Adapting CMAC neural networks with constrained LMS algorithm for efficient torque ripple reduction in switched reluctance motors
This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over...
Saved in:
| Published in | IEEE transactions on control systems technology Vol. 7; no. 4; pp. 401 - 413 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.07.1999
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6536 |
| DOI | 10.1109/87.772156 |
Cover
| Abstract | This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over the rotor angle of the motor under control. The criteria and method for the development of current profiles suitable for use over a wide range of motor speeds are described. In particular, current profiles can be designed to possess desirable characteristics by selection of learning rate function with appropriate switching angles during the training of the network. The approach allows the generation of optimal current profiles in terms of minimizing torque ripple and copper loss as the motor operates at low speeds, and of minimizing torque ripple, copper loss and rate of change of current as the motor runs at high speeds. Experimental measurement of the torque production characteristics of a 4 kW, four-phase switched reluctance motor forms the basis of simulation studies of this approach. Substantial simulation results are reported and the performance of learned current profiles analyzed. These demonstrate that developing CMAC-based adaptive controllers following this approach affords lower torque ripple with high power efficiency, while offering rapid learning convergence in system adaptation. |
|---|---|
| AbstractList | This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over the rotor angle of the motor under control. The criteria and method for the development of current profiles suitable for use over a wide range of motor speeds are described. In particular, current profiles can be designed to possess desirable characteristics by selection of learning rate function with appropriate switching angles during the training of the network. The approach allows the generation of optimal current profiles in terms of minimizing torque ripple and copper loss as the motor operates at low speeds, and of minimizing torque ripple, copper loss and rate of change of current as the motor runs at high speeds. Experimental measurement of the torque production characteristics of a 4 kW, four-phase switched reluctance motor forms the basis of simulation studies of this approach. Substantial simulation results are reported and the performance of learned current profiles analyzed. These demonstrate that developing CMAC-based adaptive controllers following this approach affords lower torque ripple with high power efficiency, while offering rapid learning convergence in system adaptation This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over the rotor angle of the motor under control. The criteria and method for the development of current profiles suitable for use over a wide range of motor speeds are described. In particular, current profiles can be designed to possess desirable characteristics by selection of learning rate function with appropriate switching angles during the training of the network. The approach allows the generation of optimal current profiles in terms of minimizing torque ripple and copper loss as the motor operates at low speeds, and of minimizing torque ripple, copper loss and rate of change of current as the motor runs at high speeds. Experimental measurement of the torque production characteristics of a 4 kW, four-phase switched reluctance motor forms the basis of simulation studies of this approach. Substantial simulation results are reported and the performance of learned current profiles analyzed. These demonstrate that developing CMAC-based adaptive controllers following this approach affords lower torque ripple with high power efficiency, while offering rapid learning convergence in system adaptation. |
| Author | Reay, D. Williams, B. Changjing Shang |
| Author_xml | – sequence: 1 surname: Changjing Shang fullname: Changjing Shang organization: Dept. of Stat., Glasgow Univ., UK – sequence: 2 givenname: D. surname: Reay fullname: Reay, D. – sequence: 3 givenname: B. surname: Williams fullname: Williams, B. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1912899$$DView record in Pascal Francis |
| BookMark | eNqNkr1PHDEQxV0QKUBS0FK5QEQpDvyxXq_L0ykkkQ5RJNSWzzsGg89ebJ9QOv70-HQniihCyMWTPL_3xhrPETqIKQJCJ5RcUErU5SAvpGRU9AfokJKez3rB-4_oqJQHQmgnmDxEL_PRTNXHO7y4ni9whE02oUl9Tvmx4Gdf77FNsdRsfIQRL69_YRPuUm6FNXYpY3DOWw-x4pry0wZw9tMUmsC4sdWniH3EpQXZ--bPENqtiRbwOjVD-YQ-OBMKfN7rMbq9-vZ78WO2vPn-czFfzmxHSJ1xMshuZdxARDcY204Hox0NkdB3khsBK2FlD9IwtxKOcQ4wrhRINwJvLD9GX3a5U07tlaXqtS8WQjAR0qZoRZWinCrZyPM3STYoJgem3gFKLtjQvQNkolcdaeDZHjTFmuByG5Qvesp-bfIfTRVtzbeNL3eYzamUDE5bX8121ttvCpoSvV0APUi9W4Dm-PqP4zXzP-zpjvUA8Mrti38Bcwq_PA |
| CODEN | IETTE2 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2009_03_071 crossref_primary_10_1109_OJIES_2021_3076807 crossref_primary_10_1109_TCYB_2019_2919128 crossref_primary_10_1016_j_nonrwa_2010_09_025 crossref_primary_10_1080_02286203_2021_1875288 crossref_primary_10_3390_electronics11101552 crossref_primary_10_1049_ip_epa_20010480 crossref_primary_10_1109_ACCESS_2022_3190082 crossref_primary_10_1109_ACCESS_2018_2837111 |
| Cites_doi | 10.1109/28.382124 10.1109/ICNN.1996.549222 10.1109/IECON.1993.339081 10.1109/MASSP.1987.1165576 10.1016/B978-0-444-89178-5.50053-1 10.1109/FUZZY.1996.552282 10.1049/ip-epa:19949859 10.1109/37.55122 10.1109/70.105382 10.1115/1.3426923 10.1109/28.382116 10.1109/PESC.1992.254793 10.1109/63.484420 10.1049/el:19960721 10.1109/37.67673 10.1049/ip-b.1991.0001 10.1115/1.3426922 10.1162/neco.1991.3.2.226 10.1109/87.508883 10.1109/JRA.1987.1087081 10.1109/72.80341 10.1109/72.105424 10.1109/87.370707 10.1109/37.387611 10.1016/0005-1098(92)90053-I 10.1109/5.58338 10.1109/41.184827 10.1109/63.163641 |
| ContentType | Journal Article |
| Copyright | 1999 INIST-CNRS |
| Copyright_xml | – notice: 1999 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 8BQ JG9 H8D F28 |
| DOI | 10.1109/87.772156 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional METADEX Materials Research Database Aerospace Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Materials Research Database METADEX Aerospace Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Engineering Research Database Technology Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EndPage | 413 |
| ExternalDocumentID | 1912899 10_1109_87_772156 772156 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACBEA ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION AAYOK IQODW RIG 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 8BQ JG9 H8D F28 |
| ID | FETCH-LOGICAL-c400t-30874baf80548acaca4edcda07e6473a5eb5c76e7a2fb5f233eedb9e7fde3a4e3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6536 |
| IngestDate | Wed Oct 01 12:04:44 EDT 2025 Sun Sep 28 14:07:24 EDT 2025 Sat Sep 27 22:53:04 EDT 2025 Sun Sep 28 04:29:35 EDT 2025 Wed Apr 02 07:25:49 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Wed Oct 01 02:12:23 EDT 2025 Wed Aug 27 02:53:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Least squares method Noise reduction Reluctance machine Ripple Neural network Learning algorithm Adaptive control |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-30874baf80548acaca4edcda07e6473a5eb5c76e7a2fb5f233eedb9e7fde3a4e3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 28256940 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_772156 proquest_miscellaneous_28256940 crossref_primary_10_1109_87_772156 proquest_miscellaneous_28735284 pascalfrancis_primary_1912899 proquest_miscellaneous_28927829 proquest_miscellaneous_919913197 crossref_citationtrail_10_1109_87_772156 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1999-07-01 |
| PublicationDateYYYYMMDD | 1999-07-01 |
| PublicationDate_xml | – month: 07 year: 1999 text: 1999-07-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | IEEE transactions on control systems technology |
| PublicationTitleAbbrev | TCST |
| PublicationYear | 1999 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref35 tolle (ref32) 1992 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref11 brown (ref5) 1994 ref10 ref2 ref1 ref17 ref16 ref19 ref18 rumelhart (ref26) 1986 widrow (ref37) 1988 reay (ref21) 1995; 15 kjaer (ref13) 1995; 3 albus (ref3) 1981 ref23 ref20 ref22 rosenblatt (ref25) 1962 ref28 reay (ref24) 1994 ref27 ref29 ref8 ref7 ref9 ref6 torrey (ref33) 1991; 138 broomhead (ref4) 1988; 2 |
| References_xml | – volume: 3 start-page: 741 year: 1995 ident: ref13 article-title: efficiency optimization in current controlled variable-speed switched reluctance motor drives publication-title: Proc European Conf Power Electron – ident: ref10 doi: 10.1109/28.382124 – ident: ref28 doi: 10.1109/ICNN.1996.549222 – ident: ref23 doi: 10.1109/IECON.1993.339081 – ident: ref16 doi: 10.1109/MASSP.1987.1165576 – volume: 2 start-page: 321 year: 1988 ident: ref4 article-title: multivariable function interpolation and adaptive networks publication-title: Complex Syst – ident: ref7 doi: 10.1016/B978-0-444-89178-5.50053-1 – ident: ref22 doi: 10.1109/FUZZY.1996.552282 – ident: ref17 doi: 10.1049/ip-epa:19949859 – year: 1962 ident: ref25 publication-title: Principles of Neurodynamics – ident: ref11 doi: 10.1109/37.55122 – year: 1986 ident: ref26 article-title: learning internal representations by error propagation publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition – ident: ref34 doi: 10.1109/70.105382 – ident: ref2 doi: 10.1115/1.3426923 – ident: ref9 doi: 10.1109/28.382116 – ident: ref27 doi: 10.1109/PESC.1992.254793 – ident: ref12 doi: 10.1109/63.484420 – ident: ref29 doi: 10.1049/el:19960721 – ident: ref31 doi: 10.1109/37.67673 – volume: 138 start-page: 1 year: 1991 ident: ref33 article-title: optimal-efficiency excitation of variable-reluctance motor drives publication-title: Electric Power Applications IEE Proceedings B [see also IEE Proceedings-Electric Power Applications] doi: 10.1049/ip-b.1991.0001 – year: 1992 ident: ref32 publication-title: Neurocontrol-Learning Control Systems Inspired by Neural Architectures and Human Problem Solving Strategies – ident: ref1 doi: 10.1115/1.3426922 – ident: ref18 doi: 10.1162/neco.1991.3.2.226 – year: 1988 ident: ref37 publication-title: Adaptive Signal Processing – ident: ref15 doi: 10.1109/87.508883 – year: 1994 ident: ref5 publication-title: Neurofuzzy Adaptive Modeling and Control – ident: ref20 doi: 10.1109/JRA.1987.1087081 – ident: ref6 doi: 10.1109/72.80341 – ident: ref36 doi: 10.1109/72.105424 – ident: ref30 doi: 10.1109/87.370707 – year: 1981 ident: ref3 publication-title: Brain Behavior and Robotics – volume: 15 start-page: 8 year: 1995 ident: ref21 article-title: switched reluctance motor control via fuzzy adaptive system publication-title: IEEE Contr Syst Mag doi: 10.1109/37.387611 – ident: ref14 doi: 10.1016/0005-1098(92)90053-I – ident: ref19 doi: 10.1109/5.58338 – year: 1994 ident: ref24 article-title: field programmable gate array implementation of a neural-network accelerator publication-title: Proc Inst Elect Eng Colloquium Hardware Implementation Neural Networks Fuzzy Logic – ident: ref8 doi: 10.1109/41.184827 – ident: ref35 doi: 10.1109/63.163641 |
| SSID | ssj0014527 |
| Score | 1.6813066 |
| Snippet | This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 401 |
| SubjectTerms | Adaptive algorithm Applied sciences Computer simulation Copper Electrical engineering. Electrical power engineering Electrical machines Exact sciences and technology Learning Least squares approximation Mathematical models Motors Neural networks Production Regulation and control Reluctance Reluctance machines Reluctance motors Ripples Rotors Torque Torque control Torque measurement |
| Title | Adapting CMAC neural networks with constrained LMS algorithm for efficient torque ripple reduction in switched reluctance motors |
| URI | https://ieeexplore.ieee.org/document/772156 https://www.proquest.com/docview/28256940 https://www.proquest.com/docview/28735284 https://www.proquest.com/docview/28927829 https://www.proquest.com/docview/919913197 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1063-6536 databaseCode: RIE dateStart: 19930101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014527 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELaWnpYDsDxEeexaiAOXlNA4cXysqkUIbbkAErfIjwlClKRq2gun_ek7Y6fdhQWEemjljuM4HtvfZMbfMHasUlPKuG8im0kbCZ3GkRLORTE5bXLE1xbIUBxdZRe34vIuvWt5tv1ZGADwwWfQo5_el-9qO6dXZaeIBNHcWGErMs_CUa2lw0CE7Kxo4CRR5j2SGy2d5mkue6Hii63H51KhSEjd4MMoQxaL_xZkv8ucr4fj240nJ6TgksfefGZ69vkVdeMnO7DB1lq0yQdBPb6xL1BtstV_OAi32O-B0xOKfebD0WDIid8Sa1QhOrzh9J6WWwKRlEsCHP81uuZ6fF9P8Y8njpCXg2ehwIY52u_YK47r0GSMX8QKS-POHyre4IVQPxyWjrGUdI2jltTTZpvdnv-8GV5EbVqGyOKEn0XEISiMLnNEe7m2-BHgrNOxhEzIRKdgUiszkLpfmrTsJwnuw0aBLB0kKJvssE5VV7DLeCJzIyCOjUFch1jfWGUtWlgmK5VBS67LThYjVtiWs5y6Oy687RKrIpdFeKhddrQUnQSijreENmlQlgKL0sMXWvC3vjoje7TLfiy0osDJRx4VXUE9bwo6-JspEX8kIYk_R3wkofoI07AV_o6EovA0XCrl3pu3v8--Bi4JiiE-YJ3ZdA6HiJRm5rufI38Ag2wWRw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagHIADdB-IAstaiAOXtKFx4vhYVawK2-5lW2lvkR-TFaIkVdNeOPHTmbHTwi7LCvXQyh3HcTy2v8mMv2HsvUpNKeOhiWwmbSR0GkdKOBfF5LTJEV9bIENxdpFNFuLLVXrV8mz7szAA4IPPoE8_vS_f1XZLr8oGiATR3HjIHqVCiDQc1tq7DETIz4omThJl3ifZbQk1B7nsh6o3Nh-fTYViIXWDj6MMeSz-WpL9PnP2PBzgbjw9IYWXfOtvN6Zvf9wib_zPLnTZsxZv8lFQkAP2AKpD9vQPFsIj9nPk9Iqin_l4NhpzYrjEGlWID284vanllmAkZZMAx6ezS66X1_Ua__jOEfRy8DwU2DBHCx57xXElWi3xi3hhaeT514o3eCHUEIelSywlbeOoJ_W6OWaLs0_z8SRqEzNEFqf8JiIWQWF0mSPey7XFjwBnnY4lZEImOgWTWpmB1MPSpOUwSXAnNgpk6SBB2eQF61R1BS8ZT2RuBMSxMYjsEO0bq6xFG8tkpTJoy_XYh92IFbZlLafuLgtvvcSqyGURHmqPvduLrgJVx11ChzQoe4Fd6ckNLfhdX30ki7THTndaUeD0I5-KrqDeNgUd_c2UiO-TkMSgI-6TUEMEatgK_4eEogA1XCzlqztv_5Q9nsxn02L6-eL8NXsSmCUoovgN62zWWzhB3LQxb_18-QUlYhmU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+CMAC+neural+networks+with+constrained+LMS+algorithm+for+efficient+torque+ripple+reduction+in+switched+reluctance+motors&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Shang%2C+Changjing&rft.au=Reay%2C+D&rft.au=Williams%2C+B&rft.date=1999-07-01&rft.issn=1063-6536&rft.volume=7&rft.issue=4&rft.spage=401&rft.epage=413&rft_id=info:doi/10.1109%2F87.772156&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon |