f-Block reactions of metal cations with carbon dioxide studied by inductively coupled plasma tandem mass spectrometry

f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + -Eu + ) and actinide cation (An + = Th + , U + -Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 26; no. 1; pp. 29 - 218
Main Authors Cox, Richard M, Melby, Kali M, French, Amanda D, Rodriguez, Michael J
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.12.2023
Royal Society of Chemistry (RSC)
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/d3cp04180h

Cover

Abstract f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + -Eu + ) and actinide cation (An + = Th + , U + -Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO 2 , 1 Σ + g ) and product (CO, 1 Σ + ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( E p ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The E p likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln + and An + congener reactivity indicates that the 5f-orbitals play a small role in the An + reactions. The reaction rates of lanthanide and actinide cations with CO 2 are dictated by the crossing between the potential energy surface (PES) evolving from the ground state reactants (red) and the PES leading to the ground state products (green).
AbstractList f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+–Eu+) and actinide cation (An+ = Th+, U+–Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σg+) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions.
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + -Eu + ) and actinide cation (An + = Th + , U + -Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO 2 , 1 Σ + g ) and product (CO, 1 Σ + ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( E p ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The E p likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln + and An + congener reactivity indicates that the 5f-orbitals play a small role in the An + reactions. The reaction rates of lanthanide and actinide cations with CO 2 are dictated by the crossing between the potential energy surface (PES) evolving from the ground state reactants (red) and the PES leading to the ground state products (green).
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln = Ce , Pr , Nd -Eu ) and actinide cation (An = Th , U -Am ) oxidation reactions by CO , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO , Σ+g) and product (CO, Σ ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln and An congener reactivity indicates that the 5f-orbitals play a small role in the An reactions.
The reaction rates of lanthanide and actinide cations with CO 2  are dictated by the crossing between the potential energy surface (PES) evolving from the ground state reactants (red) and the PES leading to the ground state products (green).
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+) and actinide cation (An+ = Th+, U+-Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σ+g) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions.f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+) and actinide cation (An+ = Th+, U+-Am+) oxidation reactions by CO2, was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO2, 1Σ+g) and product (CO, 1Σ+) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy (Ep) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The Ep likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln+ and An+ congener reactivity indicates that the 5f-orbitals play a small role in the An+ reactions.
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd + –Eu + ) and actinide cation (An + = Th + , U + –Am + ) oxidation reactions by CO 2 , was observed by inductively coupled plasma tandem mass spectrometry. This reaction is commonly spin-unallowed because the neutral reactant (CO 2 , 1 Σ+g) and product (CO, 1 Σ + ) require the metal and metal oxide cations to have the same spin state. Correlation of the promotion energy ( E p ) to the first state with two free d-electrons with the reaction efficiency indicates that spin conservation is not a primary factor in the reaction rate. The E p likely influences the reaction rate by partially setting the crossing between the ground and reactive states. Comparison of Ln + and An + congener reactivity indicates that the 5f-orbitals play a small role in the An + reactions.
Author French, Amanda D
Rodriguez, Michael J
Cox, Richard M
Melby, Kali M
AuthorAffiliation Pacific Northwest National Laboratory
AuthorAffiliation_xml – sequence: 0
  name: Pacific Northwest National Laboratory
Author_xml – sequence: 1
  givenname: Richard M
  surname: Cox
  fullname: Cox, Richard M
– sequence: 2
  givenname: Kali M
  surname: Melby
  fullname: Melby, Kali M
– sequence: 3
  givenname: Amanda D
  surname: French
  fullname: French, Amanda D
– sequence: 4
  givenname: Michael J
  surname: Rodriguez
  fullname: Rodriguez, Michael J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38054255$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2228780$$D View this record in Osti.gov
BookMark eNptks1vFSEUxYlpYz90415D7MY0GWUGmIFl-_yoSRNd6JowcCePOgMjMLbvv5d22po0roCb3zm59x6O0J4PHhB6VZP3NaHyg6VmJqwWZPsMHdaspZUkgu093rv2AB2ldEUIqXlNn6MDKghnDeeHaBmq8zGYXziCNtkFn3AY8ARZj9jotXDt8rY8Yh88ti7cOAs45cU6sLjfYeftUqR_YNxhE5Z5LOV51GnSOGtvYcKTTgmnGUyOoVjH3Qu0P-gxwcv78xj9_Pzpx-aiuvz25evm7LIyjJBcdUyY1nZWct0DE20nWwOsA0blQG3bCyGo7GhjGtGDFpzXHQAY2xgJlAOlx-jt6htSdioZl8FsTfC-tKKaphGdIAV6t0JzDL8XSFlNLhkYR-0hLEk1QgrJeStFQU-eoFdhib6MoBp5G4GsKSvUm3tq6Sewao5u0nGnHrZeALICJoaUIgyqdHa37By1G1VN1G2w6iPdfL8L9qJITp9IHlz_C79e4ZjMI_fvl9C_RxutGg
CitedBy_id crossref_primary_10_1039_D4QI02748E
crossref_primary_10_1021_acs_inorgchem_4c03263
crossref_primary_10_1021_acs_analchem_3c04774
Cites_doi 10.1063/1.1744477
10.1063/5.0068734
10.1002/ijch.202300026
10.1021/ja00107a020
10.1021/jp8047899
10.1016/S1387-3806(03)00138-6
10.1039/c1cp20996e
10.1016/S1044-0305(02)00347-1
10.1063/1.4916396
10.1021/jp025733f
10.1002/cphc.200600248
10.1039/D0CP06252A
10.1007/s13361-019-02162-1
10.1021/jp0637431
10.1063/1.1730662
10.1103/PhysRevLett.13.750
10.1039/C7CP00914C
10.1063/1.4948812
10.1002/mas.21703
10.1021/acs.jpca.6b09309
10.1021/acs.inorgchem.2c00447
10.1007/s11244-017-0858-1
10.1021/ja00119a022
10.1021/jp057297d
10.1021/om700329h
10.1016/j.sab.2021.106309
10.1021/jp952231b
10.1063/1.5111534
10.1021/jp904862a
10.1016/j.sab.2015.05.008
10.1063/1.5091679
10.1002/chem.19970030716
10.1063/1.2167356
10.1021/acs.inorgchem.1c01012
10.1021/acs.inorgchem.5b00137
10.1021/jp035003n
10.1021/j100077a017
10.1021/om00021a022
10.1021/acs.jpca.2c07638
10.1016/0301-0104(80)87022-4
10.1063/5.0064141
10.1021/jp011627m
10.1063/1.456452
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OTOTI
DOI 10.1039/d3cp04180h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 218
ExternalDocumentID 2228780
38054255
10_1039_D3CP04180H
d3cp04180h
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
70J
AAGNR
ABGFH
OTOTI
ID FETCH-LOGICAL-c400t-748c6d7d95abe486796ce47e439f3d6b88839732c28bea85517eeecd2c9e35e33
ISSN 1463-9076
1463-9084
IngestDate Mon Jan 01 02:32:14 EST 2024
Fri Jul 11 07:33:24 EDT 2025
Mon Jun 30 02:10:46 EDT 2025
Wed Feb 19 02:04:12 EST 2025
Tue Jul 01 00:48:10 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Tue Dec 17 20:58:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-748c6d7d95abe486796ce47e439f3d6b88839732c28bea85517eeecd2c9e35e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-8417-6091
0000-0003-1812-3431
0000-0001-9617-9196
0009-0003-2797-4120
0000000318123431
0000000196179196
0000000284176091
0009000327974120
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2024/cp/d3cp04180h
PMID 38054255
PQID 2904189134
PQPubID 2047499
PageCount 1
ParticipantIDs pubmed_primary_38054255
crossref_citationtrail_10_1039_D3CP04180H
proquest_miscellaneous_2898955698
crossref_primary_10_1039_D3CP04180H
osti_scitechconnect_2228780
rsc_primary_d3cp04180h
proquest_journals_2904189134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-21
PublicationDateYYYYMMDD 2023-12-21
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
– name: United Kingdom
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2023
Publisher Royal Society of Chemistry
Royal Society of Chemistry (RSC)
Publisher_xml – name: Royal Society of Chemistry
– name: Royal Society of Chemistry (RSC)
References Demireva (D3CP04180H/cit16/1) 2018; 61
Kickel (D3CP04180H/cit48/1) 1995; 117
Cox (D3CP04180H/cit40/1) 2019; 151
Ghiassee (D3CP04180H/cit19/1) 2021; 23
Cox (D3CP04180H/cit12/1) 2015; 142
Sievers (D3CP04180H/cit49/1) 1996; 100
Clemmer (D3CP04180H/cit46/1) 1994; 98
Pereira (D3CP04180H/cit6/1) 2011; 13
Gioumousis (D3CP04180H/cit34/1) 1958; 29
Owen (D3CP04180H/cit20/1) 2021; 155
Loh (D3CP04180H/cit41/1) 1989; 90
Haynes (D3CP04180H/cit45/1) 1994; 13
Gibson (D3CP04180H/cit42/1) 2003; 107
Harouaka (D3CP04180H/cit31/1) 2021; 186
Gibson (D3CP04180H/cit4/1) 2007; 26
Armentrout (D3CP04180H/cit32/1) 2002; 13
Dimmock (D3CP04180H/cit29/1) 1964; 13
Santos (D3CP04180H/cit1/1) 2002; 106
Bubas (D3CP04180H/cit25/1)
Armentrout (D3CP04180H/cit11/1) 1980; 50
Kickel (D3CP04180H/cit47/1) 1995; 117
Cox (D3CP04180H/cit13/1) 2016; 144
Zhang (D3CP04180H/cit23/1) 2023
Cox (D3CP04180H/cit18/1) 2019; 30
Cox (D3CP04180H/cit22/1) 2022
Armentrout (D3CP04180H/cit15/1) 2017; 19
Santos (D3CP04180H/cit2/1) 2003; 228
Cox (D3CP04180H/cit10/1) 2015; 54
Cornehl (D3CP04180H/cit38/1) 1997; 3
Ghiassee (D3CP04180H/cit24/1) 2023; 127
Koyanagi (D3CP04180H/cit8/1) 2001; 105
Ghiassee (D3CP04180H/cit17/1) 2019; 150
Santos (D3CP04180H/cit3/1) 2006; 110
Cheng (D3CP04180H/cit9/1) 2006; 7
Yamada (D3CP04180H/cit33/1) 2015; 110
Lachowicz (D3CP04180H/cit37/1) 2021; 155
Goncharov (D3CP04180H/cit44/1) 2006; 124
Blaise (D3CP04180H/cit43/1)
Sansonetti (D3CP04180H/cit28/1)
Demireva (D3CP04180H/cit14/1) 2016; 120
Gibson (D3CP04180H/cit5/1) 2008; 112
Cheng (D3CP04180H/cit7/1) 2006; 110
Armentrout (D3CP04180H/cit27/1) 2022
Marçalo (D3CP04180H/cit39/1) 2009; 113
Temmerman (D3CP04180H/cit30/1) 2009
Rothe (D3CP04180H/cit35/1) 1959; 31
Kafle (D3CP04180H/cit21/1) 2021; 60
Fenn (D3CP04180H/cit26/1)
D3CP04180H/cit36/1
References_xml – issn: 2009
  volume-title: Chapter 241 The Dual, Localized or Band-Like, Character of the 4f-States
  end-page: p 1-112
  publication-title: Handbook on the Physics and Chemistry of Rare Earths
  doi: Temmerman Petit Svane Szotek Lüders Strange Staunton Hughes Gyorffy
– doi: Fenn Stevenson Armentrout
– doi: Sansonetti Martin
– doi: Bubas Zhang Armentrout
– doi: Blaise Wyart
– volume: 29
  start-page: 294
  year: 1958
  ident: D3CP04180H/cit34/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744477
– volume: 155
  start-page: 174303
  year: 2021
  ident: D3CP04180H/cit37/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0068734
– start-page: e202300026
  year: 2023
  ident: D3CP04180H/cit23/1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.202300026
– ident: D3CP04180H/cit25/1
– volume: 117
  start-page: 764
  year: 1995
  ident: D3CP04180H/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00107a020
– volume: 112
  start-page: 11373
  year: 2008
  ident: D3CP04180H/cit5/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8047899
– volume: 228
  start-page: 457
  year: 2003
  ident: D3CP04180H/cit2/1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/S1387-3806(03)00138-6
– volume: 13
  start-page: 12940
  year: 2011
  ident: D3CP04180H/cit6/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20996e
– volume: 13
  start-page: 419
  year: 2002
  ident: D3CP04180H/cit32/1
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/S1044-0305(02)00347-1
– ident: D3CP04180H/cit36/1
– volume: 142
  start-page: 134307
  year: 2015
  ident: D3CP04180H/cit12/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4916396
– volume: 106
  start-page: 7190
  year: 2002
  ident: D3CP04180H/cit1/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp025733f
– volume: 7
  start-page: 1813
  year: 2006
  ident: D3CP04180H/cit9/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200600248
– volume: 23
  start-page: 2938
  year: 2021
  ident: D3CP04180H/cit19/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP06252A
– volume: 30
  start-page: 1835
  year: 2019
  ident: D3CP04180H/cit18/1
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1007/s13361-019-02162-1
– volume: 110
  start-page: 12832
  year: 2006
  ident: D3CP04180H/cit7/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0637431
– volume: 31
  start-page: 1619
  year: 1959
  ident: D3CP04180H/cit35/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730662
– volume: 13
  start-page: 750
  year: 1964
  ident: D3CP04180H/cit29/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.13.750
– volume: 19
  start-page: 11075
  year: 2017
  ident: D3CP04180H/cit15/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP00914C
– volume: 144
  start-page: 184309
  year: 2016
  ident: D3CP04180H/cit13/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4948812
– start-page: 606
  year: 2022
  ident: D3CP04180H/cit27/1
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.21703
– volume: 120
  start-page: 8550
  year: 2016
  ident: D3CP04180H/cit14/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b09309
– start-page: 8168
  year: 2022
  ident: D3CP04180H/cit22/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00447
– volume: 61
  start-page: 3
  year: 2018
  ident: D3CP04180H/cit16/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-017-0858-1
– volume: 117
  start-page: 4057
  year: 1995
  ident: D3CP04180H/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00119a022
– volume: 110
  start-page: 5751
  year: 2006
  ident: D3CP04180H/cit3/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp057297d
– volume: 26
  start-page: 3947
  year: 2007
  ident: D3CP04180H/cit4/1
  publication-title: Organometallics
  doi: 10.1021/om700329h
– volume: 186
  start-page: 106309
  year: 2021
  ident: D3CP04180H/cit31/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2021.106309
– volume: 100
  start-page: 54
  year: 1996
  ident: D3CP04180H/cit49/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952231b
– volume: 151
  start-page: 034304
  year: 2019
  ident: D3CP04180H/cit40/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5111534
– volume: 113
  start-page: 12599
  year: 2009
  ident: D3CP04180H/cit39/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp904862a
– volume: 110
  start-page: 31
  year: 2015
  ident: D3CP04180H/cit33/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2015.05.008
– ident: D3CP04180H/cit26/1
– volume: 150
  start-page: 144309
  year: 2019
  ident: D3CP04180H/cit17/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5091679
– volume: 3
  start-page: 1083
  year: 1997
  ident: D3CP04180H/cit38/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.19970030716
– volume: 124
  start-page: 064312
  year: 2006
  ident: D3CP04180H/cit44/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2167356
– volume: 60
  start-page: 10426
  year: 2021
  ident: D3CP04180H/cit21/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c01012
– start-page: 1
  volume-title: Handbook on the Physics and Chemistry of Rare Earths
  year: 2009
  ident: D3CP04180H/cit30/1
– volume: 54
  start-page: 3584
  year: 2015
  ident: D3CP04180H/cit10/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00137
– volume: 107
  start-page: 7891
  year: 2003
  ident: D3CP04180H/cit42/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp035003n
– ident: D3CP04180H/cit28/1
– ident: D3CP04180H/cit43/1
– volume: 98
  start-page: 6522
  year: 1994
  ident: D3CP04180H/cit46/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100077a017
– volume: 13
  start-page: 3480
  year: 1994
  ident: D3CP04180H/cit45/1
  publication-title: Organomettalics
  doi: 10.1021/om00021a022
– volume: 127
  start-page: 169
  year: 2023
  ident: D3CP04180H/cit24/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c07638
– volume: 50
  start-page: 27
  year: 1980
  ident: D3CP04180H/cit11/1
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(80)87022-4
– volume: 155
  start-page: 094303
  year: 2021
  ident: D3CP04180H/cit20/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0064141
– volume: 105
  start-page: 8964
  year: 2001
  ident: D3CP04180H/cit8/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp011627m
– volume: 90
  start-page: 5466
  year: 1989
  ident: D3CP04180H/cit41/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456452
SSID ssj0001513
Score 2.4649942
Snippet f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln + = Ce + , Pr + , Nd +...
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln = Ce , Pr , Nd -Eu )...
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+–Eu+)...
f-Block chemistry offers an opportunity to test current knowledge of chemical reactivity. The energy dependence of lanthanide cation (Ln+ = Ce+, Pr+, Nd+-Eu+)...
The reaction rates of lanthanide and actinide cations with CO 2  are dictated by the crossing between the potential energy surface (PES) evolving from the...
SourceID osti
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
SubjectTerms Carbon dioxide
Cations
Inductively coupled plasma
Mass spectrometry
Metal oxides
Oxidation
Title f-Block reactions of metal cations with carbon dioxide studied by inductively coupled plasma tandem mass spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/38054255
https://www.proquest.com/docview/2904189134
https://www.proquest.com/docview/2898955698
https://www.osti.gov/biblio/2228780
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9AAXxFfBtKBFcEGWg-O1vfYxuEWhEBShVOrNstfrEpHEUWpLlF_Gz2PGu3acNofCxXLWH3LyXnbejGdmCXnHHC_PmOtbuc0dcFC4bSUJc-BjDuY0y1NPYL3z5Js_PnfPLryLXu9PJ2upKtOB-L23ruR_UIUxwBWrZP8B2famMAD7gC9sAWHY3gnj3PoItuinCcJPtBltS4n1jU2SuEotTzYpoJzNi1_zTLWU1coTPPKqnvEW16YoqvUChtcgqJeJiTEGuTSXoK7Nuh4TGxuUuxXU0wZl0awbp_ZwSMVMruqYwzSKbq5srCv6t9HYiVyoLp9fwDUwJ4OWWViPWAd_RksMe5gn7aHvRbaZX1YqCK4LAMyzQTeS4TDMClHl0XrydX1mgbOuW2N3x9Qycs2MrWrsd5ipp1877FhyR83st4yEzbDH6gmLprY7DOzx1hQ2r_9vWMg2b7F-Y8_CeHvtPXLgcI4JAgej09nnr60KACXFVGWb-k5Na1wWfthevSOG-gVM6vscHZA9m2Y5mlr2zB6Rh9pfoSNFvsekJ1dPyP2ogfspqTQJaUtCWuS0JiHVJKRIQqpISDUJqSYhTa9ph4RUk5AqElJFQookpF0SPiPnn05n0djSa3lYAqxEiS1rhZ_xLPSSVKouj0K6XIIezlnmp0EASp0zRzhBKpMAdDyXUorMEaFknmTskPRXxUq-IBREl5OGkqdhkLtyKFKsFedeHoAYHfJAGuR986PGQje6x_VWFvFt-Azytj13rdq77D3rCLGJQZRiZ2WBKWiijDF4ygPbIMcNZLGeHK5iJ8RLMa3FIG_awwANvo9LVrKo4BxcutXz_DAwyHMFdfsQLABfCtx9gxwC9u1wxsS6fqYfL-_05Efkwfafdkz65aaSr0BFl-lrTdi_h9bICA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=f-Block+reactions+of+metal+cations+with+carbon+dioxide+studied+by+inductively+coupled+plasma+tandem+mass+spectrometry&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Cox%2C+Richard+M&rft.au=Melby%2C+Kali+M.&rft.au=French%2C+Amanda+D.&rft.au=Rodriguez%2C+Michael+J.&rft.date=2023-12-21&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=26&rft.issue=1&rft.spage=209&rft.epage=218&rft_id=info:doi/10.1039%2FD3CP04180H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CP04180H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon