Adapting CMAC neural networks with constrained LMS algorithm for efficient torque ripple reduction in switched reluctance motors

This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 7; no. 4; pp. 401 - 413
Main Authors Changjing Shang, Reay, D., Williams, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.1999
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1063-6536
DOI10.1109/87.772156

Cover

Abstract This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over the rotor angle of the motor under control. The criteria and method for the development of current profiles suitable for use over a wide range of motor speeds are described. In particular, current profiles can be designed to possess desirable characteristics by selection of learning rate function with appropriate switching angles during the training of the network. The approach allows the generation of optimal current profiles in terms of minimizing torque ripple and copper loss as the motor operates at low speeds, and of minimizing torque ripple, copper loss and rate of change of current as the motor runs at high speeds. Experimental measurement of the torque production characteristics of a 4 kW, four-phase switched reluctance motor forms the basis of simulation studies of this approach. Substantial simulation results are reported and the performance of learned current profiles analyzed. These demonstrate that developing CMAC-based adaptive controllers following this approach affords lower torque ripple with high power efficiency, while offering rapid learning convergence in system adaptation.
AbstractList This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over the rotor angle of the motor under control. The criteria and method for the development of current profiles suitable for use over a wide range of motor speeds are described. In particular, current profiles can be designed to possess desirable characteristics by selection of learning rate function with appropriate switching angles during the training of the network. The approach allows the generation of optimal current profiles in terms of minimizing torque ripple and copper loss as the motor operates at low speeds, and of minimizing torque ripple, copper loss and rate of change of current as the motor runs at high speeds. Experimental measurement of the torque production characteristics of a 4 kW, four-phase switched reluctance motor forms the basis of simulation studies of this approach. Substantial simulation results are reported and the performance of learned current profiles analyzed. These demonstrate that developing CMAC-based adaptive controllers following this approach affords lower torque ripple with high power efficiency, while offering rapid learning convergence in system adaptation
This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation controller (CMAC) neural network. The approach modifies the conventional LMS adaptive algorithm using a variable learning rate function over the rotor angle of the motor under control. The criteria and method for the development of current profiles suitable for use over a wide range of motor speeds are described. In particular, current profiles can be designed to possess desirable characteristics by selection of learning rate function with appropriate switching angles during the training of the network. The approach allows the generation of optimal current profiles in terms of minimizing torque ripple and copper loss as the motor operates at low speeds, and of minimizing torque ripple, copper loss and rate of change of current as the motor runs at high speeds. Experimental measurement of the torque production characteristics of a 4 kW, four-phase switched reluctance motor forms the basis of simulation studies of this approach. Substantial simulation results are reported and the performance of learned current profiles analyzed. These demonstrate that developing CMAC-based adaptive controllers following this approach affords lower torque ripple with high power efficiency, while offering rapid learning convergence in system adaptation.
Author Reay, D.
Williams, B.
Changjing Shang
Author_xml – sequence: 1
  surname: Changjing Shang
  fullname: Changjing Shang
  organization: Dept. of Stat., Glasgow Univ., UK
– sequence: 2
  givenname: D.
  surname: Reay
  fullname: Reay, D.
– sequence: 3
  givenname: B.
  surname: Williams
  fullname: Williams, B.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1912899$$DView record in Pascal Francis
BookMark eNqNkr1PHDEQxV0QKUBS0FK5QEQpDvyxXq_L0ykkkQ5RJNSWzzsGg89ebJ9QOv70-HQniihCyMWTPL_3xhrPETqIKQJCJ5RcUErU5SAvpGRU9AfokJKez3rB-4_oqJQHQmgnmDxEL_PRTNXHO7y4ni9whE02oUl9Tvmx4Gdf77FNsdRsfIQRL69_YRPuUm6FNXYpY3DOWw-x4pry0wZw9tMUmsC4sdWniH3EpQXZ--bPENqtiRbwOjVD-YQ-OBMKfN7rMbq9-vZ78WO2vPn-czFfzmxHSJ1xMshuZdxARDcY204Hox0NkdB3khsBK2FlD9IwtxKOcQ4wrhRINwJvLD9GX3a5U07tlaXqtS8WQjAR0qZoRZWinCrZyPM3STYoJgem3gFKLtjQvQNkolcdaeDZHjTFmuByG5Qvesp-bfIfTRVtzbeNL3eYzamUDE5bX8121ttvCpoSvV0APUi9W4Dm-PqP4zXzP-zpjvUA8Mrti38Bcwq_PA
CODEN IETTE2
CitedBy_id crossref_primary_10_1016_j_eswa_2009_03_071
crossref_primary_10_1109_OJIES_2021_3076807
crossref_primary_10_1109_TCYB_2019_2919128
crossref_primary_10_1016_j_nonrwa_2010_09_025
crossref_primary_10_1080_02286203_2021_1875288
crossref_primary_10_3390_electronics11101552
crossref_primary_10_1049_ip_epa_20010480
crossref_primary_10_1109_ACCESS_2022_3190082
crossref_primary_10_1109_ACCESS_2018_2837111
Cites_doi 10.1109/28.382124
10.1109/ICNN.1996.549222
10.1109/IECON.1993.339081
10.1109/MASSP.1987.1165576
10.1016/B978-0-444-89178-5.50053-1
10.1109/FUZZY.1996.552282
10.1049/ip-epa:19949859
10.1109/37.55122
10.1109/70.105382
10.1115/1.3426923
10.1109/28.382116
10.1109/PESC.1992.254793
10.1109/63.484420
10.1049/el:19960721
10.1109/37.67673
10.1049/ip-b.1991.0001
10.1115/1.3426922
10.1162/neco.1991.3.2.226
10.1109/87.508883
10.1109/JRA.1987.1087081
10.1109/72.80341
10.1109/72.105424
10.1109/87.370707
10.1109/37.387611
10.1016/0005-1098(92)90053-I
10.1109/5.58338
10.1109/41.184827
10.1109/63.163641
ContentType Journal Article
Copyright 1999 INIST-CNRS
Copyright_xml – notice: 1999 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
8BQ
JG9
H8D
F28
DOI 10.1109/87.772156
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
METADEX
Materials Research Database
Aerospace Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
METADEX
Aerospace Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Engineering Research Database
Technology Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 413
ExternalDocumentID 1912899
10_1109_87_772156
772156
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
8BQ
JG9
H8D
F28
ID FETCH-LOGICAL-c400t-30874baf80548acaca4edcda07e6473a5eb5c76e7a2fb5f233eedb9e7fde3a4e3
IEDL.DBID RIE
ISSN 1063-6536
IngestDate Wed Oct 01 12:04:44 EDT 2025
Sun Sep 28 14:07:24 EDT 2025
Sat Sep 27 22:53:04 EDT 2025
Sun Sep 28 04:29:35 EDT 2025
Wed Apr 02 07:25:49 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Wed Oct 01 02:12:23 EDT 2025
Wed Aug 27 02:53:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Least squares method
Noise reduction
Reluctance machine
Ripple
Neural network
Learning algorithm
Adaptive control
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-30874baf80548acaca4edcda07e6473a5eb5c76e7a2fb5f233eedb9e7fde3a4e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 28256940
PQPubID 23500
PageCount 13
ParticipantIDs ieee_primary_772156
proquest_miscellaneous_28256940
crossref_primary_10_1109_87_772156
proquest_miscellaneous_28735284
pascalfrancis_primary_1912899
proquest_miscellaneous_28927829
proquest_miscellaneous_919913197
crossref_citationtrail_10_1109_87_772156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-07-01
PublicationDateYYYYMMDD 1999-07-01
PublicationDate_xml – month: 07
  year: 1999
  text: 1999-07-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 1999
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref35
tolle (ref32) 1992
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref11
brown (ref5) 1994
ref10
ref2
ref1
ref17
ref16
ref19
ref18
rumelhart (ref26) 1986
widrow (ref37) 1988
reay (ref21) 1995; 15
kjaer (ref13) 1995; 3
albus (ref3) 1981
ref23
ref20
ref22
rosenblatt (ref25) 1962
ref28
reay (ref24) 1994
ref27
ref29
ref8
ref7
ref9
ref6
torrey (ref33) 1991; 138
broomhead (ref4) 1988; 2
References_xml – volume: 3
  start-page: 741
  year: 1995
  ident: ref13
  article-title: efficiency optimization in current controlled variable-speed switched reluctance motor drives
  publication-title: Proc European Conf Power Electron
– ident: ref10
  doi: 10.1109/28.382124
– ident: ref28
  doi: 10.1109/ICNN.1996.549222
– ident: ref23
  doi: 10.1109/IECON.1993.339081
– ident: ref16
  doi: 10.1109/MASSP.1987.1165576
– volume: 2
  start-page: 321
  year: 1988
  ident: ref4
  article-title: multivariable function interpolation and adaptive networks
  publication-title: Complex Syst
– ident: ref7
  doi: 10.1016/B978-0-444-89178-5.50053-1
– ident: ref22
  doi: 10.1109/FUZZY.1996.552282
– ident: ref17
  doi: 10.1049/ip-epa:19949859
– year: 1962
  ident: ref25
  publication-title: Principles of Neurodynamics
– ident: ref11
  doi: 10.1109/37.55122
– year: 1986
  ident: ref26
  article-title: learning internal representations by error propagation
  publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition
– ident: ref34
  doi: 10.1109/70.105382
– ident: ref2
  doi: 10.1115/1.3426923
– ident: ref9
  doi: 10.1109/28.382116
– ident: ref27
  doi: 10.1109/PESC.1992.254793
– ident: ref12
  doi: 10.1109/63.484420
– ident: ref29
  doi: 10.1049/el:19960721
– ident: ref31
  doi: 10.1109/37.67673
– volume: 138
  start-page: 1
  year: 1991
  ident: ref33
  article-title: optimal-efficiency excitation of variable-reluctance motor drives
  publication-title: Electric Power Applications IEE Proceedings B [see also IEE Proceedings-Electric Power Applications]
  doi: 10.1049/ip-b.1991.0001
– year: 1992
  ident: ref32
  publication-title: Neurocontrol-Learning Control Systems Inspired by Neural Architectures and Human Problem Solving Strategies
– ident: ref1
  doi: 10.1115/1.3426922
– ident: ref18
  doi: 10.1162/neco.1991.3.2.226
– year: 1988
  ident: ref37
  publication-title: Adaptive Signal Processing
– ident: ref15
  doi: 10.1109/87.508883
– year: 1994
  ident: ref5
  publication-title: Neurofuzzy Adaptive Modeling and Control
– ident: ref20
  doi: 10.1109/JRA.1987.1087081
– ident: ref6
  doi: 10.1109/72.80341
– ident: ref36
  doi: 10.1109/72.105424
– ident: ref30
  doi: 10.1109/87.370707
– year: 1981
  ident: ref3
  publication-title: Brain Behavior and Robotics
– volume: 15
  start-page: 8
  year: 1995
  ident: ref21
  article-title: switched reluctance motor control via fuzzy adaptive system
  publication-title: IEEE Contr Syst Mag
  doi: 10.1109/37.387611
– ident: ref14
  doi: 10.1016/0005-1098(92)90053-I
– ident: ref19
  doi: 10.1109/5.58338
– year: 1994
  ident: ref24
  article-title: field programmable gate array implementation of a neural-network accelerator
  publication-title: Proc Inst Elect Eng Colloquium Hardware Implementation Neural Networks Fuzzy Logic
– ident: ref8
  doi: 10.1109/41.184827
– ident: ref35
  doi: 10.1109/63.163641
SSID ssj0014527
Score 1.6813066
Snippet This paper presents a novel approach to learning control in switched reluctance motors (SRM) for torque ripple reduction using a cerebellar model articulation...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 401
SubjectTerms Adaptive algorithm
Applied sciences
Computer simulation
Copper
Electrical engineering. Electrical power engineering
Electrical machines
Exact sciences and technology
Learning
Least squares approximation
Mathematical models
Motors
Neural networks
Production
Regulation and control
Reluctance
Reluctance machines
Reluctance motors
Ripples
Rotors
Torque
Torque control
Torque measurement
Title Adapting CMAC neural networks with constrained LMS algorithm for efficient torque ripple reduction in switched reluctance motors
URI https://ieeexplore.ieee.org/document/772156
https://www.proquest.com/docview/28256940
https://www.proquest.com/docview/28735284
https://www.proquest.com/docview/28927829
https://www.proquest.com/docview/919913197
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1063-6536
  databaseCode: RIE
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014527
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELaWnpYDsDxEeexaiAOXlNA4cXysqkUIbbkAErfIjwlClKRq2gun_ek7Y6fdhQWEemjljuM4HtvfZMbfMHasUlPKuG8im0kbCZ3GkRLORTE5bXLE1xbIUBxdZRe34vIuvWt5tv1ZGADwwWfQo5_el-9qO6dXZaeIBNHcWGErMs_CUa2lw0CE7Kxo4CRR5j2SGy2d5mkue6Hii63H51KhSEjd4MMoQxaL_xZkv8ucr4fj240nJ6TgksfefGZ69vkVdeMnO7DB1lq0yQdBPb6xL1BtstV_OAi32O-B0xOKfebD0WDIid8Sa1QhOrzh9J6WWwKRlEsCHP81uuZ6fF9P8Y8njpCXg2ehwIY52u_YK47r0GSMX8QKS-POHyre4IVQPxyWjrGUdI2jltTTZpvdnv-8GV5EbVqGyOKEn0XEISiMLnNEe7m2-BHgrNOxhEzIRKdgUiszkLpfmrTsJwnuw0aBLB0kKJvssE5VV7DLeCJzIyCOjUFch1jfWGUtWlgmK5VBS67LThYjVtiWs5y6Oy687RKrIpdFeKhddrQUnQSijreENmlQlgKL0sMXWvC3vjoje7TLfiy0osDJRx4VXUE9bwo6-JspEX8kIYk_R3wkofoI07AV_o6EovA0XCrl3pu3v8--Bi4JiiE-YJ3ZdA6HiJRm5rufI38Ag2wWRw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELagHIADdB-IAstaiAOXtKFx4vhYVawK2-5lW2lvkR-TFaIkVdNeOPHTmbHTwi7LCvXQyh3HcTy2v8mMv2HsvUpNKeOhiWwmbSR0GkdKOBfF5LTJEV9bIENxdpFNFuLLVXrV8mz7szAA4IPPoE8_vS_f1XZLr8oGiATR3HjIHqVCiDQc1tq7DETIz4omThJl3ifZbQk1B7nsh6o3Nh-fTYViIXWDj6MMeSz-WpL9PnP2PBzgbjw9IYWXfOtvN6Zvf9wib_zPLnTZsxZv8lFQkAP2AKpD9vQPFsIj9nPk9Iqin_l4NhpzYrjEGlWID284vanllmAkZZMAx6ezS66X1_Ua__jOEfRy8DwU2DBHCx57xXElWi3xi3hhaeT514o3eCHUEIelSywlbeOoJ_W6OWaLs0_z8SRqEzNEFqf8JiIWQWF0mSPey7XFjwBnnY4lZEImOgWTWpmB1MPSpOUwSXAnNgpk6SBB2eQF61R1BS8ZT2RuBMSxMYjsEO0bq6xFG8tkpTJoy_XYh92IFbZlLafuLgtvvcSqyGURHmqPvduLrgJVx11ChzQoe4Fd6ckNLfhdX30ki7THTndaUeD0I5-KrqDeNgUd_c2UiO-TkMSgI-6TUEMEatgK_4eEogA1XCzlqztv_5Q9nsxn02L6-eL8NXsSmCUoovgN62zWWzhB3LQxb_18-QUlYhmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adapting+CMAC+neural+networks+with+constrained+LMS+algorithm+for+efficient+torque+ripple+reduction+in+switched+reluctance+motors&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Shang%2C+Changjing&rft.au=Reay%2C+D&rft.au=Williams%2C+B&rft.date=1999-07-01&rft.issn=1063-6536&rft.volume=7&rft.issue=4&rft.spage=401&rft.epage=413&rft_id=info:doi/10.1109%2F87.772156&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon