Graph Neural Network for Traffic Forecasting: The Research Progress
Traffic forecasting has been regarded as the basis for many intelligent transportation system (ITS) applications, including but not limited to trip planning, road traffic control, and vehicle routing. Various forecasting methods have been proposed in the literature, including statistical models, sha...
        Saved in:
      
    
          | Published in | ISPRS international journal of geo-information Vol. 12; no. 3; p. 100 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.03.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2220-9964 2220-9964  | 
| DOI | 10.3390/ijgi12030100 | 
Cover
| Abstract | Traffic forecasting has been regarded as the basis for many intelligent transportation system (ITS) applications, including but not limited to trip planning, road traffic control, and vehicle routing. Various forecasting methods have been proposed in the literature, including statistical models, shallow machine learning models, and deep learning models. Recently, graph neural networks (GNNs) have emerged as state-of-the-art traffic forecasting solutions because they are well suited for traffic systems with graph structures. This survey aims to introduce the research progress on graph neural networks for traffic forecasting and the research trends observed from the most recent studies. Furthermore, this survey summarizes the latest open-source datasets and code resources for sharing with the research community. Finally, research challenges and opportunities are proposed to inspire follow-up research. | 
    
|---|---|
| AbstractList | Traffic forecasting has been regarded as the basis for many intelligent transportation system (ITS) applications, including but not limited to trip planning, road traffic control, and vehicle routing. Various forecasting methods have been proposed in the literature, including statistical models, shallow machine learning models, and deep learning models. Recently, graph neural networks (GNNs) have emerged as state-of-the-art traffic forecasting solutions because they are well suited for traffic systems with graph structures. This survey aims to introduce the research progress on graph neural networks for traffic forecasting and the research trends observed from the most recent studies. Furthermore, this survey summarizes the latest open-source datasets and code resources for sharing with the research community. Finally, research challenges and opportunities are proposed to inspire follow-up research. | 
    
| Author | Gu, Weixi Jiang, Weiwei Luo, Jiayun He, Miao  | 
    
| Author_xml | – sequence: 1 givenname: Weiwei orcidid: 0000-0003-0953-5047 surname: Jiang fullname: Jiang, Weiwei – sequence: 2 givenname: Jiayun orcidid: 0000-0002-4151-6682 surname: Luo fullname: Luo, Jiayun – sequence: 3 givenname: Miao surname: He fullname: He, Miao – sequence: 4 givenname: Weixi surname: Gu fullname: Gu, Weixi  | 
    
| BookMark | eNqFkE9rFEEQxRtJwBhz8wMMePHgaPWf6en2JksSA8EEWc9NTU_Pbq-T6bV6hpBvb-uKhCCkLlUUv3rFe6_Y0ZSmwNgbDh-ktPAx7jaRC5DAAV6wEyEE1NZqdfRofsnOct5BKculUXDCVpeE-231NSyEY2nzfaIf1ZCoWhMOQ_TVRaLgMc9x2nyq1ttQfQs5IPltdUtpQyHn1-x4wDGHs7_9lH2_OF-vvtTXN5dXq8_XtVcAc90p2ymQyHVo-NAZyVuwrYVGaxBWaDQgWmUG3TfSaG_aRhsdgvcD9sF2nTxlVwfdPuHO7SneIT24hNH9WSTaOKQ5-jE4JTpRHCLvwSiOaA0HLTqtWmz7vg9Fqz5oLdMeH-5xHP8JcnC_A3WPAy38uwO_p_RzCXl2dzH7MI44hbRkVwyI4kJKU9C3T9BdWmgqyTjRWq4b3simUO8PlKeUM4Xhuf_iCe7jjHNM00wYx_8f_QLcv6Eo | 
    
| CitedBy_id | crossref_primary_10_1007_s13177_024_00425_0 crossref_primary_10_1049_2024_8639981 crossref_primary_10_3390_s23229225 crossref_primary_10_1007_s00521_024_10591_7 crossref_primary_10_1007_s00521_024_10672_7 crossref_primary_10_1088_1742_6596_2711_1_012012 crossref_primary_10_3390_sym16030308 crossref_primary_10_1016_j_aei_2024_102519 crossref_primary_10_1109_TITS_2024_3452275 crossref_primary_10_48084_etasr_7046 crossref_primary_10_1007_s10707_024_00517_9 crossref_primary_10_3390_ijgi13100341 crossref_primary_10_7717_peerj_cs_2527 crossref_primary_10_32604_cmc_2024_047836 crossref_primary_10_1016_j_inffus_2024_102228 crossref_primary_10_1080_1206212X_2024_2442699 crossref_primary_10_1002_spe_3386 crossref_primary_10_1007_s13177_024_00453_w crossref_primary_10_53759_7669_jmc202404034 crossref_primary_10_1016_j_eswa_2024_123543 crossref_primary_10_1016_j_inffus_2024_102466 crossref_primary_10_1177_03611981241308868 crossref_primary_10_1016_j_future_2024_107677 crossref_primary_10_1109_ACCESS_2024_3486354 crossref_primary_10_1007_s00521_024_09827_3 crossref_primary_10_1007_s00521_024_10606_3 crossref_primary_10_1140_epjs_s11734_024_01368_z crossref_primary_10_1016_j_cageo_2024_105621 crossref_primary_10_1016_j_asoc_2025_112892 crossref_primary_10_1016_j_engappai_2025_110476 crossref_primary_10_1007_s12530_024_09624_2 crossref_primary_10_1109_TKDE_2024_3471659 crossref_primary_10_3390_electronics13193816 crossref_primary_10_3390_math12193159 crossref_primary_10_1515_geo_2022_0542 crossref_primary_10_1177_03611981241295706 crossref_primary_10_1016_j_ins_2024_121845 crossref_primary_10_1177_03611981241274645  | 
    
| Cites_doi | 10.1016/j.dcan.2021.09.007 10.1109/TKDE.2022.3187690 10.1109/TITS.2022.3202089 10.1016/j.knosys.2022.109028 10.3390/electronics11101613 10.1109/JIOT.2022.3142070 10.1145/3534678.3539281 10.1016/j.physa.2022.128075 10.3141/2460-08 10.1109/TITS.2022.3157056 10.1109/TITS.2022.3208943 10.1109/TITS.2022.3215326 10.3390/electronics11162620 10.1016/j.comcom.2022.08.008 10.3389/ffutr.2021.693708 10.1016/j.physa.2022.127762 10.1145/3511808.3557243 10.24963/ijcai.2022/328 10.1016/j.physa.2022.127789 10.1109/TITS.2020.3043250 10.1109/TITS.2022.3178136 10.1016/j.dsm.2021.05.001 10.1145/3534678.3539396 10.3390/s22124485 10.1080/01441647.2018.1442887 10.1016/j.trc.2022.103820 10.1002/int.22855 10.1155/2022/7682274 10.1109/IJCNN55064.2022.9892326 10.1109/TITS.2009.2021448 10.1016/j.compenvurbsys.2022.101776 10.1109/JIOT.2022.3196461 10.1155/2022/2723101 10.1016/j.ins.2022.04.045 10.1016/j.eswa.2022.117511 10.1109/ITSC55140.2022.9922512 10.1093/comjnl/bxac086 10.1007/s00521-022-07235-z 10.1016/j.knosys.2018.10.037 10.1109/TITS.2022.3140229 10.1109/JSEN.2022.3176016 10.1007/s10489-022-03224-w 10.1109/TITS.2022.3171451 10.1016/j.dsm.2022.05.002 10.1016/j.ins.2022.07.008 10.1177/03611981221112673 10.1016/j.ins.2022.02.031 10.1016/j.inffus.2022.09.028 10.3390/s21030706 10.24963/ijcai.2019/264 10.3390/rs14020303 10.1016/j.knosys.2022.108990 10.3390/ijgi9010058 10.1002/itl2.297 10.1089/big.2021.0251 10.1007/s11280-022-01045-y 10.1007/s10707-022-00466-1 10.1109/TITS.2022.3173689 10.1109/IJCNN55064.2022.9892031 10.1109/TKDE.2022.3179646 10.3390/ijgi11070381 10.1109/IJCNN55064.2022.9892016 10.1016/j.neucom.2022.09.010 10.3390/su141912397 10.1016/j.trc.2019.08.010 10.1155/2022/1358535 10.1609/aaai.v33i01.3301922 10.1109/TKDE.2020.2981333 10.1109/ACCESS.2021.3049556 10.1109/ACCESS.2022.3204036 10.1109/MITS.2018.2806634 10.1155/2022/5221362 10.1155/2022/2348375 10.1109/ISCC55528.2022.9912866 10.1145/3511808.3557705 10.1109/TITS.2022.3179391 10.1016/j.knosys.2022.109985 10.3390/app12052688 10.3390/asi5010023 10.1109/TCYB.2021.3117705 10.1016/j.trc.2021.103063 10.1109/TITS.2013.2247040 10.1109/TITS.2022.3146899 10.24963/ijcai.2022/545 10.1007/s10489-021-03128-1 10.1109/ACCESS.2022.3195353 10.1109/JSEN.2022.3152808 10.14778/3551793.3551827 10.1109/TITS.2022.3155753 10.1016/j.patrec.2022.03.005 10.1109/TNSE.2022.3152983 10.1145/3534678.3539397 10.3233/IDA-183832 10.1155/2022/2811961 10.3390/app12062842 10.1109/CSCWD54268.2022.9776256 10.3390/app11104423 10.1016/j.future.2022.09.018 10.1016/j.knosys.2022.108199 10.1016/j.eswa.2022.118475 10.1109/TNSE.2021.3137381 10.1080/09540091.2022.2061915 10.1109/DDCLS.2018.8516114 10.1109/MITS.2021.3098627 10.1016/j.comnet.2020.107530 10.1016/j.physa.2021.126736 10.1109/TITS.2022.3148105 10.3390/su13158577 10.1109/TITS.2021.3113705 10.1016/j.ins.2022.07.125 10.1109/IJCNN55064.2022.9892453 10.1016/j.eswa.2022.117921 10.3390/ijgi11020088 10.3390/asi5060121 10.1609/aaai.v31i1.10735 10.1016/j.trc.2021.103466 10.1002/itl2.403 10.1109/TITS.2022.3196466 10.1137/1.9781611974973.87 10.1109/TITS.2021.3054840 10.1016/j.engappai.2022.105179 10.1109/TNNLS.2022.3186103 10.1109/TNNLS.2020.2978386 10.1016/j.trc.2022.103731 10.1007/s10707-022-00467-0 10.1002/itl2.322 10.1109/IJCNN55064.2022.9892191 10.1109/TITS.2022.3185503 10.1016/j.trc.2014.01.005 10.1007/s13042-022-01689-2 10.1109/ICASSP43922.2022.9746497 10.1007/s11280-021-00995-z 10.1016/j.eswa.2022.116585 10.1109/TBDATA.2022.3156366 10.1145/3511808.3557540 10.1016/j.dsp.2022.103419 10.1007/s10489-022-04218-4 10.1109/ITSC45102.2020.9294236 10.1109/WCNC51071.2022.9771883 10.1145/3511808.3557432 10.1109/TITS.2022.3148358 10.1016/j.dsm.2021.07.002 10.1007/s10489-021-02377-4 10.1016/j.aej.2020.09.038 10.1109/TITS.2022.3148116 10.26599/TST.2018.9010033 10.24963/ijcai.2018/505 10.3390/asi4030043 10.3390/ijgi11020085 10.1007/s00521-022-07285-3 10.1016/j.trc.2022.103984 10.1109/TITS.2021.3083957 10.1109/ICDE53745.2022.00136 10.1049/itr2.12254 10.3390/app12062890 10.1109/TITS.2022.3167019 10.1080/21680566.2022.2116125 10.1109/TITS.2022.3168865 10.1016/j.ins.2022.06.080 10.1016/j.dsm.2022.04.001 10.1002/eng2.12178 10.1016/j.eswa.2022.117163 10.1109/JIOT.2019.2946693 10.1609/aaai.v35i12.17325 10.1007/s10668-022-02585-z 10.1145/3534678.3539093 10.3390/electronics11152432 10.1016/j.physa.2022.127959 10.1109/TVT.2022.3209242 10.1109/IJCNN55064.2022.9892616 10.3390/electronics11142230 10.1109/TITS.2021.3136161 10.1016/j.eswa.2021.115537 10.1007/s10489-021-03022-w 10.3390/math10101754 10.1109/TITS.2022.3201879 10.1109/ACCESS.2021.3071174 10.1002/itl2.314 10.1016/j.ins.2022.05.127 10.1016/j.dsm.2022.07.002 10.3390/a15120447 10.1145/3485447.3511990 10.1016/j.dsm.2021.02.002 10.1002/itl2.383 10.1109/TITS.2022.3168879 10.1177/0361198119849059 10.1016/j.asoc.2022.108977 10.1080/15472450.2019.1582950 10.3390/electronics11193012 10.1007/s00521-022-07380-5 10.1080/0144164042000195072 10.1109/ICDE53745.2022.00058 10.1049/itr2.12296 10.1109/JIOT.2019.2940412 10.1155/2022/1217588 10.1007/s11063-022-11036-9 10.1007/s10489-022-03966-7 10.1109/TITS.2022.3157129 10.1109/TVT.2022.3178094 10.1016/j.ins.2022.04.024 10.3390/app12147010 10.1016/j.trc.2022.103659 10.1016/j.comnet.2020.107484  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/ijgi12030100 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Visual Arts Computer Science  | 
    
| EISSN | 2220-9964 | 
    
| ExternalDocumentID | oai_doaj_org_article_42b2138a1d0841aa981062b647a7ddde 10.3390/ijgi12030100 10_3390_ijgi12030100  | 
    
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c400t-b49b403a16e51fb83170979056602926a802748f6d5386c875686eeccfade9bb3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2220-9964 | 
    
| IngestDate | Fri Oct 03 12:53:13 EDT 2025 Sun Oct 26 03:57:02 EDT 2025 Thu Sep 04 16:57:42 EDT 2025 Fri Jul 25 12:14:47 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Thu Oct 16 04:34:52 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c400t-b49b403a16e51fb83170979056602926a802748f6d5386c875686eeccfade9bb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-4151-6682 0000-0003-0953-5047  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/12/3/100/pdf?version=1677663141 | 
    
| PQID | 2791651535 | 
    
| PQPubID | 2032387 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_42b2138a1d0841aa981062b647a7ddde unpaywall_primary_10_3390_ijgi12030100 proquest_miscellaneous_2922029338 proquest_journals_2791651535 crossref_primary_10_3390_ijgi12030100 crossref_citationtrail_10_3390_ijgi12030100  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-03-01 | 
    
| PublicationDateYYYYMMDD | 2023-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | ISPRS international journal of geo-information | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_139 ref_91 Lee (ref_50) 2021; 9 Huang (ref_84) 2022; 594 Ye (ref_107) 2022; 8 Sun (ref_74) 2022; 9 Gutmann (ref_209) 2021; 2 Su (ref_129) 2022; 156 ref_95 ref_134 Wang (ref_9) 2019; 23 Jiang (ref_40) 2022; 201 Zheng (ref_116) 2022; 9 ref_126 ref_125 ref_120 Xiao (ref_10) 2019; 164 ref_123 Liang (ref_137) 2022; 140 Xu (ref_215) 2021; 1 Ke (ref_206) 2021; 127 Zhao (ref_106) 2022; 204 ref_159 ref_71 ref_158 Long (ref_13) 2023; 72 Chen (ref_97) 2022; 23 Jiang (ref_30) 2021; 184 ref_78 ref_154 Lana (ref_16) 2018; 10 ref_157 ref_156 Huang (ref_85) 2022; 601 Vlahogianni (ref_7) 2014; 43 ref_160 Wang (ref_149) 2022; 13 ref_82 Wang (ref_153) 2022; 604 ref_81 Feng (ref_147) 2022; 606 ref_80 Xu (ref_99) 2022; 23 Li (ref_43) 2023; 147 ref_89 ref_88 Hu (ref_117) 2022; 22 ref_141 Santhosh (ref_31) 2020; 2 ref_144 ref_146 Zhang (ref_118) 2022; 250 Wang (ref_105) 2022; 607 Liao (ref_168) 2022; 52 Diao (ref_93) 2022; 24 Bao (ref_127) 2022; 210 ref_214 ref_213 ref_217 ref_219 ref_210 ref_212 Ni (ref_164) 2022; 52 Shankarnarayan (ref_33) 2021; 3 Khaled (ref_170) 2022; 249 Jiang (ref_28) 2018; 24 ref_203 Djenouri (ref_75) 2023; 139 ref_202 ref_205 ref_204 ref_207 ref_208 Jiang (ref_53) 2022; 34 Chen (ref_171) 2022; 194 Vlahogianni (ref_8) 2004; 24 ref_201 ref_200 Wang (ref_173) 2022; 590 Jiang (ref_36) 2022; 5 Jin (ref_72) 2022; 510 Lippi (ref_20) 2013; 14 He (ref_15) 2019; 7 Manibardo (ref_49) 2021; 23 Zhang (ref_98) 2022; 139 Xiao (ref_224) 2021; 14 Liao (ref_103) 2022; 52 Li (ref_148) 2022; 2022 Zheng (ref_73) 2022; 10 ref_119 ref_230 Jiang (ref_109) 2022; 2022 ref_111 ref_232 ref_110 ref_231 Ye (ref_44) 2022; 23 Shao (ref_185) 2022; 15 ref_234 Wang (ref_155) 2022; 23 ref_233 Wu (ref_57) 2020; 32 Sun (ref_151) 2022; 124 Lee (ref_114) 2022; 134 Zhang (ref_169) 2022; 608 ref_104 ref_227 Serrano (ref_221) 2023; 91 ref_226 ref_108 ref_229 ref_228 Xu (ref_87) 2022; 10 Wang (ref_4) 2021; 2 Xiao (ref_6) 2019; 6 Jin (ref_86) 2022; 23 James (ref_130) 2022; 23 ref_220 ref_223 ref_222 Geng (ref_131) 2022; 606 Liu (ref_94) 2022; 23 Duan (ref_124) 2022; 71 Zhang (ref_162) 2022; 34 Ge (ref_79) 2022; 2022 Li (ref_113) 2022; 13 Li (ref_140) 2022; 53 ref_12 Feng (ref_101) 2022; 2022 ref_17 Huang (ref_138) 2022; 23 Zhang (ref_161) 2022; 34 Xiu (ref_76) 2022; 24 Zhang (ref_135) 2022; 114 ref_24 ref_22 Sun (ref_25) 2021; 9 Zhang (ref_58) 2020; 34 Boukerche (ref_48) 2020; 182 Lu (ref_142) 2022; 13 ref_27 Wang (ref_167) 2022; 603 ref_26 Zhao (ref_102) 2022; 2022 Zhuang (ref_39) 2022; 5 Kong (ref_122) 2022; 23 Hou (ref_218) 2021; 60 Jiang (ref_23) 2022; 5 Liu (ref_225) 2022; 25 Zhan (ref_41) 2020; 24 Zhang (ref_128) 2022; 34 Yin (ref_51) 2021; 23 Sousa (ref_37) 2022; 5 Huang (ref_152) 2022; 609 Chen (ref_92) 2022; 143 Zhao (ref_34) 2022; 5 Shang (ref_90) 2022; 123 Gao (ref_216) 2022; 10 Ermagun (ref_11) 2018; 38 Cao (ref_96) 2022; 610 Ta (ref_100) 2022; 242 ref_172 ref_56 ref_175 ref_55 Liu (ref_14) 2022; 9 ref_54 ref_177 Zheng (ref_83) 2022; 195 Dong (ref_163) 2022; 603 ref_176 ref_52 ref_179 ref_178 ref_180 ref_182 ref_59 ref_181 Liu (ref_3) 2022; 9 Zhao (ref_150) 2022; 34 Boukerche (ref_47) 2020; 181 Yang (ref_211) 2019; 107 ref_61 Tedjopurnomo (ref_46) 2020; 34 Lu (ref_132) 2022; 13 Ghosh (ref_19) 2009; 10 Dai (ref_70) 2022; 17 ref_67 ref_66 ref_65 ref_166 Wang (ref_174) 2022; 36 ref_64 ref_165 Rehman (ref_2) 2022; 22 ref_63 Wang (ref_69) 2022; 258 ref_62 Wang (ref_133) 2022; 23 Ling (ref_68) 2022; 17 Qin (ref_143) 2022; 37 Jiang (ref_45) 2022; 207 ref_195 ref_194 ref_197 ref_196 ref_32 ref_199 Luo (ref_121) 2022; 23 ref_198 Jiang (ref_38) 2022; 5 Jiang (ref_35) 2022; 5 Zhao (ref_112) 2022; 94 Jiang (ref_115) 2022; 23 ref_184 ref_183 ref_186 Xiao (ref_18) 2022; 23 ref_188 ref_42 ref_187 ref_189 ref_1 Jiang (ref_136) 2022; 9 ref_191 ref_190 Cao (ref_145) 2022; 2022 ref_193 Xu (ref_77) 2022; 2022 ref_192 Wang (ref_21) 2014; 2460 Sun (ref_60) 2022; 23 ref_5 Khan (ref_29) 2019; 2673  | 
    
| References_xml | – volume: 8 start-page: 343 year: 2022 ident: ref_107 article-title: Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2021.09.007 – ident: ref_165 doi: 10.1109/TKDE.2022.3187690 – ident: ref_71 doi: 10.1109/TITS.2022.3202089 – volume: 250 start-page: 109028 year: 2022 ident: ref_118 article-title: Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109028 – ident: ref_123 doi: 10.3390/electronics11101613 – volume: 9 start-page: 13390 year: 2022 ident: ref_136 article-title: Inter-Block Flow Prediction with Relation Graph Network for Cold-start on Bike-Sharing System publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3142070 – ident: ref_191 doi: 10.1145/3534678.3539281 – volume: 606 start-page: 128075 year: 2022 ident: ref_147 article-title: Multi-step ahead traffic speed prediction based on gated temporal graph convolution network publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2022.128075 – ident: ref_217 – volume: 2460 start-page: 66 year: 2014 ident: ref_21 article-title: Empirical mode decomposition–autoregressive integrated moving average: Hybrid short-term traffic speed prediction model publication-title: Transp. Res. Rec. doi: 10.3141/2460-08 – ident: ref_125 doi: 10.1109/TITS.2022.3157056 – volume: 23 start-page: 23680 year: 2022 ident: ref_60 article-title: Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3208943 – ident: ref_67 doi: 10.1109/TITS.2022.3215326 – ident: ref_119 doi: 10.3390/electronics11162620 – volume: 194 start-page: 446 year: 2022 ident: ref_171 article-title: Traffic flow prediction using multi-view graph convolution and masked attention mechanism publication-title: Comput. Commun. doi: 10.1016/j.comcom.2022.08.008 – volume: 2 start-page: 693708 year: 2021 ident: ref_209 article-title: Truck parking occupancy prediction: Xgboost-LSTM model fusion publication-title: Front. Future Transp. doi: 10.3389/ffutr.2021.693708 – volume: 603 start-page: 127762 year: 2022 ident: ref_167 article-title: ST-MGAT: Spatio-temporal multi-head graph attention network for Traffic prediction publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2022.127762 – ident: ref_212 – ident: ref_177 doi: 10.1145/3511808.3557243 – ident: ref_194 doi: 10.24963/ijcai.2022/328 – volume: 13 start-page: 1 year: 2022 ident: ref_113 article-title: Crowd Flow Prediction for irregular Regions with Semantic Graph Attention Network publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 603 start-page: 127789 year: 2022 ident: ref_163 article-title: Spatiotemporal Graph Attention Network modeling for multi-step passenger demand prediction at multi-zone level publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2022.127789 – volume: 23 start-page: 3904 year: 2022 ident: ref_44 article-title: How to build a graph-based deep learning architecture in traffic domain: A survey publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.3043250 – volume: 23 start-page: 20177 year: 2022 ident: ref_115 article-title: Deep Graph Gaussian Processes for Short-Term Traffic Flow Forecasting From Spatiotemporal Data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3178136 – volume: 2 start-page: 12 year: 2021 ident: ref_4 article-title: Analyzing potential tourist behavior using PCA and modified affinity propagation clustering based on Baidu index: Taking Beijing city as an example publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2021.05.001 – ident: ref_193 doi: 10.1145/3534678.3539396 – ident: ref_219 doi: 10.3390/s22124485 – ident: ref_228 – ident: ref_196 – volume: 38 start-page: 786 year: 2018 ident: ref_11 article-title: Spatiotemporal traffic forecasting: Review and proposed directions publication-title: Transp. Rev. doi: 10.1080/01441647.2018.1442887 – volume: 143 start-page: 103820 year: 2022 ident: ref_92 article-title: A novel reinforced dynamic graph convolutional network model with data imputation for network-wide traffic flow prediction publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2022.103820 – volume: 37 start-page: 6555 year: 2022 ident: ref_143 article-title: Memory attention enhanced graph convolution long short-term memory network for traffic forecasting publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22855 – volume: 2022 start-page: 7682274 year: 2022 ident: ref_102 article-title: An Attention Encoder-Decoder Dual Graph Convolutional Network with Time Series Correlation for Multi-Step Traffic Flow Prediction publication-title: J. Adv. Transp. doi: 10.1155/2022/7682274 – ident: ref_203 doi: 10.1109/IJCNN55064.2022.9892326 – volume: 10 start-page: 246 year: 2009 ident: ref_19 article-title: Multivariate short-term traffic flow forecasting using time-series analysis publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2009.2021448 – ident: ref_234 – volume: 94 start-page: 101776 year: 2022 ident: ref_112 article-title: Coupling graph deep learning and spatial-temporal influence of built environment for short-term bus travel demand prediction publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2022.101776 – volume: 9 start-page: 25685 year: 2022 ident: ref_74 article-title: HMIAN: A Hierarchical Mapping and Interactive Attention Data Fusion Network for Traffic Forecasting publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3196461 – volume: 2022 start-page: 2723101 year: 2022 ident: ref_79 article-title: Traffic Flow Prediction Based on Multi-Spatiotemporal Attention Gated Graph Convolution Network publication-title: J. Adv. Transp. doi: 10.1155/2022/2723101 – volume: 606 start-page: 126 year: 2022 ident: ref_131 article-title: Graph correlated attention recurrent neural network for multivariate time series forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.04.045 – volume: 204 start-page: 117511 year: 2022 ident: ref_106 article-title: Attention-based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117511 – volume: 13 start-page: 1 year: 2022 ident: ref_149 article-title: Multivariate Correlation-aware Spatio-temporal Graph Convolutional Networks for Multi-scale Traffic Prediction publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – ident: ref_200 – ident: ref_220 doi: 10.1109/ITSC55140.2022.9922512 – ident: ref_154 doi: 10.1093/comjnl/bxac086 – volume: 34 start-page: 15457 year: 2022 ident: ref_128 article-title: Forecasting traffic flow with spatial–temporal convolutional graph attention networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07235-z – volume: 164 start-page: 213 year: 2019 ident: ref_10 article-title: Short-term traffic volume prediction by ensemble learning in concept drifting environments publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.10.037 – volume: 24 start-page: 904 year: 2022 ident: ref_93 article-title: A Novel Spatial-Temporal Multi-Scale Alignment Graph Neural Network Security Model for Vehicles Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3140229 – volume: 22 start-page: 13116 year: 2022 ident: ref_117 article-title: DSTGCN: Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3176016 – ident: ref_179 – volume: 52 start-page: 15026 year: 2022 ident: ref_164 article-title: STGMN: A gated multi-graph convolutional network framework for traffic flow prediction publication-title: Appl. Intell. doi: 10.1007/s10489-022-03224-w – volume: 23 start-page: 17201 year: 2022 ident: ref_97 article-title: AARGNN: An Attentive Attributed Recurrent Graph Neural Network for Traffic Flow Prediction Considering Multiple Dynamic Factors publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3171451 – volume: 5 start-page: 84 year: 2022 ident: ref_34 article-title: New developments in wind energy forecasting with artificial intelligence and big data: A scientometric insight publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2022.05.002 – volume: 609 start-page: 548 year: 2022 ident: ref_152 article-title: Multi-mode dynamic residual graph convolution network for traffic flow prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.008 – ident: ref_158 doi: 10.1177/03611981221112673 – volume: 594 start-page: 286 year: 2022 ident: ref_84 article-title: A dynamical spatial-temporal graph neural network for traffic demand prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.02.031 – volume: 91 start-page: 1 year: 2023 ident: ref_221 article-title: Combining heterogeneous data sources for spatio-temporal mobility demand forecasting publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.09.028 – ident: ref_5 doi: 10.3390/s21030706 – ident: ref_214 doi: 10.24963/ijcai.2019/264 – ident: ref_156 doi: 10.3390/rs14020303 – volume: 249 start-page: 108990 year: 2022 ident: ref_170 article-title: TFGAN: Traffic forecasting using generative adversarial network with multi-graph convolutional network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108990 – ident: ref_1 doi: 10.3390/ijgi9010058 – volume: 5 start-page: e297 year: 2022 ident: ref_23 article-title: TaxiBJ21: An open crowd flow dataset based on Beijing taxi GPS trajectories publication-title: Internet Technol. Lett. doi: 10.1002/itl2.297 – ident: ref_55 – ident: ref_134 doi: 10.1089/big.2021.0251 – ident: ref_139 doi: 10.1007/s11280-022-01045-y – ident: ref_146 doi: 10.1007/s10707-022-00466-1 – volume: 23 start-page: 20681 year: 2022 ident: ref_138 article-title: Learning Multiaspect Traffic Couplings by Multirelational Graph Attention Networks for Traffic Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3173689 – ident: ref_202 doi: 10.1109/IJCNN55064.2022.9892031 – ident: ref_88 doi: 10.1109/TKDE.2022.3179646 – ident: ref_166 doi: 10.3390/ijgi11070381 – ident: ref_205 doi: 10.1109/IJCNN55064.2022.9892016 – volume: 510 start-page: 79 year: 2022 ident: ref_72 article-title: Deep multi-view graph-based network for citywide ride-hailing demand prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.09.010 – ident: ref_65 doi: 10.3390/su141912397 – volume: 107 start-page: 248 year: 2019 ident: ref_211 article-title: A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2019.08.010 – volume: 2022 start-page: 1358535 year: 2022 ident: ref_77 article-title: Multi-Dimensional Attention Based Spatial-Temporal Networks for Traffic Forecasting publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2022/1358535 – ident: ref_188 – ident: ref_24 doi: 10.1609/aaai.v33i01.3301922 – volume: 34 start-page: 249 year: 2020 ident: ref_58 article-title: Deep learning on graphs: A survey publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2981333 – volume: 9 start-page: 8581 year: 2021 ident: ref_25 article-title: Modeling global spatial–temporal graph attention network for traffic prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049556 – volume: 10 start-page: 94051 year: 2022 ident: ref_73 article-title: GCN-GAN: Integrating Graph Convolutional Network and Generative Adversarial Network for Traffic Flow Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3204036 – volume: 10 start-page: 93 year: 2018 ident: ref_16 article-title: Road traffic forecasting: Recent advances and new challenges publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2018.2806634 – volume: 2022 start-page: 5221362 year: 2022 ident: ref_109 article-title: Bi-GRCN: A Spatio-Temporal Traffic Flow Prediction Model Based on Graph Neural Network publication-title: J. Adv. Transp. doi: 10.1155/2022/5221362 – ident: ref_233 – ident: ref_63 doi: 10.1155/2022/2348375 – ident: ref_178 doi: 10.1109/ISCC55528.2022.9912866 – ident: ref_180 doi: 10.1145/3511808.3557705 – ident: ref_159 doi: 10.1109/TITS.2022.3179391 – volume: 258 start-page: 109985 year: 2022 ident: ref_69 article-title: STHGCN: A spatiotemporal prediction framework based on higher-order graph convolution networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109985 – ident: ref_183 – ident: ref_144 doi: 10.3390/app12052688 – ident: ref_52 doi: 10.3390/asi5010023 – ident: ref_17 doi: 10.1109/TCYB.2021.3117705 – volume: 127 start-page: 103063 year: 2021 ident: ref_206 article-title: Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2021.103063 – volume: 14 start-page: 871 year: 2013 ident: ref_20 article-title: Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2247040 – ident: ref_81 doi: 10.1109/TITS.2022.3146899 – ident: ref_187 doi: 10.24963/ijcai.2022/545 – volume: 52 start-page: 12077 year: 2022 ident: ref_168 article-title: Taxi demand forecasting based on the temporal multimodal information fusion graph neural network publication-title: Appl. Intell. doi: 10.1007/s10489-021-03128-1 – volume: 10 start-page: 82384 year: 2022 ident: ref_216 article-title: Short-Term Traffic Speed Forecasting Using a Deep Learning Method Based on Multitemporal Traffic Flow Volume publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3195353 – volume: 24 start-page: 100342 year: 2022 ident: ref_76 article-title: Modelling traffic as multi-graph signals: Using domain knowledge to enhance the network-level passenger flow prediction in metro systems publication-title: J. Rail Transp. Plan. Manag. – volume: 22 start-page: 7352 year: 2022 ident: ref_2 article-title: Towards resilient and secure cooperative behavior of intelligent transportation system using sensor technologies publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3152808 – volume: 15 start-page: 2733 year: 2022 ident: ref_185 article-title: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting publication-title: Proc. VLDB Endow. doi: 10.14778/3551793.3551827 – volume: 23 start-page: 18632 year: 2022 ident: ref_99 article-title: Adaptive Spatiotemporal Dependence Learning for Multi-Mode Transportation Demand Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3155753 – volume: 156 start-page: 126 year: 2022 ident: ref_129 article-title: GDFormer: A Graph Diffusing Attention based approach for Traffic Flow Prediction publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2022.03.005 – volume: 9 start-page: 1765 year: 2022 ident: ref_14 article-title: Spatial-temporal conv-sequence learning with accident encoding for traffic flow prediction publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3152983 – ident: ref_190 doi: 10.1145/3534678.3539397 – volume: 23 start-page: 481 year: 2019 ident: ref_9 article-title: Bayesian optimization of support vector machine for regression prediction of short-term traffic flow publication-title: Intell. Data Anal. doi: 10.3233/IDA-183832 – ident: ref_54 – volume: 2022 start-page: 2811961 year: 2022 ident: ref_145 article-title: MSASGCN: Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting publication-title: J. Adv. Transp. doi: 10.1155/2022/2811961 – ident: ref_172 doi: 10.3390/app12062842 – ident: ref_210 – ident: ref_198 doi: 10.1109/CSCWD54268.2022.9776256 – ident: ref_42 doi: 10.3390/app11104423 – volume: 139 start-page: 100 year: 2023 ident: ref_75 article-title: Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2022.09.018 – volume: 242 start-page: 108199 year: 2022 ident: ref_100 article-title: Adaptive Spatio-temporal Graph Neural Network for traffic forecasting publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108199 – volume: 210 start-page: 118475 year: 2022 ident: ref_127 article-title: Forecasting network-wide multi-step metro ridership with an attention-weighted multi-view graph to sequence learning approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118475 – volume: 9 start-page: 834 year: 2022 ident: ref_3 article-title: Exploiting Spatiotemporal Correlations of Arrive-Stay-Leave Behaviors for Private Car Flow Prediction publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2021.3137381 – volume: 34 start-page: 1252 year: 2022 ident: ref_150 article-title: Multi-featured spatial-temporal and dynamic multi-graph convolutional network for metro passenger flow prediction publication-title: Connect. Sci. doi: 10.1080/09540091.2022.2061915 – ident: ref_207 doi: 10.1109/DDCLS.2018.8516114 – volume: 14 start-page: 129 year: 2021 ident: ref_224 article-title: Exploring human mobility patterns and travel behavior: A focus on private cars publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2021.3098627 – volume: 181 start-page: 107530 year: 2020 ident: ref_47 article-title: Machine Learning-based traffic prediction models for Intelligent Transportation Systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107530 – volume: 590 start-page: 126736 year: 2022 ident: ref_173 article-title: Traffic prediction based on auto spatiotemporal multi-graph adversarial neural network publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2021.126736 – volume: 23 start-page: 16137 year: 2022 ident: ref_133 article-title: Hierarchical traffic flow prediction based on spatial-temporal graph convolutional network publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3148105 – ident: ref_208 doi: 10.3390/su13158577 – volume: 23 start-page: 12343 year: 2022 ident: ref_18 article-title: Understanding urban area attractiveness based on private car trajectory data using a deep learning approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3113705 – volume: 610 start-page: 185 year: 2022 ident: ref_96 article-title: A spatio-temporal sequence-to-sequence network for traffic flow prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.125 – ident: ref_201 doi: 10.1109/IJCNN55064.2022.9892453 – volume: 207 start-page: 117921 year: 2022 ident: ref_45 article-title: Graph neural network for traffic forecasting: A survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117921 – ident: ref_108 doi: 10.3390/ijgi11020088 – ident: ref_229 doi: 10.3390/asi5060121 – ident: ref_22 doi: 10.1609/aaai.v31i1.10735 – volume: 134 start-page: 103466 year: 2022 ident: ref_114 article-title: DDP-GCN: Multi-graph convolutional network for spatiotemporal traffic forecasting publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2021.103466 – ident: ref_232 – ident: ref_27 doi: 10.1002/itl2.403 – ident: ref_80 doi: 10.1109/TITS.2022.3196466 – ident: ref_12 doi: 10.1137/1.9781611974973.87 – volume: 23 start-page: 4927 year: 2021 ident: ref_51 article-title: Deep learning on traffic prediction: Methods, analysis and future directions publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3054840 – volume: 114 start-page: 105179 year: 2022 ident: ref_135 article-title: IGCRRN: Improved Graph Convolution Res-Recurrent Network for spatio-temporal dependence capturing and traffic flow prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105179 – ident: ref_56 – ident: ref_223 doi: 10.1109/TNNLS.2022.3186103 – volume: 32 start-page: 4 year: 2020 ident: ref_57 article-title: A comprehensive survey on graph neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 140 start-page: 103731 year: 2022 ident: ref_137 article-title: Joint demand prediction for multimodal systems: A multi-task multi-relational spatiotemporal graph neural network approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2022.103731 – volume: 10 start-page: 718 year: 2022 ident: ref_87 article-title: A GATs-GAN framework for road traffic states forecasting publication-title: Transp. B Transp. Dyn. – ident: ref_111 doi: 10.1007/s10707-022-00467-0 – volume: 5 start-page: e322 year: 2022 ident: ref_36 article-title: Internet traffic matrix prediction with convolutional LSTM neural network publication-title: Internet Technol. Lett. doi: 10.1002/itl2.322 – ident: ref_195 doi: 10.1109/IJCNN55064.2022.9892191 – volume: 34 start-page: 1544 year: 2020 ident: ref_46 article-title: A survey on modern deep neural network for traffic prediction: Trends, methods and challenges publication-title: IEEE Trans. Knowl. Data Eng. – volume: 34 start-page: 8996 year: 2022 ident: ref_162 article-title: Spatial-temporal upsampling graph convolutional network for daily long-term traffic speed prediction publication-title: J. King Saud Univ.-Comput. Inf. Sci. – ident: ref_160 doi: 10.1109/TITS.2022.3185503 – volume: 43 start-page: 3 year: 2014 ident: ref_7 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2014.01.005 – ident: ref_66 doi: 10.1007/s13042-022-01689-2 – ident: ref_184 doi: 10.1109/ICASSP43922.2022.9746497 – volume: 25 start-page: 2515 year: 2022 ident: ref_225 article-title: Foreseeing private car transfer between urban regions with multiple graph-based generative adversarial networks publication-title: World Wide Web doi: 10.1007/s11280-021-00995-z – volume: 195 start-page: 116585 year: 2022 ident: ref_83 article-title: A dynamic spatial–temporal deep learning framework for traffic speed prediction on large-scale road networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116585 – volume: 9 start-page: 241 year: 2022 ident: ref_116 article-title: DSTAGCN: Dynamic Spatial-Temporal Adjacent Graph Convolutional Network for Traffic Forecasting publication-title: IEEE Trans. Big Data doi: 10.1109/TBDATA.2022.3156366 – volume: 36 start-page: 100779 year: 2022 ident: ref_174 article-title: TransGAT: A dynamic graph attention residual networks for traffic flow forecasting publication-title: Sustain. Comput. Inform. Syst. – ident: ref_176 doi: 10.1145/3511808.3557540 – volume: 123 start-page: 103419 year: 2022 ident: ref_90 article-title: A new ensemble deep graph reinforcement learning network for spatio-temporal traffic volume forecasting in a freeway network publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103419 – ident: ref_62 doi: 10.1007/s10489-022-04218-4 – ident: ref_227 doi: 10.1109/ITSC45102.2020.9294236 – ident: ref_189 doi: 10.1109/WCNC51071.2022.9771883 – ident: ref_181 doi: 10.1145/3511808.3557432 – volume: 23 start-page: 16185 year: 2022 ident: ref_86 article-title: A GAN-Based Short-Term Link Traffic Prediction Approach for Urban Road Networks Under a Parallel Learning Framework publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3148358 – volume: 3 start-page: 3 year: 2021 ident: ref_33 article-title: Comparative study of three stochastic future weather forecast approaches: A case study publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2021.07.002 – volume: 2022 start-page: 9815133 year: 2022 ident: ref_148 article-title: Multigraph Aggregation Spatiotemporal Graph Convolution Network for Ride-Hailing Pick-Up Region Prediction publication-title: Wirel. Commun. Mob. Comput. – volume: 53 start-page: 1 year: 2022 ident: ref_140 article-title: Long-term traffic forecasting based on adaptive graph cross strided convolution network publication-title: Appl. Intell. doi: 10.1007/s10489-021-02377-4 – ident: ref_231 – volume: 60 start-page: 597 year: 2021 ident: ref_218 article-title: The effect of the dataset on evaluating urban traffic prediction publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.09.038 – volume: 23 start-page: 16148 year: 2022 ident: ref_122 article-title: Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph Learning Framework publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3148116 – volume: 24 start-page: 52 year: 2018 ident: ref_28 article-title: Geospatial data to images: A deep-learning framework for traffic forecasting publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2018.9010033 – ident: ref_213 doi: 10.24963/ijcai.2018/505 – ident: ref_32 doi: 10.3390/asi4030043 – ident: ref_26 doi: 10.3390/ijgi11020085 – volume: 34 start-page: 16655 year: 2022 ident: ref_161 article-title: Spatial-temporal dynamic semantic graph neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07285-3 – volume: 147 start-page: 103984 year: 2023 ident: ref_43 article-title: Improving short-term bike sharing demand forecast through an irregular convolutional neural network publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2022.103984 – volume: 23 start-page: 6164 year: 2021 ident: ref_49 article-title: Deep learning for road traffic forecasting: Does it make a difference? publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3083957 – ident: ref_222 doi: 10.1109/ICDE53745.2022.00136 – ident: ref_89 doi: 10.1049/itr2.12254 – ident: ref_120 doi: 10.3390/app12062890 – volume: 23 start-page: 19201 year: 2022 ident: ref_121 article-title: ESTNet: Embedded Spatial-Temporal Network for Modeling Traffic Flow Dynamics publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3167019 – ident: ref_126 doi: 10.1080/21680566.2022.2116125 – ident: ref_157 doi: 10.1109/TITS.2022.3168865 – volume: 608 start-page: 718 year: 2022 ident: ref_169 article-title: TCP-BAST: A novel approach to traffic congestion prediction with bilateral alternation on spatiality and temporality publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.06.080 – volume: 5 start-page: 43 year: 2022 ident: ref_39 article-title: A combined forecasting method for intermittent demand using the automotive aftermarket data publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2022.04.001 – volume: 2 start-page: e12178 year: 2020 ident: ref_31 article-title: Current advances and approaches in wind speed and wind power forecasting for improved renewable energy integration: A review publication-title: Eng. Rep. doi: 10.1002/eng2.12178 – volume: 201 start-page: 117163 year: 2022 ident: ref_40 article-title: Cellular traffic prediction with machine learning: A survey publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117163 – volume: 7 start-page: 598 year: 2019 ident: ref_15 article-title: Causalbg: Causal recurrent neural network for the blood glucose inference with IoT platform publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2946693 – ident: ref_59 doi: 10.1609/aaai.v35i12.17325 – ident: ref_110 doi: 10.1007/s10668-022-02585-z – ident: ref_199 doi: 10.1145/3534678.3539093 – ident: ref_91 doi: 10.3390/electronics11152432 – volume: 604 start-page: 127959 year: 2022 ident: ref_153 article-title: Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2022.127959 – volume: 72 start-page: 1515 year: 2023 ident: ref_13 article-title: Unified Spatial-Temporal Neighbor Attention Network for Dynamic Traffic Prediction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3209242 – ident: ref_197 – ident: ref_204 doi: 10.1109/IJCNN55064.2022.9892616 – ident: ref_141 doi: 10.3390/electronics11142230 – volume: 17 start-page: 1 year: 2022 ident: ref_68 article-title: STHAN: Transportation Demand Forecasting with Compound Spatio-Temporal Relationships publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – volume: 23 start-page: 15015 year: 2022 ident: ref_130 article-title: Graph Construction for Traffic Prediction: A Data-Driven Approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3136161 – volume: 184 start-page: 115537 year: 2021 ident: ref_30 article-title: Applications of deep learning in stock market prediction: Recent progress publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115537 – volume: 52 start-page: 16104 year: 2022 ident: ref_103 article-title: An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention publication-title: Appl. Intell. doi: 10.1007/s10489-021-03022-w – ident: ref_95 doi: 10.3390/math10101754 – volume: 13 start-page: 1 year: 2022 ident: ref_142 article-title: Make More Connections: Urban Traffic Flow Forecasting with Spatiotemporal Adaptive Gated Graph Convolution Network publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – ident: ref_82 doi: 10.1109/TITS.2022.3201879 – volume: 9 start-page: 54739 year: 2021 ident: ref_50 article-title: Short-term traffic prediction with deep neural networks: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3071174 – volume: 5 start-page: e314 year: 2022 ident: ref_35 article-title: Internet traffic prediction with deep neural networks publication-title: Internet Technol. Lett. doi: 10.1002/itl2.314 – volume: 607 start-page: 869 year: 2022 ident: ref_105 article-title: Attention based spatiotemporal graph attention networks for traffic flow forecasting publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.05.127 – volume: 5 start-page: 137 year: 2022 ident: ref_37 article-title: Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2022.07.002 – ident: ref_226 doi: 10.3390/a15120447 – ident: ref_230 doi: 10.1145/3485447.3511990 – ident: ref_192 – volume: 1 start-page: 32 year: 2021 ident: ref_215 article-title: Data science: Connotation, methods, technologies, and development publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2021.02.002 – volume: 5 start-page: e383 year: 2022 ident: ref_38 article-title: Deep learning based short-term load forecasting incorporating calendar and weather information publication-title: Internet Technol. Lett. doi: 10.1002/itl2.383 – volume: 23 start-page: 18557 year: 2022 ident: ref_155 article-title: Multitask Hypergraph Convolutional Networks: A Heterogeneous Traffic Prediction Framework publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3168879 – volume: 2673 start-page: 489 year: 2019 ident: ref_29 article-title: Development and evaluation of recurrent neural network-based models for hourly traffic volume and annual average daily traffic prediction publication-title: Transp. Res. Rec. doi: 10.1177/0361198119849059 – volume: 124 start-page: 108977 year: 2022 ident: ref_151 article-title: Multi-fold Correlation Attention Network for Predicting Traffic Speeds with Heterogeneous Frequency publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108977 – volume: 24 start-page: 125 year: 2020 ident: ref_41 article-title: Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2019.1582950 – ident: ref_78 doi: 10.3390/electronics11193012 – ident: ref_186 – volume: 34 start-page: 15369 year: 2022 ident: ref_53 article-title: Bike sharing usage prediction with deep learning: A survey publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07380-5 – volume: 24 start-page: 533 year: 2004 ident: ref_8 article-title: Short-term traffic forecasting: Overview of objectives and methods publication-title: Transp. Rev. doi: 10.1080/0144164042000195072 – volume: 13 start-page: 1 year: 2022 ident: ref_132 article-title: Graph Sequence Neural Network with an Attention Mechanism for Traffic Speed Prediction publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – ident: ref_182 doi: 10.1109/ICDE53745.2022.00058 – ident: ref_61 doi: 10.1049/itr2.12296 – volume: 6 start-page: 10652 year: 2019 ident: ref_6 article-title: Toward accurate vehicle state estimation under non-Gaussian noises publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2940412 – volume: 2022 start-page: 1217588 year: 2022 ident: ref_101 article-title: AGCN-T: A Traffic Flow Prediction Model for Spatial-Temporal Network Dynamics publication-title: J. Adv. Transp. doi: 10.1155/2022/1217588 – ident: ref_64 doi: 10.1007/s11063-022-11036-9 – volume: 17 start-page: 1 year: 2022 ident: ref_70 article-title: Dynamic Multi-View Graph Neural Networks for Citywide Traffic Inference publication-title: ACM Trans. Knowl. Discov. Data (TKDD) – ident: ref_175 doi: 10.1007/s10489-022-03966-7 – volume: 23 start-page: 19064 year: 2022 ident: ref_94 article-title: A Universal Framework of Spatiotemporal Bias Block for Long-Term Traffic Forecasting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2022.3157129 – volume: 71 start-page: 9250 year: 2022 ident: ref_124 article-title: Fdsa-STG: Fully Dynamic Self-Attention Spatio-Temporal Graph Networks for Intelligent Traffic Flow Prediction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2022.3178094 – volume: 601 start-page: 129 year: 2022 ident: ref_85 article-title: A GAN framework-based dynamic multi-graph convolutional network for origin–destination-based ride-hailing demand prediction publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.04.024 – ident: ref_104 doi: 10.3390/app12147010 – volume: 139 start-page: 103659 year: 2022 ident: ref_98 article-title: AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2022.103659 – volume: 182 start-page: 107484 year: 2020 ident: ref_48 article-title: Artificial intelligence-based vehicular traffic flow prediction methods for supporting intelligent transportation systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107484  | 
    
| SSID | ssj0000913840 | 
    
| Score | 2.5753083 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Traffic forecasting has been regarded as the basis for many intelligent transportation system (ITS) applications, including but not limited to trip planning,... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 100 | 
    
| SubjectTerms | Artificial intelligence Computer science data collection Datasets Decision trees Deep learning Forecasting graph attention network graph convolutional network graph neural network Graph neural networks Intelligent transportation systems Internet of Things Literature reviews Machine learning Mathematical models Neural networks Route planning Source code Statistical analysis Statistical models Surveys Time series traffic Traffic control Traffic flow traffic forecasting Traffic planning Transportation networks Trends Variables Vehicle routing  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSsNAEB3ES_UgWhWjVVZQLxKabLabXW8qVvEgHlR6C7ubRCslFdsi_r0zSVriQb143UxgmdmZfY-8zAAcuVy6nAQONowjXxie-vSxx7eRFBqvDGuyUm1xJ28exe2gN2iM-iJNWNUeuHJcV3DLw0iZMA2UCI3RCkkMt1LEJk4xN6n6Bko3yFRZgzW-I4JK6R4hr-8OX5-HIScCQD-zNe6gslX_N3zZmhVv5vPDjEaNq6a_Dms1RmTn1d42YCkr2tCqx5W_fLZh9Wk4mVUWk024vKZlRm02cO2u0nUzBKMMLyLqEMFo_qYzE1I4nzE8GGyut2P3JM_CYrcFj_2rh8sbv56N4DvMuqlvhbYiiEwos16YW4UwINDUbEvKgGsujSK-qXKZYkWTDlmJVDLDeOUmzbS10TYsF-Mi2wEWpHnPcYQl1kmhnNI2TnMTqByRi0YA5sHp3FuJqxuH0_yKUYIEgnybNH3rwfHC-q1qmPGD3QU5fmFDba7LBQx-Ugc_-Sv4HnTmYUvq3JskPEbIizAt6nlwuHiMWUOfQkyRjWdog-cQ_YT83IOTRbh_3fDuf2x4D1ZoXn0lYuvA8vR9lu0jqpnag_IAfwE7SfDX priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9tAEB1BOAAHWgIIt2m1ldpekIW93qzXlaqqICjiEKGqIG7Wftg0VeSkJBHKv--MvXbTQ7luNkq08_XG-_wG4L0tpS2J4GDiNAmF5i6ky57QJFJkWDKMLmq2xUhe3Yrr--H9Bozad2GIVtnmxDpRu6mlZ-SnPEUgg8U3GX6Z_Q5pahTdrrYjNLQfreA-1xJjm7DFSRmrB1tnF6Ob791TF1LBxJamYcAn2O-fjn89jGNOjQG95LZWm2oJ_39w5_aymunVk55M1krQ5UvY89iRfW2MvQ8bRdWHF-1cBubDtA_bfrL5z1Ufdu_G82XzpfkBnH-jZUaKHLg2aijgDHErw5pFYhKMRnVaPScy9CeGPsRaah67ISYX5sVDuL28-HF-FfoxCqHFAF2ERmRGRImOZTGMS6MQMUQZ6XJJGfGMS62oNVWldJj8pMUGRipZoGlL7YrMmOQIetW0Ko6BRa4cWo4IxlgplFWZSV2pI1UiyMkQqwVw0h5gbr3GOI26mOTYa9Bx5-vHHcCHbves0db4z74zskW3hxSx64Xp40PuAywX3HC0rY5dpESsdaaw2eVGilSnDnN4AIPWkrkP03n-16kCeNd9jAFGtya6KqZL3IMui-eErXwAHzsPePYPv3r-t17DDg2tb5hsA-gtHpfFG4Q2C_PW--sfVRD1kg priority: 102 providerName: ProQuest  | 
    
| Title | Graph Neural Network for Traffic Forecasting: The Research Progress | 
    
| URI | https://www.proquest.com/docview/2791651535 https://www.proquest.com/docview/2922029338 https://www.mdpi.com/2220-9964/12/3/100/pdf?version=1677663141 https://doaj.org/article/42b2138a1d0841aa981062b647a7ddde  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B-zB44GOACIzKSMALyhp_xHF4Qdu0buKhqhBF4ymynWQUqrRaGtD46zknTlWQQIhX5xIluTvf7-yf7wBe2FLa0hEcDE14KDTLQ7fZExouRYohw-iiZVtM5flcvLuIL_yCW-1plZiKL9pJGmNXFCIgF2PKxhwdPBqv8_LtN7-SRGWSYMCk7tz6UMaIxQcwnE9nR59cR7n-3o7tzjG3Hy--XC4oc0mAO9C2E4facv2_YMy9plrr6-96udwJN5O7kPUv2rFMvh42G3Nof_xWw_H_v-Qe3PFIlBx1pnMfbhTVPuz5puifr_fh9sdF3XQS9QM4OXPDxBXzwLFpxx4nCHkJhjtXh4K4Lp9W145H_Yag-ZGe1UdmjgSGU-pDmE9OP5ych74DQ2jRtzehEakREddUFjEtjUKwEaWupJeUEUuZ1MpltaqUOc6b0mLuI5Us0CpKnRepMfwRDKpVVTwGEuVlbBmCH2OlUFalJslLHakS8VGKMC-A170-MuvLk7suGcsM0xSnvWxXewG83Eqvu7Icf5A7dqrdyrhi2u3A6uoy876ZCWYY5UrTPFKCap0qzJOZkSLRSY7TfwAHvWFk3sPrjCUIrBEM8jiA59vL6Jtuw0VXxapBGbR2_E-cqwBebQ3qry_85F8Fn8ItfDbv6HAHMNhcNcUzxEcbM4KbanI2guHx6XT2ftSuMoy8Y_wE0mcKEg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9rBw4LGACBQwEuWCoia214mRKkRLy5aWVYVa1FuwnaQsWmWXZlfV_jl-GzN5sRzorVfHeY3H87A_zwfw2uXK5QRwsGEkfGl46tNmj2-FkhpdhjVZhbYYqeGZ_Hw-OF-D3-1ZGIJVtjaxMtTp1NEa-TaPMJBB5ysG72e_fGKNot3VlkLDNNQK6U5VYqw52HGULa8whSt3Dj_ieG9xfrB_ujf0G5YB36H-zn0rtZWBMKHKBmFuY3SogaayVUoFXHNlYsrc4lylaBuUw_hexSrDP89NmmlrBT73FmxIITUmfxu7-6OTr90qD1XdxBSqRtwLoYPt8c-LccgpEaFDdSu-sKIM-CfO7S2KmVlemclkxeUd3Ie7TazKPtTK9QDWsqIP91oeCNaYhT70Gib1H8s-3Pk2Lhf1TeVD2PtEzYwqgGDbqIacM4yTGfpIKl7BiBrUmZLA1-8Y6ixroYDshJBjaIcfwdmNCPQxrBfTInsCLEjzgeMYMVmnZOxibaM0N0GcY1ClMTb04G0rwMQ1Nc2JWmOSYG5D4k5Wxe3BVtd7Vtfy-E-_XRqLrg9V4K4appcXSTOhE8ktx7E1YRrEMjRGx5hcc6tkZKIUfYYHm-1IJo1ZKJO_SuzBq-4yTmjapTFFNl1gH5wiKCchYg_edBpw7Qc_vf5dL6E3PP1ynBwfjo6ewW18uqhRdJuwPr9cZM8xrJrbF43uMvh-09PlD3QmMQM | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVqJwoBBAGAosEuWCrNi7znq3EkLQkrYURT1Q1Ju7u7ZLUOSEOlGVv8av64xfhAO99brZ-DE7j2-8384AvHW5dDkRHGwYCz8yPPVps8e3QkYaQ4Y1WcW2GMnD0-jr2eBsDf60Z2GIVtn6xMpRp1NH38j7PEYgg8FXDPp5Q4s42R9-nP32qYMU7bS27TRqFTnOlleYvpUfjvZxrXc4H375vnfoNx0GfIe6O_dtpG0UCBPKbBDmVmEwDTSVrJIy4JpLoyhrU7lM0S9Ih9heKpnhW-cmzbS1Aq97BzZiquJOp9SHB933Haq3iclTzbUXQgf98a-LccgpBaHjdCtRsGoW8A_C3VwUM7O8MpPJSrAbPoQHDUpln2q1egRrWdGDrbYDBGscQg82mx7qP5c9uP9jXC7qP5WPYe-AhhnV_sCxUU02Z4iQGUZHKlvBqCmoMyXRrncZaitrSYDshDhj6IGfwOmtiPMprBfTInsGLEjzgeOIlayTkXJK2zjNTaByhFMaUaEH71sBJq6pZk5NNSYJZjUk7mRV3B7sdLNndRWP_8z7TGvRzaHa29XA9PIiaUw5ibjluLYmTAMVhcZohWk1tzKKTZxitPBgu13JpHEIZfJXfT140_2Mpkz7M6bIpgucg8aBchJCefCu04AbH_j5zfd6DXfRSJJvR6PjF3APLy5q-tw2rM8vF9lLxFNz-6pSXAbnt20p1w4yLp0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2h7aFwKFBApBQUJOCC0o0_4jhcUKkoFYdVDywqp8h24rKwyq6aDaj8emY2zmpBAiGuziRKMjOeN_bzDMAz55XzRHCwLBeJNLxKaLMnsULJAkOGNfWabTFRZ1P5_iK7CAtubaBVYio-W0_SGLvSBAG5HDM-Fujg6XhZ-dffwkoSU3mOAZPRufUdlSEWH8HOdHJ-_Ik6yg339mx3gbn9ePblcsY4JQF0oG0rDq3L9f-CMXe7Zmmuv5v5fCvcnN6GcnjRnmXy9ahb2SP347cajv__JXdgLyDR-Lg3nbtwo272YTc0Rf98vQ-3Ps7arpdo78HJOxqOqZgHjk169niMkDfGcEd1KGLq8ulMSzzqVzGaXzyw-uJzIoHhlHofpqdvP5ycJaEDQ-LQt1eJlYWVqTBM1RnzViPYSAsq6aVUyguujKasVntV4bypHOY-SqsarcKbqi6sFQ9g1Cya-iHEaeUzxxH8WKekdrqweeVNqj3iowJhXgQvB32ULpQnpy4Z8xLTFNJeua29CJ5vpJd9WY4_yL0h1W5kqJj2emBxdVkG3ywlt5wJbViVasmMKTTmydwqmZu8wuk_gsPBMMrg4W3JcwTWCAZFFsHTzWX0TdpwMU296FAGrR3_kxA6ghcbg_rrCx_8q-AjuInPFj0d7hBGq6uufoz4aGWfBCf4CTQdBp0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Neural+Network+for+Traffic+Forecasting%3A+The+Research+Progress&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Jiang+Weiwei&rft.au=Luo%2C+Jiayun&rft.au=He%2C+Miao&rft.au=Gu%2C+Weixi&rft.date=2023-03-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=12&rft.issue=3&rft_id=info:doi/10.3390%2Fijgi12030100&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |