Light-microscopy-based connectomic reconstruction of mammalian brain tissue
The information-processing capability of the brain’s cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale reso...
Saved in:
Published in | Nature (London) Vol. 642; no. 8067; pp. 398 - 410 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/s41586-025-08985-1 |
Cover
Abstract | The information-processing capability of the brain’s cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution
1
,
2
with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner.
A technique called LICONN (light-microscopy-based connectomics) allows mapping of brain tissue at synapse level and simultaneous measurement of molecular information, thus enabling quantification of cellular properties and multimodal analysis of brain tissue. |
---|---|
AbstractList | The information-processing capability of the brain’s cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution
1
,
2
with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner.
A technique called LICONN (light-microscopy-based connectomics) allows mapping of brain tissue at synapse level and simultaneous measurement of molecular information, thus enabling quantification of cellular properties and multimodal analysis of brain tissue. The information-processing capability of the brain's cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner. The information-processing capability of the brain's cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution1,2 with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner.The information-processing capability of the brain's cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution1,2 with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner. The information-processing capability of the brain’s cellular network depends on the physical wiring pattern between neurons and their molecular and functional characteristics. Mapping neurons and resolving their individual synaptic connections can be achieved by volumetric imaging at nanoscale resolution 1,2 with dense cellular labelling. Light microscopy is uniquely positioned to visualize specific molecules, but dense, synapse-level circuit reconstruction by light microscopy has been out of reach, owing to limitations in resolution, contrast and volumetric imaging capability. Here we describe light-microscopy-based connectomics (LICONN). We integrated specifically engineered hydrogel embedding and expansion with comprehensive deep-learning-based segmentation and analysis of connectivity, thereby directly incorporating molecular information into synapse-level reconstructions of brain tissue. LICONN will allow synapse-level phenotyping of brain tissue in biological experiments in a readily adoptable manner. |
Author | Cenameri, Alban Tavakoli, Mojtaba R. Oliveira, Bárbara Agudelo Dueñas, Nathalie Jain, Viren Novarino, Gaia Lyudchik, Julia Vistunou, Vitali Kreuzinger, Caroline Sommer, Christoph Danzl, Johann G. Januszewski, Michał Vorlaufer, Jakob |
Author_xml | – sequence: 1 givenname: Mojtaba R. surname: Tavakoli fullname: Tavakoli, Mojtaba R. organization: Institute of Science and Technology Austria – sequence: 2 givenname: Julia surname: Lyudchik fullname: Lyudchik, Julia organization: Institute of Science and Technology Austria – sequence: 3 givenname: Michał orcidid: 0000-0002-3480-2744 surname: Januszewski fullname: Januszewski, Michał organization: Google Research – sequence: 4 givenname: Vitali surname: Vistunou fullname: Vistunou, Vitali organization: Institute of Science and Technology Austria – sequence: 5 givenname: Nathalie orcidid: 0000-0003-0983-0492 surname: Agudelo Dueñas fullname: Agudelo Dueñas, Nathalie organization: Institute of Science and Technology Austria – sequence: 6 givenname: Jakob orcidid: 0009-0000-7590-3501 surname: Vorlaufer fullname: Vorlaufer, Jakob organization: Institute of Science and Technology Austria – sequence: 7 givenname: Christoph orcidid: 0000-0003-1216-9105 surname: Sommer fullname: Sommer, Christoph organization: Institute of Science and Technology Austria – sequence: 8 givenname: Caroline surname: Kreuzinger fullname: Kreuzinger, Caroline organization: Institute of Science and Technology Austria – sequence: 9 givenname: Bárbara surname: Oliveira fullname: Oliveira, Bárbara organization: Institute of Science and Technology Austria – sequence: 10 givenname: Alban surname: Cenameri fullname: Cenameri, Alban organization: Institute of Science and Technology Austria – sequence: 11 givenname: Gaia surname: Novarino fullname: Novarino, Gaia organization: Institute of Science and Technology Austria – sequence: 12 givenname: Viren orcidid: 0000-0003-1488-3505 surname: Jain fullname: Jain, Viren organization: Google Research – sequence: 13 givenname: Johann G. orcidid: 0000-0001-8559-3973 surname: Danzl fullname: Danzl, Johann G. email: johann.danzl@ista.ac.at organization: Institute of Science and Technology Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40335689$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctOJCEUJRMnY_v4ARemlm5wLhQU1MoY4yvTyWzGNaEoaDFV0EKVSf_90LYa3bi6uTmPe3POAdoLMViETgicE6jl78wIlw0GyjHIVnJMfqAFYaLBrJFiDy0AqCxQ3eyjg5yfAIATwX6hfQZ1zRvZLtCfpV89Tnj0JsVs4nqDO51tX5kYgjVTLECVbNnylGYz-Riq6KpRj6MevA5Vl7QP1eRznu0R-un0kO3x2zxEDzfX_67u8PLv7f3V5RIbBjDhBojgRoJkpu8EcCq1FM6Y1oneCei47jWhrLNd7QTVBKjmHQcnSUu506w-RBc73_XcjbY3NkxJD2qd_KjTRkXt1Vck-Ee1ii-K0BKYEFuHszeHFJ9nmyc1-mzsMOhg45xVTYGUX9u2LdTTz8c-rrxHWAh0R9gmmJN1HxQCatuT2vWkSk_qtSdFiqjeiXIhh5VN6inOKZTUvlP9B0xJlzQ |
Cites_doi | 10.1016/j.cell.2020.08.010 10.1242/bio.060113 10.1038/s41586-020-03134-2 10.1101/2022.04.04.486901 10.15479/AT:ISTA:18697 10.1038/s41596-018-0117-3 10.1038/s41467-022-31752-z 10.1016/j.cub.2024.04.043 10.1038/s41587-023-01911-8 10.1038/nbt.3641 10.7554/eLife.73775 10.1038/s41551-022-00912-3 10.7554/eLife.08206 10.1038/nmeth.3833 10.1038/s41586-025-08790-w 10.1038/s41592-023-01936-6 10.7554/eLife.05793 10.1038/s41467-020-18422-8 10.1016/j.cell.2018.02.007 10.1002/advs.201901673 10.7554/eLife.10778 10.1038/nrm.2017.71 10.1038/2210 10.1109/ISBI.2016.7493463 10.7554/eLife.65482 10.1038/s41586-019-1049-y 10.7554/eLife.57443 10.15252/embr.201845836 10.1038/nbt.3625 10.1038/nature12107 10.1126/science.aat5691 10.1126/science.aay3134 10.7554/eLife.63392 10.1016/j.neuron.2010.08.014 10.1073/pnas.97.15.8206 10.1038/s41598-018-22297-7 10.1038/s41592-018-0177-x 10.5281/ZENODO.5573294 10.1016/S1361-8415(98)80022-4 10.1038/s41586-024-07765-7 10.1038/s41586-024-07558-y 10.1016/j.cell.2022.07.026 10.1038/s41592-018-0049-4 10.1126/science.adk4858 10.1016/j.cell.2015.06.054 10.1016/j.conb.2018.04.030 10.1038/s41592-020-01005-2 10.5281/zenodo.10534541 10.1126/science.1260088 10.1038/nmeth.4261 10.1126/sciadv.aba4542 10.1126/science.aax2656 10.1126/science.abo0924 10.1038/s41467-020-17523-8 10.1126/science.add9330 10.1016/j.neuron.2010.11.021 10.1038/s41587-022-01546-1 10.1371/journal.pone.0291506 10.1038/nbt.4281 10.1038/s41592-018-0111-2 10.1126/science.1232251 10.1038/s41467-024-50411-z |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/s41586-025-08985-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 410 |
ExternalDocumentID | PMC12158774 40335689 10_1038_s41586_025_08985_1 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH ABDQB ABFSG ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMFV ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AEIIB AENEX AEZWR AFANA AFBBN AFFNX AFHIU AFLOW AFRAH AFSHS AGAYW AGHSJ AGSOS AHMBA AHSBF AHWEU AIDUJ AIXLP ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NAPCQ NEPJS NFIDA NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TN5 TSG TWZ U5U UKR UMD UQL VVN WH7 X7M XIH XKW XZL Y6R YAE YFH YJ6 YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~88 ~KM AAYXX ACSTC CITATION TEORI .-4 .GJ .HR 00M 08P 0WA 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 53G 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AARCD AAVBQ ABAWZ ABDBF ABDPE ABEFU ABJCF ABNNU ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CGR CUY CVF D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD TUS UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~7V ~8M ~G0 7X8 AFKWF AGSTI 5PM |
ID | FETCH-LOGICAL-c400t-60175c8084cdb70528a87fcc9f7df70b5ada124beb3f72a102a5b50f81925fa43 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:26:19 EDT 2025 Fri Sep 05 17:13:59 EDT 2025 Mon Jul 21 05:36:07 EDT 2025 Tue Aug 05 12:13:38 EDT 2025 Fri Jun 13 02:20:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8067 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-60175c8084cdb70528a87fcc9f7df70b5ada124beb3f72a102a5b50f81925fa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0000-7590-3501 0000-0003-1216-9105 0000-0003-1488-3505 0000-0001-8559-3973 0000-0002-3480-2744 0000-0003-0983-0492 |
OpenAccessLink | https://www.nature.com/articles/s41586-025-08985-1 |
PMID | 40335689 |
PQID | 3201400999 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12158774 proquest_miscellaneous_3201400999 pubmed_primary_40335689 crossref_primary_10_1038_s41586_025_08985_1 springer_journals_10_1038_s41586_025_08985_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-12 |
PublicationDateYYYYMMDD | 2025-06-12 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | KA Fulton (8985_CR12) 2021; 10 JH-C Lin (8985_CR54) 1998; 1 S Loomba (8985_CR10) 2022; 377 8985_CR8 T Fang (8985_CR11) 2018; 15 S-H Sheu (8985_CR49) 2022; 185 LK Scheffer (8985_CR5) 2020; 9 D Sarkar (8985_CR29) 2022; 6 TJ Chozinski (8985_CR39) 2016; 13 LF Abbott (8985_CR55) 2020; 182 8985_CR61 8985_CR2 J-B Chang (8985_CR28) 2017; 14 Y-G Park (8985_CR36) 2018; 37 S Truckenbrodt (8985_CR23) 2018; 19 X Wang (8985_CR57) 2018; 361 8985_CR65 8985_CR63 8985_CR68 8985_CR67 8985_CR66 S Alon (8985_CR56) 2021; 371 T Sapir (8985_CR51) 2022; 13 A Motta (8985_CR47) 2019; 366 TM Bartol Jr (8985_CR44) 2015; 4 D Sun (8985_CR62) 2021; 18 C Ounkomol (8985_CR46) 2018; 15 A Shapson-Coe (8985_CR9) 2024; 384 N Kasthuri (8985_CR1) 2015; 162 SJ Sahl (8985_CR15) 2017; 18 8985_CR32 CM Ott (8985_CR50) 2024; 34 JM Michalska (8985_CR21) 2024; 42 S Holler (8985_CR14) 2021; 591 JR Anderson (8985_CR53) 2011; 17 JG White (8985_CR4) 1986; 314 J Kornfeld (8985_CR3) 2018; 50 M Januszewski (8985_CR42) 2018; 15 Y Mishchenko (8985_CR43) 2010; 67 T Ku (8985_CR22) 2016; 34 M Pallotto (8985_CR35) 2015; 4 K Xu (8985_CR41) 2013; 339 A Klimas (8985_CR26) 2023; 41 A Dani (8985_CR45) 2010; 68 S Dorkenwald (8985_CR7) 2024; 634 HE Park (8985_CR27) 2019; 6 C Mao (8985_CR31) 2020; 6 G Wang (8985_CR59) 2018; 8 FY Shen (8985_CR17) 2020; 11 8985_CR40 8985_CR48 TA Klar (8985_CR18) 2000; 97 K Chung (8985_CR34) 2013; 497 C-HL Eng (8985_CR58) 2019; 568 S Truckenbrodt (8985_CR24) 2019; 14 P Velicky (8985_CR20) 2023; 20 N Korogod (8985_CR33) 2015; 4 BR Lee (8985_CR60) 2021; 10 PW Tillberg (8985_CR38) 2016; 34 X Han (8985_CR13) 2024; 15 F Chen (8985_CR16) 2015; 347 HG Damstra (8985_CR25) 2022; 11 F Mastropasqua (8985_CR52) 2023; 12 Y Cui (8985_CR37) 2023; 18 J-P Thirion (8985_CR64) 1998; 2 M Winding (8985_CR6) 2023; 379 J Tønnesen (8985_CR19) 2018; 172 O M’Saad (8985_CR30) 2020; 11 |
References_xml | – volume: 182 start-page: 1372 year: 2020 ident: 8985_CR55 publication-title: Cell doi: 10.1016/j.cell.2020.08.010 – volume: 12 year: 2023 ident: 8985_CR52 publication-title: Biol. Open doi: 10.1242/bio.060113 – volume: 591 start-page: 111 year: 2021 ident: 8985_CR14 publication-title: Nature doi: 10.1038/s41586-020-03134-2 – ident: 8985_CR32 doi: 10.1101/2022.04.04.486901 – ident: 8985_CR61 doi: 10.15479/AT:ISTA:18697 – volume: 14 start-page: 832 year: 2019 ident: 8985_CR24 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0117-3 – volume: 13 year: 2022 ident: 8985_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31752-z – volume: 34 start-page: 2418 year: 2024 ident: 8985_CR50 publication-title: Curr. Biol. doi: 10.1016/j.cub.2024.04.043 – volume: 42 start-page: 1051 year: 2024 ident: 8985_CR21 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01911-8 – volume: 34 start-page: 973 year: 2016 ident: 8985_CR22 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3641 – volume: 11 year: 2022 ident: 8985_CR25 publication-title: eLife doi: 10.7554/eLife.73775 – volume: 6 start-page: 1057 year: 2022 ident: 8985_CR29 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-022-00912-3 – volume: 4 year: 2015 ident: 8985_CR35 publication-title: eLife doi: 10.7554/eLife.08206 – volume: 13 start-page: 485 year: 2016 ident: 8985_CR39 publication-title: Nat. Methods doi: 10.1038/nmeth.3833 – ident: 8985_CR8 doi: 10.1038/s41586-025-08790-w – volume: 20 start-page: 1256 year: 2023 ident: 8985_CR20 publication-title: Nat. Methods doi: 10.1038/s41592-023-01936-6 – volume: 4 year: 2015 ident: 8985_CR33 publication-title: eLife doi: 10.7554/eLife.05793 – volume: 11 year: 2020 ident: 8985_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18422-8 – volume: 172 start-page: 1108 year: 2018 ident: 8985_CR19 publication-title: Cell doi: 10.1016/j.cell.2018.02.007 – ident: 8985_CR65 – volume: 17 start-page: 355 year: 2011 ident: 8985_CR53 publication-title: Mol. Vis. – volume: 6 start-page: 1901673 year: 2019 ident: 8985_CR27 publication-title: Adv. Sci. doi: 10.1002/advs.201901673 – volume: 4 year: 2015 ident: 8985_CR44 publication-title: eLife doi: 10.7554/eLife.10778 – volume: 18 start-page: 685 year: 2017 ident: 8985_CR15 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.71 – volume: 1 start-page: 494 year: 1998 ident: 8985_CR54 publication-title: Nat. Neurosci. doi: 10.1038/2210 – ident: 8985_CR63 doi: 10.1109/ISBI.2016.7493463 – volume: 314 start-page: 1 year: 1986 ident: 8985_CR4 publication-title: Phil. Trans. R. Soc. B – volume: 10 year: 2021 ident: 8985_CR60 publication-title: eLife doi: 10.7554/eLife.65482 – volume: 568 start-page: 235 year: 2019 ident: 8985_CR58 publication-title: Nature doi: 10.1038/s41586-019-1049-y – volume: 9 year: 2020 ident: 8985_CR5 publication-title: eLife doi: 10.7554/eLife.57443 – volume: 19 start-page: e45836 year: 2018 ident: 8985_CR23 publication-title: EMBO Rep. doi: 10.15252/embr.201845836 – volume: 34 start-page: 987 year: 2016 ident: 8985_CR38 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3625 – volume: 497 start-page: 332 year: 2013 ident: 8985_CR34 publication-title: Nature doi: 10.1038/nature12107 – volume: 361 start-page: eaat5691 year: 2018 ident: 8985_CR57 publication-title: Science doi: 10.1126/science.aat5691 – volume: 366 year: 2019 ident: 8985_CR47 publication-title: Science doi: 10.1126/science.aay3134 – volume: 10 year: 2021 ident: 8985_CR12 publication-title: eLife doi: 10.7554/eLife.63392 – volume: 67 start-page: 1009 year: 2010 ident: 8985_CR43 publication-title: Neuron doi: 10.1016/j.neuron.2010.08.014 – volume: 97 start-page: 8206 year: 2000 ident: 8985_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.15.8206 – volume: 8 start-page: 4847 year: 2018 ident: 8985_CR59 publication-title: Sci. Rep. doi: 10.1038/s41598-018-22297-7 – volume: 15 start-page: 1029 year: 2018 ident: 8985_CR11 publication-title: Nat. Methods doi: 10.1038/s41592-018-0177-x – ident: 8985_CR67 doi: 10.5281/ZENODO.5573294 – volume: 2 start-page: 243 year: 1998 ident: 8985_CR64 publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(98)80022-4 – ident: 8985_CR48 doi: 10.1038/s41586-024-07765-7 – volume: 634 start-page: 124 year: 2024 ident: 8985_CR7 publication-title: Nature doi: 10.1038/s41586-024-07558-y – volume: 185 start-page: 3390 year: 2022 ident: 8985_CR49 publication-title: Cell doi: 10.1016/j.cell.2022.07.026 – volume: 15 start-page: 605 year: 2018 ident: 8985_CR42 publication-title: Nat. Methods doi: 10.1038/s41592-018-0049-4 – volume: 384 year: 2024 ident: 8985_CR9 publication-title: Science doi: 10.1126/science.adk4858 – volume: 162 start-page: 648 year: 2015 ident: 8985_CR1 publication-title: Cell doi: 10.1016/j.cell.2015.06.054 – volume: 50 start-page: 261 year: 2018 ident: 8985_CR3 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.04.030 – volume: 18 start-page: 107 year: 2021 ident: 8985_CR62 publication-title: Nat. Methods doi: 10.1038/s41592-020-01005-2 – ident: 8985_CR40 doi: 10.5281/zenodo.10534541 – volume: 347 start-page: 543 year: 2015 ident: 8985_CR16 publication-title: Science doi: 10.1126/science.1260088 – volume: 14 start-page: 593 year: 2017 ident: 8985_CR28 publication-title: Nat. Methods doi: 10.1038/nmeth.4261 – volume: 6 year: 2020 ident: 8985_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4542 – volume: 371 year: 2021 ident: 8985_CR56 publication-title: Science doi: 10.1126/science.aax2656 – ident: 8985_CR68 doi: 10.1126/science.abo0924 – volume: 11 year: 2020 ident: 8985_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17523-8 – volume: 379 year: 2023 ident: 8985_CR6 publication-title: Science doi: 10.1126/science.add9330 – volume: 377 year: 2022 ident: 8985_CR10 publication-title: Science doi: 10.1126/science.abo0924 – volume: 68 start-page: 843 year: 2010 ident: 8985_CR45 publication-title: Neuron doi: 10.1016/j.neuron.2010.11.021 – volume: 41 start-page: 858 year: 2023 ident: 8985_CR26 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01546-1 – ident: 8985_CR2 – volume: 18 start-page: e0291506 year: 2023 ident: 8985_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0291506 – volume: 37 start-page: 73 year: 2018 ident: 8985_CR36 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4281 – volume: 15 start-page: 917 year: 2018 ident: 8985_CR46 publication-title: Nat. Methods doi: 10.1038/s41592-018-0111-2 – volume: 339 start-page: 452 year: 2013 ident: 8985_CR41 publication-title: Science doi: 10.1126/science.1232251 – volume: 15 year: 2024 ident: 8985_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-024-50411-z – ident: 8985_CR66 |
SSID | ssj0005174 |
Score | 2.5004728 |
Snippet | The information-processing capability of the brain’s cellular network depends on the physical wiring pattern between neurons and their molecular and functional... The information-processing capability of the brain's cellular network depends on the physical wiring pattern between neurons and their molecular and functional... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 398 |
SubjectTerms | 13/1 13/51 14/19 14/34 14/63 631/1647/245/2221 631/1647/328/2238 631/378/3920 631/378/87 639/624/1107/328/1978 64/110 64/60 Animals Brain - anatomy & histology Brain - cytology Brain - diagnostic imaging Connectome - methods Deep Learning Female Humanities and Social Sciences Hydrogels - chemistry Male Mice Microscopy - methods multidisciplinary Neurons - cytology Science Science (multidisciplinary) Synapses - metabolism |
Title | Light-microscopy-based connectomic reconstruction of mammalian brain tissue |
URI | https://link.springer.com/article/10.1038/s41586-025-08985-1 https://www.ncbi.nlm.nih.gov/pubmed/40335689 https://www.proquest.com/docview/3201400999 https://pubmed.ncbi.nlm.nih.gov/PMC12158774 |
Volume | 642 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kRfAiWl_1RQQPigbT3Y2ZPdpiEV8nC72FTXYXPXQr7Hrw3ztJdyutInjeEMLMJPPN5psvAKeRimKMewHPRJzyiFIMN1loeCqFRRXHJvdq-0_P13ej6H4sxysQNL0wnrTvJS39Md2ww65KSjTo6LKSC4xRcqp42qhC6aJ6cD34pnUsKS_XjTIixF_mWExGPxDmT6Lk0m2pT0LDDViv0SO7ma13E1ayogOrnsVpyw5s1ju1ZGe1nPT5Fjw8eq2QiWPeuR6UT-4yV8qso7jYynUlM18Wz6Vk2TRnk2Qy8b9AmHGPSLDKO2gbRsPbl8Edr59Q4JY2Z8Wp3FLSosDIpkYJGWCCKrc2zlWaK2FkkiaU4Q2V1LkKEkIbiTRS5E4mTeZJFO5Aq5gW2R6wGK0hbJlFhko2FQbGUf_ofJA9IzNM0y5cNLbU7zOlDO1vuEPUM8trsrz2lte9Lpw05tYU0O6WIimy6Uepw8AVfQ64dmF3Zv75fJEIyeNIX3DBMfMBTix78Uvx9upFs52KBhLW7cJl40Ndb9fyj3Xu_2_4AawFPr7c40aH0CLHZUeEWipzDO2bYb__fOzD9QvBy-aj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED5CRtleytJ2W7q11aAPHZuYYlvR-bGElnRN8tRC3oQl22wPcQpOH_rve6fYGWnGoM8WQtxJuu98330COE9MkmI6iGSh0lwmFGKkK2Inc608mjR1ZVDbn86G4_vk11zPOxC1vTCBtB8kLcM13bLDftYUaJDpsloqTFFLynjeIIu_c4F2OPpL63ihvNw0yqgY_zHHdjDaQZi7RMkX1dIQhK7fw36DHsXler096BTVAewFFqevD6DXnNRaXDRy0t8O4XYStEIWzLzjHpQnyZErF54pLn7FXckipMUbKVmxLMUiWyzCLxDh-BEJsQoOOoL766u70Vg2TyhIT4dzJSndMtqjwsTnzigdYYam9D4tTV4a5XSWZxThHaXUpYkyQhuZdlqVLJOmyyyJP0C3WlbFJxApekfYskgcpWwmjhxT_-h-0AOnC8zzPnxvbWkf1koZNlS4Y7Rry1uyvA2Wt4M-fG3NbWlDc5Uiq4rlY23jiJM-Bq59-Lg2_2a-RMWxHiJ9wS3HbAawWPb2l-rP7yCazSoaSFi3Dz9aH9rmuNb_Wefx64afwdvx3XRiJzez28_wLgp7jR86-gJdcmJxQghm5U7Dln0Gf4DoFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbhMxEB2lQa24IJoWSClgJA6g1sLZXcezRxSICglRD43Um7W21yqHbJA2HPj7jp3dVEkqJM62LGvG9ryx3zwDfMhUlmM-SHgpcsczCjHclKnhTgqLKs-Nj2r7P2fDq3n241bedmDY1sJE0n6UtIzHdMsO-1xToMFAl5VcYI6S0wnj_AE8QQqJIekaDUcP1I4d9eWmWEak-Mg42wFpD2XukyV3XkxjIBo_h2cNgmRf1nM-hk5Z9eAwMjlt3YPjZrfW7GMjKf3pBCbTqBeyCOy7UIfyl4fo5ZgNNBe7CpXJLKbGGzlZtvRsUSwW8RqEmfCRBFtFJ53CfPztZnTFm28UuKUNuuKUcilpUWBmnVFCJlig8tbmXjmvhJGFKyjKG0qrvUoKQhyFNFL4IJUmfZGlL6BbLavyFbAcrSF8WWaG0jaVJibQ_-iMkAMjS3SuDxetLfXvtVqGjq_cKeq15TVZXkfL60Ef3rfm1rSow0tFUZXLP7VOk5D4BfDah5dr82_Gy0SayiFSC245ZtMhCGZvt1S_7qJwdlDSQMK7fbhsfaibLVv_Y55n_9f9HRxdfx3r6ffZ5DU8TeJSC38dnUOXfFi-IRCzMm_jir0H3CvpHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-microscopy-based+connectomic+reconstruction+of+mammalian+brain+tissue&rft.jtitle=Nature+%28London%29&rft.au=Tavakoli%2C+Mojtaba+R.&rft.au=Lyudchik%2C+Julia&rft.au=Januszewski%2C+Micha%C5%82&rft.au=Vistunou%2C+Vitali&rft.date=2025-06-12&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=642&rft.issue=8067&rft.spage=398&rft.epage=410&rft_id=info:doi/10.1038%2Fs41586-025-08985-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_025_08985_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |