Need for UAI–Anatomy of the Paradigm of Usable Artificial Intelligence for Domain-Specific AI Applicability
Data-driven methods based on artificial intelligence (AI) are powerful yet flexible tools for gathering knowledge and automating complex tasks in many areas of science and practice. Despite the rapid development of the field, the existing potential of AI methods to solve recent industrial, corporate...
Saved in:
Published in | Multimodal technologies and interaction Vol. 7; no. 3; p. 27 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2414-4088 2414-4088 |
DOI | 10.3390/mti7030027 |
Cover
Abstract | Data-driven methods based on artificial intelligence (AI) are powerful yet flexible tools for gathering knowledge and automating complex tasks in many areas of science and practice. Despite the rapid development of the field, the existing potential of AI methods to solve recent industrial, corporate and social challenges has not yet been fully exploited. Research shows the insufficient practicality of AI in domain-specific contexts as one of the main application hurdles. Focusing on industrial demands, this publication introduces a new paradigm in terms of applicability of AI methods, called Usable AI (UAI). Aspects of easily accessible, domain-specific AI methods are derived, which address essential user-oriented AI services within the UAI paradigm: usability, suitability, integrability and interoperability. The relevance of UAI is clarified by describing challenges, hurdles and peculiarities of AI applications in the production area, whereby the following user roles have been abstracted: developers of cyber–physical production systems (CPPS), developers of processes and operators of processes. The analysis shows that target artifacts, motivation, knowledge horizon and challenges differ for the user roles. Therefore, UAI shall enable domain- and user-role-specific adaptation of affordances accompanied by adaptive support of vertical and horizontal integration across the domains and user roles. |
---|---|
AbstractList | Data-driven methods based on artificial intelligence (AI) are powerful yet flexible tools for gathering knowledge and automating complex tasks in many areas of science and practice. Despite the rapid development of the field, the existing potential of AI methods to solve recent industrial, corporate and social challenges has not yet been fully exploited. Research shows the insufficient practicality of AI in domain-specific contexts as one of the main application hurdles. Focusing on industrial demands, this publication introduces a new paradigm in terms of applicability of AI methods, called Usable AI (UAI). Aspects of easily accessible, domain-specific AI methods are derived, which address essential user-oriented AI services within the UAI paradigm: usability, suitability, integrability and interoperability. The relevance of UAI is clarified by describing challenges, hurdles and peculiarities of AI applications in the production area, whereby the following user roles have been abstracted: developers of cyber–physical production systems (CPPS), developers of processes and operators of processes. The analysis shows that target artifacts, motivation, knowledge horizon and challenges differ for the user roles. Therefore, UAI shall enable domain- and user-role-specific adaptation of affordances accompanied by adaptive support of vertical and horizontal integration across the domains and user roles. |
Audience | Academic |
Author | Conrad, Felix Mälzer, Mauritz Lang, Valentin Feldhoff, Kim Ihlenfeldt, Steffen Wiemer, Hajo Boos, Eugen Schneider, Dorothea Drowatzky, Lucas |
Author_xml | – sequence: 1 givenname: Hajo surname: Wiemer fullname: Wiemer, Hajo – sequence: 2 givenname: Dorothea surname: Schneider fullname: Schneider, Dorothea – sequence: 3 givenname: Valentin orcidid: 0000-0002-9411-461X surname: Lang fullname: Lang, Valentin – sequence: 4 givenname: Felix orcidid: 0000-0002-9998-1907 surname: Conrad fullname: Conrad, Felix – sequence: 5 givenname: Mauritz surname: Mälzer fullname: Mälzer, Mauritz – sequence: 6 givenname: Eugen orcidid: 0000-0002-6593-4678 surname: Boos fullname: Boos, Eugen – sequence: 7 givenname: Kim surname: Feldhoff fullname: Feldhoff, Kim – sequence: 8 givenname: Lucas orcidid: 0000-0003-1479-9311 surname: Drowatzky fullname: Drowatzky, Lucas – sequence: 9 givenname: Steffen surname: Ihlenfeldt fullname: Ihlenfeldt, Steffen |
BookMark | eNp9kd-K1DAUxous4LrujU9Q8E7pmqbpJLksq66FRQWd63KSnowZ0qSmGWTufAff0CfZzFZURCQXJzn8vi_nz-PizAePRfG0JldNI8nLKVlOGkIof1CcU1azihEhzv64Pyoul2VPMlIzwok4L6Z3iGNpQiy3Xf_j2_fOQwrTsQymTJ-x_AARRrubTu_tAsph2cVkjdUWXNn7hM7ZHXqN9x6vwgTWVx9n1Cem7Pqym2dnNSjrbDo-KR4acAte_owXxfbN60_Xb6vb9zf9dXdbaUZIqnSruBGCoAIBwBpEIpgySgrFoDWKts2GolYCuW4bTRVrNZdy5FIDbaBtLop-9R0D7Ic52gnicQhgh_tEiLsBchva4UC1lJwoIlFwhpIBUczguFFSEi5blr1erF4HP8PxKzj3y7Amw2nww-_BZ_rZSs8xfDngkoZ9OESfmx0ol_WGN4KJTF2t1A5yCdabkCLofEacrM5bNTbnO95SyiTd0Cx4vgp0DMsS0fy_BvIXrG2CZIPPv1j3L8kdynCyeQ |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_01_017 crossref_primary_10_1016_j_commatsci_2024_113432 crossref_primary_10_1016_j_procs_2025_01_264 crossref_primary_10_1016_j_procir_2024_01_012 crossref_primary_10_1016_j_procs_2024_01_085 |
Cites_doi | 10.3390/su12020492 10.1109/CESSER-IP.2019.00009 10.1016/j.commatsci.2006.04.013 10.1016/S0004-3702(83)80014-9 10.1016/j.compstruc.2022.106774 10.1016/S0266-3538(03)00106-4 10.1080/00207594.2012.680460 10.1287/isre.2021.1079 10.1007/s10845-020-01553-6 10.1007/s10845-021-01773-4 10.1007/s10845-012-0682-1 10.18208/ksdc.2020.27.1.197 10.1038/s41524-019-0221-0 10.1002/aic.16489 10.1016/j.jmsy.2021.07.007 10.52825/bis.v1i.56 10.3390/app12178700 10.1109/INDIN.2016.7819367 10.1016/j.procir.2022.05.266 10.22306/al.v6i1.112 10.1017/S0890060404040028 10.1109/ICPS48405.2020.9274755 10.1016/j.commatsci.2018.12.056 10.1109/ETFA45728.2021.9613406 10.1080/00207543.2020.1788738 10.1016/j.inffus.2019.12.012 10.3390/app11209590 10.2753/MIS0742-1222270311 10.1145/3290605.3300493 10.1007/978-3-319-59424-8_16 10.1109/ACCESS.2017.2756069 10.1002/adma.201702884 10.1145/3383668.3419905 10.1088/1757-899X/448/1/012013 10.1016/j.procir.2016.04.095 10.1109/ACCESS.2018.2870052 10.1016/j.engappai.2006.07.002 10.1007/s12599-020-00642-3 10.1016/j.procir.2019.02.106 10.1080/00207543.2019.1566661 10.1038/srep34256 10.1080/00207543.2019.1630775 10.1109/WMED.2018.8360836 10.3390/info12040140 10.1007/s11747-017-0523-z 10.3390/s22134865 10.1007/978-3-030-30604-5_6 10.1145/3173574.3174156 10.1007/978-3-319-19027-3_2 10.1109/COASE.2018.8560430 10.1016/j.compind.2020.103389 10.1109/ETFA.2015.7301606 10.1145/3277593.3277608 10.1007/s10462-020-09942-2 10.1111/exsy.12130 10.1145/3328485 10.1007/s11370-020-00326-7 10.1016/j.inffus.2021.11.017 10.24251/HICSS.2017.509 10.1016/j.promfg.2020.01.034 10.1108/13673270610650067 10.1016/j.cirp.2021.04.084 10.1039/C9SC03766G 10.1016/0950-7051(96)81920-4 10.1007/s10479-021-03935-2 10.4028/www.scientific.net/MSF.870.717 10.1002/inf2.12028 10.1016/j.rcim.2020.101956 10.3390/s18051428 10.1016/B978-0-08-052029-2.50007-3 10.1038/s41598-022-23327-1 10.1080/00207543.2020.1836417 10.1038/s41570-019-0124-0 10.3390/met9101025 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
DOI | 10.3390/mti7030027 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2414-4088 |
ExternalDocumentID | oai_doaj_org_article_2c9970b09e874e94a0b4fed6b9907954 10.3390/mti7030027 A752249262 10_3390_mti7030027 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PUEGO PMFND ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
ID | FETCH-LOGICAL-c400t-c5b7f880eba8aa43ee084bfb98b4a5fb25362ecb8e7c53c2b45c799d79ca23a53 |
IEDL.DBID | UNPAY |
ISSN | 2414-4088 |
IngestDate | Wed Aug 27 01:25:25 EDT 2025 Wed Oct 01 16:53:40 EDT 2025 Fri Jul 25 03:07:59 EDT 2025 Tue Jun 10 20:25:22 EDT 2025 Wed Oct 01 05:02:22 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-c5b7f880eba8aa43ee084bfb98b4a5fb25362ecb8e7c53c2b45c799d79ca23a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9411-461X 0000-0002-6593-4678 0000-0002-9998-1907 0000-0003-1479-9311 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2414-4088/7/3/27/pdf?version=1677587689 |
PQID | 2791673848 |
PQPubID | 2059548 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c9970b09e874e94a0b4fed6b9907954 unpaywall_primary_10_3390_mti7030027 proquest_journals_2791673848 gale_infotracacademiconefile_A752249262 crossref_primary_10_3390_mti7030027 crossref_citationtrail_10_3390_mti7030027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Multimodal technologies and interaction |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Dieber (ref_6) 2022; 81 Payne (ref_47) 2017; 45 ref_90 ref_13 ref_12 ref_11 ref_10 Fuchs (ref_104) 2022; 265 ref_95 Wei (ref_98) 2019; 1 ref_19 ref_18 ref_15 Schmidt (ref_101) 2019; 5 Tao (ref_97) 2017; 5 Brecher (ref_75) 2021; 70 Zschech (ref_112) 2020; 62 ref_24 ref_21 Tarafdar (ref_4) 2010; 27 ref_29 Andrews (ref_34) 1995; 8 ref_28 ref_71 ref_70 Zhang (ref_109) 2003; 63 Arrieta (ref_17) 2020; 58 ref_77 ref_76 ref_74 Amirkolaii (ref_92) 2017; 50 Praveen (ref_93) 2019; 38 Ding (ref_72) 2019; 57 Simpson (ref_96) 2004; 18 ref_82 Park (ref_83) 2021; 59 Salanova (ref_3) 2013; 48 ref_89 ref_88 Kliment (ref_45) 2019; 6 Jameson (ref_37) 2009; 30 Liu (ref_53) 2020; 64 Schneider (ref_14) 2021; 1 Grahl (ref_23) 2022; 33 Guo (ref_106) 2019; 160 ref_50 Xiong (ref_108) 2014; 25 Chennamaneni (ref_26) 2011; 1 ref_58 ref_57 Song (ref_43) 2021; 27 Ghobakhloo (ref_73) 2020; 58 Swartout (ref_32) 1983; 21 ref_52 Qiao (ref_79) 2021; 59 ref_51 Gama (ref_44) 2021; 54 ref_59 Czarnowski (ref_55) 2018; Volume 73 ref_61 Uraikul (ref_49) 2007; 20 ref_60 Nagy (ref_80) 2018; 448 ref_69 Foos (ref_27) 2006; 10 ref_68 Preil (ref_91) 2022; 308 ref_67 Bhad (ref_87) 2021; 10 ref_66 ref_65 ref_64 Venkatasubramanian (ref_54) 2019; 65 ref_63 ref_62 Moreira (ref_103) 2019; 3 Yuan (ref_100) 2018; 30 Aranburu (ref_86) 2022; 109 Bunt (ref_42) 2010; 30 Rautenbach (ref_56) 2022; 32 Stein (ref_102) 2019; 10 Li (ref_20) 2021; 60 Schuhmacher (ref_81) 2016; 54 Song (ref_25) 2016; 33 ref_36 ref_35 ref_33 Chen (ref_99) 2016; 6 ref_31 ref_30 Su (ref_107) 2007; 38 ref_39 Conrad (ref_111) 2022; 12 Fayyad (ref_22) 1996; 17 Jasinski (ref_84) 2021; 125 ref_105 Yin (ref_85) 2020; 31 Adadi (ref_16) 2018; 6 ref_40 Lau (ref_41) 2009; 30 ref_1 Park (ref_78) 2022; 33 ref_2 Xu (ref_38) 2019; 26 Stolbov (ref_110) 2016; 870 Ozkaya (ref_46) 2020; 37 ref_48 ref_9 ref_8 ref_5 ref_7 |
References_xml | – volume: 30 start-page: 11 year: 2009 ident: ref_37 article-title: Introduction to the Special Issue on “Usable AI” publication-title: AI Mag. – ident: ref_74 – ident: ref_9 doi: 10.3390/su12020492 – ident: ref_68 – ident: ref_24 doi: 10.1109/CESSER-IP.2019.00009 – volume: 38 start-page: 697 year: 2007 ident: ref_107 article-title: Aging Process Optimization for a Copper Alloy Considering Hardness and Electrical Conductivity publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2006.04.013 – ident: ref_65 – ident: ref_39 – ident: ref_88 – volume: 32 start-page: 83 year: 2022 ident: ref_56 article-title: Data Science for Small and Medium-Sized Enterprises: A Structured Literature Review publication-title: S. Afr. J. Ind. Eng. – ident: ref_1 – volume: 21 start-page: 285 year: 1983 ident: ref_32 article-title: XPLAIN: A System for Creating and Explaining Expert Consulting Programs publication-title: Artif. Intell. doi: 10.1016/S0004-3702(83)80014-9 – volume: 265 start-page: 106774 year: 2022 ident: ref_104 article-title: A Novel Self-Adversarial Training Scheme for Enhanced Robustness of Inelastic Constitutive Descriptions by Neural Networks publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2022.106774 – volume: 63 start-page: 2029 year: 2003 ident: ref_109 article-title: Artificial Neural Networks Applied to Polymer Composites: A Review publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(03)00106-4 – volume: 48 start-page: 422 year: 2013 ident: ref_3 article-title: The Dark Side of Technologies: Technostress among Users of Information and Communication Technologies publication-title: Int. J. Psychol. doi: 10.1080/00207594.2012.680460 – volume: 33 start-page: 678 year: 2022 ident: ref_23 article-title: Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation publication-title: Inf. Syst. Res. doi: 10.1287/isre.2021.1079 – volume: 31 start-page: 2069 year: 2020 ident: ref_85 article-title: Real-Time Task Processing for Spinning Cyber-Physical Production Systems Based on Edge Computing publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01553-6 – volume: 33 start-page: 1843 year: 2022 ident: ref_78 article-title: Machine Learning-Based Optimization of Process Parameters in Selective Laser Melting for Biomedical Applications publication-title: J. Intell. Manuf. doi: 10.1007/s10845-021-01773-4 – ident: ref_31 – volume: 25 start-page: 157 year: 2014 ident: ref_108 article-title: Bead Geometry Prediction for Robotic GMAW-Based Rapid Manufacturing through a Neural Network and a Second-Order Regression Analysis publication-title: J. Intell. Manuf. doi: 10.1007/s10845-012-0682-1 – volume: 27 start-page: 197 year: 2021 ident: ref_43 article-title: A Study on the Usability of AI-Based Naver App Search Service publication-title: J. Korean Soc. Des. Cult. doi: 10.18208/ksdc.2020.27.1.197 – ident: ref_48 – ident: ref_10 – volume: 5 start-page: 83 year: 2019 ident: ref_101 article-title: Recent Advances and Applications of Machine Learning in Solid-State Materials Science publication-title: Npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – ident: ref_13 – volume: 65 start-page: 466 year: 2019 ident: ref_54 article-title: The Promise of Artificial Intelligence in Chemical Engineering: Is It Here, Finally? publication-title: AIChE J. doi: 10.1002/aic.16489 – ident: ref_62 – volume: 60 start-page: 692 year: 2021 ident: ref_20 article-title: Data Science Skills and Domain Knowledge Requirements in the Manufacturing Industry: A Gap Analysis publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.07.007 – volume: 1 start-page: 49 year: 2021 ident: ref_14 article-title: Towards a Guideline Affording Overarching Knowledge Building in Data Analysis Projects publication-title: Bus. Inf. Syst. doi: 10.52825/bis.v1i.56 – ident: ref_59 – ident: ref_7 doi: 10.3390/app12178700 – ident: ref_28 – ident: ref_58 doi: 10.1109/INDIN.2016.7819367 – ident: ref_30 – volume: 109 start-page: 383 year: 2022 ident: ref_86 article-title: Geometric Variability in Parametric 3D Models: Implications for Engineering Design publication-title: Procedia CIRP doi: 10.1016/j.procir.2022.05.266 – volume: 6 start-page: 9 year: 2019 ident: ref_45 article-title: Digitalization Effects on the Usability of Lean Tools 6: 9–13 publication-title: Acta Logist. doi: 10.22306/al.v6i1.112 – volume: 18 start-page: 3 year: 2004 ident: ref_96 article-title: Product Platform Design and Customization: Status and Promise publication-title: Artif. Intell. Eng. Des. Anal. Manuf. doi: 10.1017/S0890060404040028 – ident: ref_76 doi: 10.1109/ICPS48405.2020.9274755 – volume: 50 start-page: 15221 year: 2017 ident: ref_92 article-title: Demand Forecasting for Irregular Demands in Business Aircraft Spare Parts Supply Chains by Using Artificial Intelligence (AI) publication-title: IFAC-Pap. – ident: ref_67 – volume: 160 start-page: 95 year: 2019 ident: ref_106 article-title: A Predicting Model for Properties of Steel Using the Industrial Big Data Based on Machine Learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.12.056 – volume: 17 start-page: 37 year: 1996 ident: ref_22 article-title: From Data Mining to Knowledge Discovery in Databases publication-title: AI Mag. – ident: ref_18 doi: 10.1109/ETFA45728.2021.9613406 – volume: 59 start-page: 5721 year: 2021 ident: ref_83 article-title: The Architectural Framework of a Cyber Physical Logistics System for Digital-Twin-Based Supply Chain Control publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1788738 – volume: 58 start-page: 82 year: 2020 ident: ref_17 article-title: Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.12.012 – ident: ref_21 doi: 10.3390/app11209590 – volume: 27 start-page: 303 year: 2010 ident: ref_4 article-title: Impact of Technostress on End-User Satisfaction and Performance publication-title: J. Manag. Inf. Syst. doi: 10.2753/MIS0742-1222270311 – ident: ref_12 doi: 10.1145/3290605.3300493 – volume: Volume 73 start-page: 169 year: 2018 ident: ref_55 article-title: A Data Analytics Framework for Business in Small and Medium-Sized Organizations publication-title: Intelligent Decision Technologies 2017 doi: 10.1007/978-3-319-59424-8_16 – ident: ref_33 – volume: 5 start-page: 20418 year: 2017 ident: ref_97 article-title: Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2756069 – ident: ref_64 – ident: ref_36 – volume: 30 start-page: 65 year: 2009 ident: ref_41 article-title: Why Programming-By-Demonstration Systems Fail: Lessons Learned for Usable AI publication-title: AI Mag. – ident: ref_70 – volume: 30 start-page: 1702884 year: 2018 ident: ref_100 article-title: Accelerated Discovery of Large Electrostrains in BaTiO3-Based Piezoelectrics Using Active Learning publication-title: Adv. Mater. doi: 10.1002/adma.201702884 – ident: ref_40 doi: 10.1145/3383668.3419905 – volume: 448 start-page: 012013 year: 2018 ident: ref_80 article-title: Impact of Industry 4.0 on Production Logistics publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/448/1/012013 – volume: 54 start-page: 19 year: 2016 ident: ref_81 article-title: Decentralized Control of Logistic Processes in Cyber-Physical Production Systems at the Example of ESB Logistics Learning Factory publication-title: Procedia CIRP doi: 10.1016/j.procir.2016.04.095 – volume: 6 start-page: 52138 year: 2018 ident: ref_16 article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 20 start-page: 115 year: 2007 ident: ref_49 article-title: Artificial Intelligence for Monitoring and Supervisory Control of Process Systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.07.002 – ident: ref_5 – volume: 62 start-page: 227 year: 2020 ident: ref_112 article-title: Intelligent User Assistance for Automated Data Mining Method Selection publication-title: Bus. Inf. Syst. Eng. doi: 10.1007/s12599-020-00642-3 – ident: ref_11 doi: 10.1016/j.procir.2019.02.106 – volume: 57 start-page: 6315 year: 2019 ident: ref_72 article-title: Defining a Digital Twin-Based Cyber-Physical Production System for Autonomous Manufacturing in Smart Shop Floors publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1566661 – volume: 6 start-page: 34256 year: 2016 ident: ref_99 article-title: A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-Nary Inorganic Polycrystalline Compounds publication-title: Sci. Rep. doi: 10.1038/srep34256 – volume: 58 start-page: 2384 year: 2020 ident: ref_73 article-title: Determinants of Information and Digital Technology Implementation for Smart Manufacturing publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1630775 – ident: ref_50 doi: 10.1109/WMED.2018.8360836 – ident: ref_90 – ident: ref_19 doi: 10.3390/info12040140 – volume: 45 start-page: 467 year: 2017 ident: ref_47 article-title: The Customer Value Proposition: Evolution, Development, and Application in Marketing publication-title: J. Acad. Mark. Sci. doi: 10.1007/s11747-017-0523-z – ident: ref_8 doi: 10.3390/s22134865 – ident: ref_61 – ident: ref_95 doi: 10.1007/978-3-030-30604-5_6 – ident: ref_35 doi: 10.1145/3173574.3174156 – ident: ref_57 doi: 10.1007/978-3-319-19027-3_2 – ident: ref_52 doi: 10.1109/COASE.2018.8560430 – volume: 125 start-page: 103389 year: 2021 ident: ref_84 article-title: Vertical Data Continuity with Lean Edge Analytics for Industry 4.0 Production publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103389 – ident: ref_69 – ident: ref_66 – ident: ref_71 doi: 10.1109/ETFA.2015.7301606 – ident: ref_51 doi: 10.1145/3277593.3277608 – volume: 54 start-page: 3849 year: 2021 ident: ref_44 article-title: Artificial Intelligence, Cyber-Threats and Industry 4.0: Challenges and Opportunities publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09942-2 – volume: 33 start-page: 364 year: 2016 ident: ref_25 article-title: Big Data and Data Science: What Should We Teach? publication-title: Expert Syst. doi: 10.1111/exsy.12130 – volume: 26 start-page: 42 year: 2019 ident: ref_38 article-title: Toward Human-Centered AI: A Perspective from Human-Computer Interaction publication-title: Interactions doi: 10.1145/3328485 – ident: ref_94 doi: 10.1007/s11370-020-00326-7 – volume: 81 start-page: 143 year: 2022 ident: ref_6 article-title: A Novel Model Usability Evaluation Framework (MUsE) for Explainable Artificial Intelligence publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.11.017 – ident: ref_82 doi: 10.24251/HICSS.2017.509 – volume: 38 start-page: 256 year: 2019 ident: ref_93 article-title: Inventory Management and Cost Reduction of Supply Chain Processes Using AI Based Time-Series Forecasting and ANN Modeling publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.01.034 – volume: 10 start-page: 6 year: 2006 ident: ref_27 article-title: Tacit Knowledge Transfer and the Knowledge Disconnect publication-title: J. Knowl. Manag. doi: 10.1108/13673270610650067 – volume: 70 start-page: 333 year: 2021 ident: ref_75 article-title: Direct Measurement of Thermo-Elastic Errors of a Machine Tool publication-title: CIRP Ann. doi: 10.1016/j.cirp.2021.04.084 – volume: 10 start-page: 9640 year: 2019 ident: ref_102 article-title: Progress and Prospects for Accelerating Materials Science with Automated and Autonomous Workflows publication-title: Chem. Sci. doi: 10.1039/C9SC03766G – ident: ref_63 – volume: 8 start-page: 373 year: 1995 ident: ref_34 article-title: Survey and Critique of Techniques for Extracting Rules from Trained Artificial Neural Networks publication-title: Knowl.-Based Syst. doi: 10.1016/0950-7051(96)81920-4 – volume: 1 start-page: 277 year: 2011 ident: ref_26 article-title: An Integrated Framework for Effective Tacit Knowledge Transfer publication-title: AMCIS Proc. – volume: 308 start-page: 415 year: 2022 ident: ref_91 article-title: Artificial Intelligence-Based Inventory Management: A Monte Carlo Tree Search Approach publication-title: Ann. Oper. Res. doi: 10.1007/s10479-021-03935-2 – volume: 870 start-page: 717 year: 2016 ident: ref_110 article-title: Application of Intelligent Technology in Functional Materials Quality Control publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.870.717 – volume: 1 start-page: 338 year: 2019 ident: ref_98 article-title: Machine Learning in Materials Science publication-title: InfoMat doi: 10.1002/inf2.12028 – volume: 64 start-page: 101956 year: 2020 ident: ref_53 article-title: Web-Based Digital Twin Modeling and Remote Control of Cyber-Physical Production Systems publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2020.101956 – ident: ref_89 doi: 10.3390/s18051428 – ident: ref_2 – volume: 30 start-page: 58 year: 2010 ident: ref_42 article-title: Mixed-Initiative Interface Personalization as a Case Study in Usable AI publication-title: AI Mag. – volume: 37 start-page: 3 year: 2020 ident: ref_46 article-title: What Is Really Different in Engineering AI-Enabled Systems? publication-title: IEEE Softw. – ident: ref_29 doi: 10.1016/B978-0-08-052029-2.50007-3 – ident: ref_15 – volume: 10 start-page: 110 year: 2021 ident: ref_87 article-title: Integrated Approach for an Artificial Intelligence-Based Generative Product Design publication-title: Int. J. Des. Eng. – volume: 12 start-page: 19350 year: 2022 ident: ref_111 article-title: Benchmarking AutoML for Regression Tasks on Small Tabular Data in Materials Design publication-title: Sci. Rep. doi: 10.1038/s41598-022-23327-1 – volume: 59 start-page: 7139 year: 2021 ident: ref_79 article-title: Industrial Big-Data-Driven and CPS-Based Adaptive Production Scheduling for Smart Manufacturing publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1836417 – ident: ref_60 – ident: ref_105 – volume: 3 start-page: 589 year: 2019 ident: ref_103 article-title: Synthetic Organic Chemistry Driven by Artificial Intelligence publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0124-0 – ident: ref_77 doi: 10.3390/met9101025 |
SSID | ssj0002140708 |
Score | 2.3092244 |
Snippet | Data-driven methods based on artificial intelligence (AI) are powerful yet flexible tools for gathering knowledge and automating complex tasks in many areas of... |
SourceID | doaj unpaywall proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 27 |
SubjectTerms | Algorithms Analysis applicable AI Artificial intelligence Automation Collaboration Communication Computer engineering Computer science cyber–physical production systems Data analysis Data collection Data processing Data science domain-specific AI explainable AI Interdisciplinary subjects Knowledge Middleware Scientists Sociology Software Subject specialists Task complexity Usability usable AI |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB5KLm0P_S91mxRBAqUHE68sWdLRSRqygYYeupCbkGSpLKy9IdlQ9tZ36BvmSTKSvVtDS3vp0WYsxpoZzXxI-gbggPGykZyqvJlQBChKVrkJDc195SeesVCGJl5w_nxRnc3Y-SW_HLX6imfCenrgfuIOqVNKFLZQXgrmFTOFZcE3lcVlVCiemEAxjY3AVFyDKeIGUciej7REXH_YrubRuYvYPmaUgRJR_-_L8WN4eNtdmfV3s1iM8s3pM3gyFIqk7hV8Dg989wKebpowkCEmX0J7gfmHYOlJZvX07sfPukMY3a7JMhCs7cgXc22a-bc2Ps9u4j2pNGTPG0GmI0LONMbJsjXzLk9d6VGG1FNS91vc6RDt-hXMTj99PT7Lhx4KucPoXOWOWxEwRr010hhWel9IZoNV0jLDg6UcM5h3VnrheOmoZdwJpRqhnKGl4eVr2OmWnX8DRAicd0RPNmDZhV9JNqHOqcggZouq8Bl83MyrdgPBeOxzsdAINKIN9C8bZLC_lb3qaTX-KHUUzbOViFTY6QU6iB4cRP_LQTL4EI2rY8CiOs4M9w7wpyL1la4FlqCJNjGD3Y399RDJN5oKLKBFKZnM4GDrE39R-u3_UPodPIp97fvDbruws7q-9XtY_azs--To97hfAd8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZgOQAH_hGBBVliJcQh2tSxY_uEwk_ZIrHiQKW9WbZjryo1SWm7WvW278Ab8iSMHbdbCbTHRI41ycx4ZhzP9yF0RFnZCEZk3owIFChSVLn2Dcld5UaOUl_6JjQ4fz-tTqb02xk7Sxtuq3SscrsmxoW66W3YIz8mHBIZXgoqPix-5YE1KvxdTRQat9GdEQFLCp3i46-7PRYC1QMvxIBKWkJ1f9yuZ8HEi0AisxeHIlz_v4vyfXT3olvozaWez_eizvgRepDSRVwP-n2MbrnuCXq4pWLAyTOfovYUohCGBBRP68mfq991B8V0u8G9x5Dh4R96qZvZeRuup6vQLRWnHNAj8GQPljPO8blv9azLIzc9jMH1BNfDj-54lHbzDE3HX35-OskTk0JuwUfXuWWGe_BUZ7TQmpbOFYIab6QwVDNvCIM45qwRjltWWmIos1zKhkurSalZ-RwddH3nXiDMuXcN1FDGQ_IFTwk6ItbKgCNmiqpwGXq__a7KJpjxwHYxV1BuBB2oax1k6O1u7GIA1_jvqI9BPbsRARA73uiX5yr5lyJWSg4SSCc4dZLqwlAQtDIQbblkNEPvgnJVcFsQx-rUfQAvFQCwVM0hEY3giRk63OpfJX9eqWvry9DRziZuEPrlzbO8QvcCb_1wmO0QHayXF-41ZDdr8yaa8F8Qrvnb priority: 102 providerName: ProQuest |
Title | Need for UAI–Anatomy of the Paradigm of Usable Artificial Intelligence for Domain-Specific AI Applicability |
URI | https://www.proquest.com/docview/2791673848 https://www.mdpi.com/2414-4088/7/3/27/pdf?version=1677587689 https://doaj.org/article/2c9970b09e874e94a0b4fed6b9907954 |
UnpaywallVersion | publishedVersion |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2414-4088 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140708 issn: 2414-4088 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2414-4088 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140708 issn: 2414-4088 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2414-4088 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140708 issn: 2414-4088 databaseCode: BENPR dateStart: 20170301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2414-4088 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140708 issn: 2414-4088 databaseCode: 8FG dateStart: 20170301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFL3stg_qg-vXYnQtAy6ID9mmySQzA4JkdetWsBSxsD5ImJlMlmKTlm6q1Cf_g__QX-KdfNSiIuJjwk24Ye7ce05m5lyAYxoGKQ994aYDHwmK4JErs9R3TWQGhtIsyFJ7wPnNODqf0tcX4cUePGvPwthtlUjFZ1WSxupCkeAgR2P9oI8kfZlmzz81_5EGEUOsi2hZ7EM3sstLHehOx5P4ve0n1z5ZK5IGyOz7eTmz4e3ZBjI7NaiS6v89Id-Aa-tiKTef5Xy-U3GGB_Ch9bXeaPLxZF2qE_3lFxnH__2YW3CzgaIkrmPnNuyZ4g4ctG0eSDPr70I-xgpHENySaTz6_vVbXCBRzzdkkRFEj2QiVzKdXeb2enplT2JVr6yVKchoR_KzesfLRS5nhVv1vUcbEo9IXC-iV9t0N_dgOjx79-Lcbbo0uBrnf-nqULEMs4BRkktJA2M8TlWmBFdUhpnyQ6yRRitumA4D7SsaaiZEyoSWfiDD4BA6xaIw94EwlpkU-ZnKENjhU5wOfK2F1ShTXuQZB56245boRsLcdtKYJ0hl7BgnP8fYgcdb22Ut3PFHq1M7_FsLK7Zd3VisLpNm7ia-FoKhB8JwRo2g0lMUHY0UVnImQurAExs8iU0J6I6WzckG_CgrrpXEDEFuJczowFEbX0mTK64SnyFEZwGn3IHjbcz9xekH_2b2EK77iMjqDXNH0ClXa_MIEVSperDPh6960D09G0_e9qr_EL1m8vwA-a0aCw |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcigc-EcECliiCHGImrWd2D4gFCjLLm1XSHSl3lzbcaqVNsmyu1W1N96B9-CheBLG-dmuBOqtx0SONfGM58ee-QahPRbTTMREhlmPQIAiRRLqPCOhS1zPMZbTPPMFzsejZDBmX0_j0y30u6uF8WmVnU6sFXVWWX9Gvk84ODKcCiY-zH6EvmuUv13tWmg0YnHoVpcQsi3eDw-Av28I6X8--TQI264CoQV5XYY2NjwHqXVGC60ZdS4SzORGCsN0nBsSg0531gjHbUwtMSy2XMqMS6sJ1b5LBKj8W4xS6rH6Rf_L-kyHQLTCI9GgoFIqo_1iOfFbKvJNazbsXt0e4F8jcAftXJQzvbrU0-mGlevfR3db9xSnjTw9QFuufIjuda0fcKsJHqFiBFYPg8OLx-nwz89faQnBe7HCVY7Bo8Tf9Fxnk_PCP48XvjqrnrJBq8DDDRjQeo6DqtCTMvw-c3WGIE6HOG0u1uvU3dVjNL6RNX6CtsuqdE8R5jx3GcRsJgdnD74SrEeslR63zERJ5AL0rltXZVtYc99dY6ogvPE8UFc8CNDr9dhZA-bx31EfPXvWIzwAd_2imp-rdj8rYqXkQIF0gjMnmY4MA0ITA9ady5gF6K1nrvJqAsixuq12gJ_ygFsq5eD41mCNAdrt-K9a_bFQV9IeoL21TFxD9LPrZ3mFdgYnx0fqaDg6fI5uE_DUmkS6XbS9nF-4F-BZLc3LWpwxOrvp_fMXxHg4dA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD6aOomfC_4RhQGWGEJcRE0dp7YvJpTRVSuDqgIq7S6zHWeq1Kal7TT1jnfgrXgMnoTjxOkqgXa3y1Su5eT8J-d8H8A-i6NMxFQGWZtigSJFJ1B5RgPbsW3LWB7lmRtw_jLoHI_Yp9P4dAd-17Mwrq2y9omlo85mxr0jb1GOiQyPBBOt3LdFDLu9D_MfgWOQcl9aazoN5WkWsoMSbswPeZzY9SWWc8uDfhdl_5bS3tH3j8eBZxwIDOryKjCx5jlqtNVKKMUia0PBdK6l0EzFuaYx-ntrtLDcxJGhmsWGS5lxaRSNlGOQwHCwy928aAN2D48Gw6-bNz4UaxkeigojNYpk2Jquxs7gQkdpsxUVS_KAf0PEXbh9UczV-lJNJlsxsPcA7vnklSSVtj2EHVs8gvs1MQTxfuIxTAcYEwmmw2SU9P_8_JUUWNpP12SWE8w3yVAtVDY-n7rr0dLNbpVbVlgWpL8FElru0Z1N1bgIvs1t2T9Ikj5Jqs_uZWPv-gmMbuQpP4VGMSvsMyCc5zbDik7nmArivwRrU2OkQzXTYSe0TXhfP9fUeNBzx70xSbH4cTJIr2TQhDebtfMK6uO_qw6deDYrHDx3-cNscZ56a0-pkZLjCaQVnFnJVKgZHrSjMfZzGbMmvHPCTZ0TweMY5Wch8KYcHFeacEyLSyjHJuzV8k-9d1mmV7bQhP2NTlxz6OfX7_IabqEtpZ_7g5MXcIdiGld12e1BY7W4sC8x7VrpV16fCZzdtAn9BYdEQ04 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6ssw_qw663xeoqARfEh-502qRpQJB6WXYEh32wsD5ISdJkGZx2htnOyvjkf_Af-ks86WUcVER8bDktp-TknO9rku8AHFEWFQkLhV-MQiQoIol9aYvQN7EZGUptZAt3wPndJD7N6Ntzdr4Dz_uzMG5bJVLxaZOksbpQJDjI0fgwGiJJXxT2xVX3H2kUc8S6iJbFNdiN3fLSAHazyVn6wfWT659sFUkjZPbDsp668A5cA5mtGtRI9f-ekG_C9VW1kOvPcjbbqjgn-_Cx97XdaPLpeFWrY_3lFxnH__2YW7DXQVGStrFzG3ZMdQf2-zYPpJv1d6GcYIUjCG5Jlo6_f_2WVkjUyzWZW4LokZzJpSymF6W7zi7dSazmla0yBRlvSX4273g9L-W08pu-92hD0jFJ20X0Zpvu-h5kJ2_evzr1uy4Nvsb5X_uaKW4xCxglEylpZEyQUGWVSBSVzKqQYY00WiWGaxbpUFGmuRAFF1qGkWTRAQyqeWXuA-HcmgL5mbII7PCphI5CrYXTKFNBHBgPnvXjlutOwtx10pjlSGXcGOc_x9iDJxvbRSvc8Uerl274NxZObLu5MV9e5N3czUMtBEcPhEk4NYLKQFF0NFZYyblg1IOnLnhylxLQHS27kw34UU5cK085gtxGmNGDwz6-8i5XXOYhR4jOo4QmHhxtYu4vTj_4N7OHcCNERNZumDuEQb1cmUeIoGr1uJsoPwAb4BaW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Need+for+UAI%E2%80%93Anatomy+of+the+Paradigm+of+Usable+Artificial+Intelligence+for+Domain-Specific+AI+Applicability&rft.jtitle=Multimodal+technologies+and+interaction&rft.au=Wiemer%2C+Hajo&rft.au=Schneider%2C+Dorothea&rft.au=Lang%2C+Valentin&rft.au=Conrad%2C+Felix&rft.date=2023-03-01&rft.issn=2414-4088&rft.eissn=2414-4088&rft.volume=7&rft.issue=3&rft.spage=27&rft_id=info:doi/10.3390%2Fmti7030027&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mti7030027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2414-4088&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2414-4088&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2414-4088&client=summon |