Comparative analysis of image classification algorithms based on traditional machine learning and deep learning
•Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are different. The impact of the results varies.•This article compares and analyzes the accuracy and running time. Image classification is a hot...
Saved in:
Published in | Pattern recognition letters Vol. 141; pp. 61 - 67 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2020.07.042 |
Cover
Abstract | •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are different. The impact of the results varies.•This article compares and analyzes the accuracy and running time.
Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets. |
---|---|
AbstractList | •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are different. The impact of the results varies.•This article compares and analyzes the accuracy and running time.
Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets. Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful classification model in machine learning. CNN is a type of feedforward neural network that includes convolution calculation and has a deep structure. It is one of the representative algorithms of deep learning. Taking SVM and CNN as examples, this paper compares and analyzes the traditional machine learning and deep learning image classification algorithms. This study found that when using a large sample mnist dataset, the accuracy of SVM is 0.88 and the accuracy of CNN is 0.98; when using a small sample COREL1000 dataset, the accuracy of SVM is 0.86 and the accuracy of CNN is 0.83. The experimental results in this paper show that traditional machine learning has a better solution effect on small sample data sets, and deep learning framework has higher recognition accuracy on large sample data sets. |
Author | Fan, En Wang, Peng Wang, Pin |
Author_xml | – sequence: 1 givenname: Pin surname: Wang fullname: Wang, Pin email: wangpin@vip.qq.com organization: School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, China – sequence: 2 givenname: En surname: Fan fullname: Fan, En email: efan@szu.edu.cn, efan@szpt.edu.cn organization: Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng email: sdhzdtwp@126.com organization: Garden Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong,China |
BookMark | eNqFkE9LAzEQxYMoWKvfwEPA866z2WSz60GQ4j8oeNFzSJPZNmW7WZNtwW9vasWDBz0FJr_3Zt47I8e975GQywLyAorqep0PegxocgYMcpA5cHZEJkUtWSZLzo_JJGEyqyshTslZjGsAqMqmnhA_85tBBz26HVLd6-4jukh9S91GL5GaTsfoWmcS4Huqu6UPblxtIl3oiJam2Ri0dftf3dGNNivXI-1Qh971y-RoqUUcfibn5KTVXcSL73dK3h7uX2dP2fzl8Xl2N88MBxizqi4t541tTMEWWC8aaQTWoJkE0TIhuJC2qVNMURWt0LZkppIVrxmrRNNaWU7J1cF3CP59i3FUa78N6caoGG9KUQIUZaL4gTLBxxiwVUNIwcOHKkDtq1VrdahW7atVIFXamWQ3v2TGjV8NpTJc95_49iDGFH_nMKhoHPYGrUvoqKx3fxt8AosCmiA |
CitedBy_id | crossref_primary_10_32604_cmc_2023_033733 crossref_primary_10_1111_exsy_13658 crossref_primary_10_1016_j_measurement_2022_111872 crossref_primary_10_3389_fmed_2022_1072109 crossref_primary_10_1016_j_ijinfomgt_2022_102538 crossref_primary_10_1142_S1793545824500184 crossref_primary_10_3390_fi15050179 crossref_primary_10_1007_s11227_024_06136_3 crossref_primary_10_1016_j_engfracmech_2024_110447 crossref_primary_10_3390_electronics12051209 crossref_primary_10_1051_itmconf_20257003013 crossref_primary_10_1016_j_jksuci_2023_101667 crossref_primary_10_1109_JSTARS_2024_3481248 crossref_primary_10_1038_s41598_023_42984_4 crossref_primary_10_3390_pr13010145 crossref_primary_10_1016_j_jhazmat_2023_132886 crossref_primary_10_1016_j_ress_2023_109767 crossref_primary_10_1038_s41598_023_47624_5 crossref_primary_10_1016_j_ijmedinf_2023_105178 crossref_primary_10_1016_j_advengsoft_2024_103802 crossref_primary_10_1016_j_ecoinf_2023_102361 crossref_primary_10_1016_j_engappai_2023_106372 crossref_primary_10_3390_s23010081 crossref_primary_10_3934_mbe_2022017 crossref_primary_10_1016_j_chemosphere_2024_141154 crossref_primary_10_3390_s24165392 crossref_primary_10_1016_j_patrec_2022_12_004 crossref_primary_10_3390_rs15020321 crossref_primary_10_1016_j_scitotenv_2024_176585 crossref_primary_10_3390_agriculture13020442 crossref_primary_10_1016_j_engappai_2022_105308 crossref_primary_10_3390_electronics13152929 crossref_primary_10_1016_j_eswa_2023_122807 crossref_primary_10_1080_08839514_2024_2318672 crossref_primary_10_1016_j_patrec_2023_11_027 crossref_primary_10_3390_s23187667 crossref_primary_10_1007_s00405_024_08801_y crossref_primary_10_7717_peerj_cs_2594 crossref_primary_10_1109_JSTARS_2024_3460531 crossref_primary_10_1016_j_asr_2024_03_033 crossref_primary_10_1016_j_measurement_2024_114688 crossref_primary_10_1016_j_jclepro_2023_137771 crossref_primary_10_1109_ACCESS_2023_3253627 crossref_primary_10_1016_j_dib_2024_110462 crossref_primary_10_3390_app13063479 crossref_primary_10_3390_rs16122116 crossref_primary_10_1016_j_compag_2024_109160 crossref_primary_10_3788_LOP240511 crossref_primary_10_1016_j_earscirev_2023_104509 crossref_primary_10_2478_ijanmc_2024_0021 crossref_primary_10_3390_technologies12090154 crossref_primary_10_4236_ojs_2022_121003 crossref_primary_10_3389_fenvs_2025_1556042 crossref_primary_10_3390_app14167050 crossref_primary_10_1016_j_aej_2023_04_053 crossref_primary_10_1016_j_compag_2023_108543 crossref_primary_10_1016_j_heliyon_2024_e35998 crossref_primary_10_1038_s41598_023_29331_3 crossref_primary_10_1016_j_jconhyd_2024_104449 crossref_primary_10_1080_17452759_2024_2424463 crossref_primary_10_1016_j_compag_2023_108319 crossref_primary_10_1109_TVT_2023_3261318 crossref_primary_10_1007_s11668_022_01344_6 crossref_primary_10_1007_s11837_024_06922_7 crossref_primary_10_1038_s41598_024_74365_w crossref_primary_10_1007_s41101_023_00212_0 crossref_primary_10_1115_1_4067298 crossref_primary_10_1109_ACCESS_2023_3336946 crossref_primary_10_32604_iasc_2022_020008 crossref_primary_10_3390_s23031557 crossref_primary_10_3390_agriculture13051066 crossref_primary_10_1038_s41598_024_58421_z crossref_primary_10_1007_s12145_025_01819_8 crossref_primary_10_1002_adma_202413430 crossref_primary_10_1007_s11334_024_00577_y crossref_primary_10_3389_fphy_2024_1287050 crossref_primary_10_1155_2022_2938011 crossref_primary_10_1038_s41598_025_85922_2 crossref_primary_10_1109_ACCESS_2024_3524571 crossref_primary_10_1109_ACCESS_2021_3138240 crossref_primary_10_29133_yyutbd_1140911 crossref_primary_10_1016_j_earscirev_2024_104887 crossref_primary_10_1016_j_ifacol_2025_01_019 crossref_primary_10_33808_clinexphealthsci_1268378 crossref_primary_10_1016_j_enbuild_2024_114804 crossref_primary_10_1016_j_autcon_2022_104499 crossref_primary_10_34133_hds_0182 crossref_primary_10_1007_s10489_023_04686_2 crossref_primary_10_1016_j_compag_2025_109972 crossref_primary_10_3390_app112110208 crossref_primary_10_1080_19475683_2024_2304203 crossref_primary_10_1111_jan_15584 crossref_primary_10_1016_j_aiia_2024_11_002 crossref_primary_10_1016_j_ijleo_2023_170925 crossref_primary_10_2139_ssrn_3959386 crossref_primary_10_1016_j_ecolind_2023_110437 crossref_primary_10_1155_2022_6322570 crossref_primary_10_2174_0122103279288496240121074942 crossref_primary_10_1016_j_patrec_2022_12_028 crossref_primary_10_1016_j_advengsoft_2023_103445 crossref_primary_10_3390_app122312094 crossref_primary_10_54097_hset_v34i_5430 crossref_primary_10_1109_ACCESS_2023_3294542 crossref_primary_10_1007_s13198_023_02134_5 crossref_primary_10_3390_insects15070557 crossref_primary_10_3390_educsci13020194 crossref_primary_10_1109_ACCESS_2024_3367772 crossref_primary_10_3390_s22114040 crossref_primary_10_1007_s11042_024_19615_9 crossref_primary_10_1016_j_eswa_2022_118850 crossref_primary_10_1021_acssensors_3c01887 crossref_primary_10_1016_j_cja_2023_09_024 crossref_primary_10_3233_XST_221317 crossref_primary_10_1038_s41598_024_64072_x crossref_primary_10_1139_cgj_2024_0359 crossref_primary_10_1109_ACCESS_2024_3458929 crossref_primary_10_1002_jrs_6435 crossref_primary_10_1016_j_asoc_2021_108178 crossref_primary_10_1016_j_geoen_2024_212656 crossref_primary_10_1155_2022_7459260 crossref_primary_10_3390_su151411232 crossref_primary_10_1109_JSTARS_2023_3272026 crossref_primary_10_3390_su141811786 crossref_primary_10_1016_j_imavis_2021_104312 crossref_primary_10_3390_app12073524 crossref_primary_10_3390_s23031651 crossref_primary_10_1016_j_jddst_2024_106424 crossref_primary_10_1016_j_nmd_2021_08_006 crossref_primary_10_1016_j_cosrev_2024_100662 crossref_primary_10_1088_1361_6560_acc77c crossref_primary_10_54097_hset_v39i_6490 crossref_primary_10_1088_1402_4896_ad7f10 crossref_primary_10_1007_s00521_021_06664_6 crossref_primary_10_3390_math12233872 crossref_primary_10_1007_s00371_024_03748_x crossref_primary_10_1007_s11694_023_01934_4 crossref_primary_10_1016_j_crfs_2024_100679 crossref_primary_10_1089_ten_tea_2024_0014 crossref_primary_10_1016_j_cosrev_2024_100666 crossref_primary_10_1016_j_neunet_2023_02_022 crossref_primary_10_2478_amns_2023_2_00018 crossref_primary_10_1016_j_mfglet_2024_09_189 crossref_primary_10_1080_17538947_2023_2234340 crossref_primary_10_1007_s13131_024_2356_1 crossref_primary_10_1007_s11707_020_0861_x crossref_primary_10_3390_pr11102969 crossref_primary_10_1177_14613484241240927 crossref_primary_10_1007_s13042_022_01675_8 crossref_primary_10_1016_j_cor_2023_106152 crossref_primary_10_1016_j_ins_2023_119662 crossref_primary_10_2139_ssrn_4850000 crossref_primary_10_2298_CSIS240314050W crossref_primary_10_1016_j_aca_2023_340868 crossref_primary_10_3390_rs14092265 crossref_primary_10_1016_j_ecolind_2024_112565 crossref_primary_10_1007_s00138_023_01501_3 crossref_primary_10_1109_ACCESS_2024_3482110 crossref_primary_10_1080_10095020_2024_2343323 crossref_primary_10_3390_su15075930 crossref_primary_10_4316_AECE_2024_01010 crossref_primary_10_1038_s41598_025_93159_2 crossref_primary_10_3103_S0146411624700925 crossref_primary_10_3390_bdcc7020093 crossref_primary_10_1007_s00530_023_01101_1 crossref_primary_10_3390_nano14020165 crossref_primary_10_1016_j_microc_2023_108559 crossref_primary_10_1109_ACCESS_2022_3227046 crossref_primary_10_2174_2211555204666220131112639 crossref_primary_10_1109_TGRS_2024_3520635 crossref_primary_10_1016_j_iswa_2024_200442 crossref_primary_10_3390_molecules28020809 crossref_primary_10_1063_5_0172609 crossref_primary_10_1016_j_simpa_2023_100507 crossref_primary_10_1007_s10489_023_04824_w crossref_primary_10_3389_fmicb_2022_792166 crossref_primary_10_1016_j_jjimei_2023_100180 crossref_primary_10_1109_ACCESS_2024_3452470 crossref_primary_10_1016_j_oceaneng_2024_116796 crossref_primary_10_3390_s23084149 crossref_primary_10_1049_enb2_12025 crossref_primary_10_1109_TCSVT_2023_3334825 crossref_primary_10_1007_s12145_024_01331_5 crossref_primary_10_1109_ACCESS_2023_3273770 crossref_primary_10_3390_ijerph19106217 crossref_primary_10_1016_j_advwatres_2024_104731 crossref_primary_10_3390_computation10090148 crossref_primary_10_1029_2023WR035643 crossref_primary_10_3390_s21061994 crossref_primary_10_1109_TNSRE_2023_3241241 crossref_primary_10_1007_s00521_023_08995_y crossref_primary_10_1016_j_ygeno_2022_110454 crossref_primary_10_1016_j_cej_2023_148491 crossref_primary_10_3390_pr11010122 crossref_primary_10_7717_peerj_cs_1432 crossref_primary_10_1016_j_csbj_2024_11_027 crossref_primary_10_3390_diagnostics13122111 crossref_primary_10_3390_electronics13132464 crossref_primary_10_3390_rs15112720 crossref_primary_10_1080_17538947_2024_2390443 crossref_primary_10_1109_ACCESS_2025_3530242 crossref_primary_10_3390_info15050246 crossref_primary_10_1016_j_asoc_2024_112055 crossref_primary_10_3233_AIC_220179 crossref_primary_10_3390_a17100439 crossref_primary_10_1016_j_heliyon_2024_e24220 crossref_primary_10_1109_ACCESS_2024_3497137 crossref_primary_10_1016_j_scitotenv_2022_157554 crossref_primary_10_1007_s12517_022_09947_x crossref_primary_10_3390_rs14010050 crossref_primary_10_1016_j_artmed_2025_103101 crossref_primary_10_1016_j_patrec_2023_08_018 crossref_primary_10_1177_17298806241281847 crossref_primary_10_1016_j_saa_2024_124112 crossref_primary_10_1109_ACCESS_2024_3404371 crossref_primary_10_3390_diagnostics13233506 crossref_primary_10_1155_2024_5528497 crossref_primary_10_2196_41819 crossref_primary_10_1016_j_jclepro_2024_141910 crossref_primary_10_1109_ACCESS_2024_3442205 crossref_primary_10_3390_tropicalmed7120398 crossref_primary_10_1080_09540091_2024_2435654 crossref_primary_10_1007_s10845_022_02041_9 crossref_primary_10_3390_molecules26216717 crossref_primary_10_59324_ejaset_2025_3_1__15 crossref_primary_10_1002_der2_248 crossref_primary_10_1007_s11042_023_14979_w crossref_primary_10_1080_10447318_2024_2344913 crossref_primary_10_1016_j_rse_2022_113166 crossref_primary_10_3233_XST_210993 crossref_primary_10_1029_2023JH000109 crossref_primary_10_1016_j_aca_2023_341758 crossref_primary_10_1016_j_patrec_2021_08_024 crossref_primary_10_1007_s11837_021_04708_9 crossref_primary_10_1016_j_compbiomed_2024_109261 crossref_primary_10_1145_3660796 crossref_primary_10_1109_ACCESS_2023_3280410 crossref_primary_10_1177_01436244211034737 crossref_primary_10_1016_j_eswa_2024_124676 crossref_primary_10_1002_adom_202203104 crossref_primary_10_3390_rs15123186 crossref_primary_10_1007_s12040_024_02298_z crossref_primary_10_1016_j_heliyon_2024_e28967 crossref_primary_10_1109_ACCESS_2024_3461871 crossref_primary_10_3390_technologies12020017 crossref_primary_10_1016_j_indcrop_2025_120874 crossref_primary_10_3390_su142114652 crossref_primary_10_3390_technologies12020015 crossref_primary_10_1111_myc_13498 crossref_primary_10_3390_electronics13112049 crossref_primary_10_3390_electronics12081951 crossref_primary_10_1016_j_egyai_2022_100198 crossref_primary_10_3390_cancers15153770 crossref_primary_10_26599_TST_2021_9010072 crossref_primary_10_3390_app15031628 crossref_primary_10_2196_62866 crossref_primary_10_1080_09715010_2023_2214107 crossref_primary_10_1109_ACCESS_2023_3295001 crossref_primary_10_1016_j_ailsci_2023_100060 crossref_primary_10_3390_brainsci13020348 crossref_primary_10_1016_j_ijcip_2025_100740 crossref_primary_10_1016_j_mlwa_2024_100568 crossref_primary_10_1002_cctc_202401542 crossref_primary_10_1007_s11042_022_13390_1 crossref_primary_10_1016_j_jag_2024_104013 crossref_primary_10_26634_jpr_9_2_19086 crossref_primary_10_1021_acs_jcim_3c01702 crossref_primary_10_1002_jemt_24559 crossref_primary_10_3389_fgwh_2025_1447579 crossref_primary_10_3390_s25020531 crossref_primary_10_3390_su151712915 crossref_primary_10_1111_1365_2478_13606 crossref_primary_10_3390_jimaging10080183 crossref_primary_10_1016_j_microc_2023_109238 crossref_primary_10_1039_D3AY00984J crossref_primary_10_1016_j_media_2023_102850 crossref_primary_10_1088_1367_2630_ac8307 crossref_primary_10_1016_j_measen_2023_100959 crossref_primary_10_1177_09544070231189910 crossref_primary_10_3390_rs13214486 crossref_primary_10_1016_j_compbiomed_2024_108075 crossref_primary_10_2478_amns_2025_0351 crossref_primary_10_1108_RPJ_07_2023_0243 crossref_primary_10_1016_j_seta_2022_102990 crossref_primary_10_1080_23311916_2023_2232602 crossref_primary_10_1109_JESTPE_2024_3515659 crossref_primary_10_1111_nph_20264 crossref_primary_10_1016_j_jobe_2023_107432 crossref_primary_10_3390_bios15010019 crossref_primary_10_1109_ACCESS_2023_3324061 crossref_primary_10_3390_app14125230 crossref_primary_10_34133_2022_9873564 crossref_primary_10_1038_s41928_021_00612_x crossref_primary_10_1093_bib_bbac373 crossref_primary_10_1016_j_ecohyd_2024_02_005 crossref_primary_10_1109_ACCESS_2024_3426955 crossref_primary_10_3389_fpls_2023_1241576 crossref_primary_10_3390_machines11060668 crossref_primary_10_1007_s42979_024_03086_8 crossref_primary_10_1051_epjpv_2024022 crossref_primary_10_1109_ACCESS_2023_3345789 crossref_primary_10_1016_j_cjco_2024_10_012 crossref_primary_10_3390_su13020744 crossref_primary_10_3390_plants13172357 crossref_primary_10_1051_e3sconf_202235101065 crossref_primary_10_3389_fevo_2023_1146850 crossref_primary_10_1177_08953996241306696 crossref_primary_10_1039_D4AY01346H crossref_primary_10_1016_j_patrec_2024_02_008 crossref_primary_10_1016_j_envpol_2023_122456 crossref_primary_10_1016_j_dib_2023_109794 crossref_primary_10_3389_fsufs_2023_1172543 crossref_primary_10_1016_j_patrec_2023_11_016 crossref_primary_10_1007_s00238_025_02278_6 crossref_primary_10_1007_s10489_024_05920_1 crossref_primary_10_1016_j_susmat_2023_e00675 crossref_primary_10_1016_j_knosys_2024_111378 crossref_primary_10_1057_s41599_022_01407_x crossref_primary_10_1016_j_trac_2024_117794 crossref_primary_10_20965_jaciii_2024_p0974 crossref_primary_10_1016_j_isci_2023_108120 crossref_primary_10_1016_j_tcb_2023_10_010 crossref_primary_10_1002_ima_23074 crossref_primary_10_1088_1742_6596_2383_1_012086 crossref_primary_10_54097_hset_v34i_5372 crossref_primary_10_1080_10106049_2024_2382307 crossref_primary_10_3390_s21113819 crossref_primary_10_3390_agriculture14122240 crossref_primary_10_1109_JSEN_2025_3534277 crossref_primary_10_2478_amns_2025_0338 crossref_primary_10_1109_ACCESS_2023_3236401 crossref_primary_10_3390_foods13244044 crossref_primary_10_1109_ACCESS_2024_3404606 crossref_primary_10_1016_j_ces_2023_118864 crossref_primary_10_1051_itmconf_20224301008 crossref_primary_10_1109_ACCESS_2021_3089670 crossref_primary_10_3390_computation10070127 crossref_primary_10_1016_j_patrec_2024_02_004 crossref_primary_10_1038_s41598_022_24263_w crossref_primary_10_3390_biology12101298 crossref_primary_10_1016_j_dibe_2024_100383 crossref_primary_10_1016_j_jenvman_2025_124247 crossref_primary_10_1016_j_ejmp_2023_102657 crossref_primary_10_1109_ACCESS_2024_3349628 crossref_primary_10_1016_j_heliyon_2023_e16924 crossref_primary_10_1007_s11004_021_09989_z crossref_primary_10_1016_j_asoc_2024_111816 crossref_primary_10_1109_ACCESS_2023_3325738 crossref_primary_10_1108_JCMARS_12_2022_0030 |
Cites_doi | 10.1371/journal.pone.0157330 10.1364/BOE.7.002249 10.3906/elk-1304-139 10.1016/j.knosys.2016.10.031 10.1109/TIFS.2016.2520880 10.3390/s18010018 10.1109/TCSVT.2016.2628339 10.3390/rs9050489 10.3390/s18010306 10.1016/j.epsr.2017.01.035 10.1073/pnas.1606567113 10.1016/j.patcog.2016.05.029 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier Science Ltd. Jan 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier Science Ltd. Jan 2021 |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2020.07.042 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 67 |
ExternalDocumentID | 10_1016_j_patrec_2020_07_042 S0167865520302981 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c400t-683d449d9c12be8b97c5e80a2705f255457d98042561f5ad32c6764822659fd73 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Fri Jul 25 06:01:46 EDT 2025 Tue Jul 01 02:40:41 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Fri Feb 23 02:49:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Support vector machines Traditional machine learning Convolutional neural networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-683d449d9c12be8b97c5e80a2705f255457d98042561f5ad32c6764822659fd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2493530013 |
PQPubID | 2047552 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2493530013 crossref_primary_10_1016_j_patrec_2020_07_042 crossref_citationtrail_10_1016_j_patrec_2020_07_042 elsevier_sciencedirect_doi_10_1016_j_patrec_2020_07_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Hsu, Lin, Chou (bib0015) 2016; 19 Wang Y (bib0004) 2017; 38 Choi, Song, Lee (bib0005) 2018; 18 Nogueira R, Lotufo R D, Machado R (bib0020) 2017; 11 Lupolova, Dallman, Matthews (bib0011) 2016; 113 Zhao, Zhang, Sun (bib0003) 2018; 58 Noi P, Kappas (bib0007) 2017; 18 Poudel R P, Lamata, Montana (bib0023) 2016; 3824 Almasi, Rouhani (bib0010) 2016; 24 Anaissi, Goyal, Daniel (bib0014) 2016; 11 Liu, Wang, Wang (bib0012) 2017; 116 Ioannou, Robertson, Shotton (bib0022) 2016; 167 Zhang, Du, Zhang (bib0021) 2016; 54 Zhang, Wang, Zhang (bib0006) 2017; 146 Hou, Li, Wang (bib0019) 2018; 28 Park, Lee (bib0025) 2016; PP Juan, Xian-Xiang W, Yan-Ling (bib0001) 2016; 27 Anh, Nguyen (bib0002) 2016; 148 Saito, Yamashita, Aoki (bib0017) 2016; 60 Khan, Ullah, Khan (bib0008) 2016; 7 Wang, Zhou, Xu (bib0013) 2017; 48 Ding, Tao (bib0016) 2016 Shen, Zhou, Yang (bib0018) 2017; 61 Zhou, Newsam, Li (bib0024) 2016; 9 Chu, He, Mao (bib0009) 2016; 18 Juan (10.1016/j.patrec.2020.07.042_bib0001) 2016; 27 Hou (10.1016/j.patrec.2020.07.042_bib0019) 2018; 28 Saito (10.1016/j.patrec.2020.07.042_bib0017) 2016; 60 Poudel R P (10.1016/j.patrec.2020.07.042_bib0023) 2016; 3824 Zhao (10.1016/j.patrec.2020.07.042_bib0003) 2018; 58 Chu (10.1016/j.patrec.2020.07.042_bib0009) 2016; 18 Lupolova (10.1016/j.patrec.2020.07.042_bib0011) 2016; 113 Liu (10.1016/j.patrec.2020.07.042_bib0012) 2017; 116 Zhang (10.1016/j.patrec.2020.07.042_bib0006) 2017; 146 Wang (10.1016/j.patrec.2020.07.042_bib0013) 2017; 48 Anaissi (10.1016/j.patrec.2020.07.042_bib0014) 2016; 11 Zhang (10.1016/j.patrec.2020.07.042_bib0021) 2016; 54 Park (10.1016/j.patrec.2020.07.042_bib0025) 2016; PP Khan (10.1016/j.patrec.2020.07.042_bib0008) 2016; 7 Wang Y (10.1016/j.patrec.2020.07.042_bib0004) 2017; 38 Nogueira R (10.1016/j.patrec.2020.07.042_bib0020) 2017; 11 Shen (10.1016/j.patrec.2020.07.042_bib0018) 2017; 61 Choi (10.1016/j.patrec.2020.07.042_bib0005) 2018; 18 Anh (10.1016/j.patrec.2020.07.042_bib0002) 2016; 148 Hsu (10.1016/j.patrec.2020.07.042_bib0015) 2016; 19 Ioannou (10.1016/j.patrec.2020.07.042_bib0022) 2016; 167 Ding (10.1016/j.patrec.2020.07.042_bib0016) 2016 Almasi (10.1016/j.patrec.2020.07.042_bib0010) 2016; 24 Zhou (10.1016/j.patrec.2020.07.042_bib0024) 2016; 9 Noi P (10.1016/j.patrec.2020.07.042_bib0007) 2017; 18 |
References_xml | – volume: 9 start-page: 489 year: 2016 ident: bib0024 article-title: Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J] publication-title: Remote Sens. (Basel) – volume: 54 start-page: 1 year: 2016 end-page: 11 ident: bib0021 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J] publication-title: IEEE Trans. Geoence Remote Sens. – volume: 38 start-page: 196 year: 2017 end-page: 201 ident: bib0004 article-title: Image classification algorithm based on optimal feature weighting[J] publication-title: Zhongbei Daxue Xuebao – volume: 18 start-page: 151 year: 2016 end-page: 164 ident: bib0009 article-title: 1880. Rolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine[J] publication-title: J. Vibroeng. – volume: PP year: 2016 ident: bib0025 article-title: Look wider to match image patches with convolutional neural networks[J] publication-title: IEEE Signal Process. Lett. – volume: 24 start-page: 219 year: 2016 end-page: 233 ident: bib0010 article-title: Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets[J] publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 11 year: 2016 ident: bib0014 article-title: Catchpoole. ensemble feature learning of genomic data using support vector machine[J] publication-title: PLoS ONE – volume: 18 start-page: 18 year: 2017 ident: bib0007 article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J] publication-title: Sensors – volume: 113 start-page: 11312 year: 2016 end-page: 11317 ident: bib0011 article-title: Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates[J] publication-title: Proceed. Natl. Acad. Sci. – volume: 18 start-page: 306 year: 2018 ident: bib0005 article-title: -tree: a local-area-learning-based tree induction algorithm for image classification[J] publication-title: Sensors – volume: 148 start-page: 30 year: 2016 end-page: 34 ident: bib0002 article-title: Traffic image classification using horizontal slice algorithm[J] publication-title: Int. J. Comput. Appl. – volume: 61 start-page: 663 year: 2017 end-page: 673 ident: bib0018 article-title: Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification[J] publication-title: Pattern Recognit. – volume: 60 year: 2016 ident: bib0017 article-title: Multiple object extraction from aerial imagery with convolutional neural networks[J] publication-title: Electron. Image. – volume: 11 start-page: 1206 year: 2017 end-page: 1213 ident: bib0020 article-title: Fingerprint liveness detection using convolutional neural networks[J] publication-title: IEEE Trans. Inf. Forensic Sec. – start-page: 1 year: 2016 ident: bib0016 article-title: Trunk-branch ensemble convolutional neural networks for video-based face recognition[J] publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 3824 start-page: 164 year: 2016 end-page: 173 ident: bib0023 article-title: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[J] publication-title: Lect. Notes Comput. Sci. – volume: 146 start-page: 270 year: 2017 end-page: 285 ident: bib0006 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm[J] publication-title: Electr. Power Syst. Res. – volume: 167 start-page: 774 year: 2016 end-page: 783 ident: bib0022 article-title: Training convolutional neural networks with low-rank filters for efficient image classification[J] publication-title: J. Bacteriol. – volume: 116 start-page: 58 year: 2017 end-page: 73 ident: bib0012 article-title: An efficient instance selection algorithm to reconstruct training set for support vector machine[J] publication-title: Knowl. Based Syst. – volume: 27 start-page: 1214 year: 2016 end-page: 1219 ident: bib0001 article-title: An image classification algorithm based on BBO-MLP and texture features[J] publication-title: J. Optoelectron.•Laser – volume: 48 start-page: 1 year: 2017 end-page: 13 ident: bib0013 article-title: An improved ν-twin bounded support vector machine[J] publication-title: Appl. Intell. – volume: 7 start-page: 2249 year: 2016 end-page: 2256 ident: bib0008 article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)[J] publication-title: Biomed. Opt. Express – volume: 19 start-page: 1 year: 2016 end-page: 14 ident: bib0015 article-title: EEG Classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function[J] publication-title: Int. J. Fuzzy Syst. – volume: 58 start-page: 547 year: 2018 end-page: 552 ident: bib0003 article-title: Brake pad image classification algorithm based on color segmentation and information entropy weighted feature matching[J] publication-title: Qinghua Daxue Xuebao/J. Tsinghua Univ. – volume: 28 start-page: 807 year: 2018 end-page: 811 ident: bib0019 article-title: Skeleton optical spectra-based action recognition using convolutional neural networks[J] publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0014 article-title: Catchpoole. ensemble feature learning of genomic data using support vector machine[J] publication-title: PLoS ONE doi: 10.1371/journal.pone.0157330 – volume: 3824 start-page: 164 issue: 1 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0023 article-title: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation[J] publication-title: Lect. Notes Comput. Sci. – volume: 54 start-page: 1 issue: 9 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0021 article-title: Weakly supervised learning based on coupled convolutional neural networks for aircraft detection[J] publication-title: IEEE Trans. Geoence Remote Sens. – volume: 7 start-page: 2249 issue: 6 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0008 article-title: Analysis of dengue infection based on Raman spectroscopy and support vector machine (SVM)[J] publication-title: Biomed. Opt. Express doi: 10.1364/BOE.7.002249 – volume: 38 start-page: 196 issue: 2 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0004 article-title: Image classification algorithm based on optimal feature weighting[J] publication-title: Zhongbei Daxue Xuebao – volume: 60 issue: 1 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0017 article-title: Multiple object extraction from aerial imagery with convolutional neural networks[J] publication-title: Electron. Image. – volume: 27 start-page: 1214 issue: 11 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0001 article-title: An image classification algorithm based on BBO-MLP and texture features[J] publication-title: J. Optoelectron.•Laser – volume: 24 start-page: 219 issue: 1 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0010 article-title: Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets[J] publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1304-139 – start-page: 1 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0016 article-title: Trunk-branch ensemble convolutional neural networks for video-based face recognition[J] publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 116 start-page: 58 issue: 1 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0012 article-title: An efficient instance selection algorithm to reconstruct training set for support vector machine[J] publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.10.031 – volume: 11 start-page: 1206 issue: 6 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0020 article-title: Fingerprint liveness detection using convolutional neural networks[J] publication-title: IEEE Trans. Inf. Forensic Sec. doi: 10.1109/TIFS.2016.2520880 – volume: 18 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0007 article-title: Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J] publication-title: Sensors doi: 10.3390/s18010018 – volume: 18 start-page: 151 issue: 1 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0009 article-title: 1880. Rolling bearing fault diagnosis by a novel fruit fly optimization algorithm optimized support vector machine[J] publication-title: J. Vibroeng. – volume: 28 start-page: 807 issue: 3 year: 2018 ident: 10.1016/j.patrec.2020.07.042_bib0019 article-title: Skeleton optical spectra-based action recognition using convolutional neural networks[J] publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2016.2628339 – volume: 58 start-page: 547 issue: 6 year: 2018 ident: 10.1016/j.patrec.2020.07.042_bib0003 article-title: Brake pad image classification algorithm based on color segmentation and information entropy weighted feature matching[J] publication-title: Qinghua Daxue Xuebao/J. Tsinghua Univ. – volume: 167 start-page: 774 issue: 3 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0022 article-title: Training convolutional neural networks with low-rank filters for efficient image classification[J] publication-title: J. Bacteriol. – volume: 9 start-page: 489 issue: 5 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0024 article-title: Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval[J] publication-title: Remote Sens. (Basel) doi: 10.3390/rs9050489 – volume: 48 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0013 article-title: An improved ν-twin bounded support vector machine[J] publication-title: Appl. Intell. – volume: PP issue: 99 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0025 article-title: Look wider to match image patches with convolutional neural networks[J] publication-title: IEEE Signal Process. Lett. – volume: 148 start-page: 30 issue: 11 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0002 article-title: Traffic image classification using horizontal slice algorithm[J] publication-title: Int. J. Comput. Appl. – volume: 18 start-page: 306 issue: 1 year: 2018 ident: 10.1016/j.patrec.2020.07.042_bib0005 article-title: l-tree: a local-area-learning-based tree induction algorithm for image classification[J] publication-title: Sensors doi: 10.3390/s18010306 – volume: 19 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0015 article-title: EEG Classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function[J] publication-title: Int. J. Fuzzy Syst. – volume: 146 start-page: 270 issue: 2 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0006 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm[J] publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.035 – volume: 113 start-page: 11312 issue: 40 year: 2016 ident: 10.1016/j.patrec.2020.07.042_bib0011 article-title: Support vector machine applied to predict the zoonotic potential of E. coli O157 cattle isolates[J] publication-title: Proceed. Natl. Acad. Sci. doi: 10.1073/pnas.1606567113 – volume: 61 start-page: 663 issue: 61 year: 2017 ident: 10.1016/j.patrec.2020.07.042_bib0018 article-title: Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification[J] publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.029 |
SSID | ssj0006398 |
Score | 2.7137825 |
Snippet | •Representative SVM and CNN algorithms in traditional machine learning and deep learning for research.•Under other conditions being the same, the data sets are... Image classification is a hot research topic in today's society and an important direction in the field of image processing research. SVM is a very powerful... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 61 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Classification Comparative analysis Convolution Convolutional neural networks Datasets Deep learning Image classification Image processing Learning algorithms Machine learning Neural networks Support vector machines Traditional machine learning |
Title | Comparative analysis of image classification algorithms based on traditional machine learning and deep learning |
URI | https://dx.doi.org/10.1016/j.patrec.2020.07.042 https://www.proquest.com/docview/2493530013 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFH4q7QIDRwFRKJUH1tDEjo-MVUVVQHQBJDYriZ0SRA-1YeW3YydOOSSExGrFduTnd1nf-x7AhUiNl9aMeQnjxAsVDbzE58pjmRZBlhmHVfJs303Y-DG8eaJPDRjWtTAWVulsf2XTS2vtRvruNPvLPO_fWwC9LavE5p7iyJZftzCJGG1Ca3B9O55sDLJxwqKm-LYT6gq6EuZln5y15TLEfsniGeLfPNQPW106oNE-7LrIEQ2qnzuAhp63Ya_uyoCckrZh5wvF4CEshp_03ih2DCRokaF8ZiwJSm3wbNFCpYBQ_DpdrPLiebZG1r0pZMaKVazy6sUQzUropUau18TUrKiQ0nq5GTmCx9HVw3DsuSYLXmrUt_CYICoMIxWlAU60SCKeUi38GHOfZibfCClXkbCqzYKMxorglHEWmriC0ShTnBxDc76Y6xNAxlQkmmWUqSixeaHQmulEKJNDBkGqSQdIfbAydQzkthHGq6yhZi-yEoe04pA-l2bfDnibWcuKgeOP73ktM_ntJknjJP6Y2a1FLJ0mr6VJTwklNlI-_ffCZ7CNLRSmfLnpQrNYvelzE8sUSQ-2Lt-DnruxH7j-87Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGICBRwHxKOCBNTSJ40dGVIEKtF0Aic1KYgeC2qYqYeW343OcFpAQEqtlO5HP97K--w6hc5EZL60Z81LGiRcpGnipz5XHci2CPDcOy_JsD0es_xjdPtGnFuo1tTAAq3S2v7bp1lq7ka47ze6sKLr3AKCHssrQ3NMwhvLr1YgSDri-i48lzsO4YNEQfMP0pn7OgrzgwVkDk2HoWw7PKPzNP_2w1Nb9XG-jTRc34sv613ZQS0_baKvpyYCdirbRxheCwV1U9pbk3jhx_CO4zHExMXYEZxA6A1bIigcn4-dyXlQvkzcMzk1hM1bNE1XU74V4YoGXGrtOE89mR4WV1rPFyB56vL566PU912LBy4zyVh4TREVRrOIsCFMt0phnVAs_CblPc5NtRJSrWIBisyCniSJhxjiLTFTBaJwrTvbRyrSc6gOEjaFINcspU3EKWaHQmulUKJNBBkGmySEizcHKzPGPQxuMsWyAZq-yFocEcUifS_PdQ-QtVs1q_o0_5vNGZvLbPZLGRfyxstOIWDo9fpMmOSWUQJx89O-Nz9Ba_2E4kIOb0d0xWg8BFGPfcDpopZq_6xMT1VTpqb21n8o99H8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+image+classification+algorithms+based+on+traditional+machine+learning+and+deep+learning&rft.jtitle=Pattern+recognition+letters&rft.au=Wang%2C+Pin&rft.au=Fan%2C+En&rft.au=Wang%2C+Peng&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=141&rft.spage=61&rft.epage=67&rft_id=info:doi/10.1016%2Fj.patrec.2020.07.042&rft.externalDocID=S0167865520302981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |