Comparative analysis of image classification algorithms based on traditional machine learning and deep learning

•Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are different. The impact of the results varies.•This article compares and analyzes the accuracy and running time. Image classification is a hot...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 141; pp. 61 - 67
Main Authors Wang, Pin, Fan, En, Wang, Peng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2020.07.042

Cover

Abstract •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are different. The impact of the results varies.•This article compares and analyzes the accuracy and running time. Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets.
AbstractList •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are different. The impact of the results varies.•This article compares and analyzes the accuracy and running time. Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets.
Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets.
Author Fan, En
Wang, Peng
Wang, Pin
Author_xml – sequence: 1
  givenname: Pin
  surname: Wang
  fullname: Wang, Pin
  email: wangpin@vip.qq.com
  organization: School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, China
– sequence: 2
  givenname: En
  surname: Fan
  fullname: Fan, En
  email: efan@szu.edu.cn, efan@szpt.edu.cn
  organization: Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China
– sequence: 3
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: sdhzdtwp@126.com
  organization: Garden Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong,China
BookMark eNqFkE9LAzEQxYMoWKvfwEPA866z2WSz60GQ4j8oeNFzSJPZNmW7WZNtwW9vasWDBz0FJr_3Zt47I8e975GQywLyAorqep0PegxocgYMcpA5cHZEJkUtWSZLzo_JJGEyqyshTslZjGsAqMqmnhA_85tBBz26HVLd6-4jukh9S91GL5GaTsfoWmcS4Huqu6UPblxtIl3oiJam2Ri0dftf3dGNNivXI-1Qh971y-RoqUUcfibn5KTVXcSL73dK3h7uX2dP2fzl8Xl2N88MBxizqi4t541tTMEWWC8aaQTWoJkE0TIhuJC2qVNMURWt0LZkppIVrxmrRNNaWU7J1cF3CP59i3FUa78N6caoGG9KUQIUZaL4gTLBxxiwVUNIwcOHKkDtq1VrdahW7atVIFXamWQ3v2TGjV8NpTJc95_49iDGFH_nMKhoHPYGrUvoqKx3fxt8AosCmiA
CitedBy_id crossref_primary_10_32604_cmc_2023_033733
crossref_primary_10_1111_exsy_13658
crossref_primary_10_1016_j_measurement_2022_111872
crossref_primary_10_3389_fmed_2022_1072109
crossref_primary_10_1016_j_ijinfomgt_2022_102538
crossref_primary_10_1142_S1793545824500184
crossref_primary_10_3390_fi15050179
crossref_primary_10_1007_s11227_024_06136_3
crossref_primary_10_1016_j_engfracmech_2024_110447
crossref_primary_10_3390_electronics12051209
crossref_primary_10_1051_itmconf_20257003013
crossref_primary_10_1016_j_jksuci_2023_101667
crossref_primary_10_1109_JSTARS_2024_3481248
crossref_primary_10_1038_s41598_023_42984_4
crossref_primary_10_3390_pr13010145
crossref_primary_10_1016_j_jhazmat_2023_132886
crossref_primary_10_1016_j_ress_2023_109767
crossref_primary_10_1038_s41598_023_47624_5
crossref_primary_10_1016_j_ijmedinf_2023_105178
crossref_primary_10_1016_j_advengsoft_2024_103802
crossref_primary_10_1016_j_ecoinf_2023_102361
crossref_primary_10_1016_j_engappai_2023_106372
crossref_primary_10_3390_s23010081
crossref_primary_10_3934_mbe_2022017
crossref_primary_10_1016_j_chemosphere_2024_141154
crossref_primary_10_3390_s24165392
crossref_primary_10_1016_j_patrec_2022_12_004
crossref_primary_10_3390_rs15020321
crossref_primary_10_1016_j_scitotenv_2024_176585
crossref_primary_10_3390_agriculture13020442
crossref_primary_10_1016_j_engappai_2022_105308
crossref_primary_10_3390_electronics13152929
crossref_primary_10_1016_j_eswa_2023_122807
crossref_primary_10_1080_08839514_2024_2318672
crossref_primary_10_1016_j_patrec_2023_11_027
crossref_primary_10_3390_s23187667
crossref_primary_10_1007_s00405_024_08801_y
crossref_primary_10_7717_peerj_cs_2594
crossref_primary_10_1109_JSTARS_2024_3460531
crossref_primary_10_1016_j_asr_2024_03_033
crossref_primary_10_1016_j_measurement_2024_114688
crossref_primary_10_1016_j_jclepro_2023_137771
crossref_primary_10_1109_ACCESS_2023_3253627
crossref_primary_10_1016_j_dib_2024_110462
crossref_primary_10_3390_app13063479
crossref_primary_10_3390_rs16122116
crossref_primary_10_1016_j_compag_2024_109160
crossref_primary_10_3788_LOP240511
crossref_primary_10_1016_j_earscirev_2023_104509
crossref_primary_10_2478_ijanmc_2024_0021
crossref_primary_10_3390_technologies12090154
crossref_primary_10_4236_ojs_2022_121003
crossref_primary_10_3389_fenvs_2025_1556042
crossref_primary_10_3390_app14167050
crossref_primary_10_1016_j_aej_2023_04_053
crossref_primary_10_1016_j_compag_2023_108543
crossref_primary_10_1016_j_heliyon_2024_e35998
crossref_primary_10_1038_s41598_023_29331_3
crossref_primary_10_1016_j_jconhyd_2024_104449
crossref_primary_10_1080_17452759_2024_2424463
crossref_primary_10_1016_j_compag_2023_108319
crossref_primary_10_1109_TVT_2023_3261318
crossref_primary_10_1007_s11668_022_01344_6
crossref_primary_10_1007_s11837_024_06922_7
crossref_primary_10_1038_s41598_024_74365_w
crossref_primary_10_1007_s41101_023_00212_0
crossref_primary_10_1115_1_4067298
crossref_primary_10_1109_ACCESS_2023_3336946
crossref_primary_10_32604_iasc_2022_020008
crossref_primary_10_3390_s23031557
crossref_primary_10_3390_agriculture13051066
crossref_primary_10_1038_s41598_024_58421_z
crossref_primary_10_1007_s12145_025_01819_8
crossref_primary_10_1002_adma_202413430
crossref_primary_10_1007_s11334_024_00577_y
crossref_primary_10_3389_fphy_2024_1287050
crossref_primary_10_1155_2022_2938011
crossref_primary_10_1038_s41598_025_85922_2
crossref_primary_10_1109_ACCESS_2024_3524571
crossref_primary_10_1109_ACCESS_2021_3138240
crossref_primary_10_29133_yyutbd_1140911
crossref_primary_10_1016_j_earscirev_2024_104887
crossref_primary_10_1016_j_ifacol_2025_01_019
crossref_primary_10_33808_clinexphealthsci_1268378
crossref_primary_10_1016_j_enbuild_2024_114804
crossref_primary_10_1016_j_autcon_2022_104499
crossref_primary_10_34133_hds_0182
crossref_primary_10_1007_s10489_023_04686_2
crossref_primary_10_1016_j_compag_2025_109972
crossref_primary_10_3390_app112110208
crossref_primary_10_1080_19475683_2024_2304203
crossref_primary_10_1111_jan_15584
crossref_primary_10_1016_j_aiia_2024_11_002
crossref_primary_10_1016_j_ijleo_2023_170925
crossref_primary_10_2139_ssrn_3959386
crossref_primary_10_1016_j_ecolind_2023_110437
crossref_primary_10_1155_2022_6322570
crossref_primary_10_2174_0122103279288496240121074942
crossref_primary_10_1016_j_patrec_2022_12_028
crossref_primary_10_1016_j_advengsoft_2023_103445
crossref_primary_10_3390_app122312094
crossref_primary_10_54097_hset_v34i_5430
crossref_primary_10_1109_ACCESS_2023_3294542
crossref_primary_10_1007_s13198_023_02134_5
crossref_primary_10_3390_insects15070557
crossref_primary_10_3390_educsci13020194
crossref_primary_10_1109_ACCESS_2024_3367772
crossref_primary_10_3390_s22114040
crossref_primary_10_1007_s11042_024_19615_9
crossref_primary_10_1016_j_eswa_2022_118850
crossref_primary_10_1021_acssensors_3c01887
crossref_primary_10_1016_j_cja_2023_09_024
crossref_primary_10_3233_XST_221317
crossref_primary_10_1038_s41598_024_64072_x
crossref_primary_10_1139_cgj_2024_0359
crossref_primary_10_1109_ACCESS_2024_3458929
crossref_primary_10_1002_jrs_6435
crossref_primary_10_1016_j_asoc_2021_108178
crossref_primary_10_1016_j_geoen_2024_212656
crossref_primary_10_1155_2022_7459260
crossref_primary_10_3390_su151411232
crossref_primary_10_1109_JSTARS_2023_3272026
crossref_primary_10_3390_su141811786
crossref_primary_10_1016_j_imavis_2021_104312
crossref_primary_10_3390_app12073524
crossref_primary_10_3390_s23031651
crossref_primary_10_1016_j_jddst_2024_106424
crossref_primary_10_1016_j_nmd_2021_08_006
crossref_primary_10_1016_j_cosrev_2024_100662
crossref_primary_10_1088_1361_6560_acc77c
crossref_primary_10_54097_hset_v39i_6490
crossref_primary_10_1088_1402_4896_ad7f10
crossref_primary_10_1007_s00521_021_06664_6
crossref_primary_10_3390_math12233872
crossref_primary_10_1007_s00371_024_03748_x
crossref_primary_10_1007_s11694_023_01934_4
crossref_primary_10_1016_j_crfs_2024_100679
crossref_primary_10_1089_ten_tea_2024_0014
crossref_primary_10_1016_j_cosrev_2024_100666
crossref_primary_10_1016_j_neunet_2023_02_022
crossref_primary_10_2478_amns_2023_2_00018
crossref_primary_10_1016_j_mfglet_2024_09_189
crossref_primary_10_1080_17538947_2023_2234340
crossref_primary_10_1007_s13131_024_2356_1
crossref_primary_10_1007_s11707_020_0861_x
crossref_primary_10_3390_pr11102969
crossref_primary_10_1177_14613484241240927
crossref_primary_10_1007_s13042_022_01675_8
crossref_primary_10_1016_j_cor_2023_106152
crossref_primary_10_1016_j_ins_2023_119662
crossref_primary_10_2139_ssrn_4850000
crossref_primary_10_2298_CSIS240314050W
crossref_primary_10_1016_j_aca_2023_340868
crossref_primary_10_3390_rs14092265
crossref_primary_10_1016_j_ecolind_2024_112565
crossref_primary_10_1007_s00138_023_01501_3
crossref_primary_10_1109_ACCESS_2024_3482110
crossref_primary_10_1080_10095020_2024_2343323
crossref_primary_10_3390_su15075930
crossref_primary_10_4316_AECE_2024_01010
crossref_primary_10_1038_s41598_025_93159_2
crossref_primary_10_3103_S0146411624700925
crossref_primary_10_3390_bdcc7020093
crossref_primary_10_1007_s00530_023_01101_1
crossref_primary_10_3390_nano14020165
crossref_primary_10_1016_j_microc_2023_108559
crossref_primary_10_1109_ACCESS_2022_3227046
crossref_primary_10_2174_2211555204666220131112639
crossref_primary_10_1109_TGRS_2024_3520635
crossref_primary_10_1016_j_iswa_2024_200442
crossref_primary_10_3390_molecules28020809
crossref_primary_10_1063_5_0172609
crossref_primary_10_1016_j_simpa_2023_100507
crossref_primary_10_1007_s10489_023_04824_w
crossref_primary_10_3389_fmicb_2022_792166
crossref_primary_10_1016_j_jjimei_2023_100180
crossref_primary_10_1109_ACCESS_2024_3452470
crossref_primary_10_1016_j_oceaneng_2024_116796
crossref_primary_10_3390_s23084149
crossref_primary_10_1049_enb2_12025
crossref_primary_10_1109_TCSVT_2023_3334825
crossref_primary_10_1007_s12145_024_01331_5
crossref_primary_10_1109_ACCESS_2023_3273770
crossref_primary_10_3390_ijerph19106217
crossref_primary_10_1016_j_advwatres_2024_104731
crossref_primary_10_3390_computation10090148
crossref_primary_10_1029_2023WR035643
crossref_primary_10_3390_s21061994
crossref_primary_10_1109_TNSRE_2023_3241241
crossref_primary_10_1007_s00521_023_08995_y
crossref_primary_10_1016_j_ygeno_2022_110454
crossref_primary_10_1016_j_cej_2023_148491
crossref_primary_10_3390_pr11010122
crossref_primary_10_7717_peerj_cs_1432
crossref_primary_10_1016_j_csbj_2024_11_027
crossref_primary_10_3390_diagnostics13122111
crossref_primary_10_3390_electronics13132464
crossref_primary_10_3390_rs15112720
crossref_primary_10_1080_17538947_2024_2390443
crossref_primary_10_1109_ACCESS_2025_3530242
crossref_primary_10_3390_info15050246
crossref_primary_10_1016_j_asoc_2024_112055
crossref_primary_10_3233_AIC_220179
crossref_primary_10_3390_a17100439
crossref_primary_10_1016_j_heliyon_2024_e24220
crossref_primary_10_1109_ACCESS_2024_3497137
crossref_primary_10_1016_j_scitotenv_2022_157554
crossref_primary_10_1007_s12517_022_09947_x
crossref_primary_10_3390_rs14010050
crossref_primary_10_1016_j_artmed_2025_103101
crossref_primary_10_1016_j_patrec_2023_08_018
crossref_primary_10_1177_17298806241281847
crossref_primary_10_1016_j_saa_2024_124112
crossref_primary_10_1109_ACCESS_2024_3404371
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_1155_2024_5528497
crossref_primary_10_2196_41819
crossref_primary_10_1016_j_jclepro_2024_141910
crossref_primary_10_1109_ACCESS_2024_3442205
crossref_primary_10_3390_tropicalmed7120398
crossref_primary_10_1080_09540091_2024_2435654
crossref_primary_10_1007_s10845_022_02041_9
crossref_primary_10_3390_molecules26216717
crossref_primary_10_59324_ejaset_2025_3_1__15
crossref_primary_10_1002_der2_248
crossref_primary_10_1007_s11042_023_14979_w
crossref_primary_10_1080_10447318_2024_2344913
crossref_primary_10_1016_j_rse_2022_113166
crossref_primary_10_3233_XST_210993
crossref_primary_10_1029_2023JH000109
crossref_primary_10_1016_j_aca_2023_341758
crossref_primary_10_1016_j_patrec_2021_08_024
crossref_primary_10_1007_s11837_021_04708_9
crossref_primary_10_1016_j_compbiomed_2024_109261
crossref_primary_10_1145_3660796
crossref_primary_10_1109_ACCESS_2023_3280410
crossref_primary_10_1177_01436244211034737
crossref_primary_10_1016_j_eswa_2024_124676
crossref_primary_10_1002_adom_202203104
crossref_primary_10_3390_rs15123186
crossref_primary_10_1007_s12040_024_02298_z
crossref_primary_10_1016_j_heliyon_2024_e28967
crossref_primary_10_1109_ACCESS_2024_3461871
crossref_primary_10_3390_technologies12020017
crossref_primary_10_1016_j_indcrop_2025_120874
crossref_primary_10_3390_su142114652
crossref_primary_10_3390_technologies12020015
crossref_primary_10_1111_myc_13498
crossref_primary_10_3390_electronics13112049
crossref_primary_10_3390_electronics12081951
crossref_primary_10_1016_j_egyai_2022_100198
crossref_primary_10_3390_cancers15153770
crossref_primary_10_26599_TST_2021_9010072
crossref_primary_10_3390_app15031628
crossref_primary_10_2196_62866
crossref_primary_10_1080_09715010_2023_2214107
crossref_primary_10_1109_ACCESS_2023_3295001
crossref_primary_10_1016_j_ailsci_2023_100060
crossref_primary_10_3390_brainsci13020348
crossref_primary_10_1016_j_ijcip_2025_100740
crossref_primary_10_1016_j_mlwa_2024_100568
crossref_primary_10_1002_cctc_202401542
crossref_primary_10_1007_s11042_022_13390_1
crossref_primary_10_1016_j_jag_2024_104013
crossref_primary_10_26634_jpr_9_2_19086
crossref_primary_10_1021_acs_jcim_3c01702
crossref_primary_10_1002_jemt_24559
crossref_primary_10_3389_fgwh_2025_1447579
crossref_primary_10_3390_s25020531
crossref_primary_10_3390_su151712915
crossref_primary_10_1111_1365_2478_13606
crossref_primary_10_3390_jimaging10080183
crossref_primary_10_1016_j_microc_2023_109238
crossref_primary_10_1039_D3AY00984J
crossref_primary_10_1016_j_media_2023_102850
crossref_primary_10_1088_1367_2630_ac8307
crossref_primary_10_1016_j_measen_2023_100959
crossref_primary_10_1177_09544070231189910
crossref_primary_10_3390_rs13214486
crossref_primary_10_1016_j_compbiomed_2024_108075
crossref_primary_10_2478_amns_2025_0351
crossref_primary_10_1108_RPJ_07_2023_0243
crossref_primary_10_1016_j_seta_2022_102990
crossref_primary_10_1080_23311916_2023_2232602
crossref_primary_10_1109_JESTPE_2024_3515659
crossref_primary_10_1111_nph_20264
crossref_primary_10_1016_j_jobe_2023_107432
crossref_primary_10_3390_bios15010019
crossref_primary_10_1109_ACCESS_2023_3324061
crossref_primary_10_3390_app14125230
crossref_primary_10_34133_2022_9873564
crossref_primary_10_1038_s41928_021_00612_x
crossref_primary_10_1093_bib_bbac373
crossref_primary_10_1016_j_ecohyd_2024_02_005
crossref_primary_10_1109_ACCESS_2024_3426955
crossref_primary_10_3389_fpls_2023_1241576
crossref_primary_10_3390_machines11060668
crossref_primary_10_1007_s42979_024_03086_8
crossref_primary_10_1051_epjpv_2024022
crossref_primary_10_1109_ACCESS_2023_3345789
crossref_primary_10_1016_j_cjco_2024_10_012
crossref_primary_10_3390_su13020744
crossref_primary_10_3390_plants13172357
crossref_primary_10_1051_e3sconf_202235101065
crossref_primary_10_3389_fevo_2023_1146850
crossref_primary_10_1177_08953996241306696
crossref_primary_10_1039_D4AY01346H
crossref_primary_10_1016_j_patrec_2024_02_008
crossref_primary_10_1016_j_envpol_2023_122456
crossref_primary_10_1016_j_dib_2023_109794
crossref_primary_10_3389_fsufs_2023_1172543
crossref_primary_10_1016_j_patrec_2023_11_016
crossref_primary_10_1007_s00238_025_02278_6
crossref_primary_10_1007_s10489_024_05920_1
crossref_primary_10_1016_j_susmat_2023_e00675
crossref_primary_10_1016_j_knosys_2024_111378
crossref_primary_10_1057_s41599_022_01407_x
crossref_primary_10_1016_j_trac_2024_117794
crossref_primary_10_20965_jaciii_2024_p0974
crossref_primary_10_1016_j_isci_2023_108120
crossref_primary_10_1016_j_tcb_2023_10_010
crossref_primary_10_1002_ima_23074
crossref_primary_10_1088_1742_6596_2383_1_012086
crossref_primary_10_54097_hset_v34i_5372
crossref_primary_10_1080_10106049_2024_2382307
crossref_primary_10_3390_s21113819
crossref_primary_10_3390_agriculture14122240
crossref_primary_10_1109_JSEN_2025_3534277
crossref_primary_10_2478_amns_2025_0338
crossref_primary_10_1109_ACCESS_2023_3236401
crossref_primary_10_3390_foods13244044
crossref_primary_10_1109_ACCESS_2024_3404606
crossref_primary_10_1016_j_ces_2023_118864
crossref_primary_10_1051_itmconf_20224301008
crossref_primary_10_1109_ACCESS_2021_3089670
crossref_primary_10_3390_computation10070127
crossref_primary_10_1016_j_patrec_2024_02_004
crossref_primary_10_1038_s41598_022_24263_w
crossref_primary_10_3390_biology12101298
crossref_primary_10_1016_j_dibe_2024_100383
crossref_primary_10_1016_j_jenvman_2025_124247
crossref_primary_10_1016_j_ejmp_2023_102657
crossref_primary_10_1109_ACCESS_2024_3349628
crossref_primary_10_1016_j_heliyon_2023_e16924
crossref_primary_10_1007_s11004_021_09989_z
crossref_primary_10_1016_j_asoc_2024_111816
crossref_primary_10_1109_ACCESS_2023_3325738
crossref_primary_10_1108_JCMARS_12_2022_0030
Cites_doi 10.1371/journal.pone.0157330
10.1364/BOE.7.002249
10.3906/elk-1304-139
10.1016/j.knosys.2016.10.031
10.1109/TIFS.2016.2520880
10.3390/s18010018
10.1109/TCSVT.2016.2628339
10.3390/rs9050489
10.3390/s18010306
10.1016/j.epsr.2017.01.035
10.1073/pnas.1606567113
10.1016/j.patcog.2016.05.029
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Jan 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Jan 2021
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2020.07.042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 67
ExternalDocumentID 10_1016_j_patrec_2020_07_042
S0167865520302981
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-683d449d9c12be8b97c5e80a2705f255457d98042561f5ad32c6764822659fd73
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Fri Jul 25 06:01:46 EDT 2025
Tue Jul 01 02:40:41 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Fri Feb 23 02:49:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Support vector machines
Traditional machine learning
Convolutional neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-683d449d9c12be8b97c5e80a2705f255457d98042561f5ad32c6764822659fd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2493530013
PQPubID 2047552
PageCount 7
ParticipantIDs proquest_journals_2493530013
crossref_primary_10_1016_j_patrec_2020_07_042
crossref_citationtrail_10_1016_j_patrec_2020_07_042
elsevier_sciencedirect_doi_10_1016_j_patrec_2020_07_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Hsu, Lin, Chou (bib0015) 2016; 19
Wang Y (bib0004) 2017; 38
Choi, Song, Lee (bib0005) 2018; 18
Nogueira R, Lotufo R D, Machado R (bib0020) 2017; 11
Lupolova, Dallman, Matthews (bib0011) 2016; 113
Zhao, Zhang, Sun (bib0003) 2018; 58
Noi P, Kappas (bib0007) 2017; 18
Poudel R P, Lamata, Montana (bib0023) 2016; 3824
Almasi, Rouhani (bib0010) 2016; 24
Anaissi, Goyal, Daniel (bib0014) 2016; 11
Liu, Wang, Wang (bib0012) 2017; 116
Ioannou, Robertson, Shotton (bib0022) 2016; 167
Zhang, Du, Zhang (bib0021) 2016; 54
Zhang, Wang, Zhang (bib0006) 2017; 146
Hou, Li, Wang (bib0019) 2018; 28
Park, Lee (bib0025) 2016; PP
Juan, Xian-Xiang W, Yan-Ling (bib0001) 2016; 27
Anh, Nguyen (bib0002) 2016; 148
Saito, Yamashita, Aoki (bib0017) 2016; 60
Khan, Ullah, Khan (bib0008) 2016; 7
Wang, Zhou, Xu (bib0013) 2017; 48
Ding, Tao (bib0016) 2016
Shen, Zhou, Yang (bib0018) 2017; 61
Zhou, Newsam, Li (bib0024) 2016; 9
Chu, He, Mao (bib0009) 2016; 18
Juan (10.1016/j.patrec.2020.07.042_bib0001) 2016; 27
Hou (10.1016/j.patrec.2020.07.042_bib0019) 2018; 28
Saito (10.1016/j.patrec.2020.07.042_bib0017) 2016; 60
Poudel R P (10.1016/j.patrec.2020.07.042_bib0023) 2016; 3824
Zhao (10.1016/j.patrec.2020.07.042_bib0003) 2018; 58
Chu (10.1016/j.patrec.2020.07.042_bib0009) 2016; 18
Lupolova (10.1016/j.patrec.2020.07.042_bib0011) 2016; 113
Liu (10.1016/j.patrec.2020.07.042_bib0012) 2017; 116
Zhang (10.1016/j.patrec.2020.07.042_bib0006) 2017; 146
Wang (10.1016/j.patrec.2020.07.042_bib0013) 2017; 48
Anaissi (10.1016/j.patrec.2020.07.042_bib0014) 2016; 11
Zhang (10.1016/j.patrec.2020.07.042_bib0021) 2016; 54
Park (10.1016/j.patrec.2020.07.042_bib0025) 2016; PP
Khan (10.1016/j.patrec.2020.07.042_bib0008) 2016; 7
Wang Y (10.1016/j.patrec.2020.07.042_bib0004) 2017; 38
Nogueira R (10.1016/j.patrec.2020.07.042_bib0020) 2017; 11
Shen (10.1016/j.patrec.2020.07.042_bib0018) 2017; 61
Choi (10.1016/j.patrec.2020.07.042_bib0005) 2018; 18
Anh (10.1016/j.patrec.2020.07.042_bib0002) 2016; 148
Hsu (10.1016/j.patrec.2020.07.042_bib0015) 2016; 19
Ioannou (10.1016/j.patrec.2020.07.042_bib0022) 2016; 167
Ding (10.1016/j.patrec.2020.07.042_bib0016) 2016
Almasi (10.1016/j.patrec.2020.07.042_bib0010) 2016; 24
Zhou (10.1016/j.patrec.2020.07.042_bib0024) 2016; 9
Noi P (10.1016/j.patrec.2020.07.042_bib0007) 2017; 18
References_xml – volume: 9
  start-page: 489
  year: 2016
  ident: bib0024
  article-title: Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J]
  publication-title: Remote Sens. (Basel)
– volume: 54
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0021
  article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J]
  publication-title: IEEE Trans. Geoence Remote Sens.
– volume: 38
  start-page: 196
  year: 2017
  end-page: 201
  ident: bib0004
  article-title: Image classification algorithm based on optimal feature weighting[J]
  publication-title: Zhongbei Daxue Xuebao
– volume: 18
  start-page: 151
  year: 2016
  end-page: 164
  ident: bib0009
  article-title: 1880. Rolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine[J]
  publication-title: J. Vibroeng.
– volume: PP
  year: 2016
  ident: bib0025
  article-title: Look wider to match image patches with convolutional neural networks[J]
  publication-title: IEEE Signal Process. Lett.
– volume: 24
  start-page: 219
  year: 2016
  end-page: 233
  ident: bib0010
  article-title: Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets[J]
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 11
  year: 2016
  ident: bib0014
  article-title: Catchpoole. ensemble feature learning of genomic data using support vector machine[J]
  publication-title: PLoS ONE
– volume: 18
  start-page: 18
  year: 2017
  ident: bib0007
  article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]
  publication-title: Sensors
– volume: 113
  start-page: 11312
  year: 2016
  end-page: 11317
  ident: bib0011
  article-title: Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates[J]
  publication-title: Proceed. Natl. Acad. Sci.
– volume: 18
  start-page: 306
  year: 2018
  ident: bib0005
  article-title: -tree: a local-area-learning-based tree induction algorithm for image classification[J]
  publication-title: Sensors
– volume: 148
  start-page: 30
  year: 2016
  end-page: 34
  ident: bib0002
  article-title: Traffic image classification using horizontal slice algorithm[J]
  publication-title: Int. J. Comput. Appl.
– volume: 61
  start-page: 663
  year: 2017
  end-page: 673
  ident: bib0018
  article-title: Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification[J]
  publication-title: Pattern Recognit.
– volume: 60
  year: 2016
  ident: bib0017
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks[J]
  publication-title: Electron. Image.
– volume: 11
  start-page: 1206
  year: 2017
  end-page: 1213
  ident: bib0020
  article-title: Fingerprint liveness detection using convolutional neural networks[J]
  publication-title: IEEE Trans. Inf. Forensic Sec.
– start-page: 1
  year: 2016
  ident: bib0016
  article-title: Trunk-branch ensemble convolutional neural networks for video-based face recognition[J]
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3824
  start-page: 164
  year: 2016
  end-page: 173
  ident: bib0023
  article-title: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[J]
  publication-title: Lect. Notes Comput. Sci.
– volume: 146
  start-page: 270
  year: 2017
  end-page: 285
  ident: bib0006
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm[J]
  publication-title: Electr. Power Syst. Res.
– volume: 167
  start-page: 774
  year: 2016
  end-page: 783
  ident: bib0022
  article-title: Training convolutional neural networks with low-rank filters for efficient image classification[J]
  publication-title: J. Bacteriol.
– volume: 116
  start-page: 58
  year: 2017
  end-page: 73
  ident: bib0012
  article-title: An efficient instance selection algorithm to reconstruct training set for support vector machine[J]
  publication-title: Knowl. Based Syst.
– volume: 27
  start-page: 1214
  year: 2016
  end-page: 1219
  ident: bib0001
  article-title: An image classification algorithm based on BBO-MLP and texture features[J]
  publication-title: J. Optoelectron.•Laser
– volume: 48
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib0013
  article-title: An improved ν-twin bounded support vector machine[J]
  publication-title: Appl. Intell.
– volume: 7
  start-page: 2249
  year: 2016
  end-page: 2256
  ident: bib0008
  article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)[J]
  publication-title: Biomed. Opt. Express
– volume: 19
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib0015
  article-title: EEG Classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function[J]
  publication-title: Int. J. Fuzzy Syst.
– volume: 58
  start-page: 547
  year: 2018
  end-page: 552
  ident: bib0003
  article-title: Brake pad image classification algorithm based on color segmentation and information entropy weighted feature matching[J]
  publication-title: Qinghua Daxue Xuebao/J. Tsinghua Univ.
– volume: 28
  start-page: 807
  year: 2018
  end-page: 811
  ident: bib0019
  article-title: Skeleton optical spectra-based action recognition using convolutional neural networks[J]
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0014
  article-title: Catchpoole. ensemble feature learning of genomic data using support vector machine[J]
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157330
– volume: 3824
  start-page: 164
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0023
  article-title: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[J]
  publication-title: Lect. Notes Comput. Sci.
– volume: 54
  start-page: 1
  issue: 9
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0021
  article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J]
  publication-title: IEEE Trans. Geoence Remote Sens.
– volume: 7
  start-page: 2249
  issue: 6
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0008
  article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)[J]
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.7.002249
– volume: 38
  start-page: 196
  issue: 2
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0004
  article-title: Image classification algorithm based on optimal feature weighting[J]
  publication-title: Zhongbei Daxue Xuebao
– volume: 60
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0017
  article-title: Multiple object extraction from aerial imagery with convolutional neural networks[J]
  publication-title: Electron. Image.
– volume: 27
  start-page: 1214
  issue: 11
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0001
  article-title: An image classification algorithm based on BBO-MLP and texture features[J]
  publication-title: J. Optoelectron.•Laser
– volume: 24
  start-page: 219
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0010
  article-title: Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets[J]
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1304-139
– start-page: 1
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0016
  article-title: Trunk-branch ensemble convolutional neural networks for video-based face recognition[J]
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 116
  start-page: 58
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0012
  article-title: An efficient instance selection algorithm to reconstruct training set for support vector machine[J]
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.10.031
– volume: 11
  start-page: 1206
  issue: 6
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0020
  article-title: Fingerprint liveness detection using convolutional neural networks[J]
  publication-title: IEEE Trans. Inf. Forensic Sec.
  doi: 10.1109/TIFS.2016.2520880
– volume: 18
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0007
  article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]
  publication-title: Sensors
  doi: 10.3390/s18010018
– volume: 18
  start-page: 151
  issue: 1
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0009
  article-title: 1880. Rolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine[J]
  publication-title: J. Vibroeng.
– volume: 28
  start-page: 807
  issue: 3
  year: 2018
  ident: 10.1016/j.patrec.2020.07.042_bib0019
  article-title: Skeleton optical spectra-based action recognition using convolutional neural networks[J]
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2016.2628339
– volume: 58
  start-page: 547
  issue: 6
  year: 2018
  ident: 10.1016/j.patrec.2020.07.042_bib0003
  article-title: Brake pad image classification algorithm based on color segmentation and information entropy weighted feature matching[J]
  publication-title: Qinghua Daxue Xuebao/J. Tsinghua Univ.
– volume: 167
  start-page: 774
  issue: 3
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0022
  article-title: Training convolutional neural networks with low-rank filters for efficient image classification[J]
  publication-title: J. Bacteriol.
– volume: 9
  start-page: 489
  issue: 5
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0024
  article-title: Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J]
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs9050489
– volume: 48
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0013
  article-title: An improved ν-twin bounded support vector machine[J]
  publication-title: Appl. Intell.
– volume: PP
  issue: 99
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0025
  article-title: Look wider to match image patches with convolutional neural networks[J]
  publication-title: IEEE Signal Process. Lett.
– volume: 148
  start-page: 30
  issue: 11
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0002
  article-title: Traffic image classification using horizontal slice algorithm[J]
  publication-title: Int. J. Comput. Appl.
– volume: 18
  start-page: 306
  issue: 1
  year: 2018
  ident: 10.1016/j.patrec.2020.07.042_bib0005
  article-title: l-tree: a local-area-learning-based tree induction algorithm for image classification[J]
  publication-title: Sensors
  doi: 10.3390/s18010306
– volume: 19
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0015
  article-title: EEG Classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function[J]
  publication-title: Int. J. Fuzzy Syst.
– volume: 146
  start-page: 270
  issue: 2
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0006
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm[J]
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.035
– volume: 113
  start-page: 11312
  issue: 40
  year: 2016
  ident: 10.1016/j.patrec.2020.07.042_bib0011
  article-title: Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates[J]
  publication-title: Proceed. Natl. Acad. Sci.
  doi: 10.1073/pnas.1606567113
– volume: 61
  start-page: 663
  issue: 61
  year: 2017
  ident: 10.1016/j.patrec.2020.07.042_bib0018
  article-title: Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification[J]
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.029
SSID ssj0006398
Score 2.7137825
Snippet •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are...
Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Comparative analysis
Convolution
Convolutional neural networks
Datasets
Deep learning
Image classification
Image processing
Learning algorithms
Machine learning
Neural networks
Support vector machines
Traditional machine learning
Title Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
URI https://dx.doi.org/10.1016/j.patrec.2020.07.042
https://www.proquest.com/docview/2493530013
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH4q7QIDRwFRKJUH1tDEjo-MVUVVQHQBJDYriZ0SRA-1YeW3YydOOSSExGrFduTnd1nf-x7AhUiNl9aMeQnjxAsVDbzE58pjmRZBlhmHVfJs303Y-DG8eaJPDRjWtTAWVulsf2XTS2vtRvruNPvLPO_fWwC9LavE5p7iyJZftzCJGG1Ca3B9O55sDLJxwqKm-LYT6gq6EuZln5y15TLEfsniGeLfPNQPW106oNE-7LrIEQ2qnzuAhp63Ya_uyoCckrZh5wvF4CEshp_03ih2DCRokaF8ZiwJSm3wbNFCpYBQ_DpdrPLiebZG1r0pZMaKVazy6sUQzUropUau18TUrKiQ0nq5GTmCx9HVw3DsuSYLXmrUt_CYICoMIxWlAU60SCKeUi38GHOfZibfCClXkbCqzYKMxorglHEWmriC0ShTnBxDc76Y6xNAxlQkmmWUqSixeaHQmulEKJNDBkGqSQdIfbAydQzkthHGq6yhZi-yEoe04pA-l2bfDnibWcuKgeOP73ktM_ntJknjJP6Y2a1FLJ0mr6VJTwklNlI-_ffCZ7CNLRSmfLnpQrNYvelzE8sUSQ-2Lt-DnruxH7j-87Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwHxKOCBNTSJ40dGVIEKtF0Aic1KYgeC2qYqYeW343OcFpAQEqtlO5HP97K--w6hc5EZL60Z81LGiRcpGnipz5XHci2CPDcOy_JsD0es_xjdPtGnFuo1tTAAq3S2v7bp1lq7ka47ze6sKLr3AKCHssrQ3NMwhvLr1YgSDri-i48lzsO4YNEQfMP0pn7OgrzgwVkDk2HoWw7PKPzNP_2w1Nb9XG-jTRc34sv613ZQS0_baKvpyYCdirbRxheCwV1U9pbk3jhx_CO4zHExMXYEZxA6A1bIigcn4-dyXlQvkzcMzk1hM1bNE1XU74V4YoGXGrtOE89mR4WV1rPFyB56vL566PU912LBy4zyVh4TREVRrOIsCFMt0phnVAs_CblPc5NtRJSrWIBisyCniSJhxjiLTFTBaJwrTvbRyrSc6gOEjaFINcspU3EKWaHQmulUKJNBBkGmySEizcHKzPGPQxuMsWyAZq-yFocEcUifS_PdQ-QtVs1q_o0_5vNGZvLbPZLGRfyxstOIWDo9fpMmOSWUQJx89O-Nz9Ba_2E4kIOb0d0xWg8BFGPfcDpopZq_6xMT1VTpqb21n8o99H8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+image+classification+algorithms+based+on+traditional+machine+learning+and+deep+learning&rft.jtitle=Pattern+recognition+letters&rft.au=Wang%2C+Pin&rft.au=Fan%2C+En&rft.au=Wang%2C+Peng&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=141&rft.spage=61&rft.epage=67&rft_id=info:doi/10.1016%2Fj.patrec.2020.07.042&rft.externalDocID=S0167865520302981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon