f-Block reactions of metal cations with carbon dioxide studied by inductively coupled plasma tandem mass spectrometry
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + -Eu + ) and actinide cation (An + = Th + , U + -Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 26; no. 1; pp. 29 - 218 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.12.2023
Royal Society of Chemistry (RSC) |
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/d3cp04180h |
Cover
Abstract | f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln
+
= Ce
+
, Pr
+
, Nd
+
-Eu
+
) and actinide cation (An
+
= Th
+
, U
+
-Am
+
) oxidation reactions by CO
2
, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO
2
,
1
Σ
+
g
) and product (CO,
1
Σ
+
) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (
E
p
) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The
E
p
likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln
+
and An
+
congener reactivity indicates that the 5f-orbitals play a small role in the An
+
reactions.
The reaction rates of lanthanide and actinide cations with CO
2
are dictated by the crossing between the potential energy surface (PES) evolving from the ground state reactants (red) and the PES leading to the ground state products (green). |
---|---|
AbstractList | f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+–Eu+) and actinide cation (An+ = Th+, U+–Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σg+) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions. f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + -Eu + ) and actinide cation (An + = Th + , U + -Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO 2 , 1 Σ + g ) and product (CO, 1 Σ + ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( E p ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The E p likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln + and An + congener reactivity indicates that the 5f-orbitals play a small role in the An + reactions. The reaction rates of lanthanide and actinide cations with CO 2 are dictated by the crossing between the potential energy surface (PES) evolving from the ground state reactants (red) and the PES leading to the ground state products (green). f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln = Ce , Pr , Nd -Eu ) and actinide cation (An = Th , U -Am ) oxidation reactions by CO , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO , Σ+g) and product (CO, Σ ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln and An congener reactivity indicates that the 5f-orbitals play a small role in the An reactions. The reaction rates of lanthanide and actinide cations with CO 2 are dictated by the crossing between the potential energy surface (PES) evolving from the ground state reactants (red) and the PES leading to the ground state products (green). f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+) and actinide cation (An+ = Th+, U+-Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σ+g) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions.f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+) and actinide cation (An+ = Th+, U+-Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σ+g) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions. f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + –Eu + ) and actinide cation (An + = Th + , U + –Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO 2 , 1 Σ+g) and product (CO, 1 Σ + ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( E p ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The E p likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln + and An + congener reactivity indicates that the 5f-orbitals play a small role in the An + reactions. |
Author | French, Amanda D Rodriguez, Michael J Cox, Richard M Melby, Kali M |
AuthorAffiliation | Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – sequence: 0 name: Pacific Northwest National Laboratory |
Author_xml | – sequence: 1 givenname: Richard M surname: Cox fullname: Cox, Richard M – sequence: 2 givenname: Kali M surname: Melby fullname: Melby, Kali M – sequence: 3 givenname: Amanda D surname: French fullname: French, Amanda D – sequence: 4 givenname: Michael J surname: Rodriguez fullname: Rodriguez, Michael J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38054255$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2228780$$D View this record in Osti.gov |
BookMark | eNptks1vFSEUxYlpYz90415D7MY0GWUGmIFl-_yoSRNd6JowcCePOgMjMLbvv5d22po0roCb3zm59x6O0J4PHhB6VZP3NaHyg6VmJqwWZPsMHdaspZUkgu093rv2AB2ldEUIqXlNn6MDKghnDeeHaBmq8zGYXziCNtkFn3AY8ARZj9jotXDt8rY8Yh88ti7cOAs45cU6sLjfYeftUqR_YNxhE5Z5LOV51GnSOGtvYcKTTgmnGUyOoVjH3Qu0P-gxwcv78xj9_Pzpx-aiuvz25evm7LIyjJBcdUyY1nZWct0DE20nWwOsA0blQG3bCyGo7GhjGtGDFpzXHQAY2xgJlAOlx-jt6htSdioZl8FsTfC-tKKaphGdIAV6t0JzDL8XSFlNLhkYR-0hLEk1QgrJeStFQU-eoFdhib6MoBp5G4GsKSvUm3tq6Sewao5u0nGnHrZeALICJoaUIgyqdHa37By1G1VN1G2w6iPdfL8L9qJITp9IHlz_C79e4ZjMI_fvl9C_RxutGg |
CitedBy_id | crossref_primary_10_1039_D4QI02748E crossref_primary_10_1021_acs_inorgchem_4c03263 crossref_primary_10_1021_acs_analchem_3c04774 |
Cites_doi | 10.1063/1.1744477 10.1063/5.0068734 10.1002/ijch.202300026 10.1021/ja00107a020 10.1021/jp8047899 10.1016/S1387-3806(03)00138-6 10.1039/c1cp20996e 10.1016/S1044-0305(02)00347-1 10.1063/1.4916396 10.1021/jp025733f 10.1002/cphc.200600248 10.1039/D0CP06252A 10.1007/s13361-019-02162-1 10.1021/jp0637431 10.1063/1.1730662 10.1103/PhysRevLett.13.750 10.1039/C7CP00914C 10.1063/1.4948812 10.1002/mas.21703 10.1021/acs.jpca.6b09309 10.1021/acs.inorgchem.2c00447 10.1007/s11244-017-0858-1 10.1021/ja00119a022 10.1021/jp057297d 10.1021/om700329h 10.1016/j.sab.2021.106309 10.1021/jp952231b 10.1063/1.5111534 10.1021/jp904862a 10.1016/j.sab.2015.05.008 10.1063/1.5091679 10.1002/chem.19970030716 10.1063/1.2167356 10.1021/acs.inorgchem.1c01012 10.1021/acs.inorgchem.5b00137 10.1021/jp035003n 10.1021/j100077a017 10.1021/om00021a022 10.1021/acs.jpca.2c07638 10.1016/0301-0104(80)87022-4 10.1063/5.0064141 10.1021/jp011627m 10.1063/1.456452 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 OTOTI |
DOI | 10.1039/d3cp04180h |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 218 |
ExternalDocumentID | 2228780 38054255 10_1039_D3CP04180H d3cp04180h |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT AAYXX AFRZK AKMSF ALUYA CITATION R56 NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 70J AAGNR ABGFH OTOTI |
ID | FETCH-LOGICAL-c400t-748c6d7d95abe486796ce47e439f3d6b88839732c28bea85517eeecd2c9e35e33 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Mon Jan 01 02:32:14 EST 2024 Fri Jul 11 07:33:24 EDT 2025 Mon Jun 30 02:10:46 EDT 2025 Wed Feb 19 02:04:12 EST 2025 Tue Jul 01 00:48:10 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Tue Dec 17 20:58:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-748c6d7d95abe486796ce47e439f3d6b88839732c28bea85517eeecd2c9e35e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE |
ORCID | 0000-0002-8417-6091 0000-0003-1812-3431 0000-0001-9617-9196 0009-0003-2797-4120 0000000318123431 0000000196179196 0000000284176091 0009000327974120 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2024/cp/d3cp04180h |
PMID | 38054255 |
PQID | 2904189134 |
PQPubID | 2047499 |
PageCount | 1 |
ParticipantIDs | pubmed_primary_38054255 crossref_citationtrail_10_1039_D3CP04180H proquest_miscellaneous_2898955698 crossref_primary_10_1039_D3CP04180H osti_scitechconnect_2228780 rsc_primary_d3cp04180h proquest_journals_2904189134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-21 |
PublicationDateYYYYMMDD | 2023-12-21 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge – name: United Kingdom |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry Royal Society of Chemistry (RSC) |
Publisher_xml | – name: Royal Society of Chemistry – name: Royal Society of Chemistry (RSC) |
References | Demireva (D3CP04180H/cit16/1) 2018; 61 Kickel (D3CP04180H/cit48/1) 1995; 117 Cox (D3CP04180H/cit40/1) 2019; 151 Ghiassee (D3CP04180H/cit19/1) 2021; 23 Cox (D3CP04180H/cit12/1) 2015; 142 Sievers (D3CP04180H/cit49/1) 1996; 100 Clemmer (D3CP04180H/cit46/1) 1994; 98 Pereira (D3CP04180H/cit6/1) 2011; 13 Gioumousis (D3CP04180H/cit34/1) 1958; 29 Owen (D3CP04180H/cit20/1) 2021; 155 Loh (D3CP04180H/cit41/1) 1989; 90 Haynes (D3CP04180H/cit45/1) 1994; 13 Gibson (D3CP04180H/cit42/1) 2003; 107 Harouaka (D3CP04180H/cit31/1) 2021; 186 Gibson (D3CP04180H/cit4/1) 2007; 26 Armentrout (D3CP04180H/cit32/1) 2002; 13 Dimmock (D3CP04180H/cit29/1) 1964; 13 Santos (D3CP04180H/cit1/1) 2002; 106 Bubas (D3CP04180H/cit25/1) Armentrout (D3CP04180H/cit11/1) 1980; 50 Kickel (D3CP04180H/cit47/1) 1995; 117 Cox (D3CP04180H/cit13/1) 2016; 144 Zhang (D3CP04180H/cit23/1) 2023 Cox (D3CP04180H/cit18/1) 2019; 30 Cox (D3CP04180H/cit22/1) 2022 Armentrout (D3CP04180H/cit15/1) 2017; 19 Santos (D3CP04180H/cit2/1) 2003; 228 Cox (D3CP04180H/cit10/1) 2015; 54 Cornehl (D3CP04180H/cit38/1) 1997; 3 Ghiassee (D3CP04180H/cit24/1) 2023; 127 Koyanagi (D3CP04180H/cit8/1) 2001; 105 Ghiassee (D3CP04180H/cit17/1) 2019; 150 Santos (D3CP04180H/cit3/1) 2006; 110 Cheng (D3CP04180H/cit9/1) 2006; 7 Yamada (D3CP04180H/cit33/1) 2015; 110 Lachowicz (D3CP04180H/cit37/1) 2021; 155 Goncharov (D3CP04180H/cit44/1) 2006; 124 Blaise (D3CP04180H/cit43/1) Sansonetti (D3CP04180H/cit28/1) Demireva (D3CP04180H/cit14/1) 2016; 120 Gibson (D3CP04180H/cit5/1) 2008; 112 Cheng (D3CP04180H/cit7/1) 2006; 110 Armentrout (D3CP04180H/cit27/1) 2022 Marçalo (D3CP04180H/cit39/1) 2009; 113 Temmerman (D3CP04180H/cit30/1) 2009 Rothe (D3CP04180H/cit35/1) 1959; 31 Kafle (D3CP04180H/cit21/1) 2021; 60 Fenn (D3CP04180H/cit26/1) D3CP04180H/cit36/1 |
References_xml | – issn: 2009 volume-title: Chapter 241 The Dual, Localized or Band-Like, Character of the 4f-States end-page: p 1-112 publication-title: Handbook on the Physics and Chemistry of Rare Earths doi: Temmerman Petit Svane Szotek Lüders Strange Staunton Hughes Gyorffy – doi: Fenn Stevenson Armentrout – doi: Sansonetti Martin – doi: Bubas Zhang Armentrout – doi: Blaise Wyart – volume: 29 start-page: 294 year: 1958 ident: D3CP04180H/cit34/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1744477 – volume: 155 start-page: 174303 year: 2021 ident: D3CP04180H/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0068734 – start-page: e202300026 year: 2023 ident: D3CP04180H/cit23/1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.202300026 – ident: D3CP04180H/cit25/1 – volume: 117 start-page: 764 year: 1995 ident: D3CP04180H/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00107a020 – volume: 112 start-page: 11373 year: 2008 ident: D3CP04180H/cit5/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp8047899 – volume: 228 start-page: 457 year: 2003 ident: D3CP04180H/cit2/1 publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(03)00138-6 – volume: 13 start-page: 12940 year: 2011 ident: D3CP04180H/cit6/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20996e – volume: 13 start-page: 419 year: 2002 ident: D3CP04180H/cit32/1 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/S1044-0305(02)00347-1 – ident: D3CP04180H/cit36/1 – volume: 142 start-page: 134307 year: 2015 ident: D3CP04180H/cit12/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4916396 – volume: 106 start-page: 7190 year: 2002 ident: D3CP04180H/cit1/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp025733f – volume: 7 start-page: 1813 year: 2006 ident: D3CP04180H/cit9/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200600248 – volume: 23 start-page: 2938 year: 2021 ident: D3CP04180H/cit19/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP06252A – volume: 30 start-page: 1835 year: 2019 ident: D3CP04180H/cit18/1 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-019-02162-1 – volume: 110 start-page: 12832 year: 2006 ident: D3CP04180H/cit7/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp0637431 – volume: 31 start-page: 1619 year: 1959 ident: D3CP04180H/cit35/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1730662 – volume: 13 start-page: 750 year: 1964 ident: D3CP04180H/cit29/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.13.750 – volume: 19 start-page: 11075 year: 2017 ident: D3CP04180H/cit15/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP00914C – volume: 144 start-page: 184309 year: 2016 ident: D3CP04180H/cit13/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4948812 – start-page: 606 year: 2022 ident: D3CP04180H/cit27/1 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21703 – volume: 120 start-page: 8550 year: 2016 ident: D3CP04180H/cit14/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b09309 – start-page: 8168 year: 2022 ident: D3CP04180H/cit22/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00447 – volume: 61 start-page: 3 year: 2018 ident: D3CP04180H/cit16/1 publication-title: Top. Catal. doi: 10.1007/s11244-017-0858-1 – volume: 117 start-page: 4057 year: 1995 ident: D3CP04180H/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00119a022 – volume: 110 start-page: 5751 year: 2006 ident: D3CP04180H/cit3/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp057297d – volume: 26 start-page: 3947 year: 2007 ident: D3CP04180H/cit4/1 publication-title: Organometallics doi: 10.1021/om700329h – volume: 186 start-page: 106309 year: 2021 ident: D3CP04180H/cit31/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2021.106309 – volume: 100 start-page: 54 year: 1996 ident: D3CP04180H/cit49/1 publication-title: J. Phys. Chem. doi: 10.1021/jp952231b – volume: 151 start-page: 034304 year: 2019 ident: D3CP04180H/cit40/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5111534 – volume: 113 start-page: 12599 year: 2009 ident: D3CP04180H/cit39/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp904862a – volume: 110 start-page: 31 year: 2015 ident: D3CP04180H/cit33/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2015.05.008 – ident: D3CP04180H/cit26/1 – volume: 150 start-page: 144309 year: 2019 ident: D3CP04180H/cit17/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5091679 – volume: 3 start-page: 1083 year: 1997 ident: D3CP04180H/cit38/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.19970030716 – volume: 124 start-page: 064312 year: 2006 ident: D3CP04180H/cit44/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2167356 – volume: 60 start-page: 10426 year: 2021 ident: D3CP04180H/cit21/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c01012 – start-page: 1 volume-title: Handbook on the Physics and Chemistry of Rare Earths year: 2009 ident: D3CP04180H/cit30/1 – volume: 54 start-page: 3584 year: 2015 ident: D3CP04180H/cit10/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00137 – volume: 107 start-page: 7891 year: 2003 ident: D3CP04180H/cit42/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp035003n – ident: D3CP04180H/cit28/1 – ident: D3CP04180H/cit43/1 – volume: 98 start-page: 6522 year: 1994 ident: D3CP04180H/cit46/1 publication-title: J. Phys. Chem. doi: 10.1021/j100077a017 – volume: 13 start-page: 3480 year: 1994 ident: D3CP04180H/cit45/1 publication-title: Organomettalics doi: 10.1021/om00021a022 – volume: 127 start-page: 169 year: 2023 ident: D3CP04180H/cit24/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c07638 – volume: 50 start-page: 27 year: 1980 ident: D3CP04180H/cit11/1 publication-title: Chem. Phys. doi: 10.1016/0301-0104(80)87022-4 – volume: 155 start-page: 094303 year: 2021 ident: D3CP04180H/cit20/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0064141 – volume: 105 start-page: 8964 year: 2001 ident: D3CP04180H/cit8/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp011627m – volume: 90 start-page: 5466 year: 1989 ident: D3CP04180H/cit41/1 publication-title: J. Chem. Phys. doi: 10.1063/1.456452 |
SSID | ssj0001513 |
Score | 2.4649942 |
Snippet | f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln
+
= Ce
+
, Pr
+
, Nd
+... f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln = Ce , Pr , Nd -Eu )... f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+–Eu+)... f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+)... The reaction rates of lanthanide and actinide cations with CO 2 are dictated by the crossing between the potential energy surface (PES) evolving from the... |
SourceID | osti proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
SubjectTerms | Carbon dioxide Cations Inductively coupled plasma Mass spectrometry Metal oxides Oxidation |
Title | f-Block reactions of metal cations with carbon dioxide studied by inductively coupled plasma tandem mass spectrometry |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38054255 https://www.proquest.com/docview/2904189134 https://www.proquest.com/docview/2898955698 https://www.osti.gov/biblio/2228780 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9AAXxFfBtKBFcEGWg-O1vfYxuEWhEBShVOrNstfrEpHEUWpLlF_Gz2PGu3acNofCxXLWH3LyXnbejGdmCXnHHC_PmOtbuc0dcFC4bSUJc-BjDuY0y1NPYL3z5Js_PnfPLryLXu9PJ2upKtOB-L23ruR_UIUxwBWrZP8B2famMAD7gC9sAWHY3gnj3PoItuinCcJPtBltS4n1jU2SuEotTzYpoJzNi1_zTLWU1coTPPKqnvEW16YoqvUChtcgqJeJiTEGuTSXoK7Nuh4TGxuUuxXU0wZl0awbp_ZwSMVMruqYwzSKbq5srCv6t9HYiVyoLp9fwDUwJ4OWWViPWAd_RksMe5gn7aHvRbaZX1YqCK4LAMyzQTeS4TDMClHl0XrydX1mgbOuW2N3x9Qycs2MrWrsd5ipp1877FhyR83st4yEzbDH6gmLprY7DOzx1hQ2r_9vWMg2b7F-Y8_CeHvtPXLgcI4JAgej09nnr60KACXFVGWb-k5Na1wWfthevSOG-gVM6vscHZA9m2Y5mlr2zB6Rh9pfoSNFvsekJ1dPyP2ogfspqTQJaUtCWuS0JiHVJKRIQqpISDUJqSYhTa9ph4RUk5AqElJFQookpF0SPiPnn05n0djSa3lYAqxEiS1rhZ_xLPSSVKouj0K6XIIezlnmp0EASp0zRzhBKpMAdDyXUorMEaFknmTskPRXxUq-IBREl5OGkqdhkLtyKFKsFedeHoAYHfJAGuR986PGQje6x_VWFvFt-Azytj13rdq77D3rCLGJQZRiZ2WBKWiijDF4ygPbIMcNZLGeHK5iJ8RLMa3FIG_awwANvo9LVrKo4BxcutXz_DAwyHMFdfsQLABfCtx9gxwC9u1wxsS6fqYfL-_05Efkwfafdkz65aaSr0BFl-lrTdi_h9bICA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=f-Block+reactions+of+metal+cations+with+carbon+dioxide+studied+by+inductively+coupled+plasma+tandem+mass+spectrometry&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Cox%2C+Richard+M&rft.au=Melby%2C+Kali+M.&rft.au=French%2C+Amanda+D.&rft.au=Rodriguez%2C+Michael+J.&rft.date=2023-12-21&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=26&rft.issue=1&rft.spage=209&rft.epage=218&rft_id=info:doi/10.1039%2FD3CP04180H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CP04180H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |