring
  fullname: Ring, David
  organization: Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX
– sequence: 9
  givenname: Gino M M J
  surname: Kerkhoffs
  fullname: Kerkhoffs, Gino M M J
  organization: Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
– sequence: 10
  givenname: Ruurd L
  surname: Jaarsma
  fullname: Jaarsma, Ruurd L
  organization: Department of Orthopaedic and Trauma Surgery, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
– sequence: 11
  givenname: Job N
  surname: Doornberg
  fullname: Doornberg, Job N
  organization: Department of Orthopaedic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32108120$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtKA0EQRRtRzEP_QKRwpYvEfkzmsRyDiUIkASMuQ78m09KZDt09YP7Jj3TACLmbU1DFKbgDdN64RiN0Q_CY4CJ7fFqux_gkJE3ZGeqTCSMjSgvSQ4MQvrpFjim9RD1GCc4JxX30U8Ibl7VpNCw0941ptlDarfMm1juIDlZeKyMjxFp3sxNcGGviAVwF90spWxsfYOVC1N4437ms1c5yDzPPZWy9DlCG4KThUSv47KywNsJwC-81r-LJWfdr3hql4e4oaQPMjA_xrsM3j8Y1V-ii4jbo6yOH6GP2vJ6-jBbL-eu0XIxkggkbEZUxxXKhGCmyQsikkEzRSk10kuTZhGpMEimwqIqcpZKRjBKdCZ4nRKc8rzI6RLd_3n0rdlpt9t7suD9s_mujv5NBcbM
CitedBy_id crossref_primary_10_1007_s00068_022_02156_x
crossref_primary_10_1088_1742_6596_1982_1_012114
crossref_primary_10_1007_s00256_021_03824_6
crossref_primary_10_1302_2633_1462_51_BJO_2023_0095_R1
crossref_primary_10_2106_JBJS_20_00903
crossref_primary_10_1007_s00590_020_02733_z
crossref_primary_10_1155_2021_4392595
crossref_primary_10_1186_s13018_021_02502_6
crossref_primary_10_1177_24730114221151079
crossref_primary_10_1007_s00590_022_03421_w
crossref_primary_10_1097_CORR_0000000000001360
crossref_primary_10_1007_s00590_022_03371_3
crossref_primary_10_12998_wjcc_v11_i18_4231
crossref_primary_10_1302_0301_620X_104B8_BJJ_2022_0119_R1
crossref_primary_10_1016_j_asjsur_2021_09_042
crossref_primary_10_3390_diagnostics14070767
crossref_primary_10_1097_CORR_0000000000002283
crossref_primary_10_1302_2058_5241_5_190092
crossref_primary_10_1016_j_jhsa_2022_02_023
crossref_primary_10_1302_2633_1462_43_BJO_2022_0162_R1
crossref_primary_10_1007_s00132_023_04426_x
crossref_primary_10_1097_CORR_0000000000001448
crossref_primary_10_1016_j_engmed_2024_100020
crossref_primary_10_1186_s41747_024_00422_8
ContentType Journal Article
CorporateAuthor Machine Learning Consortium
CorporateAuthor_xml – name: Machine Learning Consortium
DBID NPM
DOI 10.1097/BOT.0000000000001663
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1531-2291
ExternalDocumentID 32108120
Genre Journal Article
GroupedDBID ---
.-D
.3C
.GJ
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAQKA
AARTV
AASCR
AASOK
AAWTL
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADFPA
ADGGA
ADGHP
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFUWQ
AGINI
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
BS7
BYPQX
C45
CS3
DIWNM
DU5
DUNZO
E.X
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K8S
KD2
KMI
L-C
N4W
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
R2J
R58
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
ZFV
ZGI
ZXP
ZZMQN
ID FETCH-LOGICAL-c4013-1d73d38bd31979bc49c3d2fd5e448752e014cb0bf9836c31721e7ba841e6a8f72
IngestDate Mon Jul 21 06:06:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4013-1d73d38bd31979bc49c3d2fd5e448752e014cb0bf9836c31721e7ba841e6a8f72
PMID 32108120
ParticipantIDs pubmed_primary_32108120
PublicationCentury 2000
PublicationDate 2020-Mar
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-Mar
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of orthopaedic trauma
PublicationTitleAlternate J Orthop Trauma
PublicationYear 2020
SSID ssj0008022
Score 2.411065
Snippet To develop an accurate machine learning (ML) predictive model incorporating patient, fracture, and trauma characteristics to identify individual patients at...
SourceID pubmed
SourceType Index Database
StartPage 131
Title A Machine Learning Algorithm to Predict the Probability of (Occult) Posterior Malleolar Fractures Associated With Tibial Shaft Fractures to Guide "Malleolus First" Fixation
URI https://www.ncbi.nlm.nih.gov/pubmed/32108120
Volume 34
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBfpBqMvY2Pf7cZR9rAR3FmyE8eP6VgXRtcNltK-FUmWl0AalzSG0r9p_-DedifJsmk79uEHYywjC92P091JvzvGXmslzCAWMjKSJ1EqeRFJoVWEK4kqEpHHUhMb-fPhcHKUfjoZnPR6Pzunluq12tVXt_JK_keq-A7lSizZf5Bs6BRf4DPKF-8oYbz_lYzHVDdoRnbiQYhwLL5X6O_Pzsio_LqibRjLViRGgHI5ue2eOmUZ1ZR2g8ICVLEXx1utsL_FwpC3Sxat3V24CBJE0_SYorZTxzL5NpPluvMZ_u9jPS_IZhW-m_qivz9fEatE4MNlC4Kb1jBtH6H_TuOlshV1u1xMzLKg3P2XDY2bTi-MO3WQK-WrhNlTx_0QzT6wlOZZPb_yqpWO7_eP22pie_WCAj3uXCdOInoVfpfMh0HQ5w3nwHZNo7p5JISr_dXodh8onXddf6uouVt7biwgLjHx3pepS2zpLz50WriDqfMzCyqiQKGNFP-59Vpa76Zpg21kGdUcOaQwkzchiP_c8Dzz7N1tw9lk95ournlE1jKaPmD3vRBh7PD5kPXM8hH7MQaPTWiwCQGbsK7AYxMQm9DBJlQlvHHIfAsBlxBwCQFw0OISCJfgcAkWl53P8F8Wl7ATUAkWlTvQYPIxO9r_MH0_iXxlkEhTPCDiRZYUyQi1Cc-zXOk010khymJgUnLAhUHHX6tYlfkoGeqEwhwmU3KUcjOUozITT9idZbU0zxjEJeXcFaqUsUkToaThueFykEh0bdAef86eusk9PXfpX06baX_x25YtttlCdJvdLVHfmJdovK7VKyvoX6TKm7A
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Machine+Learning+Algorithm+to+Predict+the+Probability+of+%28Occult%29+Posterior+Malleolar+Fractures+Associated+With+Tibial+Shaft+Fractures+to+Guide+%22Malleolus+First%22+Fixation&rft.jtitle=Journal+of+orthopaedic+trauma&rft.au=Hendrickx%2C+Laurent+A+M&rft.au=Sobol%2C+Garret+L&rft.au=Langerhuizen%2C+David+W+G&rft.au=Bulstra%2C+Anne+Eva+J&rft.date=2020-03-01&rft.eissn=1531-2291&rft.volume=34&rft.issue=3&rft.spage=131&rft_id=info:doi/10.1097%2FBOT.0000000000001663&rft_id=info%3Apmid%2F32108120&rft_id=info%3Apmid%2F32108120&rft.externalDocID=32108120