Machine vision based online detection of PCB defect
The traditional PCB defect on-line detection has the problems of long detection time and poor accuracy of detection results. Therefore, a key technology of PCB defect online detection based on machine vision is proposed. Firstly, image retrieval is carried out by using visual detection algorithm, im...
        Saved in:
      
    
          | Published in | Microprocessors and microsystems Vol. 82; p. 103807 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kidlington
          Elsevier B.V
    
        01.04.2021
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0141-9331 1872-9436  | 
| DOI | 10.1016/j.micpro.2020.103807 | 
Cover
| Abstract | The traditional PCB defect on-line detection has the problems of long detection time and poor accuracy of detection results. Therefore, a key technology of PCB defect online detection based on machine vision is proposed. Firstly, image retrieval is carried out by using visual detection algorithm, image smoothing, image contrast enhancement, image sharpening and other preprocessing operations are carried out by using gray-scale transformation algorithm to simplify the operation process and improve the image quality; secondly, PC is analyzed B. the causes and types of defects. The original color image is processed and binarized by the hybrid recognition method of mathematical morphology and pattern recognition. Then the reference image obtained by mathematical morphology method is used as a template for system self inspection. Finally, the image aberration detection algorithm is introduced to segment the threshold value of PCB defect image, remove redundant points and mark PCB image defect recognition results, improve the visual detection algorithm and optimize the hardware design to achieve PCB image defect detection and recognition. The experimental results show that the method has high detection accuracy and short detection time, and can effectively control the stable operation of the online detection system, which provides a reference for related research in this field. | 
    
|---|---|
| AbstractList | The traditional PCB defect on-line detection has the problems of long detection time and poor accuracy of detection results. Therefore, a key technology of PCB defect online detection based on machine vision is proposed. Firstly, image retrieval is carried out by using visual detection algorithm, image smoothing, image contrast enhancement, image sharpening and other preprocessing operations are carried out by using gray-scale transformation algorithm to simplify the operation process and improve the image quality; secondly, PC is analyzed B. the causes and types of defects. The original color image is processed and binarized by the hybrid recognition method of mathematical morphology and pattern recognition. Then the reference image obtained by mathematical morphology method is used as a template for system self inspection. Finally, the image aberration detection algorithm is introduced to segment the threshold value of PCB defect image, remove redundant points and mark PCB image defect recognition results, improve the visual detection algorithm and optimize the hardware design to achieve PCB image defect detection and recognition. The experimental results show that the method has high detection accuracy and short detection time, and can effectively control the stable operation of the online detection system, which provides a reference for related research in this field. | 
    
| ArticleNumber | 103807 | 
    
| Author | Liu, Zhichao Qu, Baida  | 
    
| Author_xml | – sequence: 1 givenname: Zhichao surname: Liu fullname: Liu, Zhichao email: chaoyao88888@163.com organization: School of Internet of things Engineering, Jiangnan University, Wuxi, 214122, China – sequence: 2 givenname: Baida surname: Qu fullname: Qu, Baida organization: School of Internet of things Engineering, Jiangnan University, Wuxi, 214122, China  | 
    
| BookMark | eNqFkMtKAzEUhoNUsK2-gYsB11NPbjMTF4IWb1DRha5DmgtmaCc1mRZ8ezOMKxe6OvBx_nP5ZmjShc4idI5hgQFXl-1i6_UuhgUBMiDaQH2EpripSSkYrSZoCpjhUlCKT9AspRYAOFRkiuiz0h--s8XBJx-6Yq2SNUXoNgMztre6H3BwxevyNgOXwSk6dmqT7NlPnaP3-7u35WO5enl4Wt6sSs0A-rJxFSeYswaMNYJQxxthBKhGrZ1hVnHtsIOKAaaMcAu6FhU2wAVjVgPmdI4uxrn5tc-9Tb1swz52eaUknNJaNJxB7roau3QMKUXrpPa9Gq7uo_IbiUEOkmQrR0lykCRHSTnMfoV30W9V_Povdj3GbH7_4G2USXvbaWt8zIKkCf7vAd8RLoKe | 
    
| CitedBy_id | crossref_primary_10_1007_s10836_024_06145_3 crossref_primary_10_1109_TIM_2023_3326460 crossref_primary_10_3390_app142412054 crossref_primary_10_32604_cmc_2023_046376 crossref_primary_10_3390_electronics12122574 crossref_primary_10_1016_j_jmsy_2023_08_019 crossref_primary_10_1007_s11760_024_03757_2 crossref_primary_10_1109_ACCESS_2021_3116131 crossref_primary_10_1016_j_compind_2022_103737 crossref_primary_10_3390_s24113635 crossref_primary_10_54097_ajst_v5i3_8011 crossref_primary_10_47978_TUS_2021_71_03_004 crossref_primary_10_3390_s24175837 crossref_primary_10_3390_s22207971 crossref_primary_10_1007_s11760_024_03075_7 crossref_primary_10_1007_s00170_022_09113_3 crossref_primary_10_1038_s41598_022_16302_3 crossref_primary_10_1115_1_4063918 crossref_primary_10_3390_machines13020098 crossref_primary_10_1109_JSEN_2024_3444496 crossref_primary_10_1007_s00170_022_09425_4 crossref_primary_10_1007_s42044_023_00149_6 crossref_primary_10_3390_sym16040418 crossref_primary_10_1109_ACCESS_2023_3330142 crossref_primary_10_1007_s42835_024_02008_1 crossref_primary_10_3390_electronics12132821 crossref_primary_10_1007_s10836_024_06146_2 crossref_primary_10_1007_s12596_023_01342_3 crossref_primary_10_1016_j_cie_2024_110258 crossref_primary_10_1109_TIM_2023_3322483 crossref_primary_10_3390_su15075963 crossref_primary_10_1007_s41635_023_00132_4 crossref_primary_10_1109_TIM_2025_3550210 crossref_primary_10_3390_photonics10090984 crossref_primary_10_1155_2023_4096164 crossref_primary_10_1007_s11227_024_06223_5 crossref_primary_10_1109_ACCESS_2024_3434559 crossref_primary_10_3233_JIFS_223773 crossref_primary_10_1016_j_engappai_2024_109723 crossref_primary_10_1016_j_measurement_2023_112953 crossref_primary_10_1111_exsy_13567 crossref_primary_10_1109_JSEN_2022_3208580 crossref_primary_10_3390_coatings13122011 crossref_primary_10_1109_JSEN_2025_3530104 crossref_primary_10_3390_s23218780 crossref_primary_10_3390_machines12030166 crossref_primary_10_2478_amns_2024_2412 crossref_primary_10_3390_electronics12092120 crossref_primary_10_3390_app112411701  | 
    
| Cites_doi | 10.1016/j.infsof.2018.10.004 10.1109/TII.2019.2921431 10.1186/s13640-018-0339-x 10.1016/j.snb.2019.126846 10.1088/1361-6528/abaa74 10.1007/s10044-017-0640-9 10.1039/D0GC02125C 10.3390/math8030448 10.1016/j.conbuildmat.2020.119695 10.1364/AO.57.002490 10.1016/j.apsusc.2020.147295 10.1515/ntrev-2020-0014 10.1016/j.apcatb.2019.02.033 10.1016/j.aquaculture.2019.734542 10.1016/j.snb.2020.127821 10.1016/j.bios.2019.02.040 10.1007/s11801-019-8104-7  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Apr 2021  | 
    
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Apr 2021  | 
    
| DBID | AAYXX CITATION 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.micpro.2020.103807 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-9436 | 
    
| ExternalDocumentID | 10_1016_j_micpro_2020_103807 S0141933120309522  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K T9H TN5 UHS WUQ XOL XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 8FD AGCQF F28 FR3 JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c400t-8f65215480ded923f589d90a8abfd4ea5cf1f064013425e0c7961d05944ec0153 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0141-9331 | 
    
| IngestDate | Sat Sep 06 23:11:36 EDT 2025 Thu Oct 02 04:28:13 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Sat Mar 16 16:13:28 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Machine vision Visual detection algorithm Mathematical morphology PCB defect Defect detection  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c400t-8f65215480ded923f589d90a8abfd4ea5cf1f064013425e0c7961d05944ec0153 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2533798540 | 
    
| PQPubID | 2045426 | 
    
| ParticipantIDs | proquest_journals_2533798540 crossref_citationtrail_10_1016_j_micpro_2020_103807 crossref_primary_10_1016_j_micpro_2020_103807 elsevier_sciencedirect_doi_10_1016_j_micpro_2020_103807  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2021 2021-04-00 20210401  | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Kidlington | 
    
| PublicationPlace_xml | – name: Kidlington | 
    
| PublicationTitle | Microprocessors and microsystems | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV  | 
    
| References | Hassanin, El-Samie, Banby (bib0009) 2019 Li (bib0007) 2018; 2018 Guo, Qian, Cai, Tang, Liu (bib0019) 2019; 300 Yan, Xue, Chen, Wu, Dong, Liu, Wang (bib0014) 2020; 530 Wang, Liu, Asnafi (bib0005) 2018; 189 Wang, Hu, Liu, Guo, Peng, Jia, Du (bib0022) 2019; 132 Liao, Wei, Zuo, Li, Yang, Xiao, Wu (bib0020) 2020 Hou, Sun, Huang (bib0001) 2019; 101 Gaidhane, Hote, Singh (bib0002) 2018; 21 Zhong, Lin, Wang, Mo, Meng, Tang, Pan (bib0017) 2020 Guo, Hu, Li, Duan, He, Zhang, Du (bib0021) 2020; 309 Jun, Xuekun, Jirui (bib0008) 2018; 57 Xu, Liu, Luo (bib0011) 2019; 106 Guo, Li, Zhu, Zhang, Liu, Li, Liu (bib0018) 2020; 31 Chen, Gu, Lian (bib0003) 2018; 34 Sun, Li, Wu (bib0006) 2019; 2 Liu, Mao (bib0004) 2018; 232 He, Liu, Liu, Cui, Hu, Wang, Du (bib0023) 2019; 248 Yang, Yang, Wang, Kong, Wang, Zhang (bib0012) 2020; 515 Xia, Jiang, Xu (bib0010) 2019; 15 Wu, Liu, Jia (bib0013) 2020; 8 Liu, Huang, Wu, Deng, Liu, Zheng, Hui (bib0015) 2020; 9 Liu, Song, Han, Donkor, Jiang, Wang, Chu (bib0016) 2020; 260 Liu (10.1016/j.micpro.2020.103807_bib0004) 2018; 232 Liu (10.1016/j.micpro.2020.103807_bib0015) 2020; 9 Wang (10.1016/j.micpro.2020.103807_bib0005) 2018; 189 Liao (10.1016/j.micpro.2020.103807_bib0020) 2020 Wang (10.1016/j.micpro.2020.103807_bib0022) 2019; 132 Xu (10.1016/j.micpro.2020.103807_bib0011) 2019; 106 Yang (10.1016/j.micpro.2020.103807_bib0012) 2020; 515 Guo (10.1016/j.micpro.2020.103807_bib0021) 2020; 309 Chen (10.1016/j.micpro.2020.103807_bib0003) 2018; 34 Sun (10.1016/j.micpro.2020.103807_bib0006) 2019; 2 He (10.1016/j.micpro.2020.103807_bib0023) 2019; 248 Hou (10.1016/j.micpro.2020.103807_bib0001) 2019; 101 Gaidhane (10.1016/j.micpro.2020.103807_bib0002) 2018; 21 Hassanin (10.1016/j.micpro.2020.103807_bib0009) 2019 Guo (10.1016/j.micpro.2020.103807_bib0019) 2019; 300 Jun (10.1016/j.micpro.2020.103807_bib0008) 2018; 57 Wu (10.1016/j.micpro.2020.103807_bib0013) 2020; 8 Zhong (10.1016/j.micpro.2020.103807_bib0017) 2020 Xia (10.1016/j.micpro.2020.103807_bib0010) 2019; 15 Yan (10.1016/j.micpro.2020.103807_bib0014) 2020; 530 Guo (10.1016/j.micpro.2020.103807_bib0018) 2020; 31 Liu (10.1016/j.micpro.2020.103807_bib0016) 2020; 260 Li (10.1016/j.micpro.2020.103807_bib0007) 2018; 2018  | 
    
| References_xml | – volume: 189 start-page: 27 year: 2018 end-page: 31 ident: bib0005 article-title: Research on online inspection system of emulsion explosive packaging defect based on machine vision publication-title: Matec Web of Conferences – volume: 8 start-page: 12 year: 2020 ident: bib0013 article-title: A novel hierarchical secret image sharing scheme with multi-group joint management publication-title: Mathematics – volume: 309 year: 2020 ident: bib0021 article-title: Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers publication-title: Sens Actuators B Chem – year: 2020 ident: bib0017 article-title: Electrochemically Enabled Synthesis of Sulfide Imidazopyridines via a Radical Cyclization Cascade publication-title: Green Chem – volume: 515 start-page: 9 year: 2020 ident: bib0012 article-title: Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses publication-title: Aquaculture – volume: 260 year: 2020 ident: bib0016 article-title: A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves publication-title: Constr Building Mater. – volume: 248 start-page: 366 year: 2019 end-page: 379 ident: bib0023 article-title: Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction publication-title: Appl Catal B – volume: 2018 start-page: 101 year: 2018 ident: bib0007 article-title: Research on geometric dimension measurement system of shaft parts based on machine vision publication-title: EURASIP J Image Video Process – volume: 2 start-page: 1 year: 2019 ident: bib0006 article-title: An effective method of weld defect detection and classification based on machine vision publication-title: IEEE Transactions on Industrial Informatics – start-page: 1 year: 2019 end-page: 21 ident: bib0009 article-title: A real-time approach for automatic defect detection from PCBs based on SURF features and morphological operations publication-title: Multimedia Tools Appl. – volume: 21 start-page: 277 year: 2018 end-page: 289 ident: bib0002 article-title: An efficient similarity measure approach for PCB surface defect detection publication-title: Pattern AnalAppl. – volume: 9 start-page: 155 year: 2020 end-page: 169 ident: bib0015 article-title: Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide publication-title: Nanotechnol Rev. (Berlin) – volume: 101 start-page: 9 year: 2019 end-page: 10 ident: bib0001 article-title: A novel algorithm for tool wear online inspection based on machine vision publication-title: Int J. Adv. Manufacturing Technol – volume: 530 year: 2020 ident: bib0014 article-title: Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property publication-title: Appl Surf Sci – volume: 31 year: 2020 ident: bib0018 article-title: Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method publication-title: Nanotechnology – start-page: 1 year: 2020 end-page: 13 ident: bib0020 article-title: Interfacial bonding enhancement and properties improvement of carbon/copper composites based on nickel doping publication-title: Compos Interfaces – volume: 232 start-page: 2059 year: 2018 ident: bib0004 article-title: Research on key technology of diamond particle detection based on machine vision publication-title: Matec Web of Conferences – volume: 34 start-page: 187 year: 2018 end-page: 194 ident: bib0003 article-title: Online recognition method of impurities and broken paddy grains based on machine vision publication-title: Nongye Gongcheng Xuebao/Trans.Chinese Soc Agric Eng – volume: 300 year: 2019 ident: bib0019 article-title: Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection publication-title: Sens Actuators B Chem – volume: 57 start-page: 2490 year: 2018 end-page: 2493 ident: bib0008 article-title: Development of an optical defect inspection algorithm based on an active contour model for large steel roller surfaces publication-title: Appl Opt – volume: 132 start-page: 8 year: 2019 end-page: 16 ident: bib0022 article-title: Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics publication-title: Biosens Bioelectron – volume: 15 start-page: 165 year: 2019 end-page: 172 ident: bib0010 article-title: A detection algorithm of spatter on welding plate sur-face based on machine vision publication-title: Optoelectron Lett – volume: 106 start-page: 182 year: 2019 end-page: 200 ident: bib0011 article-title: Software defect prediction based on kernel PCA and weighted extreme learning machine publication-title: Inf Softw Technol – volume: 106 start-page: 182 issue: 7 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0011 article-title: Software defect prediction based on kernel PCA and weighted extreme learning machine publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2018.10.004 – volume: 2 start-page: 1 issue: 4 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0006 article-title: An effective method of weld defect detection and classification based on machine vision publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2921431 – volume: 2018 start-page: 101 issue: 1 year: 2018 ident: 10.1016/j.micpro.2020.103807_bib0007 article-title: Research on geometric dimension measurement system of shaft parts based on machine vision publication-title: EURASIP J Image Video Process doi: 10.1186/s13640-018-0339-x – start-page: 1 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0020 article-title: Interfacial bonding enhancement and properties improvement of carbon/copper composites based on nickel doping publication-title: Compos Interfaces – volume: 300 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0019 article-title: Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2019.126846 – volume: 34 start-page: 187 issue: 13 year: 2018 ident: 10.1016/j.micpro.2020.103807_bib0003 article-title: Online recognition method of impurities and broken paddy grains based on machine vision publication-title: Nongye Gongcheng Xuebao/Trans.Chinese Soc Agric Eng – volume: 189 start-page: 27 year: 2018 ident: 10.1016/j.micpro.2020.103807_bib0005 article-title: Research on online inspection system of emulsion explosive packaging defect based on machine vision – volume: 31 issue: 45 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0018 article-title: Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method publication-title: Nanotechnology doi: 10.1088/1361-6528/abaa74 – volume: 21 start-page: 277 issue: 1 year: 2018 ident: 10.1016/j.micpro.2020.103807_bib0002 article-title: An efficient similarity measure approach for PCB surface defect detection publication-title: Pattern AnalAppl. doi: 10.1007/s10044-017-0640-9 – year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0017 article-title: Electrochemically Enabled Synthesis of Sulfide Imidazopyridines via a Radical Cyclization Cascade publication-title: Green Chem doi: 10.1039/D0GC02125C – volume: 8 start-page: 12 issue: 3 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0013 article-title: A novel hierarchical secret image sharing scheme with multi-group joint management publication-title: Mathematics doi: 10.3390/math8030448 – volume: 260 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0016 article-title: A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves publication-title: Constr Building Mater. doi: 10.1016/j.conbuildmat.2020.119695 – volume: 57 start-page: 2490 issue: 10 year: 2018 ident: 10.1016/j.micpro.2020.103807_bib0008 article-title: Development of an optical defect inspection algorithm based on an active contour model for large steel roller surfaces publication-title: Appl Opt doi: 10.1364/AO.57.002490 – volume: 530 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0014 article-title: Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.147295 – volume: 9 start-page: 155 issue: 1 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0015 article-title: Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide publication-title: Nanotechnol Rev. (Berlin) doi: 10.1515/ntrev-2020-0014 – volume: 248 start-page: 366 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0023 article-title: Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.02.033 – volume: 515 start-page: 9 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0012 article-title: Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses publication-title: Aquaculture doi: 10.1016/j.aquaculture.2019.734542 – volume: 309 year: 2020 ident: 10.1016/j.micpro.2020.103807_bib0021 article-title: Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2020.127821 – volume: 101 start-page: 9 issue: 9 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0001 article-title: A novel algorithm for tool wear online inspection based on machine vision publication-title: Int J. Adv. Manufacturing Technol – volume: 132 start-page: 8 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0022 article-title: Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2019.02.040 – start-page: 1 issue: 35 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0009 article-title: A real-time approach for automatic defect detection from PCBs based on SURF features and morphological operations publication-title: Multimedia Tools Appl. – volume: 15 start-page: 165 issue: 1 year: 2019 ident: 10.1016/j.micpro.2020.103807_bib0010 article-title: A detection algorithm of spatter on welding plate sur-face based on machine vision publication-title: Optoelectron Lett doi: 10.1007/s11801-019-8104-7 – volume: 232 start-page: 2059 year: 2018 ident: 10.1016/j.micpro.2020.103807_bib0004 article-title: Research on key technology of diamond particle detection based on machine vision  | 
    
| SSID | ssj0005062 | 
    
| Score | 2.472699 | 
    
| Snippet | The traditional PCB defect on-line detection has the problems of long detection time and poor accuracy of detection results. Therefore, a key technology of PCB... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 103807 | 
    
| SubjectTerms | Algorithms Color imagery Defect detection Design defects Design optimization Image contrast Image enhancement Image management Image quality Image retrieval Inspection Machine vision Mathematical analysis Mathematical morphology Morphology Object recognition Pattern recognition PCB defect Sharpening Vision systems Visual detection algorithm  | 
    
| Title | Machine vision based online detection of PCB defect | 
    
| URI | https://dx.doi.org/10.1016/j.micpro.2020.103807 https://www.proquest.com/docview/2533798540  | 
    
| Volume | 82 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9436 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005062 issn: 0141-9331 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9436 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005062 issn: 0141-9331 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1872-9436 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005062 issn: 0141-9331 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-9436 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005062 issn: 0141-9331 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9436 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005062 issn: 0141-9331 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fqu15OA1dh_Z17EWS1VaPFjoLezmARXdFl2v_nZnkqyoCILXkCzLJPPNF_LNDCEXqTKFiTF1Cy5AjGcyYbnkkvEoTKMqCKvUJgrP5ul0wW-XybJDxm0uDMoqPfY7TLdo7UeG3prDzWo1RFkSsI84jPCVAGgEZrDzDLsYXL5_kXkEtqkoTmY4u02fsxqv55UEnIJbYuQqhWNT2d_D0w-gttFnskd2PG2kI_dn-6Sj6wOy27ZkoN5DD0k8s-JITV3OOMUgpagrh0GVbqzwqqZrQ-_HVzCAYo4jsphcP4ynzPdFYBI8rmG5SSHoYqE2pRUQNJPkhSqCMi8ro7guE2lCgy90YQweqQOZFWmosDAL1xLCf3xMuvW61ieEVlrlKpDaJEnJpZSFBOAMMpMGlZFJqHskbs0hpC8ajr0rnkSrDnsUzogCjSicEXuEfa7auKIZf8zPWkuLb5svANf_WNlvN0Z453sVEVDYrMiBi57--8NnZDtC9YrV6PRJt3l50-dAP5pqYM_XgGyNbu6m8w_rQNdh | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6xWzcFr7D6SfRy1WKq2xUMLvYXdPKCi26Lr1d_u5LGiIgheQ7Isk8w3X8g3MwhdJFLnOjapW3ABIjQVjGSCCkKjMInKICwTmyg8niTDGb2bs3kL9ZtcGCOr9NjvMN2itR_peWv2VotFz8iSgH3EYWReCYBGrKF1yqLU3MAu37_oPALbVdTMJmZ6kz9nRV7PCwFABdfEyJUKN11lf49PP5Dahp_BDtryvBFfuV_bRS1V7aHtpicD9i66j-KxVUcq7JLGsYlSErt6GFiq2iqvKrzU-KF_DQNGzXGAZoObaX9IfGMEIsDlapLpBKKuqdQmlQSGplmWyzwosqLUkqqCCR1q80QXxuCSKhBpnoTSVGahSkD8jw9Ru1pW6gjhUslMBkJpxgoqhMgFIGeQ6iQotWCh6qC4MQcXvmq4aV7xxBt52CN3RuTGiNwZsYPI56qVq5rxx_y0sTT_tvscgP2Pld1mY7j3vlceAYdN8wzI6PG_P3yONobT8YiPbif3J2gzMlIWK9jponb98qZOgYvU5Zk9ax8Nq9j2 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+vision+based+online+detection+of+PCB+defect&rft.jtitle=Microprocessors+and+microsystems&rft.au=Liu%2C+Zhichao&rft.au=Qu%2C+Baida&rft.date=2021-04-01&rft.pub=Elsevier+BV&rft.issn=0141-9331&rft.volume=82&rft.spage=1&rft_id=info:doi/10.1016%2Fj.micpro.2020.103807&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-9331&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-9331&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-9331&client=summon |