Selection, tuning, and adaptation in mouse NK cell education
Summary Natural killer (NK) cells recognize transformed cells with an array of germline‐encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (MHC‐I) molecules, providing a mechanism by which NK cells maintain self‐tolerance yet eliminat...
Saved in:
Published in | Immunological reviews Vol. 267; no. 1; pp. 167 - 177 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0105-2896 1600-065X |
DOI | 10.1111/imr.12330 |
Cover
Abstract | Summary
Natural killer (NK) cells recognize transformed cells with an array of germline‐encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (MHC‐I) molecules, providing a mechanism by which NK cells maintain self‐tolerance yet eliminate cells expressing reduced levels of MHC‐I. Additionally, MHC‐I molecules are required for NK cell education, a process in which NK cells acquire responsiveness. In this review, we discuss three facets of MHC class I‐dependent education of mouse NK cells: skewing of the inhibitory receptor repertoire, induction of functional responsiveness, and tuning in response to changes in MHC‐I expression. We discuss prevailing models for education such as licensing and disarming and propose a model for positive selection of ‘useful’ NK cell subsets. Furthermore, we argue that both repertoire skewing and functional NK cell education may be altered in mature NK cells subject to changes in MHC‐I input and suggest that this process may provide increased dynamics to the NK cell system. |
---|---|
AbstractList | Natural killer (
NK
) cells recognize transformed cells with an array of germline‐encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (
MHC
‐I) molecules, providing a mechanism by which
NK
cells maintain self‐tolerance yet eliminate cells expressing reduced levels of
MHC
‐I. Additionally,
MHC
‐I molecules are required for
NK
cell education, a process in which
NK
cells acquire responsiveness. In this review, we discuss three facets of
MHC
class I‐dependent education of mouse
NK
cells: skewing of the inhibitory receptor repertoire, induction of functional responsiveness, and tuning in response to changes in
MHC
‐I expression. We discuss prevailing models for education such as licensing and disarming and propose a model for positive selection of ‘useful’
NK
cell subsets. Furthermore, we argue that both repertoire skewing and functional
NK
cell education may be altered in mature
NK
cells subject to changes in
MHC
‐I input and suggest that this process may provide increased dynamics to the
NK
cell system. Natural killer (NK) cells recognize transformed cells with an array of germline-encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (MHC-I) molecules, providing a mechanism by which NK cells maintain self-tolerance yet eliminate cells expressing reduced levels of MHC-I. Additionally, MHC-I molecules are required for NK cell education, a process in which NK cells acquire responsiveness. In this review, we discuss three facets of MHC class I-dependent education of mouse NK cells: skewing of the inhibitory receptor repertoire, induction of functional responsiveness, and tuning in response to changes in MHC-I expression. We discuss prevailing models for education such as licensing and disarming and propose a model for positive selection of 'useful' NK cell subsets. Furthermore, we argue that both repertoire skewing and functional NK cell education may be altered in mature NK cells subject to changes in MHC-I input and suggest that this process may provide increased dynamics to the NK cell system. Summary Natural killer (NK) cells recognize transformed cells with an array of germline‐encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind major histocompatibility complex class I (MHC‐I) molecules, providing a mechanism by which NK cells maintain self‐tolerance yet eliminate cells expressing reduced levels of MHC‐I. Additionally, MHC‐I molecules are required for NK cell education, a process in which NK cells acquire responsiveness. In this review, we discuss three facets of MHC class I‐dependent education of mouse NK cells: skewing of the inhibitory receptor repertoire, induction of functional responsiveness, and tuning in response to changes in MHC‐I expression. We discuss prevailing models for education such as licensing and disarming and propose a model for positive selection of ‘useful’ NK cell subsets. Furthermore, we argue that both repertoire skewing and functional NK cell education may be altered in mature NK cells subject to changes in MHC‐I input and suggest that this process may provide increased dynamics to the NK cell system. |
Author | Luu Thanh, Thuy Höglund, Petter Kadri, Nadir |
Author_xml | – sequence: 1 givenname: Nadir surname: Kadri fullname: Kadri, Nadir organization: Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden – sequence: 2 givenname: Thuy surname: Luu Thanh fullname: Luu Thanh, Thuy organization: Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden – sequence: 3 givenname: Petter surname: Höglund fullname: Höglund, Petter email: petter.hoglund@ki.se organization: Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26284477$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:131840477$$DView record from Swedish Publication Index |
BookMark | eNp1kUtLxDAUhYMoOj4W_gHpUsFqHs2j4EbEUXEcwQeKm5BJbyXax9i0qP_ejNNxIZpNws13Tm7OXUfLVV0BQtsEH5CwDl3ZHBDKGF5CAyIwjrHgj8togAnmMVWpWEPr3r9gTCSjySpao4KqJJFygI5uoQDburraj9quctXzfmSqLDKZmbZmVo9cFZV15yEaX0YWiiKCrLPfV5toJTeFh61-30D3w9O7k_N4dH12cXI8im0SWogTmUrJcZ5ZmoMiSSr4BHPJlUjZRFmVkVwKmwsMGSjOKTcq5VbxzCiaUsBsA8VzX_8O026ip40rTfOpa-N0X3oNJ9CcEIZp4Hfn_LSp3zrwrS6dn7VuKgg_0USG51kiOQnoTo92kxKyH-tFQgE4nAO2qb1vINfWzYNpG-MKTbCezUCHGejvGQTF3i_FwvQvtnd_dwV8_g_qi6ubhaLPwvkWPn4UpnnVQjLJ9cP4TI-HI0Ifhk86ZV_7iaKq |
CitedBy_id | crossref_primary_10_3389_fimmu_2016_00016 crossref_primary_10_3389_fimmu_2017_00924 crossref_primary_10_26508_lsa_202000723 crossref_primary_10_3389_fimmu_2020_02189 crossref_primary_10_1371_journal_pgen_1007163 crossref_primary_10_1016_j_intimp_2020_106888 crossref_primary_10_1002_iid3_156 crossref_primary_10_3389_fimmu_2021_616853 crossref_primary_10_3390_v8040095 crossref_primary_10_1038_cmi_2016_26 crossref_primary_10_1080_2162402X_2016_1235106 crossref_primary_10_3389_fimmu_2016_00347 crossref_primary_10_1111_tan_13939 crossref_primary_10_1016_j_jri_2021_103309 crossref_primary_10_2139_ssrn_3351831 crossref_primary_10_1016_j_molimm_2018_05_001 crossref_primary_10_3389_fimmu_2019_01692 crossref_primary_10_1038_s41467_019_13032_5 crossref_primary_10_3390_ijms20184514 crossref_primary_10_1038_srep37996 crossref_primary_10_1038_nn_4227 crossref_primary_10_1126_scisignal_abq0752 crossref_primary_10_1111_imr_12338 crossref_primary_10_3390_cancers11010055 crossref_primary_10_3389_fimmu_2022_854312 crossref_primary_10_1002_eji_201948233 crossref_primary_10_3390_cells11061017 crossref_primary_10_1016_j_molonc_2015_10_001 |
Cites_doi | 10.1182/blood-2012-12-471607 10.1146/annurev-immunol-020711-075005 10.1016/j.smim.2014.02.007 10.4049/jimmunol.163.1.212 10.1038/ncomms6108 10.3389/fimmu.2013.00065 10.1073/pnas.1318255110 10.1016/j.it.2009.01.006 10.1016/j.imlet.2012.08.002 10.1038/ni1524 10.1084/jem.191.8.1341 10.1016/j.bpj.2011.06.057 10.1016/j.smim.2008.10.002 10.1002/eji.1830261003 10.1002/ijc.2910160204 10.1084/jem.20072446 10.1084/jem.20100986 10.1038/jid.2013.353 10.1084/jem.20131560 10.3389/fimmu.2014.00187 10.1016/j.immuni.2006.06.013 10.1084/jem.20060631 10.4049/jimmunol.0904057 10.1038/ni796 10.1182/blood-2008-05-156836 10.3389/fimmu.2014.00349 10.1002/eji.200636693 10.3389/fimmu.2013.00090 10.4049/jimmunol.0900719 10.3389/fimmu.2014.00145 10.1182/blood-2008-10-184549 10.4049/jimmunol.1402930 10.1002/eji.1830050208 10.3389/fimmu.2013.00055 10.1002/eji.1830050209 10.1038/358066a0 10.4049/jimmunol.1302601 10.4049/jimmunol.161.11.6133 10.1016/j.celrep.2015.03.006 10.4049/jimmunol.0803840 10.1002/ijc.2910160205 10.1126/science.1853205 10.1182/blood-2011-04-348912 10.1084/jem.20100570 10.1016/j.immuni.2015.02.008 10.1111/j.1600-065X.2008.00660.x 10.1002/eji.1830070915 10.1152/physrev.1997.77.3.759 10.1016/S1074-7613(00)00015-7 10.1038/nri2835 10.1038/nri1549 10.1084/jem.187.4.609 10.1615/CritRevImmunol.v23.i4.10 10.1084/jem.20111908 10.1038/nature03847 10.1084/jem.194.10.1519 10.1182/blood-2008-03-143727 10.1073/pnas.92.5.1649 10.4049/jimmunol.1100331 10.1038/ni0508-477 10.4049/jimmunol.1001287 10.1034/j.1600-065X.2001.1810107.x 10.1084/jem.20072448 10.1073/pnas.0607418104 10.1016/j.immuni.2011.11.016 10.4049/jimmunol.177.10.6904 10.1016/j.immuni.2007.03.006 10.1182/blood-2004-08-3156 10.1073/pnas.88.22.10332 10.1016/j.immuni.2008.12.019 10.1155/2015/747680 10.1097/00007890-197209000-00001 10.1038/ni.2936 10.1093/nar/gkp592 10.4049/jimmunol.1401972 10.1038/nri1570 10.4049/jimmunol.0803900 10.4049/jimmunol.178.3.1277 10.1371/journal.pone.0013174 10.1016/j.smim.2008.06.004 10.4049/jimmunol.1402408 10.1371/journal.pgen.0010027 10.1084/jem.186.3.353 10.4049/jimmunol.171.10.5085 10.1002/(SICI)1521-4141(199804)28:04<1315::AID-IMMU1315>3.0.CO;2-2 10.1006/smim.1995.0015 10.1084/jem.20050167 10.4049/jimmunol.1200650 10.4049/jimmunol.174.3.1213 10.4049/jimmunol.1401450 10.1038/ni1043 10.4049/jimmunol.1301971 10.1038/nri2278 10.1182/blood-2012-10-461442 10.4049/jimmunol.158.7.3174 10.4049/jimmunol.1102801 10.4049/jimmunol.1302843 10.1371/journal.ppat.1004161 10.1073/pnas.0402065101 10.1002/eji.201242607 |
ContentType | Journal Article |
Copyright | 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS |
DOI | 10.1111/imr.12330 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education Biology |
EISSN | 1600-065X |
EndPage | 177 |
ExternalDocumentID | oai_swepub_ki_se_511302 26284477 10_1111_imr_12330 IMR12330 ark_67375_WNG_NFL12WFZ_9 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTPV AOWAS |
ID | FETCH-LOGICAL-c4010-4797750fdc2fe814965b05758693b8c8d1f76cf60ede85525a895c85da8292e03 |
IEDL.DBID | DR2 |
ISSN | 0105-2896 |
IngestDate | Wed Sep 24 03:29:50 EDT 2025 Thu Jul 10 19:09:47 EDT 2025 Thu Apr 03 07:00:06 EDT 2025 Tue Jul 01 00:20:58 EDT 2025 Thu Apr 24 22:53:41 EDT 2025 Wed Jan 22 16:38:07 EST 2025 Sun Sep 21 06:19:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | education selection rheostat Ly49 NK cell |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4010-4797750fdc2fe814965b05758693b8c8d1f76cf60ede85525a895c85da8292e03 |
Notes | ArticleID:IMR12330 istex:A2D3B7B85522F27DAA030C090D848D07DCED5E24 ark:/67375/WNG-NFL12WFZ-9 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
PMID | 26284477 |
PQID | 1705734751 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_511302 proquest_miscellaneous_1705734751 pubmed_primary_26284477 crossref_citationtrail_10_1111_imr_12330 crossref_primary_10_1111_imr_12330 wiley_primary_10_1111_imr_12330_IMR12330 istex_primary_ark_67375_WNG_NFL12WFZ_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Immunological reviews |
PublicationTitleAlternate | Immunol Rev |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Daussy C, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 2014;211:563-577. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013;31:227-258. Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 2008;20:361-368. Anfossi N, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006;25:331-342. Hoglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol 2010;10:724-734. Johansson S, et al. Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules. J Exp Med 2005;201:1145-1155. Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5:112-124. Sheppard S, et al. Characterization of a novel NKG2D and NKp46 double-mutant mouse reveals subtle variations in the NK cell repertoire. Blood 2013;121:5025-5033. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997;77:759-803. Sun JC, Lanier LL. Tolerance of NK cells encountering their viral ligand during development. J Exp Med 2008;205:1819-1828. Gays F, Taha S, Brooks CG. The distal upstream promoter in Ly49 genes, Pro1, is active in mature NK cells and T cells, does not require TATA boxes, and displays enhancer activity. J Immunol 2015;194:6068-6081. Tripathy SK, et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J Exp Med 2008;205:1829-1841. Jaeger BN, et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J Exp Med 2012;209:565-580. Smith HR, Chuang HH, Wang LL, Salcedo M, Heusel JW, Yokoyama WM. Nonstochastic coexpression of activation receptors on murine natural killer cells. J Exp Med 2000;191:1341-1354. Roth C, Carlyle JR, Takizawa H, Raulet DH. Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 2000;13:143-153. Elliott JM, Wahle JA, Yokoyama WM. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med 2010;207:2073-2079. Brodin P, et al. Natural killer cell tolerance persists despite significant reduction of self MHC class I on normal target cells in mice. PLoS ONE 2010;5:e13174. Held W, Dorfman JR, Wu MF, Raulet DH. Major histocompatibility complex class I-dependent skewing of the natural killer cell Ly49 receptor repertoire. Eur J Immunol 1996;26:2286-2292. Horng T, Bezbradica JS, Medzhitov R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat Immunol 2007;8:1345-1352. Ikawa T. Genetic and epigenetic control of early lymphocyte development. Curr Top Microbiol Immunol 2014;381:1-20. Mehr R, Sternberg-Simon M, Michaeli M, Pickman Y. Models and methods for analysis of lymphocyte repertoire generation, development, selection and evolution. Immunol Lett 2012;148:11-22. Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 2011;118:5439-5447. Patel R, Belanger S, Tai LH, Troke AD, Makrigiannis AP. Effect of Ly49 haplotype variance on NK cell function and education. J Immunol 2010;185:4783-4792. Bennett M. Rejection of marrow allografts: importance of H-2 homozygosity of donor cells. Transplantation 1972;14:289-298. Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975;16:230-239. Back J, Chalifour A, Scarpellino L, Held W. Stable masking by H-2Dd cis ligand limits Ly49A relocalization to the site of NK cell/target cell contact. Proc Natl Acad Sci USA 2007;104:3978-3983. Kase A, Johansson MH, Olsson-Alheim MY, Karre K, Hoglund P. External and internal calibration of the MHC class I-specific receptor Ly49A on murine natural killer cells. J Immunol 1998;161:6133-6138. Parham P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 2008;20:311-316. Long EO. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 2008;224:70-84. Viant C, Fenis A, Chicanne G, Payrastre B, Ugolini S, Vivier E. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nat Commun 2014;5:5108. Marcais A, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 2014;15:749-757. Ebihara T, Jonsson AH, Yokoyama WM. Natural killer cell licensing in mice with inducible expression of MHC class I. Proc Natl Acad Sci USA 2013;110:E4232-E4237. Andersson KE, Williams GS, Davis DM, Hoglund P. Quantifying the reduction in accessibility of the inhibitory NK cell receptor Ly49A caused by binding MHC class I proteins in cis. Eur J Immunol 2007;37:516-527. Takei F, et al. Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunol Rev 2001;181:90-103. Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Eur J Immunol 2013;43:1042-1052. Sternberg-Simon M, et al. Natural killer cell inhibitory receptor expression in humans and mice: a closer look. Front Immunol 2013;4:65. Jonsson AH, Yang L, Kim S, Taffner SM, Yokoyama WM. Effects of MHC class I alleles on licensing of Ly49A+ NK cells. J Immunol 2010;184:3424-3432. Brodin P, Lakshmikanth T, Karre K, Hoglund P. Skewing of the NK cell repertoire by MHC class I via quantitatively controlled enrichment and contraction of specific Ly49 subsets. J Immunol 2012;188:2218-2226. Joncker NT, Fernandez NC, Treiner E, Vivier E, Raulet DH. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J Immunol 2009;182:4572-4580. Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 1991;253:199-202. Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P. Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med 1997;186:353-364. Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD. PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol 2009;182:6933-6942. Kim S, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005;436:709-713. Lee GA, Liou YH, Wang SW, Ko KL, Jiang ST, Liao NS. Different NK cell developmental events require different levels of IL-15 trans-presentation. J Immunol 2011;187:1212-1221. Schlums H, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015;42:443-456. Kubota A, Kubota S, Lohwasser S, Mager DL, Takei F. Diversity of NK cell receptor repertoire in adult and neonatal mice. J Immunol 1999;163:212-216. Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975;16:216-229. Sleiman M, et al. NK cell killer Ig-like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules. J Immunol 2014;192:2602-2610. Almeida CR, Davis DM. Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J Immunol 2006;177:6904-6910. Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 1992;358:66-70. Andersson S, Fauriat C, Malmberg JA, Ljunggren HG, Malmberg KJ. KIR acquisition probabilities are independent of self-HLA class I ligands and increase with cellular KIR expression. Blood 2009;114:95-104. Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA 2004;101:8102-8107. Hoglund P, et al. Recognition of beta 2-microglobulin-negative (beta 2 m-) T-cell blasts by natural killer cells from normal but not from beta 2 m- mice: nonresponsiveness controlled by beta 2 m- bone marrow in chimeric mice. Proc Natl Acad Sci USA 1991;88:10332-10336. Rahim MM, et al. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014;5:145. Rouhi A, Lai CB, Cheng TP, Takei F, Yokoyama WM, Mager DL. Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Res 2009;37:5331-5342. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005;5:201-214. Kiessling R, Klein E, Pross H, Wigzell H. "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 1975;5:117-121. Salcedo M, et al. Altered expression of Ly49 inhibitory receptors on natural killer cells from MHC class I-deficient mice. J Immunol 1997;158:3174-3180. Salcedo M, Andersson M, Lemieux S, Van Kaer L, Chambers BJ, Ljunggren HG. Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I-deficient mice. Eur J Immunol 1998;28:1315-1321. Scarpellino L, et al. Interactions of Ly49 family receptors with MHC class I ligands in trans and cis. J Immunol 2007;178:1277-1284. Olsson MY, Karre K, Sentman CL. Altered phenotype and function of natural killer cells expressing the major histocompatibility complex receptor Ly 1997; 158 2007; 104 2010; 10 2013; 4 2011; 118 2005; 174 2001; 181 1975; 16 2008; 9 2014; 26 2010; 185 1999; 163 2009; 113 2004; 5 2008; 8 2010; 184 2013; 121 2008; 224 2009; 114 2006; 177 2014; 211 2014; 134 2007; 37 2012; 209 2007; 178 2014; 5 2000; 13 1991; 88 2015; 42 1997; 186 2005; 105 2006; 25 1992; 358 2007; 8 2014; 15 2013; 110 2008; 20 1972; 14 2008; 112 2013; 191 2010; 5 1996; 26 1998; 161 2013; 190 2007; 26 2014; 10 1975; 5 2004; 101 1991; 253 1998; 28 1995; 92 2012; 188 2007; 204 2013; 43 2010; 207 2009; 182 2015; 11 2005; 436 2002; 3 2003; 171 2008; 205 2014; 192 2012; 36 2012; 148 2000; 191 1995; 7 2015; 194 2009; 30 2001; 194 1997; 77 2005; 201 2013; 31 2005; 5 2015; 2015 2005; 1 2014; 381 2009; 183 1998; 187 1977; 7 2011; 101 2009; 37 2011; 187 2003; 23 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Salcedo M (e_1_2_9_34_1) 1997; 158 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Ikawa T (e_1_2_9_62_1) 2014; 381 e_1_2_9_102_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 Kubota A (e_1_2_9_24_1) 1999; 163 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 Kase A (e_1_2_9_40_1) 1998; 161 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Horng T, Bezbradica JS, Medzhitov R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat Immunol 2007;8:1345-1352. – reference: Patel R, Belanger S, Tai LH, Troke AD, Makrigiannis AP. Effect of Ly49 haplotype variance on NK cell function and education. J Immunol 2010;185:4783-4792. – reference: Joncker NT, Shifrin N, Delebecque F, Raulet DH. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J Exp Med 2010;207:2065-2072. – reference: Roth C, Carlyle JR, Takizawa H, Raulet DH. Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 2000;13:143-153. – reference: Kase A, Johansson MH, Olsson-Alheim MY, Karre K, Hoglund P. External and internal calibration of the MHC class I-specific receptor Ly49A on murine natural killer cells. J Immunol 1998;161:6133-6138. – reference: Kiessling R, Hochman PS, Haller O, Shearer GM, Wigzell H, Cudkowicz G. Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur J Immunol 1977;7:655-663. – reference: Sternberg-Simon M, et al. Natural killer cell inhibitory receptor expression in humans and mice: a closer look. Front Immunol 2013;4:65. – reference: Chalifour A, et al. A role for cis interaction between the inhibitory Ly49A receptor and MHC class I for natural killer cell education. Immunity 2009;30:337-347. – reference: Kelley J, Walter L, Trowsdale J. Comparative genomics of natural killer cell receptor gene clusters. PLoS Genet 2005;1:129-139. – reference: Salcedo M, et al. Altered expression of Ly49 inhibitory receptors on natural killer cells from MHC class I-deficient mice. J Immunol 1997;158:3174-3180. – reference: Ibusuki A, et al. NKG2D triggers cytotoxicity in murine epidermal gammadelta T cells via PI3K-dependent, Syk/ZAP70-independent signaling pathway. J Invest Dermatol 2014;134:396-404. – reference: Daussy C, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 2014;211:563-577. – reference: Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997;77:759-803. – reference: Forbes CA, Scalzo AA, Degli-Esposti MA, Coudert JD. Ly49C-dependent control of MCMV Infection by NK cells is cis-regulated by MHC Class I molecules. PLoS Pathog 2014;10:e1004161. – reference: Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 1975;16:230-239. – reference: Amano K, Hirayama M, Azuma E, Iwamoto S, Keida Y, Komada Y. Neutrophils induced licensing of natural killer cells. Mediators Inflamm 2015;2015:747680. – reference: Stromqvist J, et al. A modified FCCS procedure applied to Ly49A-MHC class I cis-interaction studies in cell membranes. Biophys J 2011;101:1257-1269. – reference: Kiessling R, Klein E, Wigzell H. "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975;5:112-117. – reference: Shifrin N, Raulet DH, Ardolino M. NK cell self tolerance, responsiveness and missing self recognition. Semin Immunol 2014;26:138-144. – reference: Held W, Mariuzza RA. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Nat Rev Immunol 2008;8:269-278. – reference: Cichocki F, Miller JS, Anderson SK, Bryceson YT. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol 2013;4:55. – reference: Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P. Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med 1997;186:353-364. – reference: Takei F, et al. Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunol Rev 2001;181:90-103. – reference: Held W, Dorfman JR, Wu MF, Raulet DH. Major histocompatibility complex class I-dependent skewing of the natural killer cell Ly49 receptor repertoire. Eur J Immunol 1996;26:2286-2292. – reference: Sjostrom A, et al. Acquisition of external major histocompatibility complex class I molecules by natural killer cells expressing inhibitory Ly49 receptors. J Exp Med 2001;194:1519-1530. – reference: Nandagopal N, Ali AK, Komal AK, Lee SH. The critical role of IL-15-PI3K-mTOR pathway in natural killer cell effector functions. Front Immunol 2014;5:187. – reference: Veinotte LL, Wilhelm BT, Mager DL, Takei F. Acquisition of MHC-specific receptors on murine natural killer cells. Crit Rev Immunol 2003;23:251-266. – reference: Vosshenrich CA, et al. Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 2005;174:1213-1221. – reference: Brodin P, Lakshmikanth T, Johansson S, Karre K, Hoglund P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 2009;113:2434-2441. – reference: Castillo EF, Stonier SW, Frasca L, Schluns KS. Dendritic cells support the in vivo development and maintenance of NK cells via IL-15 trans-presentation. J Immunol 2009;183:4948-4956. – reference: Ikawa T. Genetic and epigenetic control of early lymphocyte development. Curr Top Microbiol Immunol 2014;381:1-20. – reference: Sleiman M, et al. NK cell killer Ig-like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules. J Immunol 2014;192:2602-2610. – reference: Doucey MA, et al. Cis association of Ly49A with MHC class I restricts natural killer cell inhibition. Nat Immunol 2004;5:328-336. – reference: Yawata M, Yawata N, Draghi M, Partheniou F, Little AM, Parham P. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 2008;112:2369-2380. – reference: Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 2007;26:503-517. – reference: Jaeger BN, et al. Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis. J Exp Med 2012;209:565-580. – reference: Sun JC, Lanier LL. Tolerance of NK cells encountering their viral ligand during development. J Exp Med 2008;205:1819-1828. – reference: Parham P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 2008;20:311-316. – reference: Sentman CL, Olsson MY, Karre K. Missing self recognition by natural killer cells in MHC class I transgenic mice. A 'receptor calibration' model for how effector cells adapt to self. Semin Immunol 1995;7:109-119. – reference: Rahim MM, et al. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014;5:145. – reference: Degli-Esposti MA, Smyth MJ. Close encounters of different kinds: dendritic cells and NK cells take centre stage. Nat Rev Immunol 2005;5:112-124. – reference: Almeida CR, Davis DM. Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J Immunol 2006;177:6904-6910. – reference: Enqvist M, et al. Coordinated expression of DNAM-1 and LFA-1 in educated NK cells. J Immunol 2015;194:4518-4527. – reference: Anfossi N, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 2006;25:331-342. – reference: van Bergen J, et al. HLA reduces killer cell Ig-like receptor expression level and frequency in a humanized mouse model. J Immunol 2013;190:2880-2885. – reference: Karre K. Natural killer cell recognition of missing self. Nat Immunol 2008;9:477-480. – reference: Long EO. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol Rev 2008;224:70-84. – reference: Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Eur J Immunol 2013;43:1042-1052. – reference: Schlums H, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015;42:443-456. – reference: Scarpellino L, et al. Interactions of Ly49 family receptors with MHC class I ligands in trans and cis. J Immunol 2007;178:1277-1284. – reference: Johansson S, et al. Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules. J Exp Med 2005;201:1145-1155. – reference: Olsson MY, Karre K, Sentman CL. Altered phenotype and function of natural killer cells expressing the major histocompatibility complex receptor Ly-49 in mice transgenic for its ligand. Proc Natl Acad Sci USA 1995;92:1649-1653. – reference: Bessoles S, Grandclement C, Alari-Pahissa E, Gehrig J, Jeevan-Raj B, Held W. Adaptations of natural killer cells to self-MHC class I. Front Immunol 2014;5:349. – reference: Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975;16:216-229. – reference: Sheppard S, et al. Characterization of a novel NKG2D and NKp46 double-mutant mouse reveals subtle variations in the NK cell repertoire. Blood 2013;121:5025-5033. – reference: Bennett M. Rejection of marrow allografts: importance of H-2 homozygosity of donor cells. Transplantation 1972;14:289-298. – reference: Brown MG, Scalzo AA. NK gene complex dynamics and selection for NK cell receptors. Semin Immunol 2008;20:361-368. – reference: Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 1992;358:66-70. – reference: Elliott JM, Wahle JA, Yokoyama WM. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med 2010;207:2073-2079. – reference: Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA 2004;101:8102-8107. – reference: Gays F, Taha S, Brooks CG. The distal upstream promoter in Ly49 genes, Pro1, is active in mature NK cells and T cells, does not require TATA boxes, and displays enhancer activity. J Immunol 2015;194:6068-6081. – reference: Liao NS, Bix M, Zijlstra M, Jaenisch R, Raulet D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science 1991;253:199-202. – reference: Brodin P, Lakshmikanth T, Karre K, Hoglund P. Skewing of the NK cell repertoire by MHC class I via quantitatively controlled enrichment and contraction of specific Ly49 subsets. J Immunol 2012;188:2218-2226. – reference: Hoglund P, et al. Recognition of beta 2-microglobulin-negative (beta 2 m-) T-cell blasts by natural killer cells from normal but not from beta 2 m- mice: nonresponsiveness controlled by beta 2 m- bone marrow in chimeric mice. Proc Natl Acad Sci USA 1991;88:10332-10336. – reference: Ebihara T, Jonsson AH, Yokoyama WM. Natural killer cell licensing in mice with inducible expression of MHC class I. Proc Natl Acad Sci USA 2013;110:E4232-E4237. – reference: Dorfman JR, Raulet DH. Acquisition of Ly49 receptor expression by developing natural killer cells. J Exp Med 1998;187:609-618. – reference: Beziat V, et al. Influence of KIR gene copy number on natural killer cell education. Blood 2013;121:4703-4707. – reference: Kubota A, Kubota S, Lohwasser S, Mager DL, Takei F. Diversity of NK cell receptor repertoire in adult and neonatal mice. J Immunol 1999;163:212-216. – reference: Brodin P, et al. Natural killer cell tolerance persists despite significant reduction of self MHC class I on normal target cells in mice. PLoS ONE 2010;5:e13174. – reference: Lee GA, Liou YH, Wang SW, Ko KL, Jiang ST, Liao NS. Different NK cell developmental events require different levels of IL-15 trans-presentation. J Immunol 2011;187:1212-1221. – reference: Smith HR, Chuang HH, Wang LL, Salcedo M, Heusel JW, Yokoyama WM. Nonstochastic coexpression of activation receptors on murine natural killer cells. J Exp Med 2000;191:1341-1354. – reference: Felices M, et al. Functional NK cell repertoires are maintained through IL-2Ralpha and Fas ligand. J Immunol 2014;192:3889-3897. – reference: Andersson S, Fauriat C, Malmberg JA, Ljunggren HG, Malmberg KJ. KIR acquisition probabilities are independent of self-HLA class I ligands and increase with cellular KIR expression. Blood 2009;114:95-104. – reference: Rouhi A, Lai CB, Cheng TP, Takei F, Yokoyama WM, Mager DL. Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Res 2009;37:5331-5342. – reference: Salcedo M, Andersson M, Lemieux S, Van Kaer L, Chambers BJ, Ljunggren HG. Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I-deficient mice. Eur J Immunol 1998;28:1315-1321. – reference: Viant C, Fenis A, Chicanne G, Payrastre B, Ugolini S, Vivier E. SHP-1-mediated inhibitory signals promote responsiveness and anti-tumour functions of natural killer cells. Nat Commun 2014;5:5108. – reference: Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013;31:227-258. – reference: Kim S, et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 2005;436:709-713. – reference: Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD. PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol 2009;182:6933-6942. – reference: Gordon SM, et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 2012;36:55-67. – reference: Gumbleton M, Vivier E, Kerr WG. SHIP1 intrinsically regulates NK cell signaling and education, resulting in tolerance of an MHC class I-mismatched bone marrow graft in mice. J Immunol 2015;194:2847-2854. – reference: Mehr R, Sternberg-Simon M, Michaeli M, Pickman Y. Models and methods for analysis of lymphocyte repertoire generation, development, selection and evolution. Immunol Lett 2012;148:11-22. – reference: Masuda A, Nakamura A, Maeda T, Sakamoto Y, Takai T. Cis binding between inhibitory receptors and MHC class I can regulate mast cell activation. J Exp Med 2007;204:907-920. – reference: Jonsson AH, Yang L, Kim S, Taffner SM, Yokoyama WM. Effects of MHC class I alleles on licensing of Ly49A+ NK cells. J Immunol 2010;184:3424-3432. – reference: Marcais A, et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat Immunol 2014;15:749-757. – reference: Kim S, et al. In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 2002;3:523-528. – reference: Joncker NT, Fernandez NC, Treiner E, Vivier E, Raulet DH. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J Immunol 2009;182:4572-4580. – reference: Kiessling R, Klein E, Pross H, Wigzell H. "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 1975;5:117-121. – reference: Andersson KE, Williams GS, Davis DM, Hoglund P. Quantifying the reduction in accessibility of the inhibitory NK cell receptor Ly49A caused by binding MHC class I proteins in cis. Eur J Immunol 2007;37:516-527. – reference: Tripathy SK, et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J Exp Med 2008;205:1829-1841. – reference: Kawamura T, Koka R, Ma A, Kumar V. Differential roles for IL-15R alpha-chain in NK cell development and Ly-49 induction. J Immunol 2003;171:5085-5090. – reference: Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 2005;5:201-214. – reference: Schenkel AR, Kingry LC, Slayden RA. The ly49 gene family. A brief guide to the nomenclature, genetics, and role in intracellular infection. Front Immunol 2013;4:90. – reference: Bessoles S, Angelov GS, Back J, Leclercq G, Vivier E, Held W. Education of murine NK cells requires both cis and trans recognition of MHC class I molecules. J Immunol 2013;191:5044-5051. – reference: Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 2011;118:5439-5447. – reference: Back J, Chalifour A, Scarpellino L, Held W. Stable masking by H-2Dd cis ligand limits Ly49A relocalization to the site of NK cell/target cell contact. Proc Natl Acad Sci USA 2007;104:3978-3983. – reference: Brodin P, Karre K, Hoglund P. NK cell education: not an on-off switch but a tunable rheostat. Trends Immunol 2009;30:143-149. – reference: Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 2005;105:4416-4423. – reference: Martinet L, et al. DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep 2015;11:85-97. – reference: Hoglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol 2010;10:724-734. – reference: Miner CA, Giri TK, Meyer CE, Shabsovich M, Tripathy SK. Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive. J Immunol 2015;194:1945-1953. – volume: 436 start-page: 709 year: 2005 end-page: 713 article-title: Licensing of natural killer cells by host major histocompatibility complex class I molecules publication-title: Nature – volume: 174 start-page: 1213 year: 2005 end-page: 1221 article-title: Roles for common cytokine receptor gamma‐chain‐dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo publication-title: J Immunol – volume: 43 start-page: 1042 year: 2013 end-page: 1052 article-title: Cis association of leukocyte Ig‐like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18 publication-title: Eur J Immunol – volume: 30 start-page: 143 year: 2009 end-page: 149 article-title: NK cell education: not an on‐off switch but a tunable rheostat publication-title: Trends Immunol – volume: 187 start-page: 1212 year: 2011 end-page: 1221 article-title: Different NK cell developmental events require different levels of IL‐15 trans‐presentation publication-title: J Immunol – volume: 4 start-page: 55 year: 2013 article-title: Epigenetic regulation of NK cell differentiation and effector functions publication-title: Front Immunol – volume: 381 start-page: 1 year: 2014 end-page: 20 article-title: Genetic and epigenetic control of early lymphocyte development publication-title: Curr Top Microbiol Immunol – volume: 148 start-page: 11 year: 2012 end-page: 22 article-title: Models and methods for analysis of lymphocyte repertoire generation, development, selection and evolution publication-title: Immunol Lett – volume: 209 start-page: 565 year: 2012 end-page: 580 article-title: Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis publication-title: J Exp Med – volume: 5 start-page: 187 year: 2014 article-title: The critical role of IL‐15‐PI3K‐mTOR pathway in natural killer cell effector functions publication-title: Front Immunol – volume: 190 start-page: 2880 year: 2013 end-page: 2885 article-title: HLA reduces killer cell Ig‐like receptor expression level and frequency in a humanized mouse model publication-title: J Immunol – volume: 207 start-page: 2065 year: 2010 end-page: 2072 article-title: Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment publication-title: J Exp Med – volume: 26 start-page: 2286 year: 1996 end-page: 2292 article-title: Major histocompatibility complex class I‐dependent skewing of the natural killer cell Ly49 receptor repertoire publication-title: Eur J Immunol – volume: 104 start-page: 3978 year: 2007 end-page: 3983 article-title: Stable masking by H‐2Dd cis ligand limits Ly49A relocalization to the site of NK cell/target cell contact publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 230 year: 1975 end-page: 239 article-title: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells publication-title: Int J Cancer – volume: 194 start-page: 1519 year: 2001 end-page: 1530 article-title: Acquisition of external major histocompatibility complex class I molecules by natural killer cells expressing inhibitory Ly49 receptors publication-title: J Exp Med – volume: 14 start-page: 289 year: 1972 end-page: 298 article-title: Rejection of marrow allografts: importance of H‐2 homozygosity of donor cells publication-title: Transplantation – volume: 30 start-page: 337 year: 2009 end-page: 347 article-title: A role for cis interaction between the inhibitory Ly49A receptor and MHC class I for natural killer cell education publication-title: Immunity – volume: 114 start-page: 95 year: 2009 end-page: 104 article-title: KIR acquisition probabilities are independent of self‐HLA class I ligands and increase with cellular KIR expression publication-title: Blood – volume: 118 start-page: 5439 year: 2011 end-page: 5447 article-title: Identification of the earliest natural killer cell‐committed progenitor in murine bone marrow publication-title: Blood – volume: 5 start-page: 201 year: 2005 end-page: 214 article-title: MHC class I molecules and KIRs in human history, health and survival publication-title: Nat Rev Immunol – volume: 187 start-page: 609 year: 1998 end-page: 618 article-title: Acquisition of Ly49 receptor expression by developing natural killer cells publication-title: J Exp Med – volume: 101 start-page: 8102 year: 2004 end-page: 8107 article-title: Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity publication-title: Proc Natl Acad Sci USA – volume: 1 start-page: 129 year: 2005 end-page: 139 article-title: Comparative genomics of natural killer cell receptor gene clusters publication-title: PLoS Genet – volume: 105 start-page: 4416 year: 2005 end-page: 4423 article-title: A subset of natural killer cells achieves self‐tolerance without expressing inhibitory receptors specific for self‐MHC molecules publication-title: Blood – volume: 7 start-page: 655 year: 1977 end-page: 663 article-title: Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts publication-title: Eur J Immunol – volume: 8 start-page: 269 year: 2008 end-page: 278 article-title: Cis interactions of immunoreceptors with MHC and non‐MHC ligands publication-title: Nat Rev Immunol – volume: 37 start-page: 5331 year: 2009 end-page: 5342 article-title: Evidence for high bi‐allelic expression of activating Ly49 receptors publication-title: Nucleic Acids Res – volume: 178 start-page: 1277 year: 2007 end-page: 1284 article-title: Interactions of Ly49 family receptors with MHC class I ligands in trans and cis publication-title: J Immunol – volume: 207 start-page: 2073 year: 2010 end-page: 2079 article-title: MHC class I‐deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I‐sufficient environment publication-title: J Exp Med – volume: 2015 start-page: 747680 year: 2015 article-title: Neutrophils induced licensing of natural killer cells publication-title: Mediators Inflamm – volume: 15 start-page: 749 year: 2014 end-page: 757 article-title: The metabolic checkpoint kinase mTOR is essential for IL‐15 signaling during the development and activation of NK cells publication-title: Nat Immunol – volume: 7 start-page: 109 year: 1995 end-page: 119 article-title: Missing self recognition by natural killer cells in MHC class I transgenic mice. A ‘receptor calibration’ model for how effector cells adapt to self publication-title: Semin Immunol – volume: 191 start-page: 1341 year: 2000 end-page: 1354 article-title: Nonstochastic coexpression of activation receptors on murine natural killer cells publication-title: J Exp Med – volume: 204 start-page: 907 year: 2007 end-page: 920 article-title: Cis binding between inhibitory receptors and MHC class I can regulate mast cell activation publication-title: J Exp Med – volume: 4 start-page: 65 year: 2013 article-title: Natural killer cell inhibitory receptor expression in humans and mice: a closer look publication-title: Front Immunol – volume: 8 start-page: 1345 year: 2007 end-page: 1352 article-title: NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway publication-title: Nat Immunol – volume: 42 start-page: 443 year: 2015 end-page: 456 article-title: Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function publication-title: Immunity – volume: 37 start-page: 516 year: 2007 end-page: 527 article-title: Quantifying the reduction in accessibility of the inhibitory NK cell receptor Ly49A caused by binding MHC class I proteins in cis publication-title: Eur J Immunol – volume: 182 start-page: 4572 year: 2009 end-page: 4580 article-title: NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self‐MHC class I: the rheostat model publication-title: J Immunol – volume: 205 start-page: 1819 year: 2008 end-page: 1828 article-title: Tolerance of NK cells encountering their viral ligand during development publication-title: J Exp Med – volume: 194 start-page: 4518 year: 2015 end-page: 4527 article-title: Coordinated expression of DNAM‐1 and LFA‐1 in educated NK cells publication-title: J Immunol – volume: 188 start-page: 2218 year: 2012 end-page: 2226 article-title: Skewing of the NK cell repertoire by MHC class I via quantitatively controlled enrichment and contraction of specific Ly49 subsets publication-title: J Immunol – volume: 25 start-page: 331 year: 2006 end-page: 342 article-title: Human NK cell education by inhibitory receptors for MHC class I publication-title: Immunity – volume: 181 start-page: 90 year: 2001 end-page: 103 article-title: Ly49 and CD94/NKG2: developmentally regulated expression and evolution publication-title: Immunol Rev – volume: 26 start-page: 503 year: 2007 end-page: 517 article-title: Dendritic cells prime natural killer cells by trans‐presenting interleukin 15 publication-title: Immunity – volume: 88 start-page: 10332 year: 1991 end-page: 10336 article-title: Recognition of beta 2‐microglobulin‐negative (beta 2 m‐) T‐cell blasts by natural killer cells from normal but not from beta 2 m‐ mice: nonresponsiveness controlled by beta 2 m‐ bone marrow in chimeric mice publication-title: Proc Natl Acad Sci USA – volume: 185 start-page: 4783 year: 2010 end-page: 4792 article-title: Effect of Ly49 haplotype variance on NK cell function and education publication-title: J Immunol – volume: 5 start-page: 112 year: 2005 end-page: 124 article-title: Close encounters of different kinds: dendritic cells and NK cells take centre stage publication-title: Nat Rev Immunol – volume: 5 start-page: e13174 year: 2010 article-title: Natural killer cell tolerance persists despite significant reduction of self MHC class I on normal target cells in mice publication-title: PLoS ONE – volume: 5 start-page: 112 year: 1975 end-page: 117 article-title: “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype publication-title: Eur J Immunol – volume: 26 start-page: 138 year: 2014 end-page: 144 article-title: NK cell self tolerance, responsiveness and missing self recognition publication-title: Semin Immunol – volume: 31 start-page: 227 year: 2013 end-page: 258 article-title: Controlling natural killer cell responses: integration of signals for activation and inhibition publication-title: Annu Rev Immunol – volume: 163 start-page: 212 year: 1999 end-page: 216 article-title: Diversity of NK cell receptor repertoire in adult and neonatal mice publication-title: J Immunol – volume: 186 start-page: 353 year: 1997 end-page: 364 article-title: Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene publication-title: J Exp Med – volume: 101 start-page: 1257 year: 2011 end-page: 1269 article-title: A modified FCCS procedure applied to Ly49A‐MHC class I cis‐interaction studies in cell membranes publication-title: Biophys J – volume: 5 start-page: 145 year: 2014 article-title: Ly49 receptors: innate and adaptive immune paradigms publication-title: Front Immunol – volume: 10 start-page: e1004161 year: 2014 article-title: Ly49C‐dependent control of MCMV Infection by NK cells is cis‐regulated by MHC Class I molecules publication-title: PLoS Pathog – volume: 205 start-page: 1829 year: 2008 end-page: 1841 article-title: Continuous engagement of a self‐specific activation receptor induces NK cell tolerance publication-title: J Exp Med – volume: 201 start-page: 1145 year: 2005 end-page: 1155 article-title: Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules publication-title: J Exp Med – volume: 5 start-page: 5108 year: 2014 article-title: SHP‐1‐mediated inhibitory signals promote responsiveness and anti‐tumour functions of natural killer cells publication-title: Nat Commun – volume: 192 start-page: 3889 year: 2014 end-page: 3897 article-title: Functional NK cell repertoires are maintained through IL‐2Ralpha and Fas ligand publication-title: J Immunol – volume: 36 start-page: 55 year: 2012 end-page: 67 article-title: The transcription factors T‐bet and Eomes control key checkpoints of natural killer cell maturation publication-title: Immunity – volume: 194 start-page: 2847 year: 2015 end-page: 2854 article-title: SHIP1 intrinsically regulates NK cell signaling and education, resulting in tolerance of an MHC class I‐mismatched bone marrow graft in mice publication-title: J Immunol – volume: 3 start-page: 523 year: 2002 end-page: 528 article-title: In vivo developmental stages in murine natural killer cell maturation publication-title: Nat Immunol – volume: 5 start-page: 328 year: 2004 end-page: 336 article-title: Cis association of Ly49A with MHC class I restricts natural killer cell inhibition publication-title: Nat Immunol – volume: 194 start-page: 6068 year: 2015 end-page: 6081 article-title: The distal upstream promoter in Ly49 genes, Pro1, is active in mature NK cells and T cells, does not require TATA boxes, and displays enhancer activity publication-title: J Immunol – volume: 77 start-page: 759 year: 1997 end-page: 803 article-title: Endocytosis publication-title: Physiol Rev – volume: 171 start-page: 5085 year: 2003 end-page: 5090 article-title: Differential roles for IL‐15R alpha‐chain in NK cell development and Ly‐49 induction publication-title: J Immunol – volume: 184 start-page: 3424 year: 2010 end-page: 3432 article-title: Effects of MHC class I alleles on licensing of Ly49A NK cells publication-title: J Immunol – volume: 113 start-page: 2434 year: 2009 end-page: 2441 article-title: The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells publication-title: Blood – volume: 11 start-page: 85 year: 2015 end-page: 97 article-title: DNAM‐1 expression marks an alternative program of NK cell maturation publication-title: Cell Rep – volume: 182 start-page: 6933 year: 2009 end-page: 6942 article-title: PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion publication-title: J Immunol – volume: 28 start-page: 1315 year: 1998 end-page: 1321 article-title: Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I‐deficient mice publication-title: Eur J Immunol – volume: 158 start-page: 3174 year: 1997 end-page: 3180 article-title: Altered expression of Ly49 inhibitory receptors on natural killer cells from MHC class I‐deficient mice publication-title: J Immunol – volume: 5 start-page: 349 year: 2014 article-title: Adaptations of natural killer cells to self‐MHC class I publication-title: Front Immunol – volume: 10 start-page: 724 year: 2010 end-page: 734 article-title: Current perspectives of natural killer cell education by MHC class I molecules publication-title: Nat Rev Immunol – volume: 20 start-page: 311 year: 2008 end-page: 316 article-title: The genetic and evolutionary balances in human NK cell receptor diversity publication-title: Semin Immunol – volume: 194 start-page: 1945 year: 2015 end-page: 1953 article-title: Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive publication-title: J Immunol – volume: 192 start-page: 2602 year: 2014 end-page: 2610 article-title: NK cell killer Ig‐like receptor repertoire acquisition and maturation are strongly modulated by HLA class I molecules publication-title: J Immunol – volume: 183 start-page: 4948 year: 2009 end-page: 4956 article-title: Dendritic cells support the in vivo development and maintenance of NK cells via IL‐15 trans‐presentation publication-title: J Immunol – volume: 224 start-page: 70 year: 2008 end-page: 84 article-title: Negative signaling by inhibitory receptors: the NK cell paradigm publication-title: Immunol Rev – volume: 23 start-page: 251 year: 2003 end-page: 266 article-title: Acquisition of MHC‐specific receptors on murine natural killer cells publication-title: Crit Rev Immunol – volume: 5 start-page: 117 year: 1975 end-page: 121 article-title: “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell publication-title: Eur J Immunol – volume: 211 start-page: 563 year: 2014 end-page: 577 article-title: T‐bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow publication-title: J Exp Med – volume: 110 start-page: E4232 year: 2013 end-page: E4237 article-title: Natural killer cell licensing in mice with inducible expression of MHC class I publication-title: Proc Natl Acad Sci USA – volume: 253 start-page: 199 year: 1991 end-page: 202 article-title: MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity publication-title: Science – volume: 121 start-page: 5025 year: 2013 end-page: 5033 article-title: Characterization of a novel NKG2D and NKp46 double‐mutant mouse reveals subtle variations in the NK cell repertoire publication-title: Blood – volume: 177 start-page: 6904 year: 2006 end-page: 6910 article-title: Segregation of HLA‐C from ICAM‐1 at NK cell immune synapses is controlled by its cell surface density publication-title: J Immunol – volume: 13 start-page: 143 year: 2000 end-page: 153 article-title: Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC publication-title: Immunity – volume: 358 start-page: 66 year: 1992 end-page: 70 article-title: MHC class I alloantigen specificity of Ly‐49 IL‐2‐activated natural killer cells publication-title: Nature – volume: 191 start-page: 5044 year: 2013 end-page: 5051 article-title: Education of murine NK cells requires both cis and trans recognition of MHC class I molecules publication-title: J Immunol – volume: 4 start-page: 90 year: 2013 article-title: The ly49 gene family. A brief guide to the nomenclature, genetics, and role in intracellular infection publication-title: Front Immunol – volume: 16 start-page: 216 year: 1975 end-page: 229 article-title: Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity publication-title: Int J Cancer – volume: 20 start-page: 361 year: 2008 end-page: 368 article-title: NK gene complex dynamics and selection for NK cell receptors publication-title: Semin Immunol – volume: 92 start-page: 1649 year: 1995 end-page: 1653 article-title: Altered phenotype and function of natural killer cells expressing the major histocompatibility complex receptor Ly‐49 in mice transgenic for its ligand publication-title: Proc Natl Acad Sci USA – volume: 134 start-page: 396 year: 2014 end-page: 404 article-title: NKG2D triggers cytotoxicity in murine epidermal gammadelta T cells via PI3K‐dependent, Syk/ZAP70‐independent signaling pathway publication-title: J Invest Dermatol – volume: 161 start-page: 6133 year: 1998 end-page: 6138 article-title: External and internal calibration of the MHC class I‐specific receptor Ly49A on murine natural killer cells publication-title: J Immunol – volume: 121 start-page: 4703 year: 2013 end-page: 4707 article-title: Influence of KIR gene copy number on natural killer cell education publication-title: Blood – volume: 112 start-page: 2369 year: 2008 end-page: 2380 article-title: MHC class I‐specific inhibitory receptors and their ligands structure diverse human NK‐cell repertoires toward a balance of missing self‐response publication-title: Blood – volume: 9 start-page: 477 year: 2008 end-page: 480 article-title: Natural killer cell recognition of missing self publication-title: Nat Immunol – ident: e_1_2_9_74_1 doi: 10.1182/blood-2012-12-471607 – ident: e_1_2_9_81_1 doi: 10.1146/annurev-immunol-020711-075005 – ident: e_1_2_9_84_1 doi: 10.1016/j.smim.2014.02.007 – volume: 163 start-page: 212 year: 1999 ident: e_1_2_9_24_1 article-title: Diversity of NK cell receptor repertoire in adult and neonatal mice publication-title: J Immunol doi: 10.4049/jimmunol.163.1.212 – ident: e_1_2_9_58_1 doi: 10.1038/ncomms6108 – ident: e_1_2_9_16_1 doi: 10.3389/fimmu.2013.00065 – ident: e_1_2_9_56_1 doi: 10.1073/pnas.1318255110 – ident: e_1_2_9_94_1 doi: 10.1016/j.it.2009.01.006 – ident: e_1_2_9_36_1 doi: 10.1016/j.imlet.2012.08.002 – ident: e_1_2_9_71_1 doi: 10.1038/ni1524 – ident: e_1_2_9_37_1 doi: 10.1084/jem.191.8.1341 – ident: e_1_2_9_91_1 doi: 10.1016/j.bpj.2011.06.057 – ident: e_1_2_9_13_1 doi: 10.1016/j.smim.2008.10.002 – ident: e_1_2_9_33_1 doi: 10.1002/eji.1830261003 – ident: e_1_2_9_3_1 doi: 10.1002/ijc.2910160204 – ident: e_1_2_9_86_1 doi: 10.1084/jem.20072446 – ident: e_1_2_9_55_1 doi: 10.1084/jem.20100986 – ident: e_1_2_9_73_1 doi: 10.1038/jid.2013.353 – ident: e_1_2_9_30_1 doi: 10.1084/jem.20131560 – ident: e_1_2_9_76_1 doi: 10.3389/fimmu.2014.00187 – ident: e_1_2_9_97_1 doi: 10.1016/j.immuni.2006.06.013 – ident: e_1_2_9_47_1 doi: 10.1084/jem.20060631 – ident: e_1_2_9_26_1 doi: 10.4049/jimmunol.0904057 – ident: e_1_2_9_29_1 doi: 10.1038/ni796 – ident: e_1_2_9_25_1 doi: 10.1182/blood-2008-05-156836 – ident: e_1_2_9_57_1 doi: 10.3389/fimmu.2014.00349 – ident: e_1_2_9_89_1 doi: 10.1002/eji.200636693 – ident: e_1_2_9_12_1 doi: 10.3389/fimmu.2013.00090 – ident: e_1_2_9_69_1 doi: 10.4049/jimmunol.0900719 – ident: e_1_2_9_10_1 doi: 10.3389/fimmu.2014.00145 – ident: e_1_2_9_99_1 doi: 10.1182/blood-2008-10-184549 – ident: e_1_2_9_59_1 doi: 10.4049/jimmunol.1402930 – ident: e_1_2_9_5_1 doi: 10.1002/eji.1830050208 – ident: e_1_2_9_61_1 doi: 10.3389/fimmu.2013.00055 – ident: e_1_2_9_4_1 doi: 10.1002/eji.1830050209 – ident: e_1_2_9_9_1 doi: 10.1038/358066a0 – ident: e_1_2_9_77_1 doi: 10.4049/jimmunol.1302601 – volume: 161 start-page: 6133 year: 1998 ident: e_1_2_9_40_1 article-title: External and internal calibration of the MHC class I‐specific receptor Ly49A on murine natural killer cells publication-title: J Immunol doi: 10.4049/jimmunol.161.11.6133 – ident: e_1_2_9_79_1 doi: 10.1016/j.celrep.2015.03.006 – ident: e_1_2_9_72_1 doi: 10.4049/jimmunol.0803840 – ident: e_1_2_9_2_1 doi: 10.1002/ijc.2910160205 – ident: e_1_2_9_82_1 doi: 10.1126/science.1853205 – ident: e_1_2_9_28_1 doi: 10.1182/blood-2011-04-348912 – ident: e_1_2_9_88_1 doi: 10.1084/jem.20100570 – ident: e_1_2_9_60_1 doi: 10.1016/j.immuni.2015.02.008 – ident: e_1_2_9_80_1 doi: 10.1111/j.1600-065X.2008.00660.x – ident: e_1_2_9_6_1 doi: 10.1002/eji.1830070915 – ident: e_1_2_9_44_1 doi: 10.1152/physrev.1997.77.3.759 – ident: e_1_2_9_35_1 doi: 10.1016/S1074-7613(00)00015-7 – ident: e_1_2_9_18_1 doi: 10.1038/nri2835 – ident: e_1_2_9_63_1 doi: 10.1038/nri1549 – ident: e_1_2_9_11_1 doi: 10.1084/jem.187.4.609 – volume: 381 start-page: 1 year: 2014 ident: e_1_2_9_62_1 article-title: Genetic and epigenetic control of early lymphocyte development publication-title: Curr Top Microbiol Immunol – ident: e_1_2_9_32_1 doi: 10.1615/CritRevImmunol.v23.i4.10 – ident: e_1_2_9_64_1 doi: 10.1084/jem.20111908 – ident: e_1_2_9_15_1 doi: 10.1038/nature03847 – ident: e_1_2_9_41_1 doi: 10.1084/jem.194.10.1519 – ident: e_1_2_9_98_1 doi: 10.1182/blood-2008-03-143727 – ident: e_1_2_9_14_1 doi: 10.1073/pnas.92.5.1649 – ident: e_1_2_9_70_1 doi: 10.4049/jimmunol.1100331 – ident: e_1_2_9_8_1 doi: 10.1038/ni0508-477 – ident: e_1_2_9_20_1 doi: 10.4049/jimmunol.1001287 – ident: e_1_2_9_23_1 doi: 10.1034/j.1600-065X.2001.1810107.x – ident: e_1_2_9_85_1 doi: 10.1084/jem.20072448 – ident: e_1_2_9_90_1 doi: 10.1073/pnas.0607418104 – ident: e_1_2_9_31_1 doi: 10.1016/j.immuni.2011.11.016 – ident: e_1_2_9_102_1 doi: 10.4049/jimmunol.177.10.6904 – ident: e_1_2_9_68_1 doi: 10.1016/j.immuni.2007.03.006 – ident: e_1_2_9_27_1 doi: 10.1182/blood-2004-08-3156 – ident: e_1_2_9_83_1 doi: 10.1073/pnas.88.22.10332 – ident: e_1_2_9_49_1 doi: 10.1016/j.immuni.2008.12.019 – ident: e_1_2_9_65_1 doi: 10.1155/2015/747680 – ident: e_1_2_9_7_1 doi: 10.1097/00007890-197209000-00001 – ident: e_1_2_9_75_1 doi: 10.1038/ni.2936 – ident: e_1_2_9_38_1 doi: 10.1093/nar/gkp592 – ident: e_1_2_9_78_1 doi: 10.4049/jimmunol.1401972 – ident: e_1_2_9_17_1 doi: 10.1038/nri1570 – ident: e_1_2_9_95_1 doi: 10.4049/jimmunol.0803900 – ident: e_1_2_9_48_1 doi: 10.4049/jimmunol.178.3.1277 – ident: e_1_2_9_101_1 doi: 10.1371/journal.pone.0013174 – ident: e_1_2_9_21_1 doi: 10.1016/j.smim.2008.06.004 – ident: e_1_2_9_93_1 doi: 10.4049/jimmunol.1402408 – ident: e_1_2_9_22_1 doi: 10.1371/journal.pgen.0010027 – ident: e_1_2_9_87_1 doi: 10.1084/jem.186.3.353 – ident: e_1_2_9_67_1 doi: 10.4049/jimmunol.171.10.5085 – ident: e_1_2_9_42_1 doi: 10.1002/(SICI)1521-4141(199804)28:04<1315::AID-IMMU1315>3.0.CO;2-2 – ident: e_1_2_9_43_1 doi: 10.1006/smim.1995.0015 – ident: e_1_2_9_51_1 doi: 10.1084/jem.20050167 – ident: e_1_2_9_53_1 doi: 10.4049/jimmunol.1200650 – ident: e_1_2_9_66_1 doi: 10.4049/jimmunol.174.3.1213 – ident: e_1_2_9_39_1 doi: 10.4049/jimmunol.1401450 – ident: e_1_2_9_45_1 doi: 10.1038/ni1043 – ident: e_1_2_9_54_1 doi: 10.4049/jimmunol.1301971 – ident: e_1_2_9_50_1 doi: 10.1038/nri2278 – ident: e_1_2_9_100_1 doi: 10.1182/blood-2012-10-461442 – volume: 158 start-page: 3174 year: 1997 ident: e_1_2_9_34_1 article-title: Altered expression of Ly49 inhibitory receptors on natural killer cells from MHC class I‐deficient mice publication-title: J Immunol doi: 10.4049/jimmunol.158.7.3174 – ident: e_1_2_9_52_1 doi: 10.4049/jimmunol.1102801 – ident: e_1_2_9_96_1 doi: 10.4049/jimmunol.1302843 – ident: e_1_2_9_92_1 doi: 10.1371/journal.ppat.1004161 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.0402065101 – ident: e_1_2_9_46_1 doi: 10.1002/eji.201242607 |
SSID | ssj0017324 |
Score | 2.3173404 |
SecondaryResourceType | review_article |
Snippet | Summary
Natural killer (NK) cells recognize transformed cells with an array of germline‐encoded inhibitory and activating receptors. Inhibitory Ly49 receptors... Natural killer ( NK ) cells recognize transformed cells with an array of germline‐encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind... Natural killer (NK) cells recognize transformed cells with an array of germline-encoded inhibitory and activating receptors. Inhibitory Ly49 receptors bind... |
SourceID | swepub proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Animals education Histocompatibility Antigens Class I - immunology Histocompatibility Antigens Class I - metabolism Killer Cells, Natural - immunology Killer Cells, Natural - metabolism Ly49 Mice Models, Immunological NK cell NK Cell Lectin-Like Receptor Subfamily A - immunology NK Cell Lectin-Like Receptor Subfamily A - metabolism Protein Binding - immunology rheostat selection Self Tolerance - immunology Signal Transduction - immunology |
Title | Selection, tuning, and adaptation in mouse NK cell education |
URI | https://api.istex.fr/ark:/67375/WNG-NFL12WFZ-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fimr.12330 https://www.ncbi.nlm.nih.gov/pubmed/26284477 https://www.proquest.com/docview/1705734751 http://kipublications.ki.se/Default.aspx?queryparsed=id:131840477 |
Volume | 267 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-065X dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0017324 issn: 0105-2896 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0105-2896 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1600-065X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017324 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lUvDFav3o1Q-iiPjQPTZfm13qi0iv9aP3UC0tIoQkm4Vy7VrOO9D-9c4ku4stFcS3sJvsJjOZzEwy-Q0hL7lUloVcZnUjbCadApnzVZWB7naKFcqLgLeRD6bF_pH8cKJOVshOfxcm4UMMG24oGXG9RgG37scfQn56Ph_DsivQX2dCxSPawwE6imnBE653rjJwKooOVQijeIaWV3TRLSTrz5sMzQFF9KoBGzXQZJ186_ueAk9m4-XCjf3lNVjH_xzcXXKns0zp2zSV7pGV0G6QtZSr8tcGpnfuQkHukzefY_YcKG_TxRJ3VrapbWtqa3uRjvbpaUtxUyHQ6UeKhwM09M0fkKPJ7pd3-1mXhiHzEo_KpQYbUeVN7XkTSoYA8w6tvLKohCt9WbNGF74p8lCHUimubFkpX6ralrziIRcPyWr7vQ2bhHL4IjisLi88OkLawurRIGSedMxqGUbkdc8Q4zuMckyVcWZ6XwUIYyJhRuTFUPUiAXPcVOlV5OpQw85nGMmmlTme7pnp5BPjx5OvphqR5z3bDcgX0sW2AchkEG5IC6kVG5FHaT4MX-MFKHepNfwmTZDhDYJ2d49mUAoG7FqRcxhf5Prfe2zeHxzGwta_V31MboMZp1Lk2xOyupgvw1MwlRbuWZSJ3yawCqQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDBelpWwv29p93T46b4yxh-ZIHDtOoC9j7e263uWha2kZDOM4DpRb03Lcwdq_flKchHZ0MPZmEjuxJcuSbPkngPdcSBO5UARlFZtAFBJlzmZZgLq7kFEibezoNvI0T8bH4uupPF2Bne4ujMeH6DfcSDKa9ZoEnDakb0j52fl8iOtujA77Gp3PkVjuHvbgUZGKuUf2DmWAbkXS4gpRHE_f9JY2WiPC_rrL1OxxRG-bsI0OGj2EH13vfejJbLhcFEN7_Qew4_8O7xE8aI1T9snPpg1YcfUmrPt0lVeblOG5jQZ5DDvfmgQ6WN5miyVtrmwzU5fMlObSn-6zs5rRvoJj-QGj8wHmuuZP4Hi0d_R5HLSZGAIr6LRcKDQTZViVllcujQhjviBDL02yuEhtWkaVSmyVhK50qZRcmjSTNpWlSXnGXRg_hdX6onbPgXH8IvqsRZhY8oWUwQWkItQ8UURGCTeAjx1HtG1hyilbxk_duStIGN0QZgDv-qqXHpvjrkofGrb2Ncx8RsFsSuqT_IvOR5OIn4y-62wAbzu-axQxooupHZJJE-KQioWS0QCe-QnRf40nqN-FUvgbP0P6N4Tb3T6aYclpNG3jkOP4Grb_vcd6f3rYFF78e9U3cG98NJ3oyX5-8BLuo1UnfSDcK1hdzJfuNVpOi2KrEZDf0BMOwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MDcWXqfPr-hlFxIf10qb5aNEXUevmtiLTsSFCSNMUxp31crkX1L_ec5q2OJkgvoU2aZOTnOR3kpPfAXjKhbSJj0VUN6mNRCVR51yeR7h2VzJR0qWebiMflGrnSLw_kSdr8GK4CxP4IcYNN9KMbr4mBZ_XzW9Kfvp1McVpN0V7fUMotK4IER2O3FGJTnkg9o5lhFaF6mmFyI1nLHpuMdoguX6_CGmONKLnEWy3BBVX4ctQ-eB5MpuultXU_fyD1_E_W3cNNntoyl6FsXQd1ny7BZdCsMofWxTfufcFuQEvP3bhczC9zZYr2lrZZratma3tPJzts9OW0a6CZ-Ueo9MB5ofiN-GoePvp9U7Ux2GInKCzcqERJMq4qR1vfJYQw3xFMC9TeVplLquTRivXqNjXPpOSS5vl0mWythnPuY_TW7Defmv9HWAcv4gWaxUrR5aQtjh9NMSZJ6rEauEn8HzoEON6knKKlXFmBmMFBWM6wUzgyZh1Hpg5Lsr0rOvVMYddzMiVTUtzXL4zZbGf8OPis8kn8HjodoMKRnKxrUcxGeIb0qnQMpnA7TAexq9xhau70Bp_EwbI-IZYu_tHM0x5g8A2jTm2r-v1v9fY7B4cdom7_571EVz-8KYw-7vl3j24gpBOBi-4-7C-XKz8A4RNy-phpx6_AJN3DW8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection%2C+tuning%2C+and+adaptation+in+mouse+NK+cell+education&rft.jtitle=Immunological+reviews&rft.au=Kadri%2C+Nadir&rft.au=Thanh%2C+Thuy+Luu&rft.au=H%C3%B6glund%2C+Petter&rft.date=2015-09-01&rft.eissn=1600-065X&rft.volume=267&rft.issue=1&rft.spage=167&rft.epage=177&rft_id=info:doi/10.1111%2Fimr.12330&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |