Evaluating machine learning pipelines for multimodal neuroimaging in small cohorts: an ALS case study

Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 19; p. 1568116
Main Authors Appukuttan, Shailesh, Grapperon, Aude-Marie, El Mendili, Mounir Mohamed, Dary, Hugo, Guye, Maxime, Verschueren, Annie, Ranjeva, Jean-Philippe, Attarian, Shahram, Zaaraoui, Wafaa, Gilson, Matthieu
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media 13.06.2025
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2025.1568116

Cover

Abstract Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.
AbstractList Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. E orts are therefore commonly directed toward improving the classification models, in an e ort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The e cacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of ALS patients and healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for smallcohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.
Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.
Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis for various neurological disorders. However, the application of such techniques for rare and heterogeneous diseases remains challenging due to small-cohorts available for acquiring data. Efforts are therefore commonly directed toward improving the classification models, in an effort to optimize outcomes given the limited data. In this study, we systematically evaluated the impact of various machine learning pipeline configurations, including scaling methods, feature selection, dimensionality reduction, and hyperparameter optimization. The efficacy of such components in the pipeline was evaluated on classification performance using multimodal MRI data from a cohort of 16 ALS patients and 14 healthy controls. Our findings reveal that, while certain pipeline components, such as subject-wise feature normalization, help improve classification outcomes, the overall influence of pipeline refinements on performance is modest. Feature selection and dimensionality reduction steps were found to have limited utility, and the choice of hyperparameter optimization strategies produced only marginal gains. Our results suggest that, for small-cohort studies, the emphasis should shift from extensive tuning of these pipelines to addressing data-related limitations, such as progressively expanding cohort size, integrating additional modalities, and maximizing the information extracted from existing datasets. This study provides a methodological framework to guide future research and emphasizes the need for dataset enrichment to improve clinical utility.
Author Verschueren, Annie
Attarian, Shahram
Gilson, Matthieu
Ranjeva, Jean-Philippe
Appukuttan, Shailesh
Zaaraoui, Wafaa
Guye, Maxime
Grapperon, Aude-Marie
El Mendili, Mounir Mohamed
Dary, Hugo
Author_xml – sequence: 1
  givenname: Shailesh
  surname: Appukuttan
  fullname: Appukuttan, Shailesh
– sequence: 2
  givenname: Aude-Marie
  surname: Grapperon
  fullname: Grapperon, Aude-Marie
– sequence: 3
  givenname: Mounir Mohamed
  surname: El Mendili
  fullname: El Mendili, Mounir Mohamed
– sequence: 4
  givenname: Hugo
  surname: Dary
  fullname: Dary, Hugo
– sequence: 5
  givenname: Maxime
  surname: Guye
  fullname: Guye, Maxime
– sequence: 6
  givenname: Annie
  surname: Verschueren
  fullname: Verschueren, Annie
– sequence: 7
  givenname: Jean-Philippe
  surname: Ranjeva
  fullname: Ranjeva, Jean-Philippe
– sequence: 8
  givenname: Shahram
  surname: Attarian
  fullname: Attarian, Shahram
– sequence: 9
  givenname: Wafaa
  surname: Zaaraoui
  fullname: Zaaraoui, Wafaa
– sequence: 10
  givenname: Matthieu
  surname: Gilson
  fullname: Gilson, Matthieu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40586110$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-05214014$$DView record in HAL
BookMark eNpVkc1qGzEURoeS0vy0L9BF0bJd2NXVjDRSdyakTcDQRdu1uB5f2QoayZVmAnn7zsROSFeSPg4HwbmszmKKVFUfgS_rWpuvLvroloILuQSpNIB6U12AUmIhwaizV_fz6rKUe86VULJ9V503XGoFwC8qunnAMOLg44712O19JBYIc5yHgz9QmJbCXMqsH8Pg-7TFwCKNOfkedzPlIys9hsC6tE95KN8YRrZa_2IdFmJlGLeP76u3DkOhD6fzqvrz_eb39e1i_fPH3fVqvegazoeFrmkDDaAxLVKjpZte1ChnNtA1RCiVE8JI0kZz41pEJQFIC6dabJFjfVXdHb3bhPf2kKcv5keb0NunIeWdxTz4LpDV4DQqo-UG2gaJjNOOxIa6WhC41kyuL0fXHsN_qtvV2s4blwIaDs0DTOznI3vI6e9IZbC9Lx2FgJHSWGwthNRtXUs1oZ9O6Ljpaftifk4yAeIIdDmVksm9IMDt3N0-dbdzd3vqXv8DMV2gtQ
Cites_doi 10.1136/adc.65.9.922
10.1093/brain/awr179
10.1038/s41597-024-04157-4
10.1038/s41598-024-84152-2
10.3390/jimaging8110303
10.1016/j.nicl.2022.103262
10.1007/s00330-014-3351-2
10.1016/j.nicl.2021.102648
10.1007/978-1-0716-3195-9_22
10.1016/j.neuroimage.2019.02.062
10.1002/14651858.CD004156.pub4
10.1016/j.neuroimage.2018.04.070
10.3109/17482968.2011.593036
10.1007/s00234-023-03191-0
10.1016/S0022-510X(99)00210-5
10.3389/fneur.2020.576194
10.1155/2012/287891
10.1002/alz.083392
10.3389/fneur.2022.947347
10.1136/jnnp-2015-310998
10.3174/ajnr.A8154
10.1016/j.ncl.2010.12.011
10.1038/s42003-021-02133-x
10.1016/j.cpet.2021.09.010
10.1016/j.neuroimage.2012.01.021
10.3389/fneur.2018.01038
10.1080/146608200300079536
10.3390/jimaging9040081
10.3233/JAD-220021
10.3389/fnins.2019.00135
10.1002/jmri.27019
10.1016/S0022-510X(01)00610-4
10.1371/journal.pone.0177680
10.1093/brain/awad074
10.1109/TPAMI.2022.3185773
10.1016/j.neuroimage.2010.06.010
10.1186/s44147-024-00522-7
10.1007/s13311-016-0484-9
10.1109/TMI.2010.2046908
10.1002/jmri.27078
10.1016/j.compbiomed.2022.106391
10.1148/radiol.2019182276
10.1186/s40035-023-00370-0
10.54294/uvnhin
10.1080/21678421.2017.1407795
10.1371/journal.pone.0316916
10.1093/cercor/bhaa165
ContentType Journal Article
Copyright Copyright © 2025 Appukuttan, Grapperon, El Mendili, Dary, Guye, Verschueren, Ranjeva, Attarian, Zaaraoui and Gilson.
Attribution
Copyright_xml – notice: Copyright © 2025 Appukuttan, Grapperon, El Mendili, Dary, Guye, Verschueren, Ranjeva, Attarian, Zaaraoui and Gilson.
– notice: Attribution
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOA
DOI 10.3389/fninf.2025.1568116
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_81f8a6985b174aee9f8fe2bec32e1f79
oai_HAL_hal_05214014v1
40586110
10_3389_fninf_2025_1568116
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
M48
NPM
PQGLB
RIG
7X8
PUEGO
1XC
VOOES
ID FETCH-LOGICAL-c400t-83eb141a997ae485fb14e46f9b1c4eea56f2295e89809f7aa6511e82f67a7a0a3
IEDL.DBID DOA
ISSN 1662-5196
IngestDate Wed Aug 27 01:31:03 EDT 2025
Fri Sep 12 12:38:25 EDT 2025
Fri Sep 05 15:46:01 EDT 2025
Mon Jul 21 05:59:05 EDT 2025
Thu Jul 03 08:31:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords classification
machine learning
amyotrophic lateral sclerosis
small cohort
multimodal MRI
pipeline optimization
Language English
License Copyright © 2025 Appukuttan, Grapperon, El Mendili, Dary, Guye, Verschueren, Ranjeva, Attarian, Zaaraoui and Gilson.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-83eb141a997ae485fb14e46f9b1c4eea56f2295e89809f7aa6511e82f67a7a0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6726-7207
0000-0002-9036-6246
OpenAccessLink https://doaj.org/article/81f8a6985b174aee9f8fe2bec32e1f79
PMID 40586110
PQID 3225873356
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_81f8a6985b174aee9f8fe2bec32e1f79
hal_primary_oai_HAL_hal_05214014v1
proquest_miscellaneous_3225873356
pubmed_primary_40586110
crossref_primary_10_3389_fninf_2025_1568116
PublicationCentury 2000
PublicationDate 2025-06-13
PublicationDateYYYYMMDD 2025-06-13
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-13
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2025
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Cedarbaum (B9) 1999; 169
Yousefirizi (B45) 2022; 17
Fox (B19) 2011; 29
Avants (B4) 2009; 2
Grapperon (B21) 2025; 20
Mirabnahrazam (B32) 2022; 87
Stamoulou (B38) 2022; 8
Zhang (B47) 2011; 12
Fischl (B18) 2012; 62
Tilsley (B40) 2024; 45
Kebaili (B27) 2023; 9
Elias-Jones (B17) 1990; 65
El Mendili (B16) 2023; 65
Andica (B1) 2020; 52
Weiner (B44) 2024; 20
Garcea (B20) 2023; 152
Kobeleva (B28) 2022; 36
Ashworth (B2) 2012; 2012
Cerasa (B10) 2011; 2012
Bede (B7) 2018; 19
Rascovsky (B36) 2011; 134
Grapperon (B22) 2019; 292
Lin (B30) 2021; 53
Noebauer-Huhmann (B34) 2015; 25
Atassi (B3) 2017; 12
Wan (B42) 2023; 12
Brooks (B8) 2000; 1
Wang (B43) 2018; 9
Destrieux (B14) 2010; 53
Labra (B29) 2016; 87
Drory (B15) 2001; 191
Chintapalli (B12) 2024; 11
Dadi (B13) 2019; 192
Iturria-Medina (B26) 2021; 4
Baiardi (B5) 2023; 146
Pallarés (B35) 2018; 178
Gravel (B23) 2020; 30
Grollemund (B24) 2019; 13
Nanni (B33) 2020; 11
Zejlon (B46) 2022; 13
Chadebec (B11) 2022; 45
Menke (B31) 2017; 14
Thibeau-Sutre (B39) 2023
Tustison (B41) 2010; 29
Islam (B25) 2024; 71
Shevchenko (B37) 2025; 15
Barry (B6) 2021; 30
References_xml – volume: 65
  start-page: 922
  year: 1990
  ident: B17
  article-title: Magnetic resonance imaging in neurological disorders
  publication-title: Arch. Dis. Child
  doi: 10.1136/adc.65.9.922
– volume: 134
  start-page: 2456
  year: 2011
  ident: B36
  article-title: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
  publication-title: Brain
  doi: 10.1093/brain/awr179
– volume: 11
  start-page: 1
  year: 2024
  ident: B12
  article-title: Generative models of mri-derived neuroimaging features and associated dataset of 18,000 samples
  publication-title: Sci. Data
  doi: 10.1038/s41597-024-04157-4
– volume: 15
  start-page: 2849
  year: 2025
  ident: B37
  article-title: A comparative machine learning study of schizophrenia biomarkers derived from functional connectivity
  publication-title: Sci. Rep
  doi: 10.1038/s41598-024-84152-2
– volume: 8
  start-page: 303
  year: 2022
  ident: B38
  article-title: Harmonization strategies in multicenter MRI-based radiomics
  publication-title: J. Imaging
  doi: 10.3390/jimaging8110303
– volume: 36
  start-page: 103262
  year: 2022
  ident: B28
  article-title: Advancing brain network models to reconcile functional neuroimaging and clinical research
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2022.103262
– volume: 25
  start-page: 106
  year: 2015
  ident: B34
  article-title: Brain tumours at 7T MRI compared to 3T—contrast effect after half and full standard contrast agent dose: initial results
  publication-title: Eur. Radiol
  doi: 10.1007/s00330-014-3351-2
– volume: 30
  start-page: 102648
  year: 2021
  ident: B6
  article-title: Ultra-high field (7t) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2021.102648
– start-page: 655
  year: 2023
  ident: B39
  article-title: “Interpretability of machine learning methods applied to neuroimaging,”
  publication-title: Machine Learning for Brain Disorders, Vol 197
  doi: 10.1007/978-1-0716-3195-9_22
– volume: 192
  start-page: 115
  year: 2019
  ident: B13
  article-title: Benchmarking functional connectome-based predictive models for resting-state fmri
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.02.062
– volume: 2012
  start-page: CD004156
  year: 2012
  ident: B2
  article-title: Treatment for spasticity in amyotrophic lateral sclerosis/motor neuron disease
  publication-title: Cochrane Database Syst. Rev
  doi: 10.1002/14651858.CD004156.pub4
– volume: 178
  start-page: 238
  year: 2018
  ident: B35
  article-title: Extracting orthogonal subject-and condition-specific signatures from fmri data using whole-brain effective connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.04.070
– volume: 12
  start-page: 421
  year: 2011
  ident: B47
  article-title: Progression of white matter degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging study
  publication-title: Amyotroph. Lateral Scler
  doi: 10.3109/17482968.2011.593036
– volume: 65
  start-page: 1395
  year: 2023
  ident: B16
  article-title: Association between brain and upper cervical spinal cord atrophy assessed by mri and disease aggressiveness in amyotrophic lateral sclerosis
  publication-title: Neuroradiology
  doi: 10.1007/s00234-023-03191-0
– volume: 169
  start-page: 13
  year: 1999
  ident: B9
  article-title: The alsfrs-r: a revised als functional rating scale that incorporates assessments of respiratory function
  publication-title: J. Neurol. Sci
  doi: 10.1016/S0022-510X(99)00210-5
– volume: 11
  start-page: 576194
  year: 2020
  ident: B33
  article-title: Comparison of transfer learning and conventional machine learning applied to structural brain mri for the early diagnosis and prognosis of alzheimer's disease
  publication-title: Front. Neurol
  doi: 10.3389/fneur.2020.576194
– volume: 2012
  start-page: 287891
  year: 2011
  ident: B10
  article-title: Multimodal mri in neurodegenerative disorders
  publication-title: Neurol. Res. Int
  doi: 10.1155/2012/287891
– volume: 20
  start-page: e083392
  year: 2024
  ident: B44
  article-title: ADNI: Two decades of impact and the path forward
  publication-title: Alzheimers Dement
  doi: 10.1002/alz.083392
– volume: 13
  start-page: 947347
  year: 2022
  ident: B46
  article-title: Structural magnetic resonance imaging findings and histopathological correlations in motor neuron diseases—a systematic review and meta-analysis
  publication-title: Front. Neurol
  doi: 10.3389/fneur.2022.947347
– volume: 87
  start-page: 628
  year: 2016
  ident: B29
  article-title: Rate of disease progression: a prognostic biomarker in als
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2015-310998
– volume: 45
  start-page: 494
  year: 2024
  ident: B40
  article-title: Neurofilament light chain levels interact with neurodegenerative patterns and motor neuron dysfunction in amyotrophic lateral sclerosis
  publication-title: AJNR Am. J. Neuroradiol
  doi: 10.3174/ajnr.A8154
– volume: 29
  start-page: 357
  year: 2011
  ident: B19
  article-title: Advanced MRI in multiple sclerosis: current status and future challenges
  publication-title: Neurol. Clin
  doi: 10.1016/j.ncl.2010.12.011
– volume: 4
  start-page: 614
  year: 2021
  ident: B26
  article-title: Integrating molecular, histopathological, neuroimaging and clinical neuroscience data with neuropm-box
  publication-title: Commun. Biol
  doi: 10.1038/s42003-021-02133-x
– volume: 17
  start-page: 183
  year: 2022
  ident: B45
  article-title: Ai-based detection, classification and prediction/prognosis in medical imaging: towards radiophenomics
  publication-title: PET Clin
  doi: 10.1016/j.cpet.2021.09.010
– volume: 62
  start-page: 774
  year: 2012
  ident: B18
  article-title: Freesurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 9
  start-page: 1038
  year: 2018
  ident: B43
  article-title: Multimodal data and machine learning for detecting specific biomarkers in pediatric epilepsy patients with generalized tonic-clonic seizures
  publication-title: Front. Neurol
  doi: 10.3389/fneur.2018.01038
– volume: 1
  start-page: 293
  year: 2000
  ident: B8
  article-title: El escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis
  publication-title: Amyotroph. Lateral Scler. Other Motor Neuron Disord
  doi: 10.1080/146608200300079536
– volume: 9
  start-page: 81
  year: 2023
  ident: B27
  article-title: Deep learning approaches for data augmentation in medical imaging: a review
  publication-title: J. Imaging
  doi: 10.3390/jimaging9040081
– volume: 87
  start-page: 1345
  year: 2022
  ident: B32
  article-title: Machine learning based multimodal neuroimaging genomics dementia score for predicting future conversion to alzheimer's disease
  publication-title: J. Alzheimers Dis
  doi: 10.3233/JAD-220021
– volume: 13
  start-page: 135
  year: 2019
  ident: B24
  article-title: Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.00135
– volume: 52
  start-page: 1620
  year: 2020
  ident: B1
  article-title: MR biomarkers of degenerative brain disorders derived from diffusion imaging
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27019
– volume: 191
  start-page: 133
  year: 2001
  ident: B15
  article-title: The value of muscle exercise in patients with amyotrophic lateral sclerosis
  publication-title: J. Neurol. Sci
  doi: 10.1016/S0022-510X(01)00610-4
– volume: 12
  start-page: e0177680
  year: 2017
  ident: B3
  article-title: Ultra high-field (7tesla) magnetic resonance spectroscopy in amyotrophic lateral sclerosis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177680
– volume: 146
  start-page: 3289
  year: 2023
  ident: B5
  article-title: Defining the phenotypic spectrum of sporadic creutzfeldt-jakob disease mv2k: the kuru plaque type
  publication-title: Brain
  doi: 10.1093/brain/awad074
– volume: 45
  start-page: 2879
  year: 2022
  ident: B11
  article-title: Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2022.3185773
– volume: 53
  start-page: 1
  year: 2010
  ident: B14
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 71
  start-page: 190
  year: 2024
  ident: B25
  article-title: Machine learning based parkinson's disease detection and progression evaluation using gray and white matter segmentation from 3D MRI
  publication-title: J. Eng. Appl. Sci
  doi: 10.1186/s44147-024-00522-7
– volume: 14
  start-page: 11
  year: 2017
  ident: B31
  article-title: Neuroimaging endpoints in amyotrophic lateral sclerosis
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-016-0484-9
– volume: 29
  start-page: 1310
  year: 2010
  ident: B41
  article-title: N4itk: improved n3 bias correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 53
  start-page: 1015
  year: 2021
  ident: B30
  article-title: Artificial intelligence for mr image reconstruction: an overview for clinicians
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27078
– volume: 152
  start-page: 106391
  year: 2023
  ident: B20
  article-title: Data augmentation for medical imaging: a systematic literature review
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2022.106391
– volume: 292
  start-page: 422
  year: 2019
  ident: B22
  article-title: Quantitative brain sodium MRI depicts corticospinal impairment in amyotrophic lateral sclerosis
  publication-title: Radiology
  doi: 10.1148/radiol.2019182276
– volume: 12
  start-page: 38
  year: 2023
  ident: B42
  article-title: Multidimensional biomarkers for multiple system atrophy: an update and future directions
  publication-title: Transl. Neurodegener
  doi: 10.1186/s40035-023-00370-0
– volume: 2
  start-page: 1
  year: 2009
  ident: B4
  article-title: Advanced normalization tools (ants)
  publication-title: Insight J
  doi: 10.54294/uvnhin
– volume: 19
  start-page: 232
  year: 2018
  ident: B7
  article-title: Longitudinal structural changes in als: a three time-point imaging study of white and gray matter degeneration
  publication-title: Amyotroph. Lateral Scler. Frontotemporal Degener
  doi: 10.1080/21678421.2017.1407795
– volume: 20
  start-page: e0316916
  year: 2025
  ident: B21
  article-title: In vivo mapping of sodium homeostasis disturbances in individual als patients: a brain 23na mri study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0316916
– volume: 30
  start-page: 5899
  year: 2020
  ident: B23
  article-title: Propagation of bold activity reveals task-dependent directed interactions across human visual cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa165
SSID ssj0062657
Score 2.370079
Snippet Advancements in machine learning hold great promise for the analysis of multimodal neuroimaging data. They can help identify biomarkers and improve diagnosis...
SourceID doaj
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1568116
SubjectTerms amyotrophic lateral sclerosis
classification
Life Sciences
machine learning
multimodal MRI
pipeline optimization
small cohort
Title Evaluating machine learning pipelines for multimodal neuroimaging in small cohorts: an ALS case study
URI https://www.ncbi.nlm.nih.gov/pubmed/40586110
https://www.proquest.com/docview/3225873356
https://amu.hal.science/hal-05214014
https://doaj.org/article/81f8a6985b174aee9f8fe2bec32e1f79
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBQHksj8ogxAWFJvGb2xZtWaFSIaDS3qxJMi4rNd5Vd4vEv2fsZKtyQFy4REoUOc43sf2NM_MNY6_rFkqlhCyCgpIcFEiSt9IUHbEB01XgIG9lfz7V8zP5aaEWN0p9pZiwQR54AO7QVsGCdlY1xJ0B0QUbsKYnixqrYHLqXunKnTM1zMHE0pUZUmTIBXOHIZK5yBms1bsqKW6l6uY3lqGs1k-Ly48UC_k3opkXnON77O7IFPl06OF9dgvjA7Y_jeQl97_4G55jN_Om-D7D2SjaHc95n8MjkY_1IM75erlOSee44URQeY4g7FcdNZ21LJd9rlPEl5Fveri44Klk7uV2855D5NOTb7yldY5nFdqH7Ox49v3DvBgLKBQtDc1tYQXNxJIAdwZQWhXoDKUOrqlaiQhKh1TNG62zpQsGQBP9QlsHbcBACeIR24uriE8YF9qJFltHwx1lLbWtHXmGXdeEplOihgl7u8PTrwedDE_-RULfZ_R9Qt-P6E_YUYL8-s6kcZ0vkOX9aHn_L8tP2Csy2B9tzKcnPl1LGcnkOMqf1YS93NnT08BJf0Mg4upq49NMZo0QinrzeDD0dVvEYq0mYvT0f_TzGbuT3j3Fl1XiOdvbXl7hC2Iy2-aA3T6anX75epA_Xjp-XFS_AaXz83A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+machine+learning+pipelines+for+multimodal+neuroimaging+in+small+cohorts%3A+an+ALS+case+study&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Appukuttan%2C+Shailesh&rft.au=Grapperon%2C+Aude-Marie&rft.au=El+Mendili%2C+Mounir+Mohamed&rft.au=Dary%2C+Hugo&rft.date=2025-06-13&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=19&rft_id=info:doi/10.3389%2Ffninf.2025.1568116&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2025_1568116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon