Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm

This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessi...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 33; no. 23; pp. 16627 - 16639
Main Authors Solans, Virginie, Rochman, Dimitri, Brazell, Christian, Vasiliev, Alexander, Ferroukhi, Hakim, Pautz, Andreas
Format Journal Article
LanguageEnglish
Published London Springer London 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
1433-3058
DOI10.1007/s00521-021-06258-2

Cover

Abstract This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor k eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k eff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister k eff and DH values. The k eff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k eff quantities and (2) to minimize DH and k eff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases.
AbstractList This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor k $$_{\mathrm{eff}}$$ eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k $$_{\mathrm{eff}}$$ eff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister k $$_{\mathrm{eff}}$$ eff and DH values. The k $$_{\mathrm{eff}}$$ eff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k $$_{\mathrm{eff}}$$ eff quantities and (2) to minimize DH and k $$_{\mathrm{eff}}$$ eff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases.
This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor keff. In the present approach, a neural network is trained as a surrogate model to evaluate the keff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister keff and DH values. The keff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and keff quantities and (2) to minimize DH and keff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases.
This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor k eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k eff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister k eff and DH values. The k eff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k eff quantities and (2) to minimize DH and k eff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases.
This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor k eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k eff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister k eff and DH values. The k eff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k eff quantities and (2) to minimize DH and k eff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases.
Author Vasiliev, Alexander
Solans, Virginie
Pautz, Andreas
Ferroukhi, Hakim
Rochman, Dimitri
Brazell, Christian
Author_xml – sequence: 1
  givenname: Virginie
  orcidid: 0000-0001-6839-3435
  surname: Solans
  fullname: Solans, Virginie
  email: virginie.solans@psi.ch
  organization: Section of Physics, École polytechnique fédérale de Lausanne (EPFL), Paul Scherrer Institute, Uppsala University
– sequence: 2
  givenname: Dimitri
  surname: Rochman
  fullname: Rochman, Dimitri
  organization: Paul Scherrer Institute
– sequence: 3
  givenname: Christian
  surname: Brazell
  fullname: Brazell, Christian
  organization: Texas A & M University
– sequence: 4
  givenname: Alexander
  surname: Vasiliev
  fullname: Vasiliev, Alexander
  organization: Paul Scherrer Institute
– sequence: 5
  givenname: Hakim
  surname: Ferroukhi
  fullname: Ferroukhi, Hakim
  organization: Paul Scherrer Institute
– sequence: 6
  givenname: Andreas
  surname: Pautz
  fullname: Pautz, Andreas
  organization: Section of Physics, École polytechnique fédérale de Lausanne (EPFL), Paul Scherrer Institute
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-468155$$DView record from Swedish Publication Index
BookMark eNqNkUtv3SAQhVGVSr15_IGskLqtWwwG42WUviJFyqbtFs3F2CXlgstDV_n3xXGUSl1EXQwjxPngzOEUnfjgDUKXLXnfEtJ_SIRw2jZkLUG5bOgrtGs7xhpGuDxBOzJ061HH3qDTlO4JIZ2QfIfU3ZLtwSbINngcJlySGbEv2hmIeCrGYQ3epmwidgFG6-cqWVfA3pQIrrZ8DPEXBj_i2dSd1RjcHKLNPw_n6PUELpmLp36Gvn_-9O36a3N79-Xm-uq20R0hueHABjHQXos943ropegH3XXjxHgP0kgGEwgtRzNRzkboZb8ferrnQgrDqBnYGWLbvcUv8HAE59QS7QHig2qJWjNSW0aKrLVmpGil3m1UOpql7J-RAFZ9tD-uVIizKkXVrFrOq_ztJl9i-F1Myuo-lOjrXIry6l4MhK9W6KbSMaQUzfR_TuQ_kLb58VNyBOteRp9GT_UdP5v419UL1B8mK6na
CitedBy_id crossref_primary_10_1016_j_nucengdes_2022_112105
crossref_primary_10_1080_00295639_2024_2306707
crossref_primary_10_1016_j_anucene_2023_109941
crossref_primary_10_32390_ksmer_2024_61_5_419
crossref_primary_10_1016_j_anucene_2022_109452
crossref_primary_10_1016_j_applthermaleng_2024_122836
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124290
crossref_primary_10_20935_AcadEng7385
crossref_primary_10_1016_j_anucene_2024_110892
crossref_primary_10_1016_j_anucene_2022_109450
crossref_primary_10_1016_j_engappai_2023_107484
crossref_primary_10_1016_j_nucengdes_2020_110897
crossref_primary_10_1016_j_nucengdes_2025_113899
crossref_primary_10_1016_j_scitotenv_2022_157526
crossref_primary_10_1016_j_pnucene_2023_104799
crossref_primary_10_1016_j_pnucene_2025_105697
Cites_doi 10.1016/S0306-4549(02)00092-0
10.1051/epjconf/201714609011
10.1016/j.anucene.2017.07.006
10.1007/s00521-012-1023-1
10.1016/j.jhazmat.2018.05.041
10.1016/j.anucene.2019.01.047
10.1016/j.anucene.2008.06.004
10.3390/designs3030037
10.1016/j.nucengdes.2019.110479
10.3390/ma12030494
10.1051/epjn/2018005
10.1016/j.nucengdes.2017.04.036
10.1007/s00521-016-2293-9
10.1016/j.anucene.2014.08.024
10.1016/j.nucengdes.2020.110897
10.13182/NSE10-111
10.13182/NSE163-183
10.1007/s005210200007
10.1080/19942060.2019.1649196
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ADTOC
UNPAY
DOI 10.1007/s00521-021-06258-2
DatabaseName SpringerLink Open Access Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Advanced Technologies & Aerospace Collection


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Geology
EISSN 1433-3058
EndPage 16639
ExternalDocumentID 10.1007/s00521-021-06258-2
oai_DiVA_org_uu_468155
10_1007_s00521_021_06258_2
GrantInformation_xml – fundername: PSI - Paul Scherrer Institute
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c400t-5a396927c6b35c978679c44df357a8e83afa6c8def253da787b972b5686e32e93
IEDL.DBID C6C
ISSN 0941-0643
1433-3058
IngestDate Sun Oct 26 03:27:06 EDT 2025
Tue Sep 09 22:47:58 EDT 2025
Fri Jul 25 06:28:09 EDT 2025
Wed Oct 01 02:26:07 EDT 2025
Thu Apr 24 23:02:14 EDT 2025
Fri Feb 21 02:47:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Genetic algorithm
High-level nuclear waste
Neural network
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-5a396927c6b35c978679c44df357a8e83afa6c8def253da787b972b5686e32e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6839-3435
OpenAccessLink https://doi.org/10.1007/s00521-021-06258-2
PQID 2592769059
PQPubID 2043988
PageCount 13
ParticipantIDs unpaywall_primary_10_1007_s00521_021_06258_2
swepub_primary_oai_DiVA_org_uu_468155
proquest_journals_2592769059
crossref_primary_10_1007_s00521_021_06258_2
crossref_citationtrail_10_1007_s00521_021_06258_2
springer_journals_10_1007_s00521_021_06258_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References BaranaOManduchiGApplication of neural networks for the measurement of electronic temperature in nuclear fusion experimentsNeural Comput Appl20021035110.1007/s005210200007
(2009) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 09–06
VlassopoulosEVolmertBPautzALogistics optimization code for spent fuel assembly loading into final disposal canistersNucl Eng Design201732524610.1016/j.nucengdes.2017.04.036
(2016) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 16–02
SolansVRochmanDVasilievAFerroukhiHPautzALoading optimization for Swiss used nuclear fuel assemblies into final disposal canistersNucl Eng Design202037011089710.1016/j.nucengdes.2020.110897
ZerovnikGSnojLRavnikMOptimization of spent nuclear fuel filling in canisters for deep repositoryNucl Sci Eng200916318310.13182/NSE163-183
Rhodes J, Smith K, Lee D (2006) CASMO-5 development and applications proceedings of the PHYSOR-2006 conference, ANS topical meeting on reactor physics, Vancouver, BC, Canada, September 10–14, Vancouver, BC, Canada, p B144
GhalandariMZiamolkiAMosaviAShamshirbandSChauKWBornassiSAeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experimentsEng Appl Comput Fluid Mech201913189290410.1080/19942060.2019.1649196
LerayOFerroukhiHHursinMVasilievARochmanDMethodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cyclesAnn Nucl Energy201711054710.1016/j.anucene.2017.07.006
Amann F, Löw S, Perras M (2015) Assessment of geomechanical properties, maximum depth below ground surface and EDZ impact on long term safety”, ETH Zürich, October 29, , ENSI Report No. 33/460
NissanEAn overview of AI methods for in-core fuel management: tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuelDesigns201933710.3390/designs3030037
DiGiovine AS, Rhodes III JD, Smith KS, Ver Planck DM and Umbarger JA (1995) SIMULATE-3 users manual, Studsvik/SOA-95/15 Studsvik
(2015) Operational and regulatory aspects of criticality safety, OECD nuclear energy agency NEA/CSNI/R(2016)3
TerziSKaraşahinMGökovaSAsphalt concrete stability estimation from non-destructive test methods with artificial neural networksNeural Comput Appl20132398910.1007/s00521-012-1023-1
LeppänenJThe Serpent Monte Carlo code: status, development and applications in 2013Ann Nucl Energy20158214210.1016/j.anucene.2014.08.024
Herrero JJ, Vasiliev A, Pecchia M, Rochman D, Ferroukhi H, Jonhson L and Caruso S (2017) Criticality safety assessment for geological disposal of spent fuel using PSI BUCSS-R methodology, NAGRA technical report NAB 17–23
SimeonovTWempleCUpdate and evaluation of decay data for spent nuclear fuel analysesEPJ Web Conf20171460901110.1051/epjconf/201714609011
Petersen GM (2016) Algorithms and methods for optimizing the spent nuclear fuel allocation strategy. PhD dissertation, University of Tennessee, TN, USA
RantaTCameronFHeuristic methods for assigning spent nuclear fuel assemblies to canisters for final disposalNucl Sci Eng20121714110.13182/NSE10-111
(2006) Optimization strategies for cask design and container loading in long term spent fuel storage, IAEA technical report TECDOC-1523. IAEA, Vienna, Austria
Ferroukhi H , Hofer K, Hollard JM, Vasiliev A, Zimmermann MA (2008) Core modelling and analysis of the swiss nuclear power plants for qualified R&D applications. In: Proceedings of international conference on the physics of reactors, PHYSOR’08, September 14–19, Interlaken, Switzerland (CD-ROM,FP239)
(2015) Spent nuclear fuel management in Switzerland. In: Perspective for final disposal international conference on management of spent nuclear fuel from nuclear power reactors: an integrated approach to the back end of the fuel cycle, IAEA, Vienna, June 15–19
Fernandes FeriaEPereiraCNuclear fuel loading pattern optimisation using a neural networkAnn Nucl Energy20033060310.1016/S0306-4549(02)00092-0
(2017b) MATLAB and deep learning toolbox release, The MathWorks Inc. Natick, Massachusetts, United States
RochmanDVasilievADokhaneAFerroukhiHUncertainties for Swiss LWR spent nuclear fuels due to nuclear dataEPJ Nucl Sci Technol20184610.1051/epjn/2018005
Gomez-FernandezMHigleyKTakuhiroAWelterKWongWKYangHStatus of research and development of learning-based approaches in nuclear science and engineering: a reviewNucl Eng Design202035911047910.1016/j.nucengdes.2019.110479
RochmanDVasilievAFerroukhiHPecchiaMConsistent criticality and radiation studies of Swiss spent nuclear fuel: the CS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CS}_2$$\end{document}M approachJ Hazard Mater201835738410.1016/j.jhazmat.2018.05.041
(2008) Sectoral Plan for deep geological repositories—conceptual Part 2008, swiss federal office of energy, Switzerland, available here
PecchiaMFerroukhiHVasilievAGrimmPStudies of intra-pin power distributions in operated BWR fuel assemblies using MCNP with a cycle check-up methodologyAnn Nucl Energy20191296710.1016/j.anucene.2019.01.047
VasilievAHerreroJPecchiaMRochmanDFerroukhiHCarusoSPreliminary assessment of criticality safety constraints for swiss spent nuclear fuel loading in disposal canistersMaterials20191249410.3390/ma12030494
ShafaeiMKisiOPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Applic2017281510.1007/s00521-016-2293-9
(2011) Nuclear criticality risks and their prevention in plants and laboratories, IRSN report DSU/SEC/T/2010-334, available here
KoningARochmanDTowards sustainable nuclear energy: putting nuclear physics to workAnn Nucl Energy200835202410.1016/j.anucene.2008.06.004
E Fernandes Feria (6258_CR18) 2003; 30
D Rochman (6258_CR28) 2018; 4
O Leray (6258_CR22) 2017; 110
J Leppänen (6258_CR29) 2015; 82
M Pecchia (6258_CR30) 2019; 129
S Terzi (6258_CR15) 2013; 23
O Barana (6258_CR16) 2002; 10
A Vasiliev (6258_CR6) 2019; 12
E Nissan (6258_CR19) 2019; 3
G Zerovnik (6258_CR11) 2009; 163
6258_CR13
6258_CR10
A Koning (6258_CR33) 2008; 35
6258_CR31
M Shafaei (6258_CR14) 2017; 28
6258_CR8
6258_CR7
E Vlassopoulos (6258_CR32) 2017; 325
6258_CR9
6258_CR2
6258_CR1
T Ranta (6258_CR12) 2012; 171
6258_CR4
M Gomez-Fernandez (6258_CR20) 2020; 359
V Solans (6258_CR21) 2020; 370
6258_CR25
6258_CR3
6258_CR23
6258_CR5
6258_CR24
T Simeonov (6258_CR26) 2017; 146
M Ghalandari (6258_CR17) 2019; 13
D Rochman (6258_CR27) 2018; 357
References_xml – reference: Fernandes FeriaEPereiraCNuclear fuel loading pattern optimisation using a neural networkAnn Nucl Energy20033060310.1016/S0306-4549(02)00092-0
– reference: RochmanDVasilievADokhaneAFerroukhiHUncertainties for Swiss LWR spent nuclear fuels due to nuclear dataEPJ Nucl Sci Technol20184610.1051/epjn/2018005
– reference: SolansVRochmanDVasilievAFerroukhiHPautzALoading optimization for Swiss used nuclear fuel assemblies into final disposal canistersNucl Eng Design202037011089710.1016/j.nucengdes.2020.110897
– reference: LerayOFerroukhiHHursinMVasilievARochmanDMethodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cyclesAnn Nucl Energy201711054710.1016/j.anucene.2017.07.006
– reference: Amann F, Löw S, Perras M (2015) Assessment of geomechanical properties, maximum depth below ground surface and EDZ impact on long term safety”, ETH Zürich, October 29, , ENSI Report No. 33/460
– reference: (2011) Nuclear criticality risks and their prevention in plants and laboratories, IRSN report DSU/SEC/T/2010-334, available here
– reference: GhalandariMZiamolkiAMosaviAShamshirbandSChauKWBornassiSAeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experimentsEng Appl Comput Fluid Mech201913189290410.1080/19942060.2019.1649196
– reference: NissanEAn overview of AI methods for in-core fuel management: tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuelDesigns201933710.3390/designs3030037
– reference: (2006) Optimization strategies for cask design and container loading in long term spent fuel storage, IAEA technical report TECDOC-1523. IAEA, Vienna, Austria
– reference: Herrero JJ, Vasiliev A, Pecchia M, Rochman D, Ferroukhi H, Jonhson L and Caruso S (2017) Criticality safety assessment for geological disposal of spent fuel using PSI BUCSS-R methodology, NAGRA technical report NAB 17–23
– reference: (2015) Spent nuclear fuel management in Switzerland. In: Perspective for final disposal international conference on management of spent nuclear fuel from nuclear power reactors: an integrated approach to the back end of the fuel cycle, IAEA, Vienna, June 15–19
– reference: KoningARochmanDTowards sustainable nuclear energy: putting nuclear physics to workAnn Nucl Energy200835202410.1016/j.anucene.2008.06.004
– reference: BaranaOManduchiGApplication of neural networks for the measurement of electronic temperature in nuclear fusion experimentsNeural Comput Appl20021035110.1007/s005210200007
– reference: Rhodes J, Smith K, Lee D (2006) CASMO-5 development and applications proceedings of the PHYSOR-2006 conference, ANS topical meeting on reactor physics, Vancouver, BC, Canada, September 10–14, Vancouver, BC, Canada, p B144
– reference: TerziSKaraşahinMGökovaSAsphalt concrete stability estimation from non-destructive test methods with artificial neural networksNeural Comput Appl20132398910.1007/s00521-012-1023-1
– reference: Petersen GM (2016) Algorithms and methods for optimizing the spent nuclear fuel allocation strategy. PhD dissertation, University of Tennessee, TN, USA
– reference: DiGiovine AS, Rhodes III JD, Smith KS, Ver Planck DM and Umbarger JA (1995) SIMULATE-3 users manual, Studsvik/SOA-95/15 Studsvik
– reference: VasilievAHerreroJPecchiaMRochmanDFerroukhiHCarusoSPreliminary assessment of criticality safety constraints for swiss spent nuclear fuel loading in disposal canistersMaterials20191249410.3390/ma12030494
– reference: ZerovnikGSnojLRavnikMOptimization of spent nuclear fuel filling in canisters for deep repositoryNucl Sci Eng200916318310.13182/NSE163-183
– reference: (2015) Operational and regulatory aspects of criticality safety, OECD nuclear energy agency NEA/CSNI/R(2016)3
– reference: LeppänenJThe Serpent Monte Carlo code: status, development and applications in 2013Ann Nucl Energy20158214210.1016/j.anucene.2014.08.024
– reference: (2008) Sectoral Plan for deep geological repositories—conceptual Part 2008, swiss federal office of energy, Switzerland, available here
– reference: (2016) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 16–02
– reference: RantaTCameronFHeuristic methods for assigning spent nuclear fuel assemblies to canisters for final disposalNucl Sci Eng20121714110.13182/NSE10-111
– reference: Ferroukhi H , Hofer K, Hollard JM, Vasiliev A, Zimmermann MA (2008) Core modelling and analysis of the swiss nuclear power plants for qualified R&D applications. In: Proceedings of international conference on the physics of reactors, PHYSOR’08, September 14–19, Interlaken, Switzerland (CD-ROM,FP239)
– reference: RochmanDVasilievAFerroukhiHPecchiaMConsistent criticality and radiation studies of Swiss spent nuclear fuel: the CS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CS}_2$$\end{document}M approachJ Hazard Mater201835738410.1016/j.jhazmat.2018.05.041
– reference: Gomez-FernandezMHigleyKTakuhiroAWelterKWongWKYangHStatus of research and development of learning-based approaches in nuclear science and engineering: a reviewNucl Eng Design202035911047910.1016/j.nucengdes.2019.110479
– reference: ShafaeiMKisiOPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Applic2017281510.1007/s00521-016-2293-9
– reference: PecchiaMFerroukhiHVasilievAGrimmPStudies of intra-pin power distributions in operated BWR fuel assemblies using MCNP with a cycle check-up methodologyAnn Nucl Energy20191296710.1016/j.anucene.2019.01.047
– reference: SimeonovTWempleCUpdate and evaluation of decay data for spent nuclear fuel analysesEPJ Web Conf20171460901110.1051/epjconf/201714609011
– reference: VlassopoulosEVolmertBPautzALogistics optimization code for spent fuel assembly loading into final disposal canistersNucl Eng Design201732524610.1016/j.nucengdes.2017.04.036
– reference: (2009) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 09–06
– reference: (2017b) MATLAB and deep learning toolbox release, The MathWorks Inc. Natick, Massachusetts, United States
– ident: 6258_CR3
– volume: 30
  start-page: 603
  year: 2003
  ident: 6258_CR18
  publication-title: Ann Nucl Energy
  doi: 10.1016/S0306-4549(02)00092-0
– ident: 6258_CR1
– volume: 146
  start-page: 09011
  year: 2017
  ident: 6258_CR26
  publication-title: EPJ Web Conf
  doi: 10.1051/epjconf/201714609011
– ident: 6258_CR23
– ident: 6258_CR5
– volume: 110
  start-page: 547
  year: 2017
  ident: 6258_CR22
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2017.07.006
– ident: 6258_CR7
– ident: 6258_CR9
– ident: 6258_CR25
– ident: 6258_CR31
– volume: 23
  start-page: 989
  year: 2013
  ident: 6258_CR15
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1023-1
– volume: 357
  start-page: 384
  year: 2018
  ident: 6258_CR27
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.05.041
– volume: 129
  start-page: 67
  year: 2019
  ident: 6258_CR30
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2019.01.047
– ident: 6258_CR10
– volume: 35
  start-page: 2024
  year: 2008
  ident: 6258_CR33
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2008.06.004
– volume: 3
  start-page: 37
  year: 2019
  ident: 6258_CR19
  publication-title: Designs
  doi: 10.3390/designs3030037
– volume: 359
  start-page: 110479
  year: 2020
  ident: 6258_CR20
  publication-title: Nucl Eng Design
  doi: 10.1016/j.nucengdes.2019.110479
– volume: 12
  start-page: 494
  year: 2019
  ident: 6258_CR6
  publication-title: Materials
  doi: 10.3390/ma12030494
– volume: 4
  start-page: 6
  year: 2018
  ident: 6258_CR28
  publication-title: EPJ Nucl Sci Technol
  doi: 10.1051/epjn/2018005
– volume: 325
  start-page: 246
  year: 2017
  ident: 6258_CR32
  publication-title: Nucl Eng Design
  doi: 10.1016/j.nucengdes.2017.04.036
– ident: 6258_CR4
– ident: 6258_CR2
– volume: 28
  start-page: 15
  year: 2017
  ident: 6258_CR14
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-016-2293-9
– volume: 82
  start-page: 142
  year: 2015
  ident: 6258_CR29
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2014.08.024
– ident: 6258_CR24
– volume: 370
  start-page: 110897
  year: 2020
  ident: 6258_CR21
  publication-title: Nucl Eng Design
  doi: 10.1016/j.nucengdes.2020.110897
– ident: 6258_CR8
– volume: 171
  start-page: 41
  year: 2012
  ident: 6258_CR12
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE10-111
– volume: 163
  start-page: 183
  year: 2009
  ident: 6258_CR11
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE163-183
– ident: 6258_CR13
– volume: 10
  start-page: 351
  year: 2002
  ident: 6258_CR16
  publication-title: Neural Comput Appl
  doi: 10.1007/s005210200007
– volume: 13
  start-page: 892
  issue: 1
  year: 2019
  ident: 6258_CR17
  publication-title: Eng Appl Comput Fluid Mech
  doi: 10.1080/19942060.2019.1649196
SSID ssj0004685
Score 2.3830748
Snippet This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel...
SourceID unpaywall
swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16627
SubjectTerms Artificial Intelligence
Artificial neural networks
Assemblies
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Depletion
Genetic algorithm
Genetic algorithms
Geology
High-level nuclear waste
Image Processing and Computer Vision
Multiplication
Neural network
Neural networks
Nuclear fuels
Nuclear reactors
Nuclear safety
Optimization
Original Article
Pressurized water reactors
Probability and Statistics in Computer Science
Reactor cores
Reprocessing
Spent nuclear fuels
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlUKCAum1BPsAJIjZ27CQHhAq0VEgsCFHUm-XngpQmy3ajqv-esTfJlsuKgy952Jbnsz1jz3wD8AK3RJ17YRKuS4MGSu6TQoksKW05sRNjOY8kSV-m4uw8-3zBL7Zg2sfCBLfKfk2MC7VtTDgjf4NqOs3RlOPlu_mfJGSNCrerfQoN1aVWsG8jxdgd2KaBGWsE2-9Ppt--34qUjEk60aYJ_j4Z68JoYjBdOCHFp6GgUYD4-XerWuufw5XpQC96H-619VzdXKuqurU9nT6E3U6vJMcrIDyCLVfvwYM-ZwPppvAe3P0UU_nePAb5FVeLy86bhzSetFfOkjrwG6sF8a2rCA57QMGCVE10tSfBS35GFAksmNhavfIhJ6q2BIEY4iGJqmY4bMtfl0_g_PTkx4ezpEu3kBicyMuEK1YKHGQjNOMGrUuRlybLrGc8V4UrmPJKmMI6TzmzCme6LnOquSiEY9SV7CmM6qZ2-0BQD2FCW25TITLPUi2oSz1NtZpkFhWKMaT9yErTcZGHlBiVHFiUozTkJJQgDUnH8Gr4Z75i4tj49VEvMNnNyiu5xtAYXvdCXL_eVNvLlaCHlgMr98ffP49ls5jJtpUILEQeVjvg4D86ebC5k4ewQwMco_PMEYyWi9Y9QxVoqZ93uP4LkU__WA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAf4ATZbuJHkuOKUlVIFA4sKifLz6UiTVZpIgS_nnFeBYQqEIec7NixZzz-Jp75DPAMt0SdemEirnODDkrqo0wJFuU2X9qlsZx3JElvT8Txmr055ac7cDjmwnTR7uORZJ_TEFiayuZga_3BlPgW_maiGxweBPAo6wUWX4NdwRGRz2B3ffJ-9amj2WOhSh9nzyiNUL2zIXfmzw39uj9dgs7pnHTiFL0J19tyq759VUXx0550tAduHE0fivJl0TZ6Yb7_RvT4v8O9DbcG0EpWvZbdgR1X3oW98UIIMtiHeyDfoQE6HwKESOVJe-EsKQNlsqqJb11BUJJBsWpSVF30PgmB9xuiSCDWxD7KPiydqNIS1O2QYklUsanqs-bz-X1YH73-8Oo4Gm5wiAzahibiiuYiT1IjNOUGHVaR5oYx6ylPVeYyqrwSJrPOJ5xahcZD52miuciEo4nL6QOYlVXpHgJBaEOFttzGQjBPYy0SF_sk1mrJLGKUOcSj3KQZ6M3DLRuFnIiZu1mUy_CEWZTJHF5M72x7co8ra--P6iCHhX4h0XtMUpEjSJ3Dy1GQl8VXtfa8V6Op50D0fXj2cSWreiPbVjKRIdjDZict-4uPfPRv1R_DjSSoVRefsw-zpm7dE0RZjX46LKIfky8bCA
  priority: 102
  providerName: Unpaywall
Title Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm
URI https://link.springer.com/article/10.1007/s00521-021-06258-2
https://www.proquest.com/docview/2592769059
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-468155
https://link.springer.com/content/pdf/10.1007/s00521-021-06258-2.pdf
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Central Journals
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 1433-3058
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAceCO2lJUPcIJIiR078TGU3VYglgqxqD1ZfpZKabbablTx7xlns2lBqIJDEilxbMvfjGZGnvkM8BpNoimCsAk30mKAUoSk1CJPpJOpS63jvCNJ-jwTh_P84zE_7mlyYi3MH_v3kewTDUwSEwlSdNUR1S3YQSMluo1ZsX-jBrI7fhOjldgyZ32BzN_7-N0IXXuWw2boQBx6H-62zYX-eaXr-obhmT6CB73HSKo1xI_hjm-ewMPNaQykV86noL6g9p_32TlkEUh76R1pIl-xXpLQ-prgMkZUl6RedKnzJGa9nxJNIqsljtGsc8KJbhxBwYr1jUTXp4vl2erH-TOYTyff9g-T_viExKJirhKumRSSFlYYxi1Gi6KQNs9dYLzQpS-ZDlrY0vlAOXMaNdfIghouSuEZ9ZI9h-1m0fgXQNCvYMI47jIh8sAyI6jPAs2MTnOHDsIIss16Kttzi8cjLmo1sCJ3GKg0XhEDRUfwdvjnYs2scWvrvQ1MqteyS4WhGy0wvOdyBO820F1_vq23N2t4h5Ejy_aHs--VQuFTbatQnNDTwm4H9P9hkrv_N4uXcI9GoeySY_Zge7Vs_St0cVZmDFvl9GAMO9XByacJPt9PZkdfx53E431OK3w3nx1VJ78AIb31Jw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrVDhwKOAWCjgAz1BxMaOneRQoUJbtrRdEGpRb65jOwtSmiy7G1X75_htjLNOtlxWXHrwJQ_H8nwZz9gz3wC8wSUxi3OhA56lGh2UOA8SJaIgNWnf9LXhvCFJOh2KwXn05YJfrMGfNhfGhVW2OrFR1KbSbo_8PZrpNEZXjqcfxr8DVzXKna62JTSUL61gdhuKMZ_YcWzn1-jCTXeP9lHeO5QeHpx9GgS-ykCgEb-zgCuWCuxbi4xxjU6ViFMdRSZnPFaJTZjKldCJsTnlzCgEeJbGNOMiEZZR68iYcAnYiFiUovO38fFg-O37jczMpigo-lAuvihiPm2nSd5zO7J41TV0QhCv_y6NS3u3O6Lt6EzvwWZdjtX8WhXFjeXw8CHc93Ys2VsA7xGs2XILHrQ1IohXGVtw53NTOnj-GORX1E5XPnqIVDmpp9aQ0vEpqwnJa1sQFLND3YQUVRPaT1xU_ogo4lg38WvlImadqNIQBL7LvySqGKGYZj-vnsD5rUz8U1gvq9I-A4J2DxOZ4SYUIspZmAlqw5yGmepHBg2YHoTtzErtuc9dCY5CdqzNjTRk3zUnDUl78LZ7Z7xg_lj59HYrMOm1wFQuMduDd60Ql7dX9bazEHT3ZccCvv_rx56sJiNZ1xKBhUjHbjsc_Mcgn68e5GvYHJydnsiTo-HxC7hLHTSbwJ1tWJ9NavsSza9Z9spjnMDlbf9WfwHoqDvJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSH0cSkupujxaH9oTjdjYsRMf0dIVfVEOUHGz_NwihWQVElX99x3nxVaqEBx8imNb_mbimXjmG4Tew5GoU89NxLQw4KCkPsoUTyJhxdROjWWsJUn6fspPLpIvl-xyJYu_jXYfriS7nIbA0lTUh0vrD8fEt_A3E9zg0MCAB6wfoY0ETrdQw2DGZyuZkW1RTvBhQs-E9mkz_x_j36Pp1t4cr0hHOtFn6ElTLNWf3yrPV46j-Qv0vLcj8VEH_Eu05oottDnUaMC9yr5C8gd8E677mB1cetzcOIuLwGKsKuwbl2PY3IB1hfOyDajHIRZ-gRUOXJcwR9FFimNVWAziFrIescoXZXVV_7reRhfzT-ezk6gvqhAZUNc6YooKLkhquKbMgA_JU2GSxHrKUpW5jCqvuMms84RRq0CftUiJZjzjjhIn6Gu0XpSFe4MwWBuUa8tszHniaaw5cbEnsVbTxILZMEHxsJ_S9IzjofBFLkeu5BYDOQ0tYCDJBB2M7yw7vo07e-8NMMle924kOHQkBaefiQn6OEB3-_iu0T508I4zB-7t46ufR7KsFrJpJIgT2F8w7Ij-PRa587BVvEOPz47n8tvn06-76CkJ8tlGz-yh9bpq3D7YQLV-24r5X_Mk-bA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAf4ATZbuJHkuOKUlVIFA4sKifLz6UiTVZpIgS_nnFeBYQqEIec7NixZzz-Jp75DPAMt0SdemEirnODDkrqo0wJFuU2X9qlsZx3JElvT8Txmr055ac7cDjmwnTR7uORZJ_TEFiayuZga_3BlPgW_maiGxweBPAo6wUWX4NdwRGRz2B3ffJ-9amj2WOhSh9nzyiNUL2zIXfmzw39uj9dgs7pnHTiFL0J19tyq759VUXx0550tAduHE0fivJl0TZ6Yb7_RvT4v8O9DbcG0EpWvZbdgR1X3oW98UIIMtiHeyDfoQE6HwKESOVJe-EsKQNlsqqJb11BUJJBsWpSVF30PgmB9xuiSCDWxD7KPiydqNIS1O2QYklUsanqs-bz-X1YH73-8Oo4Gm5wiAzahibiiuYiT1IjNOUGHVaR5oYx6ylPVeYyqrwSJrPOJ5xahcZD52miuciEo4nL6QOYlVXpHgJBaEOFttzGQjBPYy0SF_sk1mrJLGKUOcSj3KQZ6M3DLRuFnIiZu1mUy_CEWZTJHF5M72x7co8ra--P6iCHhX4h0XtMUpEjSJ3Dy1GQl8VXtfa8V6Op50D0fXj2cSWreiPbVjKRIdjDZict-4uPfPRv1R_DjSSoVRefsw-zpm7dE0RZjX46LKIfky8bCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimisation+of+used+nuclear+fuel+canister+loading+using+a+neural+network+and+genetic+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Solans%2C+Virginie&rft.au=Rochman%2C+Dimitri&rft.au=Brazell%2C+Christian&rft.au=Vasiliev%2C+Alexander&rft.date=2021-12-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=23&rft.spage=16627&rft.epage=16639&rft_id=info:doi/10.1007%2Fs00521-021-06258-2&rft.externalDocID=10_1007_s00521_021_06258_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon