An embedding approach to frequency-domain and subband adaptive filtering
Frequency-domain and subband implementations improve the computational efficiency and the convergence rate of adaptive schemes. The well-known multidelay adaptive filter (MDF) belongs to this class of block adaptive structures and is a DFT-based algorithm. We develop adaptive structures that are bas...
        Saved in:
      
    
          | Published in | IEEE transactions on signal processing Vol. 48; no. 9; pp. 2607 - 2619 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.09.2000
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-587X 1941-0476 1941-0476  | 
| DOI | 10.1109/78.863066 | 
Cover
| Summary: | Frequency-domain and subband implementations improve the computational efficiency and the convergence rate of adaptive schemes. The well-known multidelay adaptive filter (MDF) belongs to this class of block adaptive structures and is a DFT-based algorithm. We develop adaptive structures that are based on the trigonometric transforms, discrete cosine transform (DCT) and discrete sine transform (DST), and on the discrete Hartley transform (DHT). As a result, these structures involve only real arithmetic and are attractive alternatives in cases where the traditional DFT-based scheme exhibits poor performance. The filters are derived by first presenting a derivation for the classical DFT based filter that allows us to pursue these extensions immediately. The approach used in this paper also provides further insights into subband adaptive filtering. | 
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23  | 
| ISSN: | 1053-587X 1941-0476 1941-0476  | 
| DOI: | 10.1109/78.863066 |