Integration of Drone and Satellite Imagery Improves Agricultural Management Agility

Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre-...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 24; p. 4688
Main Authors Ogungbuyi, Michael Gbenga, Mohammed, Caroline, Fischer, Andrew M., Turner, Darren, Whitehead, Jason, Harrison, Matthew Tom
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16244688

Cover

Abstract Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre- and post-grazing by sheep. As optical spectral data from Sentinel-2 satellite imagery is often hindered by cloud contamination, we assessed whether machine learning could help improve the accuracy of pasture biomass prognostics. The calibration of UAS biomass using field measurements from sward height change through 3D photogrammetry resulted in an improved regression (R2 = 0.75, RMSE = 1240 kg DM/ha, and MAE = 980 kg DM/ha) compared with using the same field measurements with random forest-machine learning and Sentinel-2 imagery (R2 = 0.56, RMSE = 2140 kg DM/ha, and MAE = 1585 kg DM/ha). The standard error of the mean (SEM) for the field biomass, derived from UAS-measured sward height changes, was 1240 kg DM/ha. When UAS data were integrated with the Sentinel-2-random forest model, SEM reduced from 1642 kg DM/ha to 1473 kg DM/ha, demonstrating that integration of UAS data improved model accuracy. We show that modelled biomass from 3D photogrammetry has significantly higher accuracy than that predicted from Sentinel-2 imagery with random forest modelling (S2-RF). Our study demonstrates that timely, accurate quantification of pasture biomass is conducive to improved decision-making agility, and that coupling of UAS with satellite imagery may improve the accuracy and timeliness of agricultural biomass prognostics.
AbstractList Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre- and post-grazing by sheep. As optical spectral data from Sentinel-2 satellite imagery is often hindered by cloud contamination, we assessed whether machine learning could help improve the accuracy of pasture biomass prognostics. The calibration of UAS biomass using field measurements from sward height change through 3D photogrammetry resulted in an improved regression (R2 = 0.75, RMSE = 1240 kg DM/ha, and MAE = 980 kg DM/ha) compared with using the same field measurements with random forest-machine learning and Sentinel-2 imagery (R2 = 0.56, RMSE = 2140 kg DM/ha, and MAE = 1585 kg DM/ha). The standard error of the mean (SEM) for the field biomass, derived from UAS-measured sward height changes, was 1240 kg DM/ha. When UAS data were integrated with the Sentinel-2-random forest model, SEM reduced from 1642 kg DM/ha to 1473 kg DM/ha, demonstrating that integration of UAS data improved model accuracy. We show that modelled biomass from 3D photogrammetry has significantly higher accuracy than that predicted from Sentinel-2 imagery with random forest modelling (S2-RF). Our study demonstrates that timely, accurate quantification of pasture biomass is conducive to improved decision-making agility, and that coupling of UAS with satellite imagery may improve the accuracy and timeliness of agricultural biomass prognostics.
Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre- and post-grazing by sheep. As optical spectral data from Sentinel-2 satellite imagery is often hindered by cloud contamination, we assessed whether machine learning could help improve the accuracy of pasture biomass prognostics. The calibration of UAS biomass using field measurements from sward height change through 3D photogrammetry resulted in an improved regression (R[sup.2] = 0.75, RMSE = 1240 kg DM/ha, and MAE = 980 kg DM/ha) compared with using the same field measurements with random forest-machine learning and Sentinel-2 imagery (R[sup.2] = 0.56, RMSE = 2140 kg DM/ha, and MAE = 1585 kg DM/ha). The standard error of the mean (SEM) for the field biomass, derived from UAS-measured sward height changes, was 1240 kg DM/ha. When UAS data were integrated with the Sentinel-2-random forest model, SEM reduced from 1642 kg DM/ha to 1473 kg DM/ha, demonstrating that integration of UAS data improved model accuracy. We show that modelled biomass from 3D photogrammetry has significantly higher accuracy than that predicted from Sentinel-2 imagery with random forest modelling (S2-RF). Our study demonstrates that timely, accurate quantification of pasture biomass is conducive to improved decision-making agility, and that coupling of UAS with satellite imagery may improve the accuracy and timeliness of agricultural biomass prognostics.
Audience Academic
Author Turner, Darren
Whitehead, Jason
Harrison, Matthew Tom
Fischer, Andrew M.
Ogungbuyi, Michael Gbenga
Mohammed, Caroline
Author_xml – sequence: 1
  givenname: Michael Gbenga
  orcidid: 0000-0003-1745-2700
  surname: Ogungbuyi
  fullname: Ogungbuyi, Michael Gbenga
– sequence: 2
  givenname: Caroline
  surname: Mohammed
  fullname: Mohammed, Caroline
– sequence: 3
  givenname: Andrew M.
  orcidid: 0000-0001-5284-6428
  surname: Fischer
  fullname: Fischer, Andrew M.
– sequence: 4
  givenname: Darren
  orcidid: 0000-0002-3029-6717
  surname: Turner
  fullname: Turner, Darren
– sequence: 5
  givenname: Jason
  surname: Whitehead
  fullname: Whitehead, Jason
– sequence: 6
  givenname: Matthew Tom
  orcidid: 0000-0001-7425-452X
  surname: Harrison
  fullname: Harrison, Matthew Tom
BookMark eNp9UV1rFDEUHaSCtfbFXzDgm7I1X_P1uNSPLlR8qD6HO8nNkCWbrJmMsv_e245YEfEGcsPNOYeTk-fVWUwRq-olZ1dSDuxtnnkrlGr7_kl1LlgnNkoM4uyP87Pqcp73jEpKPjB1Xt3tYsEpQ_Ep1snV7zJp1hBtfQcFQ_AF690BJswn6secvuNcb6fszRLKkiHUnyDS9QFjobknwulF9dRBmPHyV7-ovn54_-X6ZnP7-ePuenu7MYqxsgEFaIQbGnC273vZjNyNCsfRjJ1EBU1jqRrLmVFCKnCdtT2CMyCN6TmXF9Vu1bUJ9vqY_QHySSfw-mGQ8qQhF28C6oHh2EslHROt4l07crRoYUDRdIMbR9J6s2ot8QinHxDCb0HO9H28-jFeQr9a0RTItwXnovdpyZEeqyVXQ9fQdu_vakVNQBZ8dKlkMLQsHryhnJ2n-bYXnBhCtkRgK8HkNM8ZnTa-PHwNEX34t5PXf1H-Y_sn4EOqcA
CitedBy_id crossref_primary_10_3390_agriculture15050481
Cites_doi 10.1080/01431160310001654923
10.1111/gcb.15816
10.1007/s00484-021-02167-0
10.1080/22797254.2023.2179942
10.1117/1.JRS.10.026032
10.1016/j.ocecoaman.2014.02.009
10.1139/dsa-2023-0086
10.1071/AN16166
10.3390/land12061142
10.1016/j.rse.2014.11.001
10.3390/rs9050437
10.1016/j.jocs.2021.101517
10.1071/CP18566
10.1007/s11119-011-9221-x
10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2
10.1016/S0016-7061(01)00074-X
10.1016/j.agsy.2015.05.005
10.1016/j.eja.2019.02.003
10.1007/s11119-012-9274-5
10.1071/AN14421
10.1016/j.agsy.2018.09.003
10.1071/AN14309
10.3390/rs11050595
10.1016/j.ecolecon.2022.107510
10.1016/j.ecolind.2018.03.081
10.1016/j.compag.2020.105880
10.1016/j.anifeedsci.2021.114880
10.3389/fsufs.2020.534187
10.3390/rs13040603
10.1093/insilicoplants/diaa013
10.1016/j.geomorph.2016.11.021
10.3390/land10040364
10.5194/gmd-7-1247-2014
10.2989/10220119.2017.1334706
10.1071/CP17291
10.1016/j.isprsjprs.2011.11.002
10.3389/fpls.2017.02144
10.1111/j.0906-7590.2004.04004.x
10.1016/j.rse.2004.08.006
10.1016/j.scitotenv.2021.145031
10.1016/j.ecolind.2021.108081
10.3390/rs15194866
10.1016/j.rse.2017.03.026
10.1071/CPv66n4_FO
10.3390/rs8010050
10.1007/s10661-020-8216-3
10.1111/2041-210X.12919
10.1201/9781420002874-17
10.1038/s43016-021-00387-6
10.1071/EA9900165
10.1016/j.agwat.2021.107161
10.1016/j.isprsjprs.2016.01.011
10.1071/AN10078
10.1016/j.jenvman.2014.05.028
10.1002/fes3.238
10.1016/j.ecolind.2021.107484
10.3389/fsufs.2019.00121
10.1016/j.ecolmodel.2008.05.006
10.1079/9780851993515.0067
10.1080/15481603.2016.1221576
10.1016/j.jenvman.2024.120564
10.1071/AN15575
10.1016/j.rse.2018.09.028
10.3390/rs12030431
10.22499/2.5804.003
10.1016/j.rse.2016.05.019
10.1016/j.rama.2019.02.009
10.3390/rs6098056
10.1002/ece3.6240
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.3390/rs16244688
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_90eb8343f0264176b1ededa9e2579fbb
10.3390/rs16244688
A821975236
10_3390_rs16244688
GeographicLocations Australia
Tasmania Australia
GeographicLocations_xml – name: Australia
– name: Tasmania Australia
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c400t-a4aec2f95afd88835b1fb4ebbcb73e4a55dddd5d10c4234af7dd8eafca3cc8113
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Tue Oct 14 19:04:14 EDT 2025
Tue Aug 19 16:41:04 EDT 2025
Fri Jul 25 11:38:16 EDT 2025
Mon Oct 20 16:56:30 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Thu Oct 16 04:34:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-a4aec2f95afd88835b1fb4ebbcb73e4a55dddd5d10c4234af7dd8eafca3cc8113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5284-6428
0000-0002-3029-6717
0000-0001-7425-452X
0000-0003-1745-2700
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/16/24/4688/pdf?version=1734332393
PQID 3149751491
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_90eb8343f0264176b1ededa9e2579fbb
unpaywall_primary_10_3390_rs16244688
proquest_journals_3149751491
gale_infotracacademiconefile_A821975236
crossref_citationtrail_10_3390_rs16244688
crossref_primary_10_3390_rs16244688
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zlinszky (ref_22) 2014; 6
Li (ref_27) 2016; 10
Teague (ref_37) 2017; 34
Thomson (ref_32) 2021; 275
Mutanga (ref_60) 2004; 25
ref_14
Belgiu (ref_59) 2016; 114
ref_13
ref_12
ref_54
Bishop (ref_55) 2001; 103
Perelman (ref_56) 2008; 216
Harrison (ref_9) 2021; 65
ref_18
Bilotto (ref_78) 2021; 772
Bastarrika (ref_29) 2022; 58
Zhang (ref_15) 2012; 13
ref_24
ref_67
ref_66
Jones (ref_43) 2009; 58
Weber (ref_71) 2018; 91
Ibrahim (ref_62) 2019; 105
ref_64
Ogungbuyi (ref_33) 2024; 356
Gillan (ref_5) 2014; 144
Harrison (ref_7) 2021; 2
Ara (ref_72) 2021; 257
Punalekar (ref_51) 2018; 218
ref_26
Hopkins (ref_69) 1990; 30
Phelan (ref_52) 2015; 138
Bhattarai (ref_31) 2024; 12
Fleming (ref_8) 2022; 200
Yan (ref_28) 2015; 158
White (ref_41) 1981; 1530
Foga (ref_47) 2017; 194
James (ref_44) 2017; 280
Madsen (ref_23) 2020; 10
Rawnsley (ref_53) 2019; 70
Taylor (ref_63) 2016; 56
Ara (ref_35) 2021; 3
Chai (ref_57) 2014; 7
ref_36
Hill (ref_70) 2004; 93
Harrison (ref_49) 2014; 54
ref_34
Phelan (ref_77) 2018; 167
Morais (ref_58) 2021; 130
Cunliffe (ref_6) 2016; 183
ref_74
Basso (ref_19) 2021; 180
Ghimire (ref_61) 2012; 67
Bell (ref_11) 2015; 66
Luscier (ref_1) 2006; 4
Wei (ref_10) 2014; 93
ref_39
Langworthy (ref_48) 2018; 69
ref_38
Sibanda (ref_20) 2016; 53
Olsoy (ref_25) 2018; 9
Allworth (ref_68) 2016; 57
Wang (ref_21) 2020; 85
Urban (ref_30) 2023; 56
(ref_73) 2011; 12
Young (ref_42) 2011; 51
Harrison (ref_3) 2021; 27
Dorrough (ref_65) 2004; 27
ref_46
ref_45
ref_40
ref_2
Ho (ref_76) 2014; 54
Liu (ref_75) 2020; 9
Gillan (ref_16) 2019; 72
Epelde (ref_50) 2021; 125
Gillan (ref_17) 2020; 192
ref_4
References_xml – volume: 25
  start-page: 3999
  year: 2004
  ident: ref_60
  article-title: Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001654923
– volume: 27
  start-page: 5726
  year: 2021
  ident: ref_3
  article-title: Carbon Myopia: The Urgent Need for Integrated Social, Economic and Environmental Action in the Livestock Sector
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15816
– volume: 65
  start-page: 2099
  year: 2021
  ident: ref_9
  article-title: Negative Relationship between Dry Matter Intake and the Temperature-Humidity Index with Increasing Heat Stress in Cattle: A Global Meta-Analysis
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-021-02167-0
– volume: 56
  start-page: 2179942
  year: 2023
  ident: ref_30
  article-title: UAV DTM Acquisition in a Forested Area—Comparison of Low-Cost Photogrammetry (DJI Zenmuse P1) and LiDAR Solutions (DJI Zenmuse L1)
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2023.2179942
– volume: 10
  start-page: 026032
  year: 2016
  ident: ref_27
  article-title: Monitoring Grazing Intensity: An Experiment with Canopy Spectra Applied to Satellite Remote Sensing
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.10.026032
– volume: 93
  start-page: 51
  year: 2014
  ident: ref_10
  article-title: Constructing an Assessment Indices System to Analyze Integrated Regional Carrying Capacity in the Coastal Zones—A Case in Nantong
  publication-title: Ocean Coast. Manag.
  doi: 10.1016/j.ocecoaman.2014.02.009
– volume: 12
  start-page: 1
  year: 2024
  ident: ref_31
  article-title: Optimising Camera and Flight Settings for Ultrafine Resolution Mapping of Artificial Night-Time Lights Using an Unoccupied Aerial System
  publication-title: Drone Syst. Appl.
  doi: 10.1139/dsa-2023-0086
– volume: 57
  start-page: 2060
  year: 2016
  ident: ref_68
  article-title: Fetal and Lamb Losses from Pregnancy Scanning to Lamb Marking in Commercial Sheep Flocks in Southern New South Wales
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN16166
– ident: ref_12
  doi: 10.3390/land12061142
– volume: 158
  start-page: 295
  year: 2015
  ident: ref_28
  article-title: Urban Land Cover Classification Using Airborne LiDAR Data: A Review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.001
– ident: ref_39
– ident: ref_46
  doi: 10.3390/rs9050437
– volume: 58
  start-page: 101517
  year: 2022
  ident: ref_29
  article-title: Above-Ground Biomass Estimation from LiDAR Data Using Random Forest Algorithms
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2021.101517
– volume: 1530
  start-page: 81
  year: 1981
  ident: ref_41
  article-title: Dry Sheep Equivalents for Comparing Different Classes of Stock
  publication-title: Paper
– volume: 70
  start-page: 1034
  year: 2019
  ident: ref_53
  article-title: Current and Future Direction of Nitrogen Fertiliser Use in Australian Grazing Systems
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP18566
– volume: 12
  start-page: 813
  year: 2011
  ident: ref_73
  article-title: The Impact of Topography on Soil Properties and Yield and the Effects of Weather Conditions
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-011-9221-x
– volume: 4
  start-page: 408
  year: 2006
  ident: ref_1
  article-title: Using Digital Photographs and Object-Based Image Analysis to Estimate Percent Ground Cover in Vegetation Plots
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2
– volume: 103
  start-page: 149
  year: 2001
  ident: ref_55
  article-title: A Comparison of Prediction Methods for the Creation of Field-Extent Soil Property Maps
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00074-X
– volume: 138
  start-page: 46
  year: 2015
  ident: ref_52
  article-title: Management Opportunities for Boosting Productivity of Cool-Temperate Dairy Farms under Climate Change
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2015.05.005
– volume: 105
  start-page: 41
  year: 2019
  ident: ref_62
  article-title: Examining the Yield Potential of Barley Near-Isogenic Lines Using a Genotype by Environment by Management Analysis
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.02.003
– volume: 13
  start-page: 693
  year: 2012
  ident: ref_15
  article-title: The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 54
  start-page: 2018
  year: 2014
  ident: ref_49
  article-title: Modelling Pasture Management and Livestock Genotype Interventions to Improve Whole-Farm Productivity and Reduce Greenhouse Gas Emissions Intensities
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14421
– volume: 167
  start-page: 113
  year: 2018
  ident: ref_77
  article-title: Advancing a Farmer Decision Support Tool for Agronomic Decisions on Rainfed and Irrigated Wheat Cropping in Tasmania
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2018.09.003
– volume: 54
  start-page: 1248
  year: 2014
  ident: ref_76
  article-title: Increasing Ewe Genetic Fecundity Improves Whole-Farm Production and Reduces Greenhouse Gas Emissions Intensities: 2. Economic Performance
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN14309
– ident: ref_18
  doi: 10.3390/rs11050595
– volume: 200
  start-page: 107510
  year: 2022
  ident: ref_8
  article-title: Improving Acceptance of Natural Capital Accounting in Land Use Decision Making: Barriers and Opportunities
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2022.107510
– volume: 91
  start-page: 447
  year: 2018
  ident: ref_71
  article-title: Predicting Habitat Quality of Protected Dry Grasslands Using Landsat NDVI Phenology
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.03.081
– volume: 180
  start-page: 105880
  year: 2021
  ident: ref_19
  article-title: Predicting Pasture Biomass Using a Statistical Model and Machine Learning Algorithm Implemented with Remotely Sensed Imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105880
– volume: 275
  start-page: 114880
  year: 2021
  ident: ref_32
  article-title: Using Multispectral Data from an Unmanned Aerial System to Estimate Pasture Depletion during Grazing
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2021.114880
– ident: ref_38
  doi: 10.3389/fsufs.2020.534187
– ident: ref_34
  doi: 10.3390/rs13040603
– volume: 3
  start-page: diaa013
  year: 2021
  ident: ref_35
  article-title: Modelling Seasonal Pasture Growth and Botanical Composition at the Paddock Scale with Satellite Imagery
  publication-title: In Silico Plants
  doi: 10.1093/insilicoplants/diaa013
– ident: ref_45
– volume: 280
  start-page: 51
  year: 2017
  ident: ref_44
  article-title: Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2016.11.021
– ident: ref_13
  doi: 10.3390/land10040364
– volume: 7
  start-page: 1247
  year: 2014
  ident: ref_57
  article-title: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?–Arguments against Avoiding RMSE in the Literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 34
  start-page: 77
  year: 2017
  ident: ref_37
  article-title: Grazing Management That Regenerates Ecosystem Function and Grazingland Livelihoods
  publication-title: Afr. J. Range Forage Sci.
  doi: 10.2989/10220119.2017.1334706
– volume: 69
  start-page: 808
  year: 2018
  ident: ref_48
  article-title: Potential of Summer-Active Temperate (C3) Perennial Forages to Mitigate the Detrimental Effects of Supraoptimal Temperatures on Summer Home-Grown Feed Production in South-Eastern Australian Dairying Regions
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP17291
– volume: 67
  start-page: 93
  year: 2012
  ident: ref_61
  article-title: An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: ref_26
  doi: 10.3389/fpls.2017.02144
– volume: 27
  start-page: 798
  year: 2004
  ident: ref_65
  article-title: Plant Responses to Livestock Grazing Frequency in an Australian Temperate Grassland
  publication-title: Ecography
  doi: 10.1111/j.0906-7590.2004.04004.x
– volume: 93
  start-page: 528
  year: 2004
  ident: ref_70
  article-title: Estimation of Pasture Growth Rate in the South West of Western Australia from AVHRR NDVI and Climate Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.08.006
– volume: 85
  start-page: 101986
  year: 2020
  ident: ref_21
  article-title: Estimating Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 772
  start-page: 145031
  year: 2021
  ident: ref_78
  article-title: Can Seasonal Soil N Mineralisation Trends Be Leveraged to Enhance Pasture Growth?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145031
– volume: 130
  start-page: 108081
  year: 2021
  ident: ref_58
  article-title: The Use of Machine Learning Methods to Estimate Aboveground Biomass of Grasslands: A Review
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108081
– ident: ref_2
  doi: 10.3390/rs15194866
– volume: 194
  start-page: 379
  year: 2017
  ident: ref_47
  article-title: Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.026
– volume: 66
  start-page: 2
  year: 2015
  ident: ref_11
  article-title: Dual-Purpose Cropping—Capitalising on Potential Grain Crop Grazing to Enhance Mixed-Farming Profitability
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CPv66n4_FO
– ident: ref_24
  doi: 10.3390/rs8010050
– volume: 192
  start-page: 269
  year: 2020
  ident: ref_17
  article-title: Integrating Drone Imagery with Existing Rangeland Monitoring Programs
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-020-8216-3
– volume: 9
  start-page: 594
  year: 2018
  ident: ref_25
  article-title: Unmanned Aerial Systems Measure Structural Habitat Features for Wildlife across Multiple Scales
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12919
– ident: ref_66
  doi: 10.1201/9781420002874-17
– volume: 2
  start-page: 855
  year: 2021
  ident: ref_7
  article-title: Climate Change Benefits Negated by Extreme Heat
  publication-title: Nat. Food
  doi: 10.1038/s43016-021-00387-6
– volume: 30
  start-page: 165
  year: 1990
  ident: ref_69
  article-title: The Performance of Short Scrotum and Wether Lambs Born in Winter or Spring and Run at Pasture in Northern Tasmania
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA9900165
– volume: 257
  start-page: 107161
  year: 2021
  ident: ref_72
  article-title: Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107161
– ident: ref_67
– volume: 114
  start-page: 24
  year: 2016
  ident: ref_59
  article-title: Random Forest in Remote Sensing: A Review of Applications and Future Directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: ref_14
– volume: 51
  start-page: 821
  year: 2011
  ident: ref_42
  article-title: Whole-Farm Profit and the Optimum Maternal Liveweight Profile of Merino Ewe Flocks Lambing in Winter and Spring Are Influenced by the Effects of Ewe Nutrition on the Progeny’s Survival and Lifetime Wool Production
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN10078
– volume: 144
  start-page: 226
  year: 2014
  ident: ref_5
  article-title: Modeling Vegetation Heights from High Resolution Stereo Aerial Photography: An Application for Broad-Scale Rangeland Monitoring
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.05.028
– volume: 9
  start-page: e238
  year: 2020
  ident: ref_75
  article-title: Genetic Factors Increasing Barley Grain Yields Under Soil Waterlogging
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.238
– volume: 125
  start-page: 107484
  year: 2021
  ident: ref_50
  article-title: Regenerative Rotational Grazing Management of Dairy Sheep Increases Springtime Grass Production and Topsoil Carbon Storage
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107484
– ident: ref_4
  doi: 10.3389/fsufs.2019.00121
– volume: 216
  start-page: 316
  year: 2008
  ident: ref_56
  article-title: How to Evaluate Models: Observed vs. Predicted or Predicted vs. Observed?
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2008.05.006
– ident: ref_40
  doi: 10.1079/9780851993515.0067
– volume: 53
  start-page: 614
  year: 2016
  ident: ref_20
  article-title: Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2016.1221576
– ident: ref_54
– volume: 356
  start-page: 120564
  year: 2024
  ident: ref_33
  article-title: Improvement of Pasture Biomass Modelling Using High-Resolution Satellite Imagery and Machine Learning
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2024.120564
– volume: 56
  start-page: 594
  year: 2016
  ident: ref_63
  article-title: Modelled Greenhouse Gas Emissions from Beef Cattle Grazing Irrigated Leucaena in Northern Australia
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN15575
– ident: ref_64
– volume: 218
  start-page: 207
  year: 2018
  ident: ref_51
  article-title: Application of Sentinel-2A Data for Pasture Biomass Monitoring Using a Physically Based Radiative Transfer Model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.028
– ident: ref_74
  doi: 10.3390/rs12030431
– ident: ref_36
– volume: 58
  start-page: 233
  year: 2009
  ident: ref_43
  article-title: High-Quality Spatial Climate Data-Sets for Australia
  publication-title: Aust. Meteorol. Oceanogr. J.
  doi: 10.22499/2.5804.003
– volume: 183
  start-page: 129
  year: 2016
  ident: ref_6
  article-title: Ultra-Fine Grain Landscape-Scale Quantification of Dryland Vegetation Structure with Drone-Acquired Structure-from-Motion Photogrammetry
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.05.019
– volume: 72
  start-page: 575
  year: 2019
  ident: ref_16
  article-title: Estimating Forage Utilization with Drone-Based Photogrammetric Point Clouds
  publication-title: Rangel. Ecol. Manag.
  doi: 10.1016/j.rama.2019.02.009
– volume: 6
  start-page: 8056
  year: 2014
  ident: ref_22
  article-title: Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types
  publication-title: Remote Sens.
  doi: 10.3390/rs6098056
– volume: 10
  start-page: 4876
  year: 2020
  ident: ref_23
  article-title: Detecting Shrub Encroachment in Seminatural Grasslands Using UAS LiDAR
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.6240
SSID ssj0000331904
Score 2.398046
Snippet Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4688
SubjectTerms Accuracy
Agricultural management
Agricultural production
Analysis
artificial intelligence
Biomass
Cameras
Data collection
Decision making
Decision trees
drone
Drone aircraft
Ecosystems
Environmental stewardship
Error analysis
Evaluation
grassland
Grasslands
Land use
Learning algorithms
Livestock
Machine learning
Pasture
Pasture management
Photogrammetry
Productivity
Rain
Real time
Remote monitoring
Remote sensing
Root-mean-square errors
Satellite imagery
Satellites
Sheep
Standard error
Sward
Unmanned aerial vehicles
Vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQn1hfBBTEQ7FpkrY5ri_UgxcVvIU89bBW2V2R_fdO2rq7oOjFHkMO028mk_nK9BuAQ4wbRoPNUkpDSHmweSqtDyl1VV46JgK3TYPsbXH1wG8exePMqK_YE9bKA7fAncjMm4pxFpAscFoWhnrnnZYeY00GY2L2zSo5Q6aaHMwwtDLe6pEy5PUngyEt8CprR6xMb6BGqP97Ol6Chff6TY8_dL8_c99crsByVyiSXmvgKsz5eg0Wupnlz-N1uLvulB4QWfIayPngtfZE147c6UZmc-TJ9UuUqBiT9tOBH5Le02AitkGmrS-4HntkxxvwcHlxf3aVdiMSUouHb5Rqrr3NgxQ6OOSyTBgaDPfGWFMyz7UQDh_haGaxbuI6lM5VXgermbUVpWwT5mu0bgsItZIL7WURrOA2xEFVlUasBUKfFSZP4PgLNmU7_fA4xqKvkEdEiNUU4gQOJnvfWtWMH3edRvQnO6LSdbOA_led_9Vf_k_gKPpOxfOI5ljd_VaALxWVrVSvwpxcIt0uEtj9cq_qDupQMWSIJRaNkiZwOHH5L0Zv_4fRO7CYY3HUtsXswvxo8O73sLgZmf0mjj8BsZn5JA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzSHNofRJ3aZF0EDpwcSyJD8OpWzShKSHpTQN5Cb0TA8b79a7oey_78iWvYWG-CiEGc975NE3AIeoN4x6k6WUep9yb_K0Ns6n1FZ5aZnw3HQNsrPi_Ip_uxbXOzAb7sKEtsrBJ3aO2i5MOCM_YpjKlxjda_pl-TsNU6PC39VhhIaKoxXs5w5i7BHs5gEZawK7x6ez7z_GU5eMocplvMcpZVjvH7UrWmCI60evbCNTB-D_v5veh727Zqk2f9R8_k8cOnsKT2ICSaa9xJ_Bjmuew16cZf5r8wIuLyICBHKcLDz52i4aR1RjyaXq4DfXjlzcBuiKDemPFNyKTG_aEYSDbFticD30zm5ewtXZ6c-T8zSOTkgNGuU6VVw5k_taKG-xxmVCU6-509rokjmuhLD4CEszg_kUV760tnLKG8WMqShlr2DSIHWvgVBTc6FcXXgjuPFhgFWlnHWCebRYnSfwaWCbNBFXPIy3mEusLwKL5ZbFCXwY9y57NI17dx0H7o87AgJ2t7Bob2Q0KFlnTleMIxGY0tGy0BRpsqp26INqr3UCH4PsZLBTJMeoeN0APyogXslphb66xDK8SOBgEK-MBrySW3VL4HAU-QNEv3n4LW_hcY7pUN8IcwCTdXvn3mE6s9bvo47-BY6D9qc
  priority: 102
  providerName: ProQuest
Title Integration of Drone and Satellite Imagery Improves Agricultural Management Agility
URI https://www.proquest.com/docview/3149751491
https://www.mdpi.com/2072-4292/16/24/4688/pdf?version=1734332393
https://doaj.org/article/90eb8343f0264176b1ededa9e2579fbb
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7R5FA48K4wlMgSlRAHN1nvrh8n5NKGFkFUESKVk7XPgpo6keOAwq9n1naSChBCwhdL1qw065mdnW81-w3AAfoNJVYNAkKsDZhVYZAqYwOikzDWlFum6gLZUXQ6Ye8u-MWNW_yurBKh-Nc6SIeDOAxcP6U-ifoh67MI4dpc29ff2rMkElPHv0VTugPdiGM23oHuZHSefXY95dajG1ZSiui-Xy5IhBta02hluw_VdP2_B-U7sLss5mL1XUynN3ad4T0Qa32bYpOrw2UlD9WPX6gc_2dC9-Fum5L6WeNDD-CWKR7Cbtsd_cvqEYzPWk4JHOvPrH9czgrji0L7Y1ETelbGP7t2ZBgrvzmkMAs_uyw3tB7-tsgGv7tq3NVjmAxPPr05DdpmDIHCZV4FggmjQptyYTWiZsolsZIZKZWMqWGCc40P12SgMENjwsZaJ0ZYJahSCSF0DzoFavcEfKJSxoVJI6s4U9a1xEqE0YZTizFAhh68WpsmVy1TuWuYMc0RsTgz5lszevBiIztv-Dn-KHXkLLyRcJza9YdZeZm3SzRPB0Ym-PstwlJG4kgS1EmL1GBUS62UHrx0_pG7lY_qKNFeYMBJOQ6tPEsw-scI7CMP9tculLchYZFTxKIxpqcp8eBg41Z_Ufrpv4k9g9shJlpNic0-dKpyaZ5jolTJHuwkw7c96GbHH96P8X10Mjr_2KuPHXrtOvkJWtoTVg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9BA4IJ7CpcBKFCEOVr3edWwfKpTSVgktEaKt1Ju7z3IITuqkqvzn-G3M2usECdRbfVytVuOZ8czsevb7AHbQbxi1KgoptTbkVsVhrowNqc7iVLPEctU0yE4Go3P-9SK52IDf3V0Y11bZxcQmUOuZcmfkuwxL-RSze04_z69Dxxrl_q52FBrCUyvovQZizF_sODb1LW7hFnvjA7T3hzg-Ojz7Mgo9y0Co0H-XoeDCqNjmibAat4MskdRKbqRUMmWGiyTR-CSaRgpLDy5sqnVmhFWCKZVRynDdB7DJGcrXg839w8n3H6tTnoihi0e8xUVlLI92qwUdYEptqV7WmbAhDPg3LTyC_k05F_WtmE7_yntHT-CxL1jJsPWwp7BhymfQ99zpP-vncDr2iBNoYTKz5KCalYaIUpNT0cB9Lg0Z_3JQGTVpjzDMggyvqhXoB1m34OC469WtX8D5vSjxJfRKlO4VEKpyngiTD6xKuLKOMCsTRpuEWYwQMg7gU6e2Qnkcc0enMS1wP-NUXKxVHMD71dx5i97x31n7TvurGQ5xuxmYVVeF_4CLPDIyYxyFwBKSpgNJUSYtcoMxL7dSBvDR2a5wcQHFUcJfb8CXcghbxTDD3JDitn8QwHZn3sIHjEWxdu8AdlYmv0PorbtXeQf90dm3k-JkPDl-DQ9jLMXaJpxt6C2rG_MGS6mlfOv9lcDlfX8ifwAwbTdk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IJ4iUMASRYhDtHHsvA4ILSxLl6IKqVTqzfWzHLbZbXarKn-NX8c4r0UC9dYcI8uazIxnxs74-wD20G8YdToKKXUu5E7HYaGtC6nJ48ywxHHdNMgepvvH_NtJcrIFv_u7ML6tso-JTaA2C-3PyEcMS_kMs3tBR65ri_gxmX5cXoSeQcr_ae3pNFoXObD1FW7fVh9mE7T12ziefvn5eT_sGAZCjb67DiWXVseuSKQzuBVkiaJOcauUVhmzXCaJwScxNNJYdnDpMmNyK52WTOucUobz3oLbmUdx97fUp1-H852IoXNHvEVEZayIRtWKpphMW5KXTQ5sqAL-TQj3YOeyXMr6Ss7nf2W86QO435WqZNz61kPYsuUj2OlY03_Vj-Fo1mFNoG3JwpFJtSgtkaUhR7IB-lxbMjv3IBk1aQ8v7IqMz6oB7oNsmm_wve_SrZ_A8Y2o8ClslyjdMyBUFzyRtkidTrh2niorl9bYhDmMDSoO4H2vNqE7BHNPpDEXuJPxKhYbFQfwZhi7bHE7_jvqk9f-MMJjbTcvFtWZ6JauKCKrcsZRCCweaZYqijIZWViMdoVTKoB33nbCRwQUR8vuYgN-lMfWEuMcs0KGG_40gN3evKILFSuxcewA9gaTXyP08-tneQ13cGGI77PDgxdwN8YarO2-2YXtdXVpX2INtVavGmclcHrTq-MPx2g0_g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5Beig98EZdKMgSlRCHbeK1vY8TCo-q5VAhlUjlZPnZIsIm2mxA4dcz3nWSChBCYo-WLY13Hp7PGn8DcIh2w6g3o5RS71PuTZZWxvmU2jIrLBOem65A9iw_mfD3F-Li2iv-UFaJUPxzF6SzUZGloZ_SkObDjA95jnBtbv2rb_EuiRYs8G-xit2EnVxgNj6AncnZh_Gn0FNuvbpnJWWI7ofNguZ4oPWNVrbnUEfX_3tQ3oPdZT1Xq-9qOr126hzfAbWWty82-XK0bPWR-fELleP_bOgu3I4pKRn3NnQPbrj6PuzG7uhXqwdwfho5JXAtmXnytpnVjqjaknPVEXq2jpx-DWQYK9JfUrgFGV82G1oPsi2ywfFQjbt6CJPjdx_fnKSxGUNq0M3bVHHlTOYrobxF1MyEpl5zp7XRBXNcCWHxE5aODGZoXPnC2tIpbxQzpqSUPYJBjdLtA6Gm4kK5KvdGcONDS6xSOesE8xgDdJbAy7VqpIlM5aFhxlQiYglqlFs1JvB8M3fe83P8cdbroOHNjMCp3Q3MmksZXVRWI6dL_P0eYSmnRa4pymRV5TCqVV7rBF4E-5DB81Eco-IDBtxU4NCS4xKjf4HAPk_gYG1CMoaEhWSIRQtMTyuawOHGrP4i9ON_m_YEbmWYaPUlNgcwaJule4qJUqufRV_4CY6tDk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Drone+and+Satellite+Imagery+Improves+Agricultural+Management+Agility&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ogungbuyi%2C+Michael+Gbenga&rft.au=Mohammed%2C+Caroline&rft.au=Fischer%2C+Andrew+M&rft.au=Turner%2C+Darren&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=24&rft.spage=4688&rft_id=info:doi/10.3390%2Frs16244688&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon