Integration of Drone and Satellite Imagery Improves Agricultural Management Agility
Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre-...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 24; p. 4688 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs16244688 |
Cover
| Abstract | Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre- and post-grazing by sheep. As optical spectral data from Sentinel-2 satellite imagery is often hindered by cloud contamination, we assessed whether machine learning could help improve the accuracy of pasture biomass prognostics. The calibration of UAS biomass using field measurements from sward height change through 3D photogrammetry resulted in an improved regression (R2 = 0.75, RMSE = 1240 kg DM/ha, and MAE = 980 kg DM/ha) compared with using the same field measurements with random forest-machine learning and Sentinel-2 imagery (R2 = 0.56, RMSE = 2140 kg DM/ha, and MAE = 1585 kg DM/ha). The standard error of the mean (SEM) for the field biomass, derived from UAS-measured sward height changes, was 1240 kg DM/ha. When UAS data were integrated with the Sentinel-2-random forest model, SEM reduced from 1642 kg DM/ha to 1473 kg DM/ha, demonstrating that integration of UAS data improved model accuracy. We show that modelled biomass from 3D photogrammetry has significantly higher accuracy than that predicted from Sentinel-2 imagery with random forest modelling (S2-RF). Our study demonstrates that timely, accurate quantification of pasture biomass is conducive to improved decision-making agility, and that coupling of UAS with satellite imagery may improve the accuracy and timeliness of agricultural biomass prognostics. |
|---|---|
| AbstractList | Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre- and post-grazing by sheep. As optical spectral data from Sentinel-2 satellite imagery is often hindered by cloud contamination, we assessed whether machine learning could help improve the accuracy of pasture biomass prognostics. The calibration of UAS biomass using field measurements from sward height change through 3D photogrammetry resulted in an improved regression (R2 = 0.75, RMSE = 1240 kg DM/ha, and MAE = 980 kg DM/ha) compared with using the same field measurements with random forest-machine learning and Sentinel-2 imagery (R2 = 0.56, RMSE = 2140 kg DM/ha, and MAE = 1585 kg DM/ha). The standard error of the mean (SEM) for the field biomass, derived from UAS-measured sward height changes, was 1240 kg DM/ha. When UAS data were integrated with the Sentinel-2-random forest model, SEM reduced from 1642 kg DM/ha to 1473 kg DM/ha, demonstrating that integration of UAS data improved model accuracy. We show that modelled biomass from 3D photogrammetry has significantly higher accuracy than that predicted from Sentinel-2 imagery with random forest modelling (S2-RF). Our study demonstrates that timely, accurate quantification of pasture biomass is conducive to improved decision-making agility, and that coupling of UAS with satellite imagery may improve the accuracy and timeliness of agricultural biomass prognostics. Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote monitoring of pasture management. Using unmanned aerial systems (UAS), we quantified grassland biomass through changes in sward height pre- and post-grazing by sheep. As optical spectral data from Sentinel-2 satellite imagery is often hindered by cloud contamination, we assessed whether machine learning could help improve the accuracy of pasture biomass prognostics. The calibration of UAS biomass using field measurements from sward height change through 3D photogrammetry resulted in an improved regression (R[sup.2] = 0.75, RMSE = 1240 kg DM/ha, and MAE = 980 kg DM/ha) compared with using the same field measurements with random forest-machine learning and Sentinel-2 imagery (R[sup.2] = 0.56, RMSE = 2140 kg DM/ha, and MAE = 1585 kg DM/ha). The standard error of the mean (SEM) for the field biomass, derived from UAS-measured sward height changes, was 1240 kg DM/ha. When UAS data were integrated with the Sentinel-2-random forest model, SEM reduced from 1642 kg DM/ha to 1473 kg DM/ha, demonstrating that integration of UAS data improved model accuracy. We show that modelled biomass from 3D photogrammetry has significantly higher accuracy than that predicted from Sentinel-2 imagery with random forest modelling (S2-RF). Our study demonstrates that timely, accurate quantification of pasture biomass is conducive to improved decision-making agility, and that coupling of UAS with satellite imagery may improve the accuracy and timeliness of agricultural biomass prognostics. |
| Audience | Academic |
| Author | Turner, Darren Whitehead, Jason Harrison, Matthew Tom Fischer, Andrew M. Ogungbuyi, Michael Gbenga Mohammed, Caroline |
| Author_xml | – sequence: 1 givenname: Michael Gbenga orcidid: 0000-0003-1745-2700 surname: Ogungbuyi fullname: Ogungbuyi, Michael Gbenga – sequence: 2 givenname: Caroline surname: Mohammed fullname: Mohammed, Caroline – sequence: 3 givenname: Andrew M. orcidid: 0000-0001-5284-6428 surname: Fischer fullname: Fischer, Andrew M. – sequence: 4 givenname: Darren orcidid: 0000-0002-3029-6717 surname: Turner fullname: Turner, Darren – sequence: 5 givenname: Jason surname: Whitehead fullname: Whitehead, Jason – sequence: 6 givenname: Matthew Tom orcidid: 0000-0001-7425-452X surname: Harrison fullname: Harrison, Matthew Tom |
| BookMark | eNp9UV1rFDEUHaSCtfbFXzDgm7I1X_P1uNSPLlR8qD6HO8nNkCWbrJmMsv_e245YEfEGcsPNOYeTk-fVWUwRq-olZ1dSDuxtnnkrlGr7_kl1LlgnNkoM4uyP87Pqcp73jEpKPjB1Xt3tYsEpQ_Ep1snV7zJp1hBtfQcFQ_AF690BJswn6secvuNcb6fszRLKkiHUnyDS9QFjobknwulF9dRBmPHyV7-ovn54_-X6ZnP7-ePuenu7MYqxsgEFaIQbGnC273vZjNyNCsfRjJ1EBU1jqRrLmVFCKnCdtT2CMyCN6TmXF9Vu1bUJ9vqY_QHySSfw-mGQ8qQhF28C6oHh2EslHROt4l07crRoYUDRdIMbR9J6s2ot8QinHxDCb0HO9H28-jFeQr9a0RTItwXnovdpyZEeqyVXQ9fQdu_vakVNQBZ8dKlkMLQsHryhnJ2n-bYXnBhCtkRgK8HkNM8ZnTa-PHwNEX34t5PXf1H-Y_sn4EOqcA |
| CitedBy_id | crossref_primary_10_3390_agriculture15050481 |
| Cites_doi | 10.1080/01431160310001654923 10.1111/gcb.15816 10.1007/s00484-021-02167-0 10.1080/22797254.2023.2179942 10.1117/1.JRS.10.026032 10.1016/j.ocecoaman.2014.02.009 10.1139/dsa-2023-0086 10.1071/AN16166 10.3390/land12061142 10.1016/j.rse.2014.11.001 10.3390/rs9050437 10.1016/j.jocs.2021.101517 10.1071/CP18566 10.1007/s11119-011-9221-x 10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2 10.1016/S0016-7061(01)00074-X 10.1016/j.agsy.2015.05.005 10.1016/j.eja.2019.02.003 10.1007/s11119-012-9274-5 10.1071/AN14421 10.1016/j.agsy.2018.09.003 10.1071/AN14309 10.3390/rs11050595 10.1016/j.ecolecon.2022.107510 10.1016/j.ecolind.2018.03.081 10.1016/j.compag.2020.105880 10.1016/j.anifeedsci.2021.114880 10.3389/fsufs.2020.534187 10.3390/rs13040603 10.1093/insilicoplants/diaa013 10.1016/j.geomorph.2016.11.021 10.3390/land10040364 10.5194/gmd-7-1247-2014 10.2989/10220119.2017.1334706 10.1071/CP17291 10.1016/j.isprsjprs.2011.11.002 10.3389/fpls.2017.02144 10.1111/j.0906-7590.2004.04004.x 10.1016/j.rse.2004.08.006 10.1016/j.scitotenv.2021.145031 10.1016/j.ecolind.2021.108081 10.3390/rs15194866 10.1016/j.rse.2017.03.026 10.1071/CPv66n4_FO 10.3390/rs8010050 10.1007/s10661-020-8216-3 10.1111/2041-210X.12919 10.1201/9781420002874-17 10.1038/s43016-021-00387-6 10.1071/EA9900165 10.1016/j.agwat.2021.107161 10.1016/j.isprsjprs.2016.01.011 10.1071/AN10078 10.1016/j.jenvman.2014.05.028 10.1002/fes3.238 10.1016/j.ecolind.2021.107484 10.3389/fsufs.2019.00121 10.1016/j.ecolmodel.2008.05.006 10.1079/9780851993515.0067 10.1080/15481603.2016.1221576 10.1016/j.jenvman.2024.120564 10.1071/AN15575 10.1016/j.rse.2018.09.028 10.3390/rs12030431 10.22499/2.5804.003 10.1016/j.rse.2016.05.019 10.1016/j.rama.2019.02.009 10.3390/rs6098056 10.1002/ece3.6240 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.3390/rs16244688 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_90eb8343f0264176b1ededa9e2579fbb 10.3390/rs16244688 A821975236 10_3390_rs16244688 |
| GeographicLocations | Australia Tasmania Australia |
| GeographicLocations_xml | – name: Australia – name: Tasmania Australia |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c400t-a4aec2f95afd88835b1fb4ebbcb73e4a55dddd5d10c4234af7dd8eafca3cc8113 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:04:14 EDT 2025 Tue Aug 19 16:41:04 EDT 2025 Fri Jul 25 11:38:16 EDT 2025 Mon Oct 20 16:56:30 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Thu Oct 16 04:34:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-a4aec2f95afd88835b1fb4ebbcb73e4a55dddd5d10c4234af7dd8eafca3cc8113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5284-6428 0000-0002-3029-6717 0000-0001-7425-452X 0000-0003-1745-2700 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-4292/16/24/4688/pdf?version=1734332393 |
| PQID | 3149751491 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_90eb8343f0264176b1ededa9e2579fbb unpaywall_primary_10_3390_rs16244688 proquest_journals_3149751491 gale_infotracacademiconefile_A821975236 crossref_citationtrail_10_3390_rs16244688 crossref_primary_10_3390_rs16244688 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zlinszky (ref_22) 2014; 6 Li (ref_27) 2016; 10 Teague (ref_37) 2017; 34 Thomson (ref_32) 2021; 275 Mutanga (ref_60) 2004; 25 ref_14 Belgiu (ref_59) 2016; 114 ref_13 ref_12 ref_54 Bishop (ref_55) 2001; 103 Perelman (ref_56) 2008; 216 Harrison (ref_9) 2021; 65 ref_18 Bilotto (ref_78) 2021; 772 Bastarrika (ref_29) 2022; 58 Zhang (ref_15) 2012; 13 ref_24 ref_67 ref_66 Jones (ref_43) 2009; 58 Weber (ref_71) 2018; 91 Ibrahim (ref_62) 2019; 105 ref_64 Ogungbuyi (ref_33) 2024; 356 Gillan (ref_5) 2014; 144 Harrison (ref_7) 2021; 2 Ara (ref_72) 2021; 257 Punalekar (ref_51) 2018; 218 ref_26 Hopkins (ref_69) 1990; 30 Phelan (ref_52) 2015; 138 Bhattarai (ref_31) 2024; 12 Fleming (ref_8) 2022; 200 Yan (ref_28) 2015; 158 White (ref_41) 1981; 1530 Foga (ref_47) 2017; 194 James (ref_44) 2017; 280 Madsen (ref_23) 2020; 10 Rawnsley (ref_53) 2019; 70 Taylor (ref_63) 2016; 56 Ara (ref_35) 2021; 3 Chai (ref_57) 2014; 7 ref_36 Hill (ref_70) 2004; 93 Harrison (ref_49) 2014; 54 ref_34 Phelan (ref_77) 2018; 167 Morais (ref_58) 2021; 130 Cunliffe (ref_6) 2016; 183 ref_74 Basso (ref_19) 2021; 180 Ghimire (ref_61) 2012; 67 Bell (ref_11) 2015; 66 Luscier (ref_1) 2006; 4 Wei (ref_10) 2014; 93 ref_39 Langworthy (ref_48) 2018; 69 ref_38 Sibanda (ref_20) 2016; 53 Olsoy (ref_25) 2018; 9 Allworth (ref_68) 2016; 57 Wang (ref_21) 2020; 85 Urban (ref_30) 2023; 56 (ref_73) 2011; 12 Young (ref_42) 2011; 51 Harrison (ref_3) 2021; 27 Dorrough (ref_65) 2004; 27 ref_46 ref_45 ref_40 ref_2 Ho (ref_76) 2014; 54 Liu (ref_75) 2020; 9 Gillan (ref_16) 2019; 72 Epelde (ref_50) 2021; 125 Gillan (ref_17) 2020; 192 ref_4 |
| References_xml | – volume: 25 start-page: 3999 year: 2004 ident: ref_60 article-title: Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001654923 – volume: 27 start-page: 5726 year: 2021 ident: ref_3 article-title: Carbon Myopia: The Urgent Need for Integrated Social, Economic and Environmental Action in the Livestock Sector publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15816 – volume: 65 start-page: 2099 year: 2021 ident: ref_9 article-title: Negative Relationship between Dry Matter Intake and the Temperature-Humidity Index with Increasing Heat Stress in Cattle: A Global Meta-Analysis publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-021-02167-0 – volume: 56 start-page: 2179942 year: 2023 ident: ref_30 article-title: UAV DTM Acquisition in a Forested Area—Comparison of Low-Cost Photogrammetry (DJI Zenmuse P1) and LiDAR Solutions (DJI Zenmuse L1) publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2023.2179942 – volume: 10 start-page: 026032 year: 2016 ident: ref_27 article-title: Monitoring Grazing Intensity: An Experiment with Canopy Spectra Applied to Satellite Remote Sensing publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.10.026032 – volume: 93 start-page: 51 year: 2014 ident: ref_10 article-title: Constructing an Assessment Indices System to Analyze Integrated Regional Carrying Capacity in the Coastal Zones—A Case in Nantong publication-title: Ocean Coast. Manag. doi: 10.1016/j.ocecoaman.2014.02.009 – volume: 12 start-page: 1 year: 2024 ident: ref_31 article-title: Optimising Camera and Flight Settings for Ultrafine Resolution Mapping of Artificial Night-Time Lights Using an Unoccupied Aerial System publication-title: Drone Syst. Appl. doi: 10.1139/dsa-2023-0086 – volume: 57 start-page: 2060 year: 2016 ident: ref_68 article-title: Fetal and Lamb Losses from Pregnancy Scanning to Lamb Marking in Commercial Sheep Flocks in Southern New South Wales publication-title: Anim. Prod. Sci. doi: 10.1071/AN16166 – ident: ref_12 doi: 10.3390/land12061142 – volume: 158 start-page: 295 year: 2015 ident: ref_28 article-title: Urban Land Cover Classification Using Airborne LiDAR Data: A Review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.001 – ident: ref_39 – ident: ref_46 doi: 10.3390/rs9050437 – volume: 58 start-page: 101517 year: 2022 ident: ref_29 article-title: Above-Ground Biomass Estimation from LiDAR Data Using Random Forest Algorithms publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101517 – volume: 1530 start-page: 81 year: 1981 ident: ref_41 article-title: Dry Sheep Equivalents for Comparing Different Classes of Stock publication-title: Paper – volume: 70 start-page: 1034 year: 2019 ident: ref_53 article-title: Current and Future Direction of Nitrogen Fertiliser Use in Australian Grazing Systems publication-title: Crop Pasture Sci. doi: 10.1071/CP18566 – volume: 12 start-page: 813 year: 2011 ident: ref_73 article-title: The Impact of Topography on Soil Properties and Yield and the Effects of Weather Conditions publication-title: Precis. Agric. doi: 10.1007/s11119-011-9221-x – volume: 4 start-page: 408 year: 2006 ident: ref_1 article-title: Using Digital Photographs and Object-Based Image Analysis to Estimate Percent Ground Cover in Vegetation Plots publication-title: Front. Ecol. Environ. doi: 10.1890/1540-9295(2006)4[408:UDPAOI]2.0.CO;2 – volume: 103 start-page: 149 year: 2001 ident: ref_55 article-title: A Comparison of Prediction Methods for the Creation of Field-Extent Soil Property Maps publication-title: Geoderma doi: 10.1016/S0016-7061(01)00074-X – volume: 138 start-page: 46 year: 2015 ident: ref_52 article-title: Management Opportunities for Boosting Productivity of Cool-Temperate Dairy Farms under Climate Change publication-title: Agric. Syst. doi: 10.1016/j.agsy.2015.05.005 – volume: 105 start-page: 41 year: 2019 ident: ref_62 article-title: Examining the Yield Potential of Barley Near-Isogenic Lines Using a Genotype by Environment by Management Analysis publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.02.003 – volume: 13 start-page: 693 year: 2012 ident: ref_15 article-title: The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review publication-title: Precis. Agric. doi: 10.1007/s11119-012-9274-5 – volume: 54 start-page: 2018 year: 2014 ident: ref_49 article-title: Modelling Pasture Management and Livestock Genotype Interventions to Improve Whole-Farm Productivity and Reduce Greenhouse Gas Emissions Intensities publication-title: Anim. Prod. Sci. doi: 10.1071/AN14421 – volume: 167 start-page: 113 year: 2018 ident: ref_77 article-title: Advancing a Farmer Decision Support Tool for Agronomic Decisions on Rainfed and Irrigated Wheat Cropping in Tasmania publication-title: Agric. Syst. doi: 10.1016/j.agsy.2018.09.003 – volume: 54 start-page: 1248 year: 2014 ident: ref_76 article-title: Increasing Ewe Genetic Fecundity Improves Whole-Farm Production and Reduces Greenhouse Gas Emissions Intensities: 2. Economic Performance publication-title: Anim. Prod. Sci. doi: 10.1071/AN14309 – ident: ref_18 doi: 10.3390/rs11050595 – volume: 200 start-page: 107510 year: 2022 ident: ref_8 article-title: Improving Acceptance of Natural Capital Accounting in Land Use Decision Making: Barriers and Opportunities publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2022.107510 – volume: 91 start-page: 447 year: 2018 ident: ref_71 article-title: Predicting Habitat Quality of Protected Dry Grasslands Using Landsat NDVI Phenology publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.03.081 – volume: 180 start-page: 105880 year: 2021 ident: ref_19 article-title: Predicting Pasture Biomass Using a Statistical Model and Machine Learning Algorithm Implemented with Remotely Sensed Imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105880 – volume: 275 start-page: 114880 year: 2021 ident: ref_32 article-title: Using Multispectral Data from an Unmanned Aerial System to Estimate Pasture Depletion during Grazing publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2021.114880 – ident: ref_38 doi: 10.3389/fsufs.2020.534187 – ident: ref_34 doi: 10.3390/rs13040603 – volume: 3 start-page: diaa013 year: 2021 ident: ref_35 article-title: Modelling Seasonal Pasture Growth and Botanical Composition at the Paddock Scale with Satellite Imagery publication-title: In Silico Plants doi: 10.1093/insilicoplants/diaa013 – ident: ref_45 – volume: 280 start-page: 51 year: 2017 ident: ref_44 article-title: Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment publication-title: Geomorphology doi: 10.1016/j.geomorph.2016.11.021 – ident: ref_13 doi: 10.3390/land10040364 – volume: 7 start-page: 1247 year: 2014 ident: ref_57 article-title: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?–Arguments against Avoiding RMSE in the Literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 34 start-page: 77 year: 2017 ident: ref_37 article-title: Grazing Management That Regenerates Ecosystem Function and Grazingland Livelihoods publication-title: Afr. J. Range Forage Sci. doi: 10.2989/10220119.2017.1334706 – volume: 69 start-page: 808 year: 2018 ident: ref_48 article-title: Potential of Summer-Active Temperate (C3) Perennial Forages to Mitigate the Detrimental Effects of Supraoptimal Temperatures on Summer Home-Grown Feed Production in South-Eastern Australian Dairying Regions publication-title: Crop Pasture Sci. doi: 10.1071/CP17291 – volume: 67 start-page: 93 year: 2012 ident: ref_61 article-title: An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.11.002 – ident: ref_26 doi: 10.3389/fpls.2017.02144 – volume: 27 start-page: 798 year: 2004 ident: ref_65 article-title: Plant Responses to Livestock Grazing Frequency in an Australian Temperate Grassland publication-title: Ecography doi: 10.1111/j.0906-7590.2004.04004.x – volume: 93 start-page: 528 year: 2004 ident: ref_70 article-title: Estimation of Pasture Growth Rate in the South West of Western Australia from AVHRR NDVI and Climate Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.08.006 – volume: 85 start-page: 101986 year: 2020 ident: ref_21 article-title: Estimating Aboveground Biomass of the Mangrove Forests on Northeast Hainan Island in China Using an Upscaling Method from Field Plots, UAV-LiDAR Data and Sentinel-2 Imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 772 start-page: 145031 year: 2021 ident: ref_78 article-title: Can Seasonal Soil N Mineralisation Trends Be Leveraged to Enhance Pasture Growth? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145031 – volume: 130 start-page: 108081 year: 2021 ident: ref_58 article-title: The Use of Machine Learning Methods to Estimate Aboveground Biomass of Grasslands: A Review publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108081 – ident: ref_2 doi: 10.3390/rs15194866 – volume: 194 start-page: 379 year: 2017 ident: ref_47 article-title: Cloud Detection Algorithm Comparison and Validation for Operational Landsat Data Products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.026 – volume: 66 start-page: 2 year: 2015 ident: ref_11 article-title: Dual-Purpose Cropping—Capitalising on Potential Grain Crop Grazing to Enhance Mixed-Farming Profitability publication-title: Crop Pasture Sci. doi: 10.1071/CPv66n4_FO – ident: ref_24 doi: 10.3390/rs8010050 – volume: 192 start-page: 269 year: 2020 ident: ref_17 article-title: Integrating Drone Imagery with Existing Rangeland Monitoring Programs publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-8216-3 – volume: 9 start-page: 594 year: 2018 ident: ref_25 article-title: Unmanned Aerial Systems Measure Structural Habitat Features for Wildlife across Multiple Scales publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12919 – ident: ref_66 doi: 10.1201/9781420002874-17 – volume: 2 start-page: 855 year: 2021 ident: ref_7 article-title: Climate Change Benefits Negated by Extreme Heat publication-title: Nat. Food doi: 10.1038/s43016-021-00387-6 – volume: 30 start-page: 165 year: 1990 ident: ref_69 article-title: The Performance of Short Scrotum and Wether Lambs Born in Winter or Spring and Run at Pasture in Northern Tasmania publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA9900165 – volume: 257 start-page: 107161 year: 2021 ident: ref_72 article-title: Application, Adoption and Opportunities for Improving Decision Support Systems in Irrigated Agriculture: A Review publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107161 – ident: ref_67 – volume: 114 start-page: 24 year: 2016 ident: ref_59 article-title: Random Forest in Remote Sensing: A Review of Applications and Future Directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref_14 – volume: 51 start-page: 821 year: 2011 ident: ref_42 article-title: Whole-Farm Profit and the Optimum Maternal Liveweight Profile of Merino Ewe Flocks Lambing in Winter and Spring Are Influenced by the Effects of Ewe Nutrition on the Progeny’s Survival and Lifetime Wool Production publication-title: Anim. Prod. Sci. doi: 10.1071/AN10078 – volume: 144 start-page: 226 year: 2014 ident: ref_5 article-title: Modeling Vegetation Heights from High Resolution Stereo Aerial Photography: An Application for Broad-Scale Rangeland Monitoring publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.05.028 – volume: 9 start-page: e238 year: 2020 ident: ref_75 article-title: Genetic Factors Increasing Barley Grain Yields Under Soil Waterlogging publication-title: Food Energy Secur. doi: 10.1002/fes3.238 – volume: 125 start-page: 107484 year: 2021 ident: ref_50 article-title: Regenerative Rotational Grazing Management of Dairy Sheep Increases Springtime Grass Production and Topsoil Carbon Storage publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107484 – ident: ref_4 doi: 10.3389/fsufs.2019.00121 – volume: 216 start-page: 316 year: 2008 ident: ref_56 article-title: How to Evaluate Models: Observed vs. Predicted or Predicted vs. Observed? publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.05.006 – ident: ref_40 doi: 10.1079/9780851993515.0067 – volume: 53 start-page: 614 year: 2016 ident: ref_20 article-title: Comparing the Spectral Settings of the New Generation Broad and Narrow Band Sensors in Estimating Biomass of Native Grasses Grown under Different Management Practices publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2016.1221576 – ident: ref_54 – volume: 356 start-page: 120564 year: 2024 ident: ref_33 article-title: Improvement of Pasture Biomass Modelling Using High-Resolution Satellite Imagery and Machine Learning publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.120564 – volume: 56 start-page: 594 year: 2016 ident: ref_63 article-title: Modelled Greenhouse Gas Emissions from Beef Cattle Grazing Irrigated Leucaena in Northern Australia publication-title: Anim. Prod. Sci. doi: 10.1071/AN15575 – ident: ref_64 – volume: 218 start-page: 207 year: 2018 ident: ref_51 article-title: Application of Sentinel-2A Data for Pasture Biomass Monitoring Using a Physically Based Radiative Transfer Model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.028 – ident: ref_74 doi: 10.3390/rs12030431 – ident: ref_36 – volume: 58 start-page: 233 year: 2009 ident: ref_43 article-title: High-Quality Spatial Climate Data-Sets for Australia publication-title: Aust. Meteorol. Oceanogr. J. doi: 10.22499/2.5804.003 – volume: 183 start-page: 129 year: 2016 ident: ref_6 article-title: Ultra-Fine Grain Landscape-Scale Quantification of Dryland Vegetation Structure with Drone-Acquired Structure-from-Motion Photogrammetry publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.05.019 – volume: 72 start-page: 575 year: 2019 ident: ref_16 article-title: Estimating Forage Utilization with Drone-Based Photogrammetric Point Clouds publication-title: Rangel. Ecol. Manag. doi: 10.1016/j.rama.2019.02.009 – volume: 6 start-page: 8056 year: 2014 ident: ref_22 article-title: Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types publication-title: Remote Sens. doi: 10.3390/rs6098056 – volume: 10 start-page: 4876 year: 2020 ident: ref_23 article-title: Detecting Shrub Encroachment in Seminatural Grasslands Using UAS LiDAR publication-title: Ecol. Evol. doi: 10.1002/ece3.6240 |
| SSID | ssj0000331904 |
| Score | 2.398046 |
| Snippet | Effective agricultural management hinges upon timely decision-making. Here, we evaluated whether drone and satellite imagery could improve real-time and remote... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4688 |
| SubjectTerms | Accuracy Agricultural management Agricultural production Analysis artificial intelligence Biomass Cameras Data collection Decision making Decision trees drone Drone aircraft Ecosystems Environmental stewardship Error analysis Evaluation grassland Grasslands Land use Learning algorithms Livestock Machine learning Pasture Pasture management Photogrammetry Productivity Rain Real time Remote monitoring Remote sensing Root-mean-square errors Satellite imagery Satellites Sheep Standard error Sward Unmanned aerial vehicles Vegetation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQn1hfBBTEQ7FpkrY5ri_UgxcVvIU89bBW2V2R_fdO2rq7oOjFHkMO028mk_nK9BuAQ4wbRoPNUkpDSHmweSqtDyl1VV46JgK3TYPsbXH1wG8exePMqK_YE9bKA7fAncjMm4pxFpAscFoWhnrnnZYeY00GY2L2zSo5Q6aaHMwwtDLe6pEy5PUngyEt8CprR6xMb6BGqP97Ol6Chff6TY8_dL8_c99crsByVyiSXmvgKsz5eg0Wupnlz-N1uLvulB4QWfIayPngtfZE147c6UZmc-TJ9UuUqBiT9tOBH5Le02AitkGmrS-4HntkxxvwcHlxf3aVdiMSUouHb5Rqrr3NgxQ6OOSyTBgaDPfGWFMyz7UQDh_haGaxbuI6lM5VXgermbUVpWwT5mu0bgsItZIL7WURrOA2xEFVlUasBUKfFSZP4PgLNmU7_fA4xqKvkEdEiNUU4gQOJnvfWtWMH3edRvQnO6LSdbOA_led_9Vf_k_gKPpOxfOI5ljd_VaALxWVrVSvwpxcIt0uEtj9cq_qDupQMWSIJRaNkiZwOHH5L0Zv_4fRO7CYY3HUtsXswvxo8O73sLgZmf0mjj8BsZn5JA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzSHNofRJ3aZF0EDpwcSyJD8OpWzShKSHpTQN5Cb0TA8b79a7oey_78iWvYWG-CiEGc975NE3AIeoN4x6k6WUep9yb_K0Ns6n1FZ5aZnw3HQNsrPi_Ip_uxbXOzAb7sKEtsrBJ3aO2i5MOCM_YpjKlxjda_pl-TsNU6PC39VhhIaKoxXs5w5i7BHs5gEZawK7x6ez7z_GU5eMocplvMcpZVjvH7UrWmCI60evbCNTB-D_v5veh727Zqk2f9R8_k8cOnsKT2ICSaa9xJ_Bjmuew16cZf5r8wIuLyICBHKcLDz52i4aR1RjyaXq4DfXjlzcBuiKDemPFNyKTG_aEYSDbFticD30zm5ewtXZ6c-T8zSOTkgNGuU6VVw5k_taKG-xxmVCU6-509rokjmuhLD4CEszg_kUV760tnLKG8WMqShlr2DSIHWvgVBTc6FcXXgjuPFhgFWlnHWCebRYnSfwaWCbNBFXPIy3mEusLwKL5ZbFCXwY9y57NI17dx0H7o87AgJ2t7Bob2Q0KFlnTleMIxGY0tGy0BRpsqp26INqr3UCH4PsZLBTJMeoeN0APyogXslphb66xDK8SOBgEK-MBrySW3VL4HAU-QNEv3n4LW_hcY7pUN8IcwCTdXvn3mE6s9bvo47-BY6D9qc priority: 102 providerName: ProQuest |
| Title | Integration of Drone and Satellite Imagery Improves Agricultural Management Agility |
| URI | https://www.proquest.com/docview/3149751491 https://www.mdpi.com/2072-4292/16/24/4688/pdf?version=1734332393 https://doaj.org/article/90eb8343f0264176b1ededa9e2579fbb |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7R5FA48K4wlMgSlRAHN1nvrh8n5NKGFkFUESKVk7XPgpo6keOAwq9n1naSChBCwhdL1qw065mdnW81-w3AAfoNJVYNAkKsDZhVYZAqYwOikzDWlFum6gLZUXQ6Ye8u-MWNW_yurBKh-Nc6SIeDOAxcP6U-ifoh67MI4dpc29ff2rMkElPHv0VTugPdiGM23oHuZHSefXY95dajG1ZSiui-Xy5IhBta02hluw_VdP2_B-U7sLss5mL1XUynN3ad4T0Qa32bYpOrw2UlD9WPX6gc_2dC9-Fum5L6WeNDD-CWKR7Cbtsd_cvqEYzPWk4JHOvPrH9czgrji0L7Y1ETelbGP7t2ZBgrvzmkMAs_uyw3tB7-tsgGv7tq3NVjmAxPPr05DdpmDIHCZV4FggmjQptyYTWiZsolsZIZKZWMqWGCc40P12SgMENjwsZaJ0ZYJahSCSF0DzoFavcEfKJSxoVJI6s4U9a1xEqE0YZTizFAhh68WpsmVy1TuWuYMc0RsTgz5lszevBiIztv-Dn-KHXkLLyRcJza9YdZeZm3SzRPB0Ym-PstwlJG4kgS1EmL1GBUS62UHrx0_pG7lY_qKNFeYMBJOQ6tPEsw-scI7CMP9tculLchYZFTxKIxpqcp8eBg41Z_Ufrpv4k9g9shJlpNic0-dKpyaZ5jolTJHuwkw7c96GbHH96P8X10Mjr_2KuPHXrtOvkJWtoTVg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9BA4IJ7CpcBKFCEOVr3edWwfKpTSVgktEaKt1Ju7z3IITuqkqvzn-G3M2usECdRbfVytVuOZ8czsevb7AHbQbxi1KgoptTbkVsVhrowNqc7iVLPEctU0yE4Go3P-9SK52IDf3V0Y11bZxcQmUOuZcmfkuwxL-RSze04_z69Dxxrl_q52FBrCUyvovQZizF_sODb1LW7hFnvjA7T3hzg-Ojz7Mgo9y0Co0H-XoeDCqNjmibAat4MskdRKbqRUMmWGiyTR-CSaRgpLDy5sqnVmhFWCKZVRynDdB7DJGcrXg839w8n3H6tTnoihi0e8xUVlLI92qwUdYEptqV7WmbAhDPg3LTyC_k05F_WtmE7_yntHT-CxL1jJsPWwp7BhymfQ99zpP-vncDr2iBNoYTKz5KCalYaIUpNT0cB9Lg0Z_3JQGTVpjzDMggyvqhXoB1m34OC469WtX8D5vSjxJfRKlO4VEKpyngiTD6xKuLKOMCsTRpuEWYwQMg7gU6e2Qnkcc0enMS1wP-NUXKxVHMD71dx5i97x31n7TvurGQ5xuxmYVVeF_4CLPDIyYxyFwBKSpgNJUSYtcoMxL7dSBvDR2a5wcQHFUcJfb8CXcghbxTDD3JDitn8QwHZn3sIHjEWxdu8AdlYmv0PorbtXeQf90dm3k-JkPDl-DQ9jLMXaJpxt6C2rG_MGS6mlfOv9lcDlfX8ifwAwbTdk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IJ4iUMASRYhDtHHsvA4ILSxLl6IKqVTqzfWzHLbZbXarKn-NX8c4r0UC9dYcI8uazIxnxs74-wD20G8YdToKKXUu5E7HYaGtC6nJ48ywxHHdNMgepvvH_NtJcrIFv_u7ML6tso-JTaA2C-3PyEcMS_kMs3tBR65ri_gxmX5cXoSeQcr_ae3pNFoXObD1FW7fVh9mE7T12ziefvn5eT_sGAZCjb67DiWXVseuSKQzuBVkiaJOcauUVhmzXCaJwScxNNJYdnDpMmNyK52WTOucUobz3oLbmUdx97fUp1-H852IoXNHvEVEZayIRtWKpphMW5KXTQ5sqAL-TQj3YOeyXMr6Ss7nf2W86QO435WqZNz61kPYsuUj2OlY03_Vj-Fo1mFNoG3JwpFJtSgtkaUhR7IB-lxbMjv3IBk1aQ8v7IqMz6oB7oNsmm_wve_SrZ_A8Y2o8ClslyjdMyBUFzyRtkidTrh2niorl9bYhDmMDSoO4H2vNqE7BHNPpDEXuJPxKhYbFQfwZhi7bHE7_jvqk9f-MMJjbTcvFtWZ6JauKCKrcsZRCCweaZYqijIZWViMdoVTKoB33nbCRwQUR8vuYgN-lMfWEuMcs0KGG_40gN3evKILFSuxcewA9gaTXyP08-tneQ13cGGI77PDgxdwN8YarO2-2YXtdXVpX2INtVavGmclcHrTq-MPx2g0_g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5Beig98EZdKMgSlRCHbeK1vY8TCo-q5VAhlUjlZPnZIsIm2mxA4dcz3nWSChBCYo-WLY13Hp7PGn8DcIh2w6g3o5RS71PuTZZWxvmU2jIrLBOem65A9iw_mfD3F-Li2iv-UFaJUPxzF6SzUZGloZ_SkObDjA95jnBtbv2rb_EuiRYs8G-xit2EnVxgNj6AncnZh_Gn0FNuvbpnJWWI7ofNguZ4oPWNVrbnUEfX_3tQ3oPdZT1Xq-9qOr126hzfAbWWty82-XK0bPWR-fELleP_bOgu3I4pKRn3NnQPbrj6PuzG7uhXqwdwfho5JXAtmXnytpnVjqjaknPVEXq2jpx-DWQYK9JfUrgFGV82G1oPsi2ywfFQjbt6CJPjdx_fnKSxGUNq0M3bVHHlTOYrobxF1MyEpl5zp7XRBXNcCWHxE5aODGZoXPnC2tIpbxQzpqSUPYJBjdLtA6Gm4kK5KvdGcONDS6xSOesE8xgDdJbAy7VqpIlM5aFhxlQiYglqlFs1JvB8M3fe83P8cdbroOHNjMCp3Q3MmksZXVRWI6dL_P0eYSmnRa4pymRV5TCqVV7rBF4E-5DB81Eco-IDBtxU4NCS4xKjf4HAPk_gYG1CMoaEhWSIRQtMTyuawOHGrP4i9ON_m_YEbmWYaPUlNgcwaJule4qJUqufRV_4CY6tDk0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+Drone+and+Satellite+Imagery+Improves+Agricultural+Management+Agility&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Ogungbuyi%2C+Michael+Gbenga&rft.au=Mohammed%2C+Caroline&rft.au=Fischer%2C+Andrew+M&rft.au=Turner%2C+Darren&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=24&rft.spage=4688&rft_id=info:doi/10.3390%2Frs16244688&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |