Intrinsic nature of photocatalysis by comparing with electrochemistry

Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid-liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 22; no. 14; pp. 7146 - 7154
Main Authors Nosaka, Yoshio, Nosaka, Atsuko Y
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 08.04.2020
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d0cp00771d

Cover

Abstract Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid-liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence the reactions are often analyzed in terms of electrochemistry. However, how extensively the concept of electrochemistry can be incorporated has not been discussed so far. In this report, by comparing with electrochemistry, the intrinsic nature of photocatalysis is disclosed and the limitation of the use of the concept of electrochemistry was pointed out. The electric potential near the photocatalyst surface was calculated and visualized, showing a potential gradient similar to that at the electrode surface but localized near the positive hole. Since the frequency of the ET at the photocatalyst surface is limited by the photon absorption, the investigation of photocatalysis in terms of energy states and kinetics should be different from those for electrochemistry. Since semiconductor photocatalysts are not wired to the electric source, the estimation of energy band positions may be altered, which was actually discussed in terms of the band alignments of anatase and rutile TiO 2 crystals. The kinetics of photocatalysis was discussed based on the calculated surface electric field, the limited electron transfer frequency and the irreversibility.
AbstractList Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid-liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence the reactions are often analyzed in terms of electrochemistry. However, how extensively the concept of electrochemistry can be incorporated has not been discussed so far. In this report, by comparing with electrochemistry, the intrinsic nature of photocatalysis is disclosed and the limitation of the use of the concept of electrochemistry was pointed out. The electric potential near the photocatalyst surface was calculated and visualized, showing a potential gradient similar to that at the electrode surface but localized near the positive hole. Since the frequency of the ET at the photocatalyst surface is limited by the photon absorption, the investigation of photocatalysis in terms of energy states and kinetics should be different from those for electrochemistry. Since semiconductor photocatalysts are not wired to the electric source, the estimation of energy band positions may be altered, which was actually discussed in terms of the band alignments of anatase and rutile TiO2 crystals.Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid-liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence the reactions are often analyzed in terms of electrochemistry. However, how extensively the concept of electrochemistry can be incorporated has not been discussed so far. In this report, by comparing with electrochemistry, the intrinsic nature of photocatalysis is disclosed and the limitation of the use of the concept of electrochemistry was pointed out. The electric potential near the photocatalyst surface was calculated and visualized, showing a potential gradient similar to that at the electrode surface but localized near the positive hole. Since the frequency of the ET at the photocatalyst surface is limited by the photon absorption, the investigation of photocatalysis in terms of energy states and kinetics should be different from those for electrochemistry. Since semiconductor photocatalysts are not wired to the electric source, the estimation of energy band positions may be altered, which was actually discussed in terms of the band alignments of anatase and rutile TiO2 crystals.
Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid–liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence the reactions are often analyzed in terms of electrochemistry. However, how extensively the concept of electrochemistry can be incorporated has not been discussed so far. In this report, by comparing with electrochemistry, the intrinsic nature of photocatalysis is disclosed and the limitation of the use of the concept of electrochemistry was pointed out. The electric potential near the photocatalyst surface was calculated and visualized, showing a potential gradient similar to that at the electrode surface but localized near the positive hole. Since the frequency of the ET at the photocatalyst surface is limited by the photon absorption, the investigation of photocatalysis in terms of energy states and kinetics should be different from those for electrochemistry. Since semiconductor photocatalysts are not wired to the electric source, the estimation of energy band positions may be altered, which was actually discussed in terms of the band alignments of anatase and rutile TiO2 crystals.
Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid–liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence the reactions are often analyzed in terms of electrochemistry. However, how extensively the concept of electrochemistry can be incorporated has not been discussed so far. In this report, by comparing with electrochemistry, the intrinsic nature of photocatalysis is disclosed and the limitation of the use of the concept of electrochemistry was pointed out. The electric potential near the photocatalyst surface was calculated and visualized, showing a potential gradient similar to that at the electrode surface but localized near the positive hole. Since the frequency of the ET at the photocatalyst surface is limited by the photon absorption, the investigation of photocatalysis in terms of energy states and kinetics should be different from those for electrochemistry. Since semiconductor photocatalysts are not wired to the electric source, the estimation of energy band positions may be altered, which was actually discussed in terms of the band alignments of anatase and rutile TiO 2 crystals.
Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production. Electron transfer (ET) at the solid-liquid interface, which initiates photocatalytic reactions, has been the subject of electrochemistry, and hence the reactions are often analyzed in terms of electrochemistry. However, how extensively the concept of electrochemistry can be incorporated has not been discussed so far. In this report, by comparing with electrochemistry, the intrinsic nature of photocatalysis is disclosed and the limitation of the use of the concept of electrochemistry was pointed out. The electric potential near the photocatalyst surface was calculated and visualized, showing a potential gradient similar to that at the electrode surface but localized near the positive hole. Since the frequency of the ET at the photocatalyst surface is limited by the photon absorption, the investigation of photocatalysis in terms of energy states and kinetics should be different from those for electrochemistry. Since semiconductor photocatalysts are not wired to the electric source, the estimation of energy band positions may be altered, which was actually discussed in terms of the band alignments of anatase and rutile TiO 2 crystals. The kinetics of photocatalysis was discussed based on the calculated surface electric field, the limited electron transfer frequency and the irreversibility.
Author Nosaka, Atsuko Y
Nosaka, Yoshio
AuthorAffiliation Nagaoka University of Technology
Department of Materials Science and Technology
AuthorAffiliation_xml – name: Department of Materials Science and Technology
– name: Nagaoka University of Technology
Author_xml – sequence: 1
  givenname: Yoshio
  surname: Nosaka
  fullname: Nosaka, Yoshio
– sequence: 2
  givenname: Atsuko Y
  surname: Nosaka
  fullname: Nosaka, Atsuko Y
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32219246$$D View this record in MEDLINE/PubMed
BookMark eNp90U1LxDAQBuAgirrqxbtS8SLC6uSjaXOUddUFQQ96DmmaupFuU5MU2X9vdP0AEU-ZwzMzYd4RWu9cZxDax3CGgYrzGnQPUBS4XkPbmHE6FlCy9e-64FtoFMIzAOAc0020RQnBgjC-jaazLnrbBauzTsXBm8w1WT930WkVVbsMNmTVMtNu0avknrJXG-eZaY2O3um5WdgQ_XIXbTSqDWbv891Bj1fTh8nN-Pbueja5uB1rBhDH2vCKC8HyRoOiQlPW6ApzQUld1YxyKAk2JGdENTkBCoSXZdXUwCkXec4U3UEnq7m9dy-DCVGm_dq0reqMG4IktGQERJGTRI9_0Wc3-C797l0VmNOy5EkdfqqhWpha9t4ulF_KrwMlACugvQvBm0ZqG1W0Lp1N2VZikO8ZyEuY3H9kcJlaTn-1fE39Ex-tsA_62_0EKvu6SebgP0PfAMAymig
CitedBy_id crossref_primary_10_3390_oxygen3040027
crossref_primary_10_1021_acs_energyfuels_2c01478
Cites_doi 10.1246/bcsj.78.1595
10.1021/jp062141e
10.1002/adma.201606521
10.1039/9781839168918
10.1016/j.electacta.2013.09.045
10.1021/ja00375a006
10.1021/acs.jpcc.9b03849
10.1038/s41560-019-0355-9
10.1039/b206594k
10.1021/jp994426f
10.1016/j.jphotochemrev.2018.12.001
10.1039/C9CS00102F
10.1038/nmat3697
10.1021/cr068070x
10.1021/j100366a005
10.1016/0013-4686(93)80003-I
10.1021/acs.jpcc.9b00669
10.1002/adma.201606459
10.1016/j.ccr.2018.12.013
10.1021/jp046539r
10.1016/j.pnsc.2019.03.012
10.1016/0039-6028(69)90269-6
10.1002/smll.201905083
10.1002/9783527688685
10.1021/jp904673e
10.1021/acs.chemrev.7b00161
10.1002/cphc.201200382
10.1103/PhysRevB.95.155308
10.1021/acs.chemrev.9b00226
10.1021/acs.jpcc.8b09421
10.1002/adfm.201802169
10.1021/ja00339a007
10.1021/jz402165b
10.1039/C8CS00607E
10.1039/C9TA03385H
10.1039/C8CP04614J
10.1021/ja991407a
10.1002/inf2.12022
10.1021/jp4121645
10.1016/j.apcatb.2008.09.035
10.1002/anie.201901361
10.1021/acs.jpclett.5b02804
10.1039/C8SC04521F
10.1002/anie.201201200
10.1016/j.cattod.2018.10.065
10.1063/1.1696792
10.1039/c3cp55317e
10.1039/C8SC04512G
10.1021/acs.jpclett.7b00285
10.1021/cr300230q
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d0cp00771d
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 7154
ExternalDocumentID 32219246
10_1039_D0CP00771D
d0cp00771d
Genre Journal Article
GroupedDBID -
0-7
0R
123
1TJ
29O
4.4
53G
70
705
70J
7~J
87K
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABFLS
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
D0L
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3G
J3I
JG
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
X
YNT
---
-DZ
-~X
0R~
2WC
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
-JG
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c400t-ce6b69945fc0a39c34fcb16932dbd4360821e2542af520302688bfd06369554a3
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 10:18:46 EDT 2025
Sun Jun 29 16:52:09 EDT 2025
Wed Feb 19 02:31:14 EST 2025
Tue Jul 01 00:53:41 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Sat Jan 08 03:36:53 EST 2022
Wed Nov 11 00:36:14 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-ce6b69945fc0a39c34fcb16932dbd4360821e2542af520302688bfd06369554a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1305-5724
PMID 32219246
PQID 2387163886
PQPubID 2047499
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_D0CP00771D
pubmed_primary_32219246
proquest_miscellaneous_2384209752
proquest_journals_2387163886
crossref_primary_10_1039_D0CP00771D
rsc_primary_d0cp00771d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200408
PublicationDateYYYYMMDD 2020-04-08
PublicationDate_xml – month: 4
  year: 2020
  text: 20200408
  day: 8
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Yang (D0CP00771D-(cit33)/*[position()=1]) 2020; 16
Yamakata (D0CP00771D-(cit48)/*[position()=1]) 2019; 40
Memming (D0CP00771D-(cit23)/*[position()=1]) 2015
Kisch (D0CP00771D-(cit36)/*[position()=1]) 2013; 52
Jeanmairet (D0CP00771D-(cit26)/*[position()=1]) 2019; 10
Abraham (D0CP00771D-(cit25)/*[position()=1]) 2019; 123
Zhang (D0CP00771D-(cit53)/*[position()=1]) 2019; 29
Zhao (D0CP00771D-(cit9)/*[position()=1]) 2019; 48
Montoya (D0CP00771D-(cit37)/*[position()=1]) 2009; 88
Huang (D0CP00771D-(cit19)/*[position()=1]) 2019; 4
Gerischer (D0CP00771D-(cit22)/*[position()=1]) 1969; 18
Gerischer (D0CP00771D-(cit27)/*[position()=1]) 1993; 38
Ward (D0CP00771D-(cit45)/*[position()=1]) 1983; 105
Zhang (D0CP00771D-(cit56)/*[position()=1]) 2017; 95
Wu (D0CP00771D-(cit11)/*[position()=1]) 2019; 1
Costentin (D0CP00771D-(cit29)/*[position()=1]) 2000; 104
Nosaka (D0CP00771D-(cit20)/*[position()=1]) 2017; 117
Royea (D0CP00771D-(cit44)/*[position()=1]) 2006; 110
Ikeda (D0CP00771D-(cit47)/*[position()=1]) 2003; 5
Bockris (D0CP00771D-(cit16)/*[position()=1]) 1970
Huang (D0CP00771D-(cit8)/*[position()=1]) 2019; 385
Yan (D0CP00771D-(cit35)/*[position()=1]) 2017; 29
Scanlon (D0CP00771D-(cit51)/*[position()=1]) 2013; 12
Antonello (D0CP00771D-(cit31)/*[position()=1]) 1999; 121
Buda (D0CP00771D-(cit42)/*[position()=1]) 2013; 113
Guo (D0CP00771D-(cit5)/*[position()=1]) 2019; 119
Nakato (D0CP00771D-(cit18)/*[position()=1]) 2016
Xu (D0CP00771D-(cit4)/*[position()=1]) 2019; 48
Marcus (D0CP00771D-(cit24)/*[position()=1]) 1990; 94
Tada (D0CP00771D-(cit39)/*[position()=1]) 2012; 13
Maheu (D0CP00771D-(cit55)/*[position()=1]) 2018; 20
Di Paola (D0CP00771D-(cit46)/*[position()=1]) 2009; 113
Nosaka (D0CP00771D-(cit17)/*[position()=1]) 2005; 78
Villarreal (D0CP00771D-(cit38)/*[position()=1]) 2004; 108
Chen (D0CP00771D-(cit7)/*[position()=1]) 2019; 58
Bourikas (D0CP00771D-(cit15)/*[position()=1]) 2014; 114
Nam (D0CP00771D-(cit6)/*[position()=1]) 2019; 7
Marcus (D0CP00771D-(cit21)/*[position()=1]) 1965; 43
(D0CP00771D-(cit2)/*[position()=1]) 2016
Gao (D0CP00771D-(cit54)/*[position()=1]) 2017; 8
Savéand (D0CP00771D-(cit28)/*[position()=1]) 2000; 35
Pfeifer (D0CP00771D-(cit50)/*[position()=1]) 2013; 4
Montoya (D0CP00771D-(cit40)/*[position()=1]) 2014; 118
Liu (D0CP00771D-(cit10)/*[position()=1]) 2017; 29
(D0CP00771D-(cit3)/*[position()=1]) 2013
Houmam (D0CP00771D-(cit30)/*[position()=1]) 2008; 108
Schiffer (D0CP00771D-(cit32)/*[position()=1]) 2019; 123
Kavan (D0CP00771D-(cit49)/*[position()=1]) 2019; 328
Nosaka (D0CP00771D-(cit52)/*[position()=1]) 2016; 7
Huang (D0CP00771D-(cit34)/*[position()=1]) 2019; 10
Liu (D0CP00771D-(cit41)/*[position()=1]) 2014; 16
Nosaka (D0CP00771D-(cit13)/*[position()=1]) 2018; 122
Nosaka (D0CP00771D-(cit1)/*[position()=1]) 2016
Merrill (D0CP00771D-(cit14)/*[position()=1]) 1976
Duonghong (D0CP00771D-(cit43)/*[position()=1]) 1982; 104
Cao (D0CP00771D-(cit12)/*[position()=1]) 2018; 28
References_xml – issn: 2016
  publication-title: Introduction to Photocatalysis: From Basic Science to Applications
  doi: Nosaka Nosaka
– issn: 2016
  publication-title: Electrochemistry. Basic Science for Solar Energy Conversion
  doi: Nakato
– issn: 1976
  publication-title: Using Computers in Physics
  doi: Merrill
– issn: 2016
  publication-title: Photocatalysis: Complete Set (Energy and Environment Series)
– issn: 2015
  publication-title: Semiconductor Electrochemistry
  doi: Memming
– issn: 2013
  publication-title: Photocatalysis and Water Purification
– issn: 1970
  publication-title: Modern Electrochemistry
  doi: Bockris Reddy
– volume: 78
  start-page: 1595
  year: 2005
  ident: D0CP00771D-(cit17)/*[position()=1]
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.78.1595
– volume: 110
  start-page: 19433
  year: 2006
  ident: D0CP00771D-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp062141e
– volume: 29
  start-page: 1606521
  year: 2017
  ident: D0CP00771D-(cit10)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606521
– volume: 35
  start-page: 117
  year: 2000
  ident: D0CP00771D-(cit28)/*[position()=1]
  publication-title: Adv. Phys. Org. Chem.
– volume-title: Introduction to Photocatalysis: From Basic Science to Applications
  year: 2016
  ident: D0CP00771D-(cit1)/*[position()=1]
  doi: 10.1039/9781839168918
– volume: 113
  start-page: 536
  year: 2013
  ident: D0CP00771D-(cit42)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.09.045
– volume: 104
  start-page: 2977
  year: 1982
  ident: D0CP00771D-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00375a006
– volume: 123
  start-page: 23760
  issue: 39
  year: 2019
  ident: D0CP00771D-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b03849
– volume: 4
  start-page: 329
  year: 2019
  ident: D0CP00771D-(cit19)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0355-9
– volume: 5
  start-page: 778
  year: 2003
  ident: D0CP00771D-(cit47)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b206594k
– volume: 104
  start-page: 7492
  year: 2000
  ident: D0CP00771D-(cit29)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp994426f
– volume: 40
  start-page: 234
  year: 2019
  ident: D0CP00771D-(cit48)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2018.12.001
– volume: 48
  start-page: 3868
  year: 2019
  ident: D0CP00771D-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00102F
– volume: 12
  start-page: 798
  year: 2013
  ident: D0CP00771D-(cit51)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3697
– volume: 108
  start-page: 2180
  year: 2008
  ident: D0CP00771D-(cit30)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr068070x
– volume-title: Electrochemistry. Basic Science for Solar Energy Conversion
  year: 2016
  ident: D0CP00771D-(cit18)/*[position()=1]
– volume: 94
  start-page: 1050
  year: 1990
  ident: D0CP00771D-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100366a005
– volume: 38
  start-page: 3
  year: 1993
  ident: D0CP00771D-(cit27)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(93)80003-I
– volume-title: Using Computers in Physics
  year: 1976
  ident: D0CP00771D-(cit14)/*[position()=1]
– volume: 123
  start-page: 9713
  year: 2019
  ident: D0CP00771D-(cit32)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b00669
– volume: 29
  start-page: 1606459
  year: 2017
  ident: D0CP00771D-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606459
– volume: 385
  start-page: 44
  year: 2019
  ident: D0CP00771D-(cit8)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.12.013
– volume: 108
  start-page: 20278
  year: 2004
  ident: D0CP00771D-(cit38)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046539r
– volume: 29
  start-page: 277
  year: 2019
  ident: D0CP00771D-(cit53)/*[position()=1]
  publication-title: Prog. Nat. Sci.: Mater. Int.
  doi: 10.1016/j.pnsc.2019.03.012
– volume: 18
  start-page: 97
  year: 1969
  ident: D0CP00771D-(cit22)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(69)90269-6
– volume: 16
  start-page: 1905083
  issue: 1
  year: 2020
  ident: D0CP00771D-(cit33)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201905083
– volume-title: Semiconductor Electrochemistry
  year: 2015
  ident: D0CP00771D-(cit23)/*[position()=1]
  doi: 10.1002/9783527688685
– volume: 113
  start-page: 15166
  year: 2009
  ident: D0CP00771D-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp904673e
– volume: 117
  start-page: 11302
  year: 2017
  ident: D0CP00771D-(cit20)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00161
– volume: 13
  start-page: 3457
  year: 2012
  ident: D0CP00771D-(cit39)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201200382
– volume: 95
  start-page: 155308
  year: 2017
  ident: D0CP00771D-(cit56)/*[position()=1]
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.155308
– volume: 119
  start-page: 11020
  year: 2019
  ident: D0CP00771D-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00226
– volume: 122
  start-page: 28748
  year: 2018
  ident: D0CP00771D-(cit13)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b09421
– volume: 28
  start-page: 1802169
  year: 2018
  ident: D0CP00771D-(cit12)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802169
– volume: 105
  start-page: 27
  year: 1983
  ident: D0CP00771D-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00339a007
– volume: 4
  start-page: 4182
  year: 2013
  ident: D0CP00771D-(cit50)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz402165b
– volume: 48
  start-page: 1972
  year: 2019
  ident: D0CP00771D-(cit9)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00607E
– volume: 7
  start-page: 13833
  year: 2019
  ident: D0CP00771D-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03385H
– volume-title: Modern Electrochemistry
  year: 1970
  ident: D0CP00771D-(cit16)/*[position()=1]
– volume: 20
  start-page: 25629
  year: 2018
  ident: D0CP00771D-(cit55)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04614J
– volume: 121
  start-page: 9668
  year: 1999
  ident: D0CP00771D-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991407a
– volume: 1
  start-page: 417
  year: 2019
  ident: D0CP00771D-(cit11)/*[position()=1]
  publication-title: InfoMat
  doi: 10.1002/inf2.12022
– volume: 118
  start-page: 14266
  year: 2014
  ident: D0CP00771D-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4121645
– volume: 88
  start-page: 50
  year: 2009
  ident: D0CP00771D-(cit37)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2008.09.035
– volume: 58
  start-page: 10061
  year: 2019
  ident: D0CP00771D-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901361
– volume: 7
  start-page: 431
  year: 2016
  ident: D0CP00771D-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02804
– volume-title: Photocatalysis: Complete Set (Energy and Environment Series)
  year: 2016
  ident: D0CP00771D-(cit2)/*[position()=1]
– volume: 10
  start-page: 3340
  year: 2019
  ident: D0CP00771D-(cit34)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04521F
– volume: 52
  start-page: 812
  year: 2013
  ident: D0CP00771D-(cit36)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201201200
– volume: 328
  start-page: 50
  year: 2019
  ident: D0CP00771D-(cit49)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.10.065
– volume: 43
  start-page: 679
  year: 1965
  ident: D0CP00771D-(cit21)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696792
– volume: 16
  start-page: 8751
  year: 2014
  ident: D0CP00771D-(cit41)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp55317e
– volume: 10
  start-page: 2130
  year: 2019
  ident: D0CP00771D-(cit26)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04512G
– volume: 8
  start-page: 1419
  year: 2017
  ident: D0CP00771D-(cit54)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00285
– volume: 114
  start-page: 9754
  year: 2014
  ident: D0CP00771D-(cit15)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr300230q
– volume-title: Photocatalysis and Water Purification
  year: 2013
  ident: D0CP00771D-(cit3)/*[position()=1]
SSID ssj0001513
Score 2.3374038
SecondaryResourceType review_article
Snippet Photocatalysis has been gathering much attention because of the unique applications of photoenergy for environmental cleaning and solar fuel production....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7146
SubjectTerms Anatase
Electrochemistry
Electron transfer
Energy bands
Fuel production
Liquid-solid interfaces
Photocatalysis
Photocatalysts
Photon absorption
Reaction kinetics
Titanium dioxide
Title Intrinsic nature of photocatalysis by comparing with electrochemistry
URI https://www.ncbi.nlm.nih.gov/pubmed/32219246
https://www.proquest.com/docview/2387163886
https://www.proquest.com/docview/2384209752
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4AL4rXQZUFBICSEAontuMmx6na1i0rpoZXKKYodR4sWJaVJD_DrGT_ipGyFgEuUjt3E8YzHn8fjGYRex0RmPGQZjG8CCxRWSJ-HkvqR2hJiRZFnOsTGpzm7WNGP62jd7eDr0yUNfy9-HjxX8j9cBRrwVZ2S_QfOuocCAe6Bv3AFDsP1r3h8WTbbryX08zsTn1O7L19VTaWNMjrWCKBL42bujK428Y1oM7314emi5ZorNXeKZGwgtbYhLCYTdy5sXtXZtYagX6r6yrh17dPHTb27rqymtxYGHGjHlNjJhLFjtE6k2kmk30CjNykjPqyzbVTrPs1kgGuVLcZ9oaI91TlqbZHS_jTBpW-o-ICoCKl5IDYqFFGYdxNZu3k__5yer2azdDldL99svvsqxZjairf5Vm6jIzxiDA_Q0Xi6vJy5iRvADzGH0cy3tNFsSfKhe90-frmxKAGIsm1Tx2iIsryP7tm1hTc2gvIA3ZLlQ3TH9eMjNHUC4xmB8arC2xcYj__wnMB4SmC83wXmMVqdT5eTC9_m0fAFaOjGF5JxliQ0KkSQkUQQWgiugvDgnOeUMECBocQRxVkRYVD6mMUxL3IArywBtJmRYzQoq1I-RR7JY6rmBQLPpKGMExnDZCnCRPAoA7A5RG_b3kmFDTKvcp18S7WzA0nSs2Cy0D15NkSvXN2NCa1ysNZp28mpHXp1CjhzpBYSMRuil64YOkHtdmWlrHa6DsVBMoqgUU8Mc9xrYBZThgf49zFwy5E7Lg_RyeGCdJMXJ39u0jN0txtFp2jQbHfyOSDXhr-wEvcLYUebrA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+nature+of+photocatalysis+by+comparing+with+electrochemistry&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Nosaka%2C+Yoshio&rft.au=Nosaka%2C+Atsuko+Y&rft.date=2020-04-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=22&rft.issue=14&rft.spage=7146&rft.epage=7154&rft_id=info:doi/10.1039%2Fd0cp00771d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon