Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm
This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessi...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 33; no. 23; pp. 16627 - 16639 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.12.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058 1433-3058  | 
| DOI | 10.1007/s00521-021-06258-2 | 
Cover
| Abstract | This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor
k
eff
. In the present approach, a neural network is trained as a surrogate model to evaluate the
k
eff
value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister
k
eff
and DH values. The
k
eff
computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and
k
eff
quantities and (2) to minimize DH and
k
eff
differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases. | 
    
|---|---|
| AbstractList | This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor
k
$$_{\mathrm{eff}}$$
eff
. In the present approach, a neural network is trained as a surrogate model to evaluate the
k
$$_{\mathrm{eff}}$$
eff
value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister
k
$$_{\mathrm{eff}}$$
eff
and DH values. The
k
$$_{\mathrm{eff}}$$
eff
computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and
k
$$_{\mathrm{eff}}$$
eff
quantities and (2) to minimize DH and
k
$$_{\mathrm{eff}}$$
eff
differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases. This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor keff. In the present approach, a neural network is trained as a surrogate model to evaluate the keff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister keff and DH values. The keff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and keff quantities and (2) to minimize DH and keff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases. This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor k eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k eff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister k eff and DH values. The k eff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k eff quantities and (2) to minimize DH and k eff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases. This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel characteristics with an articial neural network and a genetic algorithm. The used nuclear fuels (produced in an open fuel cycle without reprocessing) considered in this work come from a Swiss Pressurised Water Reactor, taking into account their realistic lifetime in the reactor core and cooling periods, up to their disposal in the final geological repository. The case of 212 representative used nuclear fuel assemblies is analysed, assuming a loading of 4 fuel assemblies per canister, and optimizing two safety parameters: the fuel decay heat (DH) and the canister effective neutron multiplication factor k eff . In the present approach, a neural network is trained as a surrogate model to evaluate the k eff value to substitute the time-consuming-code Monte Carlo transport & depletion SERPENT for specific canister loading calculations. A genetic algorithm is then developed to optimise simultaneously the canister k eff and DH values. The k eff computed during the optimisation algorithm is using the previously developed artificial neural network. The optimisation algorithm allows (1) to minimize the number of canisters, given assumed limits for both DH and k eff quantities and (2) to minimize DH and k eff differences among canisters. This study represents a proof-of-principle of the neural network and genetic algorithm capabilities, and will be applied in the future to a larger number of cases.  | 
    
| Author | Vasiliev, Alexander Solans, Virginie Pautz, Andreas Ferroukhi, Hakim Rochman, Dimitri Brazell, Christian  | 
    
| Author_xml | – sequence: 1 givenname: Virginie orcidid: 0000-0001-6839-3435 surname: Solans fullname: Solans, Virginie email: virginie.solans@psi.ch organization: Section of Physics, École polytechnique fédérale de Lausanne (EPFL), Paul Scherrer Institute, Uppsala University – sequence: 2 givenname: Dimitri surname: Rochman fullname: Rochman, Dimitri organization: Paul Scherrer Institute – sequence: 3 givenname: Christian surname: Brazell fullname: Brazell, Christian organization: Texas A & M University – sequence: 4 givenname: Alexander surname: Vasiliev fullname: Vasiliev, Alexander organization: Paul Scherrer Institute – sequence: 5 givenname: Hakim surname: Ferroukhi fullname: Ferroukhi, Hakim organization: Paul Scherrer Institute – sequence: 6 givenname: Andreas surname: Pautz fullname: Pautz, Andreas organization: Section of Physics, École polytechnique fédérale de Lausanne (EPFL), Paul Scherrer Institute  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-468155$$DView record from Swedish Publication Index | 
    
| BookMark | eNqNkUtv3SAQhVGVSr15_IGskLqtWwwG42WUviJFyqbtFs3F2CXlgstDV_n3xXGUSl1EXQwjxPngzOEUnfjgDUKXLXnfEtJ_SIRw2jZkLUG5bOgrtGs7xhpGuDxBOzJ061HH3qDTlO4JIZ2QfIfU3ZLtwSbINngcJlySGbEv2hmIeCrGYQ3epmwidgFG6-cqWVfA3pQIrrZ8DPEXBj_i2dSd1RjcHKLNPw_n6PUELpmLp36Gvn_-9O36a3N79-Xm-uq20R0hueHABjHQXos943ropegH3XXjxHgP0kgGEwgtRzNRzkboZb8ferrnQgrDqBnYGWLbvcUv8HAE59QS7QHig2qJWjNSW0aKrLVmpGil3m1UOpql7J-RAFZ9tD-uVIizKkXVrFrOq_ztJl9i-F1Myuo-lOjrXIry6l4MhK9W6KbSMaQUzfR_TuQ_kLb58VNyBOteRp9GT_UdP5v419UL1B8mK6na | 
    
| CitedBy_id | crossref_primary_10_1016_j_nucengdes_2022_112105 crossref_primary_10_1080_00295639_2024_2306707 crossref_primary_10_1016_j_anucene_2023_109941 crossref_primary_10_32390_ksmer_2024_61_5_419 crossref_primary_10_1016_j_anucene_2022_109452 crossref_primary_10_1016_j_applthermaleng_2024_122836 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124290 crossref_primary_10_20935_AcadEng7385 crossref_primary_10_1016_j_anucene_2024_110892 crossref_primary_10_1016_j_anucene_2022_109450 crossref_primary_10_1016_j_engappai_2023_107484 crossref_primary_10_1016_j_nucengdes_2020_110897 crossref_primary_10_1016_j_nucengdes_2025_113899 crossref_primary_10_1016_j_scitotenv_2022_157526 crossref_primary_10_1016_j_pnucene_2023_104799 crossref_primary_10_1016_j_pnucene_2025_105697  | 
    
| Cites_doi | 10.1016/S0306-4549(02)00092-0 10.1051/epjconf/201714609011 10.1016/j.anucene.2017.07.006 10.1007/s00521-012-1023-1 10.1016/j.jhazmat.2018.05.041 10.1016/j.anucene.2019.01.047 10.1016/j.anucene.2008.06.004 10.3390/designs3030037 10.1016/j.nucengdes.2019.110479 10.3390/ma12030494 10.1051/epjn/2018005 10.1016/j.nucengdes.2017.04.036 10.1007/s00521-016-2293-9 10.1016/j.anucene.2014.08.024 10.1016/j.nucengdes.2020.110897 10.13182/NSE10-111 10.13182/NSE163-183 10.1007/s005210200007 10.1080/19942060.2019.1649196  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ACNBI ADTPV AOWAS D8T DF2 ZZAVC ADTOC UNPAY  | 
    
| DOI | 10.1007/s00521-021-06258-2 | 
    
| DatabaseName | SpringerLink Open Access Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Advanced Technologies & Aerospace Collection  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Geology  | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 16639 | 
    
| ExternalDocumentID | 10.1007/s00521-021-06258-2 oai_DiVA_org_uu_468155 10_1007_s00521_021_06258_2  | 
    
| GrantInformation_xml | – fundername: PSI - Paul Scherrer Institute | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ACNBI ADTPV AOWAS D8T DF2 ZZAVC ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c400t-5a396927c6b35c978679c44df357a8e83afa6c8def253da787b972b5686e32e93 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 0941-0643 1433-3058  | 
    
| IngestDate | Sun Oct 26 03:27:06 EDT 2025 Tue Sep 09 22:47:58 EDT 2025 Fri Jul 25 06:28:09 EDT 2025 Wed Oct 01 02:26:07 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Fri Feb 21 02:47:25 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 23 | 
    
| Keywords | Genetic algorithm High-level nuclear waste Neural network  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c400t-5a396927c6b35c978679c44df357a8e83afa6c8def253da787b972b5686e32e93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6839-3435 | 
    
| OpenAccessLink | https://doi.org/10.1007/s00521-021-06258-2 | 
    
| PQID | 2592769059 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00521_021_06258_2 swepub_primary_oai_DiVA_org_uu_468155 proquest_journals_2592769059 crossref_primary_10_1007_s00521_021_06258_2 crossref_citationtrail_10_1007_s00521_021_06258_2 springer_journals_10_1007_s00521_021_06258_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-12-01 | 
    
| PublicationDateYYYYMMDD | 2021-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | BaranaOManduchiGApplication of neural networks for the measurement of electronic temperature in nuclear fusion experimentsNeural Comput Appl20021035110.1007/s005210200007 (2009) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 09–06 VlassopoulosEVolmertBPautzALogistics optimization code for spent fuel assembly loading into final disposal canistersNucl Eng Design201732524610.1016/j.nucengdes.2017.04.036 (2016) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 16–02 SolansVRochmanDVasilievAFerroukhiHPautzALoading optimization for Swiss used nuclear fuel assemblies into final disposal canistersNucl Eng Design202037011089710.1016/j.nucengdes.2020.110897 ZerovnikGSnojLRavnikMOptimization of spent nuclear fuel filling in canisters for deep repositoryNucl Sci Eng200916318310.13182/NSE163-183 Rhodes J, Smith K, Lee D (2006) CASMO-5 development and applications proceedings of the PHYSOR-2006 conference, ANS topical meeting on reactor physics, Vancouver, BC, Canada, September 10–14, Vancouver, BC, Canada, p B144 GhalandariMZiamolkiAMosaviAShamshirbandSChauKWBornassiSAeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experimentsEng Appl Comput Fluid Mech201913189290410.1080/19942060.2019.1649196 LerayOFerroukhiHHursinMVasilievARochmanDMethodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cyclesAnn Nucl Energy201711054710.1016/j.anucene.2017.07.006 Amann F, Löw S, Perras M (2015) Assessment of geomechanical properties, maximum depth below ground surface and EDZ impact on long term safety”, ETH Zürich, October 29, , ENSI Report No. 33/460 NissanEAn overview of AI methods for in-core fuel management: tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuelDesigns201933710.3390/designs3030037 DiGiovine AS, Rhodes III JD, Smith KS, Ver Planck DM and Umbarger JA (1995) SIMULATE-3 users manual, Studsvik/SOA-95/15 Studsvik (2015) Operational and regulatory aspects of criticality safety, OECD nuclear energy agency NEA/CSNI/R(2016)3 TerziSKaraşahinMGökovaSAsphalt concrete stability estimation from non-destructive test methods with artificial neural networksNeural Comput Appl20132398910.1007/s00521-012-1023-1 LeppänenJThe Serpent Monte Carlo code: status, development and applications in 2013Ann Nucl Energy20158214210.1016/j.anucene.2014.08.024 Herrero JJ, Vasiliev A, Pecchia M, Rochman D, Ferroukhi H, Jonhson L and Caruso S (2017) Criticality safety assessment for geological disposal of spent fuel using PSI BUCSS-R methodology, NAGRA technical report NAB 17–23 SimeonovTWempleCUpdate and evaluation of decay data for spent nuclear fuel analysesEPJ Web Conf20171460901110.1051/epjconf/201714609011 Petersen GM (2016) Algorithms and methods for optimizing the spent nuclear fuel allocation strategy. PhD dissertation, University of Tennessee, TN, USA RantaTCameronFHeuristic methods for assigning spent nuclear fuel assemblies to canisters for final disposalNucl Sci Eng20121714110.13182/NSE10-111 (2006) Optimization strategies for cask design and container loading in long term spent fuel storage, IAEA technical report TECDOC-1523. IAEA, Vienna, Austria Ferroukhi H , Hofer K, Hollard JM, Vasiliev A, Zimmermann MA (2008) Core modelling and analysis of the swiss nuclear power plants for qualified R&D applications. In: Proceedings of international conference on the physics of reactors, PHYSOR’08, September 14–19, Interlaken, Switzerland (CD-ROM,FP239) (2015) Spent nuclear fuel management in Switzerland. In: Perspective for final disposal international conference on management of spent nuclear fuel from nuclear power reactors: an integrated approach to the back end of the fuel cycle, IAEA, Vienna, June 15–19 Fernandes FeriaEPereiraCNuclear fuel loading pattern optimisation using a neural networkAnn Nucl Energy20033060310.1016/S0306-4549(02)00092-0 (2017b) MATLAB and deep learning toolbox release, The MathWorks Inc. Natick, Massachusetts, United States RochmanDVasilievADokhaneAFerroukhiHUncertainties for Swiss LWR spent nuclear fuels due to nuclear dataEPJ Nucl Sci Technol20184610.1051/epjn/2018005 Gomez-FernandezMHigleyKTakuhiroAWelterKWongWKYangHStatus of research and development of learning-based approaches in nuclear science and engineering: a reviewNucl Eng Design202035911047910.1016/j.nucengdes.2019.110479 RochmanDVasilievAFerroukhiHPecchiaMConsistent criticality and radiation studies of Swiss spent nuclear fuel: the CS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CS}_2$$\end{document}M approachJ Hazard Mater201835738410.1016/j.jhazmat.2018.05.041 (2008) Sectoral Plan for deep geological repositories—conceptual Part 2008, swiss federal office of energy, Switzerland, available here PecchiaMFerroukhiHVasilievAGrimmPStudies of intra-pin power distributions in operated BWR fuel assemblies using MCNP with a cycle check-up methodologyAnn Nucl Energy20191296710.1016/j.anucene.2019.01.047 VasilievAHerreroJPecchiaMRochmanDFerroukhiHCarusoSPreliminary assessment of criticality safety constraints for swiss spent nuclear fuel loading in disposal canistersMaterials20191249410.3390/ma12030494 ShafaeiMKisiOPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Applic2017281510.1007/s00521-016-2293-9 (2011) Nuclear criticality risks and their prevention in plants and laboratories, IRSN report DSU/SEC/T/2010-334, available here KoningARochmanDTowards sustainable nuclear energy: putting nuclear physics to workAnn Nucl Energy200835202410.1016/j.anucene.2008.06.004 E Fernandes Feria (6258_CR18) 2003; 30 D Rochman (6258_CR28) 2018; 4 O Leray (6258_CR22) 2017; 110 J Leppänen (6258_CR29) 2015; 82 M Pecchia (6258_CR30) 2019; 129 S Terzi (6258_CR15) 2013; 23 O Barana (6258_CR16) 2002; 10 A Vasiliev (6258_CR6) 2019; 12 E Nissan (6258_CR19) 2019; 3 G Zerovnik (6258_CR11) 2009; 163 6258_CR13 6258_CR10 A Koning (6258_CR33) 2008; 35 6258_CR31 M Shafaei (6258_CR14) 2017; 28 6258_CR8 6258_CR7 E Vlassopoulos (6258_CR32) 2017; 325 6258_CR9 6258_CR2 6258_CR1 T Ranta (6258_CR12) 2012; 171 6258_CR4 M Gomez-Fernandez (6258_CR20) 2020; 359 V Solans (6258_CR21) 2020; 370 6258_CR25 6258_CR3 6258_CR23 6258_CR5 6258_CR24 T Simeonov (6258_CR26) 2017; 146 M Ghalandari (6258_CR17) 2019; 13 D Rochman (6258_CR27) 2018; 357  | 
    
| References_xml | – reference: Fernandes FeriaEPereiraCNuclear fuel loading pattern optimisation using a neural networkAnn Nucl Energy20033060310.1016/S0306-4549(02)00092-0 – reference: RochmanDVasilievADokhaneAFerroukhiHUncertainties for Swiss LWR spent nuclear fuels due to nuclear dataEPJ Nucl Sci Technol20184610.1051/epjn/2018005 – reference: SolansVRochmanDVasilievAFerroukhiHPautzALoading optimization for Swiss used nuclear fuel assemblies into final disposal canistersNucl Eng Design202037011089710.1016/j.nucengdes.2020.110897 – reference: LerayOFerroukhiHHursinMVasilievARochmanDMethodology for core analyses with nuclear data uncertainty quantification and application to Swiss PWR operated cyclesAnn Nucl Energy201711054710.1016/j.anucene.2017.07.006 – reference: Amann F, Löw S, Perras M (2015) Assessment of geomechanical properties, maximum depth below ground surface and EDZ impact on long term safety”, ETH Zürich, October 29, , ENSI Report No. 33/460 – reference: (2011) Nuclear criticality risks and their prevention in plants and laboratories, IRSN report DSU/SEC/T/2010-334, available here – reference: GhalandariMZiamolkiAMosaviAShamshirbandSChauKWBornassiSAeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experimentsEng Appl Comput Fluid Mech201913189290410.1080/19942060.2019.1649196 – reference: NissanEAn overview of AI methods for in-core fuel management: tools for the automatic design of nuclear reactor core configurations for fuel reload, (re)arranging new and partly spent fuelDesigns201933710.3390/designs3030037 – reference: (2006) Optimization strategies for cask design and container loading in long term spent fuel storage, IAEA technical report TECDOC-1523. IAEA, Vienna, Austria – reference: Herrero JJ, Vasiliev A, Pecchia M, Rochman D, Ferroukhi H, Jonhson L and Caruso S (2017) Criticality safety assessment for geological disposal of spent fuel using PSI BUCSS-R methodology, NAGRA technical report NAB 17–23 – reference: (2015) Spent nuclear fuel management in Switzerland. In: Perspective for final disposal international conference on management of spent nuclear fuel from nuclear power reactors: an integrated approach to the back end of the fuel cycle, IAEA, Vienna, June 15–19 – reference: KoningARochmanDTowards sustainable nuclear energy: putting nuclear physics to workAnn Nucl Energy200835202410.1016/j.anucene.2008.06.004 – reference: BaranaOManduchiGApplication of neural networks for the measurement of electronic temperature in nuclear fusion experimentsNeural Comput Appl20021035110.1007/s005210200007 – reference: Rhodes J, Smith K, Lee D (2006) CASMO-5 development and applications proceedings of the PHYSOR-2006 conference, ANS topical meeting on reactor physics, Vancouver, BC, Canada, September 10–14, Vancouver, BC, Canada, p B144 – reference: TerziSKaraşahinMGökovaSAsphalt concrete stability estimation from non-destructive test methods with artificial neural networksNeural Comput Appl20132398910.1007/s00521-012-1023-1 – reference: Petersen GM (2016) Algorithms and methods for optimizing the spent nuclear fuel allocation strategy. PhD dissertation, University of Tennessee, TN, USA – reference: DiGiovine AS, Rhodes III JD, Smith KS, Ver Planck DM and Umbarger JA (1995) SIMULATE-3 users manual, Studsvik/SOA-95/15 Studsvik – reference: VasilievAHerreroJPecchiaMRochmanDFerroukhiHCarusoSPreliminary assessment of criticality safety constraints for swiss spent nuclear fuel loading in disposal canistersMaterials20191249410.3390/ma12030494 – reference: ZerovnikGSnojLRavnikMOptimization of spent nuclear fuel filling in canisters for deep repositoryNucl Sci Eng200916318310.13182/NSE163-183 – reference: (2015) Operational and regulatory aspects of criticality safety, OECD nuclear energy agency NEA/CSNI/R(2016)3 – reference: LeppänenJThe Serpent Monte Carlo code: status, development and applications in 2013Ann Nucl Energy20158214210.1016/j.anucene.2014.08.024 – reference: (2008) Sectoral Plan for deep geological repositories—conceptual Part 2008, swiss federal office of energy, Switzerland, available here – reference: (2016) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 16–02 – reference: RantaTCameronFHeuristic methods for assigning spent nuclear fuel assemblies to canisters for final disposalNucl Sci Eng20121714110.13182/NSE10-111 – reference: Ferroukhi H , Hofer K, Hollard JM, Vasiliev A, Zimmermann MA (2008) Core modelling and analysis of the swiss nuclear power plants for qualified R&D applications. In: Proceedings of international conference on the physics of reactors, PHYSOR’08, September 14–19, Interlaken, Switzerland (CD-ROM,FP239) – reference: RochmanDVasilievAFerroukhiHPecchiaMConsistent criticality and radiation studies of Swiss spent nuclear fuel: the CS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ CS}_2$$\end{document}M approachJ Hazard Mater201835738410.1016/j.jhazmat.2018.05.041 – reference: Gomez-FernandezMHigleyKTakuhiroAWelterKWongWKYangHStatus of research and development of learning-based approaches in nuclear science and engineering: a reviewNucl Eng Design202035911047910.1016/j.nucengdes.2019.110479 – reference: ShafaeiMKisiOPredicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine modelsNeural Comput Applic2017281510.1007/s00521-016-2293-9 – reference: PecchiaMFerroukhiHVasilievAGrimmPStudies of intra-pin power distributions in operated BWR fuel assemblies using MCNP with a cycle check-up methodologyAnn Nucl Energy20191296710.1016/j.anucene.2019.01.047 – reference: SimeonovTWempleCUpdate and evaluation of decay data for spent nuclear fuel analysesEPJ Web Conf20171460901110.1051/epjconf/201714609011 – reference: VlassopoulosEVolmertBPautzALogistics optimization code for spent fuel assembly loading into final disposal canistersNucl Eng Design201732524610.1016/j.nucengdes.2017.04.036 – reference: (2009) The Nagra research, development and demonstration (RD&D) plan for the disposal of radioactive waste in Switzerland, NAGRA technical report 09–06 – reference: (2017b) MATLAB and deep learning toolbox release, The MathWorks Inc. Natick, Massachusetts, United States – ident: 6258_CR3 – volume: 30 start-page: 603 year: 2003 ident: 6258_CR18 publication-title: Ann Nucl Energy doi: 10.1016/S0306-4549(02)00092-0 – ident: 6258_CR1 – volume: 146 start-page: 09011 year: 2017 ident: 6258_CR26 publication-title: EPJ Web Conf doi: 10.1051/epjconf/201714609011 – ident: 6258_CR23 – ident: 6258_CR5 – volume: 110 start-page: 547 year: 2017 ident: 6258_CR22 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2017.07.006 – ident: 6258_CR7 – ident: 6258_CR9 – ident: 6258_CR25 – ident: 6258_CR31 – volume: 23 start-page: 989 year: 2013 ident: 6258_CR15 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1023-1 – volume: 357 start-page: 384 year: 2018 ident: 6258_CR27 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.05.041 – volume: 129 start-page: 67 year: 2019 ident: 6258_CR30 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2019.01.047 – ident: 6258_CR10 – volume: 35 start-page: 2024 year: 2008 ident: 6258_CR33 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2008.06.004 – volume: 3 start-page: 37 year: 2019 ident: 6258_CR19 publication-title: Designs doi: 10.3390/designs3030037 – volume: 359 start-page: 110479 year: 2020 ident: 6258_CR20 publication-title: Nucl Eng Design doi: 10.1016/j.nucengdes.2019.110479 – volume: 12 start-page: 494 year: 2019 ident: 6258_CR6 publication-title: Materials doi: 10.3390/ma12030494 – volume: 4 start-page: 6 year: 2018 ident: 6258_CR28 publication-title: EPJ Nucl Sci Technol doi: 10.1051/epjn/2018005 – volume: 325 start-page: 246 year: 2017 ident: 6258_CR32 publication-title: Nucl Eng Design doi: 10.1016/j.nucengdes.2017.04.036 – ident: 6258_CR4 – ident: 6258_CR2 – volume: 28 start-page: 15 year: 2017 ident: 6258_CR14 publication-title: Neural Comput Applic doi: 10.1007/s00521-016-2293-9 – volume: 82 start-page: 142 year: 2015 ident: 6258_CR29 publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2014.08.024 – ident: 6258_CR24 – volume: 370 start-page: 110897 year: 2020 ident: 6258_CR21 publication-title: Nucl Eng Design doi: 10.1016/j.nucengdes.2020.110897 – ident: 6258_CR8 – volume: 171 start-page: 41 year: 2012 ident: 6258_CR12 publication-title: Nucl Sci Eng doi: 10.13182/NSE10-111 – volume: 163 start-page: 183 year: 2009 ident: 6258_CR11 publication-title: Nucl Sci Eng doi: 10.13182/NSE163-183 – ident: 6258_CR13 – volume: 10 start-page: 351 year: 2002 ident: 6258_CR16 publication-title: Neural Comput Appl doi: 10.1007/s005210200007 – volume: 13 start-page: 892 issue: 1 year: 2019 ident: 6258_CR17 publication-title: Eng Appl Comput Fluid Mech doi: 10.1080/19942060.2019.1649196  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.3830748 | 
    
| Snippet | This paper presents an approach for the optimisation of geological disposal canister loadings, combining high resolution simulations of used nuclear fuel... | 
    
| SourceID | unpaywall swepub proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 16627 | 
    
| SubjectTerms | Artificial Intelligence Artificial neural networks Assemblies Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Depletion Genetic algorithm Genetic algorithms Geology High-level nuclear waste Image Processing and Computer Vision Multiplication Neural network Neural networks Nuclear fuels Nuclear reactors Nuclear safety Optimization Original Article Pressurized water reactors Probability and Statistics in Computer Science Reactor cores Reprocessing Spent nuclear fuels  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlUKCAum1BPsAJIjZ27CQHhAq0VEgsCFHUm-XngpQmy3ajqv-esTfJlsuKgy952Jbnsz1jz3wD8AK3RJ17YRKuS4MGSu6TQoksKW05sRNjOY8kSV-m4uw8-3zBL7Zg2sfCBLfKfk2MC7VtTDgjf4NqOs3RlOPlu_mfJGSNCrerfQoN1aVWsG8jxdgd2KaBGWsE2-9Ppt--34qUjEk60aYJ_j4Z68JoYjBdOCHFp6GgUYD4-XerWuufw5XpQC96H-619VzdXKuqurU9nT6E3U6vJMcrIDyCLVfvwYM-ZwPppvAe3P0UU_nePAb5FVeLy86bhzSetFfOkjrwG6sF8a2rCA57QMGCVE10tSfBS35GFAksmNhavfIhJ6q2BIEY4iGJqmY4bMtfl0_g_PTkx4ezpEu3kBicyMuEK1YKHGQjNOMGrUuRlybLrGc8V4UrmPJKmMI6TzmzCme6LnOquSiEY9SV7CmM6qZ2-0BQD2FCW25TITLPUi2oSz1NtZpkFhWKMaT9yErTcZGHlBiVHFiUozTkJJQgDUnH8Gr4Z75i4tj49VEvMNnNyiu5xtAYXvdCXL_eVNvLlaCHlgMr98ffP49ls5jJtpUILEQeVjvg4D86ebC5k4ewQwMco_PMEYyWi9Y9QxVoqZ93uP4LkU__WA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAf4ATZbuJHkuOKUlVIFA4sKifLz6UiTVZpIgS_nnFeBYQqEIec7NixZzz-Jp75DPAMt0SdemEirnODDkrqo0wJFuU2X9qlsZx3JElvT8Txmr055ac7cDjmwnTR7uORZJ_TEFiayuZga_3BlPgW_maiGxweBPAo6wUWX4NdwRGRz2B3ffJ-9amj2WOhSh9nzyiNUL2zIXfmzw39uj9dgs7pnHTiFL0J19tyq759VUXx0550tAduHE0fivJl0TZ6Yb7_RvT4v8O9DbcG0EpWvZbdgR1X3oW98UIIMtiHeyDfoQE6HwKESOVJe-EsKQNlsqqJb11BUJJBsWpSVF30PgmB9xuiSCDWxD7KPiydqNIS1O2QYklUsanqs-bz-X1YH73-8Oo4Gm5wiAzahibiiuYiT1IjNOUGHVaR5oYx6ylPVeYyqrwSJrPOJ5xahcZD52miuciEo4nL6QOYlVXpHgJBaEOFttzGQjBPYy0SF_sk1mrJLGKUOcSj3KQZ6M3DLRuFnIiZu1mUy_CEWZTJHF5M72x7co8ra--P6iCHhX4h0XtMUpEjSJ3Dy1GQl8VXtfa8V6Op50D0fXj2cSWreiPbVjKRIdjDZict-4uPfPRv1R_DjSSoVRefsw-zpm7dE0RZjX46LKIfky8bCA priority: 102 providerName: Unpaywall  | 
    
| Title | Optimisation of used nuclear fuel canister loading using a neural network and genetic algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s00521-021-06258-2 https://www.proquest.com/docview/2592769059 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-468155 https://link.springer.com/content/pdf/10.1007/s00521-021-06258-2.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Proquest Central Journals customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 1433-3058 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gAceCO2lJUPcIJIiR078TGU3VYglgqxqD1ZfpZKabbablTx7xlns2lBqIJDEilxbMvfjGZGnvkM8BpNoimCsAk30mKAUoSk1CJPpJOpS63jvCNJ-jwTh_P84zE_7mlyYi3MH_v3kewTDUwSEwlSdNUR1S3YQSMluo1ZsX-jBrI7fhOjldgyZ32BzN_7-N0IXXuWw2boQBx6H-62zYX-eaXr-obhmT6CB73HSKo1xI_hjm-ewMPNaQykV86noL6g9p_32TlkEUh76R1pIl-xXpLQ-prgMkZUl6RedKnzJGa9nxJNIqsljtGsc8KJbhxBwYr1jUTXp4vl2erH-TOYTyff9g-T_viExKJirhKumRSSFlYYxi1Gi6KQNs9dYLzQpS-ZDlrY0vlAOXMaNdfIghouSuEZ9ZI9h-1m0fgXQNCvYMI47jIh8sAyI6jPAs2MTnOHDsIIss16Kttzi8cjLmo1sCJ3GKg0XhEDRUfwdvjnYs2scWvrvQ1MqteyS4WhGy0wvOdyBO820F1_vq23N2t4h5Ejy_aHs--VQuFTbatQnNDTwm4H9P9hkrv_N4uXcI9GoeySY_Zge7Vs_St0cVZmDFvl9GAMO9XByacJPt9PZkdfx53E431OK3w3nx1VJ78AIb31Jw | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrVDhwKOAWCjgAz1BxMaOneRQoUJbtrRdEGpRb65jOwtSmiy7G1X75_htjLNOtlxWXHrwJQ_H8nwZz9gz3wC8wSUxi3OhA56lGh2UOA8SJaIgNWnf9LXhvCFJOh2KwXn05YJfrMGfNhfGhVW2OrFR1KbSbo_8PZrpNEZXjqcfxr8DVzXKna62JTSUL61gdhuKMZ_YcWzn1-jCTXeP9lHeO5QeHpx9GgS-ykCgEb-zgCuWCuxbi4xxjU6ViFMdRSZnPFaJTZjKldCJsTnlzCgEeJbGNOMiEZZR68iYcAnYiFiUovO38fFg-O37jczMpigo-lAuvihiPm2nSd5zO7J41TV0QhCv_y6NS3u3O6Lt6EzvwWZdjtX8WhXFjeXw8CHc93Ys2VsA7xGs2XILHrQ1IohXGVtw53NTOnj-GORX1E5XPnqIVDmpp9aQ0vEpqwnJa1sQFLND3YQUVRPaT1xU_ogo4lg38WvlImadqNIQBL7LvySqGKGYZj-vnsD5rUz8U1gvq9I-A4J2DxOZ4SYUIspZmAlqw5yGmepHBg2YHoTtzErtuc9dCY5CdqzNjTRk3zUnDUl78LZ7Z7xg_lj59HYrMOm1wFQuMduDd60Ql7dX9bazEHT3ZccCvv_rx56sJiNZ1xKBhUjHbjsc_Mcgn68e5GvYHJydnsiTo-HxC7hLHTSbwJ1tWJ9NavsSza9Z9spjnMDlbf9WfwHoqDvJ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoSH0cSkupujxaH9oTjdjYsRMf0dIVfVEOUHGz_NwihWQVElX99x3nxVaqEBx8imNb_mbimXjmG4Tew5GoU89NxLQw4KCkPsoUTyJhxdROjWWsJUn6fspPLpIvl-xyJYu_jXYfriS7nIbA0lTUh0vrD8fEt_A3E9zg0MCAB6wfoY0ETrdQw2DGZyuZkW1RTvBhQs-E9mkz_x_j36Pp1t4cr0hHOtFn6ElTLNWf3yrPV46j-Qv0vLcj8VEH_Eu05oottDnUaMC9yr5C8gd8E677mB1cetzcOIuLwGKsKuwbl2PY3IB1hfOyDajHIRZ-gRUOXJcwR9FFimNVWAziFrIescoXZXVV_7reRhfzT-ezk6gvqhAZUNc6YooKLkhquKbMgA_JU2GSxHrKUpW5jCqvuMms84RRq0CftUiJZjzjjhIn6Gu0XpSFe4MwWBuUa8tszHniaaw5cbEnsVbTxILZMEHxsJ_S9IzjofBFLkeu5BYDOQ0tYCDJBB2M7yw7vo07e-8NMMle924kOHQkBaefiQn6OEB3-_iu0T508I4zB-7t46ufR7KsFrJpJIgT2F8w7Ij-PRa587BVvEOPz47n8tvn06-76CkJ8tlGz-yh9bpq3D7YQLV-24r5X_Mk-bA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4UJ5ioSAf4ATZbuJHkuOKUlVIFA4sKifLz6UiTVZpIgS_nnFeBYQqEIec7NixZzz-Jp75DPAMt0SdemEirnODDkrqo0wJFuU2X9qlsZx3JElvT8Txmr055ac7cDjmwnTR7uORZJ_TEFiayuZga_3BlPgW_maiGxweBPAo6wUWX4NdwRGRz2B3ffJ-9amj2WOhSh9nzyiNUL2zIXfmzw39uj9dgs7pnHTiFL0J19tyq759VUXx0550tAduHE0fivJl0TZ6Yb7_RvT4v8O9DbcG0EpWvZbdgR1X3oW98UIIMtiHeyDfoQE6HwKESOVJe-EsKQNlsqqJb11BUJJBsWpSVF30PgmB9xuiSCDWxD7KPiydqNIS1O2QYklUsanqs-bz-X1YH73-8Oo4Gm5wiAzahibiiuYiT1IjNOUGHVaR5oYx6ylPVeYyqrwSJrPOJ5xahcZD52miuciEo4nL6QOYlVXpHgJBaEOFttzGQjBPYy0SF_sk1mrJLGKUOcSj3KQZ6M3DLRuFnIiZu1mUy_CEWZTJHF5M72x7co8ra--P6iCHhX4h0XtMUpEjSJ3Dy1GQl8VXtfa8V6Op50D0fXj2cSWreiPbVjKRIdjDZict-4uPfPRv1R_DjSSoVRefsw-zpm7dE0RZjX46LKIfky8bCA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimisation+of+used+nuclear+fuel+canister+loading+using+a+neural+network+and+genetic+algorithm&rft.jtitle=Neural+computing+%26+applications&rft.au=Solans%2C+Virginie&rft.au=Rochman%2C+Dimitri&rft.au=Brazell%2C+Christian&rft.au=Vasiliev%2C+Alexander&rft.date=2021-12-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=33&rft.issue=23&rft.spage=16627&rft.epage=16639&rft_id=info:doi/10.1007%2Fs00521-021-06258-2&rft.externalDocID=10_1007_s00521_021_06258_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |