In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening
The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants. In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analys...
Saved in:
Published in | Med (New York, N.Y. : Online) Vol. 4; no. 5; pp. 311 - 325.e7 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2666-6340 2666-6340 |
DOI | 10.1016/j.medj.2023.03.001 |
Cover
Abstract | The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants.
In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery.
We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gβγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged.
This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo.
This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.
[Display omitted]
•Splice-site mutation in GNAO1 produces aberrant Gαo with a two-amino acid insertion•Insertion changes switch III dynamics and interactions within Gαo and with effectors•Pathogenic Gαo[insPQ] displays aberrant GTP uptake and hydrolysis•High-throughput screening platform is established for personalized drug discovery
Mutations in the gene GNAO1 lead to severe pediatric brain disorders with epilepsy, motor dysfunction, and developmental and intellectual delay. No curative therapy currently exists for this devastating disease. A team of neurologists, clinical geneticists, and biologists focus here on a particular mutation in the GNAO1 gene. Through an exhaustive clinical, genetic, cellular, and molecular characterization, they identify the core mechanisms of the disease caused by this specific mutation. This further allows us to establish a high-throughput screening platform to look for molecules that would correct the abnormal functioning of the mutant protein. This multidisciplinary work validates a personalized medicine research and drug discovery pipeline that can be expanded to other genetic disorders.
A splice-site mutation in GNAO1 encoding the major neuronal G protein Gαo leads to severe pediatric encephalopathy. Koval et al. discover that this mutation leads to an in-frame insertion of two extra amino acids, a novel pairing between the regulatory switch III and switch II loops, and aberrant GTP uptake and hydrolysis. |
---|---|
AbstractList | The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants.
In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery.
We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gβγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged.
This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo.
This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.
[Display omitted]
•Splice-site mutation in GNAO1 produces aberrant Gαo with a two-amino acid insertion•Insertion changes switch III dynamics and interactions within Gαo and with effectors•Pathogenic Gαo[insPQ] displays aberrant GTP uptake and hydrolysis•High-throughput screening platform is established for personalized drug discovery
Mutations in the gene GNAO1 lead to severe pediatric brain disorders with epilepsy, motor dysfunction, and developmental and intellectual delay. No curative therapy currently exists for this devastating disease. A team of neurologists, clinical geneticists, and biologists focus here on a particular mutation in the GNAO1 gene. Through an exhaustive clinical, genetic, cellular, and molecular characterization, they identify the core mechanisms of the disease caused by this specific mutation. This further allows us to establish a high-throughput screening platform to look for molecules that would correct the abnormal functioning of the mutant protein. This multidisciplinary work validates a personalized medicine research and drug discovery pipeline that can be expanded to other genetic disorders.
A splice-site mutation in GNAO1 encoding the major neuronal G protein Gαo leads to severe pediatric encephalopathy. Koval et al. discover that this mutation leads to an in-frame insertion of two extra amino acids, a novel pairing between the regulatory switch III and switch II loops, and aberrant GTP uptake and hydrolysis. The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants. In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery. We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gβγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged. This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo. This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem. The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants.BACKGROUNDThe GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense variants.In this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery.METHODSIn this study, we present a precision medicine workflow combining next-generation sequencing (NGS) diagnostics, molecular etiology analysis, and personalized drug discovery.We describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gβγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged.FINDINGSWe describe a patient carrying a de novo intronic mutation (NM_020988.3:c.724-8G>A), leading to epilepsy-negative encephalopathy with motor dysfunction from the second decade. Our data show that this mutation creates a novel splice acceptor site that in turn causes an in-frame insertion of two amino acid residues, Pro-Gln, within the regulatory switch III region of Gαo. This insertion misconfigures the switch III loop and creates novel interactions with the catalytic switch II region, resulting in increased GTP uptake, defective GTP hydrolysis, and aberrant interactions with effector proteins. In contrast, intracellular localization, Gβγ interactions, and G protein-coupled receptor (GPCR) coupling of the Gαo[insPQ] mutant protein remain unchanged.This in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo.CONCLUSIONSThis in-depth analysis characterizes the heterozygous c.724-8G>A mutation as partially dominant negative, providing clues to the molecular etiology of this specific pathology. Further, this analysis allows us to establish and validate a high-throughput screening platform aiming at identifying molecules that could correct the aberrant biochemical functions of the mutant Gαo.This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem.FUNDINGThis work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem. |
Author | Quinodoz, Mathieu Superti-Furga, Andrea Katanaev, Vladimir L. Rivolta, Carlo Solis, Gonzalo P. Larasati, Yonika A. Good, Jean-Marc Koval, Alexey Savitsky, Mikhail |
Author_xml | – sequence: 1 givenname: Alexey surname: Koval fullname: Koval, Alexey organization: Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland – sequence: 2 givenname: Yonika A. surname: Larasati fullname: Larasati, Yonika A. organization: Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland – sequence: 3 givenname: Mikhail surname: Savitsky fullname: Savitsky, Mikhail organization: Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland – sequence: 4 givenname: Gonzalo P. surname: Solis fullname: Solis, Gonzalo P. organization: Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland – sequence: 5 givenname: Jean-Marc surname: Good fullname: Good, Jean-Marc organization: Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland – sequence: 6 givenname: Mathieu surname: Quinodoz fullname: Quinodoz, Mathieu organization: Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland – sequence: 7 givenname: Carlo surname: Rivolta fullname: Rivolta, Carlo organization: Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031 Basel, Switzerland – sequence: 8 givenname: Andrea surname: Superti-Furga fullname: Superti-Furga, Andrea organization: Division of Genetic Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland – sequence: 9 givenname: Vladimir L. orcidid: 0000-0002-7909-5617 surname: Katanaev fullname: Katanaev, Vladimir L. email: vladimir.katanaev@unige.ch organization: Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37001522$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrHDEQhEVwiO2N_0AORkdfZtOSxvOAXIxJbIOJL8lZaKSeHS0z0kYPg_Pro2XXYHIwNHQf6ivoqnNy4rxDQr4wWDNgzdftekGzXXPgYg1lgH0gZ7xpmqoRNZy8uU_JRYxbAODXTLCefyKnoi36a87PSH5wlcFdmujiZ9R5VoHugh_tbN2G-pEqR61LwTur6d3PmydGl5yUS1RFmiakg4o20tEXDEP0Ts32Lxo62c1UpSn4vJl2OVET8oZGHRBdMf5MPo5qjnhx3Cvy-8f3X7f31ePT3cPtzWOla4BU8U7DAEyLFhmywbC6hQZUZ7TuVdMNtWBth6Kr-9bULYNy60GNmpsW1KBArMjVwbe89CdjTHKxUeM8K4c-R8nbXvRdL5q-SC-P0jyUZOUu2EWFF_kaVRF0B4EOPsaAo9Q2qWR9SUfZWTKQ-2LkVu6LkftiJJQBVlD-H_rq_i707QBhCejZYpBRW3QajQ2okzTevof_A20xp0Y |
CitedBy_id | crossref_primary_10_1016_j_medj_2024_07_023 crossref_primary_10_3390_cells12202469 crossref_primary_10_1002_mds_29881 crossref_primary_10_1002_INMD_20240010 crossref_primary_10_1016_j_ebr_2023_100598 crossref_primary_10_1002_mds_29720 crossref_primary_10_1172_JCI172057 |
Cites_doi | 10.1016/j.ymgmr.2022.100864 10.3389/fneur.2021.662162 10.1242/dev.106773 10.1093/nar/gky427 10.18632/oncotarget.22067 10.1038/s41436-019-0595-x 10.1126/science.8073283 10.1093/nar/gkx1153 10.1186/s13023-020-01594-3 10.1016/j.neuron.2018.04.021 10.1042/BJ20101878 10.1073/pnas.0601853103 10.1016/j.cell.2017.07.015 10.1016/j.ajhg.2019.04.011 10.1073/pnas.1905993116 10.1002/dvdy.22060 10.1186/s13104-018-3671-4 10.1038/366654a0 10.1089/1066527041410418 10.1111/epi.14653 10.1074/jbc.M504935200 10.1073/pnas.95.6.3269 10.1186/s40478-022-01312-z 10.1126/sciadv.abn9350 10.1073/pnas.1500851112 10.1002/0471250953.bi1110s43 10.1371/journal.pcbi.1003207 10.1212/WNL.0000000000004262 10.1007/978-1-61779-334-9_8 10.1007/s10048-022-00686-5 10.1038/s41467-022-29685-8 10.1002/mds.29074 10.3390/cells10102749 10.1016/j.softx.2015.06.001 10.1038/nmeth.4067 10.1038/383172a0 10.1091/mbc.e09-01-0021 10.1016/j.molcel.2014.01.014 10.1126/scisignal.abf1653 10.1016/j.parkreldis.2018.11.019 10.1093/nar/gkac345 10.1038/gim.2015.148 10.1074/jbc.272.35.21673 10.1038/84974 10.1016/j.cell.2018.12.015 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Inc. Copyright © 2023 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Inc. – notice: Copyright © 2023 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.medj.2023.03.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2666-6340 |
EndPage | 325.e7 |
ExternalDocumentID | 37001522 10_1016_j_medj_2023_03_001 S2666634023000971 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation | This work was supported by the Joint Seed Money Funding scheme between the University of Geneva and the Hebrew University of Jerusalem. |
GroupedDBID | 53G AAXUO ALMA_UNASSIGNED_HOLDINGS EBS FDB M41 0R~ AALRI AAMRU AAYWO AAYXX ABJNI ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKBMS AKRWK AKYEP AMRAJ CITATION ROL CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c400t-28c0b01c37e1e1bd147060a8dcc9a68b43178e38497d47108e3cbafc2d70aba03 |
ISSN | 2666-6340 |
IngestDate | Sun Sep 28 08:27:40 EDT 2025 Wed Feb 19 02:25:02 EST 2025 Tue Jul 01 02:21:15 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Thu Jul 20 20:07:38 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | GNAO1 pediatric encephalopathy signaling drug discovery Translation to patients personalized medicine G protein |
Language | English |
License | Copyright © 2023 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c400t-28c0b01c37e1e1bd147060a8dcc9a68b43178e38497d47108e3cbafc2d70aba03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7909-5617 |
OpenAccessLink | http://www.cell.com/article/S2666634023000971/pdf |
PMID | 37001522 |
PQID | 2793989369 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2793989369 pubmed_primary_37001522 crossref_citationtrail_10_1016_j_medj_2023_03_001 crossref_primary_10_1016_j_medj_2023_03_001 elsevier_sciencedirect_doi_10_1016_j_medj_2023_03_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-12 |
PublicationDateYYYYMMDD | 2023-05-12 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Med (New York, N.Y. : Online) |
PublicationTitleAlternate | Med |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Lin, Koval, Tishchenko, Gabdulkhakov, Tin, Solis, Katanaev (bib25) 2014; 53 Larasati, Savitsky, Koval, Solis, Valnohova, Katanaev (bib3) 2022; 8 Miyamoto, Nakashima, Fukumura, Kumada, Saitsu (bib16) 2022; 23 Lüchtenborg, Solis, Egger-Adam, Koval, Lin, Blanchard, Kellenberger, Katanaev (bib5) 2014; 141 Landrum, Lee, Benson, Brown, Chao, Chitipiralla, Gu, Hart, Hoffman, Jang (bib9) 2018; 46 Sowa, He, Slep, Kercher, Lichtarge, Wensel (bib29) 2001; 8 Micsonai, Moussong, Wien, Boros, Vadászi, Murvai, Lee, Molnár, Réfrégiers, Goto (bib45) 2022; 50 Huang, Rauscher, Nawrocki, Ran, Feig, de Groot, Grubmüller, MacKerell (bib43) 2017; 14 Kopein, Katanaev (bib24) 2009; 20 Jiang, Gold, Boulay, Spicher, Peyton, Brabet, Srinivasan, Rudolph, Ellison, Birnbaumer (bib1) 1998; 95 Yang, Niu, Yang, Cheng, Zhang, Chen, Yang, Zhang (bib13) 2021; 12 Thaker, Kaya, Preininger, Hamm, Iverson (bib35) 2012; 796 Feng, Sjögren, Karaj, Shaw, Gezer, Neubig (bib10) 2017; 89 Katanaev, Tomlinson (bib6) 2006; 103 Solis, Bilousov, Koval, Lüchtenborg, Lin, Katanaev (bib2) 2017; 170 Kim, Shim, Ko, Park, Jang, Lim, Kim, Chae (bib22) 2020; 15 Solis, Kozhanova, Koval, Zhilina, Mescheryakova, Abramov, Ishmuratov, Bolshakova, Osipova, Ayvazyan (bib27) 2021; 10 Noel, Hamm, Sigler (bib20) 1993; 366 Solis, Kazemzadeh, Abrami, Valnohova, Alvarez, van der Goot, Katanaev (bib30) 2022; 13 Yeo, Burge (bib18) 2004; 11 Mariani, Dell'Orco, Felline, Raimondi, Fanelli (bib21) 2013; 9 Al Masseri, AlSayed (bib17) 2022; 31 Jaganathan, Kyriazopoulou Panagiotopoulou, McRae, Darbandi, Knowles, Li, Kosmicki, Arbelaez, Cui, Schwartz (bib19) 2019; 176 Ferrante, Giles, Benzie, Hunter (bib46) 2018; 11 Pereira, Cerione (bib36) 2005; 280 Kelly, Park, Mihalek, Rochtus, Gramm, Pérez-Palma, Axeen, Hung, Olson, Swanson (bib7) 2019; 60 Solis, Katanaev (bib11) 2018; 9 Retterer, Juusola, Cho, Vitazka, Millan, Gibellini, Vertino-Bell, Smaoui, Neidich, Monaghan (bib12) 2016; 18 Egger-Adam, Katanaev (bib26) 2010; 239 Silachev, Koval, Savitsky, Padmasola, Quairiaux, Thorel, Katanaev (bib34) 2022; 10 Stoeber, Jullié, Lobingier, Laeremans, Steyaert, Schiller, Manglik, von Zastrow (bib39) 2018; 98 Van der Auwera, Carneiro, Hartl, Poplin, Del Angel, Levy-Moonshine, Jordan, Shakir, Roazen, Thibault (bib41) 2013; 43 Guduru, Ali, Gurwell, Ginjupally (bib15) 2019; 34 Monies, Abouelhoda, Assoum, Moghrabi, Rafiullah, Almontashiri, Alowain, Alzaidan, Alsayed, Subhani (bib14) 2019; 104 Li, Cerione (bib28) 1997; 272 Schihada, Shekhani, Schulte (bib38) 2021; 14 Schirinzi, Garone, Travaglini, Vasco, Galosi, Rios, Castiglioni, Barassi, Battaglia, Gambardella (bib8) 2019; 61 Haenen, De Rooij, Vermeulen, Bast (bib33) 1990; 37 Wirth, Garone, Kurian, Piton, Millan, Telegrafi, Drouot, Rudolf, Chelly, Marks (bib23) 2022; 37 Coleman, Berghuis, Lee, Linder, Gilman, Sprang (bib37) 1994; 265 Abraham, Murtola, Schulz, Páll, Smith, Hess, Lindahl (bib42) 2015; 1-2 Okashah, Wan, Ghosh, Sandhu, Inoue, Vaidehi, Lambert (bib31) 2019; 116 Micsonai, Wien, Kernya, Lee, Goto, Réfrégiers, Kardos (bib44) 2015; 112 Koval, Katanaev (bib4) 2011; 433 Katanaev, Koval, Valnohova, Silachev, Larasati (bib32) 2023; 0 Peter, Quinodoz, Pinto-Basto, Sousa, Di Gioia, Soares, Ferraz Leal, Silva, Pescini Gobert, Miyake (bib48) 2019; 21 Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, de Beer, Rempfer, Bordoli (bib40) 2018; 46 Watson, Linder, Druey, Kehrl, Blumer (bib47) 1996; 383 Abraham (10.1016/j.medj.2023.03.001_bib42) 2015; 1-2 Micsonai (10.1016/j.medj.2023.03.001_bib45) 2022; 50 Larasati (10.1016/j.medj.2023.03.001_bib3) 2022; 8 Al Masseri (10.1016/j.medj.2023.03.001_bib17) 2022; 31 Jaganathan (10.1016/j.medj.2023.03.001_bib19) 2019; 176 Thaker (10.1016/j.medj.2023.03.001_bib35) 2012; 796 Guduru (10.1016/j.medj.2023.03.001_bib15) 2019; 34 Haenen (10.1016/j.medj.2023.03.001_bib33) 1990; 37 Landrum (10.1016/j.medj.2023.03.001_bib9) 2018; 46 Kopein (10.1016/j.medj.2023.03.001_bib24) 2009; 20 Silachev (10.1016/j.medj.2023.03.001_bib34) 2022; 10 Peter (10.1016/j.medj.2023.03.001_bib48) 2019; 21 Coleman (10.1016/j.medj.2023.03.001_bib37) 1994; 265 Miyamoto (10.1016/j.medj.2023.03.001_bib16) 2022; 23 Yeo (10.1016/j.medj.2023.03.001_bib18) 2004; 11 Micsonai (10.1016/j.medj.2023.03.001_bib44) 2015; 112 Katanaev (10.1016/j.medj.2023.03.001_bib6) 2006; 103 Huang (10.1016/j.medj.2023.03.001_bib43) 2017; 14 Schihada (10.1016/j.medj.2023.03.001_bib38) 2021; 14 Jiang (10.1016/j.medj.2023.03.001_bib1) 1998; 95 Waterhouse (10.1016/j.medj.2023.03.001_bib40) 2018; 46 Yang (10.1016/j.medj.2023.03.001_bib13) 2021; 12 Sowa (10.1016/j.medj.2023.03.001_bib29) 2001; 8 Van der Auwera (10.1016/j.medj.2023.03.001_bib41) 2013; 43 Mariani (10.1016/j.medj.2023.03.001_bib21) 2013; 9 Pereira (10.1016/j.medj.2023.03.001_bib36) 2005; 280 Lüchtenborg (10.1016/j.medj.2023.03.001_bib5) 2014; 141 Solis (10.1016/j.medj.2023.03.001_bib30) 2022; 13 Wirth (10.1016/j.medj.2023.03.001_bib23) 2022; 37 Retterer (10.1016/j.medj.2023.03.001_bib12) 2016; 18 Feng (10.1016/j.medj.2023.03.001_bib10) 2017; 89 Noel (10.1016/j.medj.2023.03.001_bib20) 1993; 366 Kim (10.1016/j.medj.2023.03.001_bib22) 2020; 15 Kelly (10.1016/j.medj.2023.03.001_bib7) 2019; 60 Solis (10.1016/j.medj.2023.03.001_bib11) 2018; 9 Monies (10.1016/j.medj.2023.03.001_bib14) 2019; 104 Okashah (10.1016/j.medj.2023.03.001_bib31) 2019; 116 Katanaev (10.1016/j.medj.2023.03.001_bib32) 2023; 0 Schirinzi (10.1016/j.medj.2023.03.001_bib8) 2019; 61 Li (10.1016/j.medj.2023.03.001_bib28) 1997; 272 Koval (10.1016/j.medj.2023.03.001_bib4) 2011; 433 Egger-Adam (10.1016/j.medj.2023.03.001_bib26) 2010; 239 Solis (10.1016/j.medj.2023.03.001_bib2) 2017; 170 Solis (10.1016/j.medj.2023.03.001_bib27) 2021; 10 Stoeber (10.1016/j.medj.2023.03.001_bib39) 2018; 98 Ferrante (10.1016/j.medj.2023.03.001_bib46) 2018; 11 Lin (10.1016/j.medj.2023.03.001_bib25) 2014; 53 Watson (10.1016/j.medj.2023.03.001_bib47) 1996; 383 |
References_xml | – volume: 116 start-page: 12054 year: 2019 end-page: 12059 ident: bib31 article-title: Variable G protein determinants of GPCR coupling selectivity publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 696 year: 2016 end-page: 704 ident: bib12 article-title: Clinical application of whole-exome sequencing across clinical indications publication-title: Genet. Med. – volume: 53 start-page: 663 year: 2014 end-page: 671 ident: bib25 article-title: Double suppression of the Galpha protein activity by RGS proteins publication-title: Mol. Cell – volume: 89 start-page: 762 year: 2017 end-page: 770 ident: bib10 article-title: Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations publication-title: Neurology – volume: 383 start-page: 172 year: 1996 end-page: 175 ident: bib47 article-title: RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits publication-title: Nature – volume: 46 start-page: D1062 year: 2018 end-page: D1067 ident: bib9 article-title: ClinVar: improving access to variant interpretations and supporting evidence publication-title: Nucleic Acids Res. – volume: 15 start-page: 343 year: 2020 ident: bib22 article-title: Spectrum of movement disorders in GNAO1 encephalopathy: in-depth phenotyping and case-by-case analysis publication-title: Orphanet J. Rare Dis. – volume: 103 start-page: 6524 year: 2006 end-page: 6529 ident: bib6 article-title: Dual roles for the trimeric G protein Go in asymmetric cell division in Drosophila publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 23846 year: 2018 end-page: 23847 ident: bib11 article-title: Gαo (GNAO1) encephalopathies: plasma membrane vs. Golgi functions publication-title: Oncotarget – volume: 8 start-page: 234 year: 2001 end-page: 237 ident: bib29 article-title: Prediction and confirmation of a site critical for effector regulation of RGS domain activity publication-title: Nat. Struct. Biol. – volume: 272 start-page: 21673 year: 1997 end-page: 21676 ident: bib28 article-title: Communication between switch II and switch III of the transducin alpha subunit is essential for target activation publication-title: J. Biol. Chem. – volume: 1-2 start-page: 19 year: 2015 end-page: 25 ident: bib42 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 50 start-page: W90 year: 2022 end-page: W98 ident: bib45 article-title: BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy publication-title: Nucleic Acids Res. – volume: 170 start-page: 939 year: 2017 end-page: 955.e24 ident: bib2 article-title: Golgi-resident galphao promotes protrusive membrane dynamics publication-title: Cell – volume: 37 start-page: 1547 year: 2022 end-page: 1554 ident: bib23 article-title: Highlighting the dystonic phenotype related to GNAO1 publication-title: Mov. Disord. – volume: 20 start-page: 3865 year: 2009 end-page: 3877 ident: bib24 article-title: Drosophila GoLoco-protein pins is a target of Galpha(o)-mediated G protein-coupled receptor signaling publication-title: Mol. Biol. Cell – volume: 10 start-page: 2749 year: 2021 ident: bib27 article-title: Pediatric encephalopathy: clinical, biochemical and cellular insights into the role of Gln52 of GNAO1 and GNAI1 for the dominant disease publication-title: Cells – volume: 141 start-page: 3399 year: 2014 end-page: 3409 ident: bib5 article-title: Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton publication-title: Development – volume: 8 start-page: eabn9350 year: 2022 ident: bib3 article-title: Restoration of the GTPase activity and cellular interactions of Gαo mutants by Zn2+ in GNAO1 encephalopathy models publication-title: Sci. Adv. – volume: 239 start-page: 168 year: 2010 end-page: 183 ident: bib26 article-title: The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway publication-title: Dev. Dyn. – volume: 11 start-page: 377 year: 2004 end-page: 394 ident: bib18 article-title: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals publication-title: J. Comput. Biol. – volume: 37 start-page: 412 year: 1990 end-page: 422 ident: bib33 article-title: Mechanism of the reaction of ebselen with endogenous thiols: dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen publication-title: Mol. Pharmacol. – volume: 796 start-page: 133 year: 2012 end-page: 174 ident: bib35 article-title: Allosteric mechanisms of G protein-Coupled Receptor signaling: a structural perspective publication-title: Methods Mol. Biol. – volume: 265 start-page: 1405 year: 1994 end-page: 1412 ident: bib37 article-title: Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis publication-title: Science – volume: 98 start-page: 963 year: 2018 end-page: 976.e5 ident: bib39 article-title: A genetically encoded biosensor reveals location bias of opioid drug action publication-title: Neuron – volume: 46 year: 2018 ident: bib40 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. – volume: 23 start-page: 129 year: 2022 end-page: 135 ident: bib16 article-title: An intronic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation publication-title: Neurogenetics – volume: 34 year: 2019 ident: bib15 article-title: GNAO1 gene mutation: generalized dystonia without epilepsy publication-title: Mov. Disord. – volume: 60 start-page: 406 year: 2019 end-page: 418 ident: bib7 article-title: Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region publication-title: Epilepsia – volume: 14 start-page: eabf1653 year: 2021 ident: bib38 article-title: Quantitative assessment of constitutive G protein-coupled receptor activity with BRET-based G protein biosensors publication-title: Sci. Signal. – volume: 11 start-page: 563 year: 2018 ident: bib46 article-title: A novel technique for isolating DNA from Tempus™ blood RNA tubes after RNA isolation publication-title: BMC Res. Notes – volume: 366 start-page: 654 year: 1993 end-page: 663 ident: bib20 article-title: The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S publication-title: Nature – volume: 12 start-page: 662162 year: 2021 ident: bib13 article-title: Phenotypes of GNAO1 variants in a Chinese cohort publication-title: Front. Neurol. – volume: 0 start-page: 0 year: 2023 end-page: 2189 ident: bib32 article-title: Pediatric GNAO1 encephalopathies: from molecular etiology of the disease to drug discovery publication-title: Neural Regen. Res. – volume: 14 start-page: 71 year: 2017 end-page: 73 ident: bib43 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat. Methods – volume: 104 start-page: 1182 year: 2019 end-page: 1201 ident: bib14 article-title: Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population publication-title: Am. J. Hum. Genet. – volume: 13 start-page: 2072 year: 2022 ident: bib30 article-title: Local and substrate-specific S-palmitoylation determines subcellular localization of Gαo publication-title: Nat. Commun. – volume: 61 start-page: 19 year: 2019 end-page: 25 ident: bib8 article-title: Phenomenology and clinical course of movement disorder in GNAO1 variants: results from an analytical review publication-title: Parkinsonism Relat. Disord. – volume: 280 start-page: 35696 year: 2005 end-page: 35703 ident: bib36 article-title: A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor publication-title: J. Biol. Chem. – volume: 112 start-page: E3095 year: 2015 end-page: E3103 ident: bib44 article-title: Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 2734 year: 2019 end-page: 2743 ident: bib48 article-title: The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in thePISD gene publication-title: Genet. Med. – volume: 95 start-page: 3269 year: 1998 end-page: 3274 ident: bib1 article-title: Multiple neurological abnormalities in mice deficient in the G protein Go publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 100864 year: 2022 ident: bib17 article-title: Gonadal mosaicism in GNAO1 causing neurodevelopmental disorder with involuntary movements; two additional variants publication-title: Mol. Genet. Metab. Rep. – volume: 43 start-page: 11.10.11 year: 2013 end-page: 11.10.33 ident: bib41 article-title: From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline publication-title: Curr. Protoc. Bioinformatics – volume: 176 start-page: 535 year: 2019 end-page: 548.e24 ident: bib19 article-title: Predicting splicing from primary sequence with deep learning publication-title: Cell – volume: 433 start-page: 435 year: 2011 end-page: 440 ident: bib4 article-title: Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins publication-title: Biochem. J. – volume: 9 start-page: e1003207 year: 2013 ident: bib21 article-title: Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases publication-title: PLoS Comput. Biol. – volume: 10 start-page: 9 year: 2022 ident: bib34 article-title: Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation publication-title: Acta Neuropathol. Commun. – volume: 37 start-page: 412 year: 1990 ident: 10.1016/j.medj.2023.03.001_bib33 article-title: Mechanism of the reaction of ebselen with endogenous thiols: dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen publication-title: Mol. Pharmacol. – volume: 31 start-page: 100864 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib17 article-title: Gonadal mosaicism in GNAO1 causing neurodevelopmental disorder with involuntary movements; two additional variants publication-title: Mol. Genet. Metab. Rep. doi: 10.1016/j.ymgmr.2022.100864 – volume: 12 start-page: 662162 year: 2021 ident: 10.1016/j.medj.2023.03.001_bib13 article-title: Phenotypes of GNAO1 variants in a Chinese cohort publication-title: Front. Neurol. doi: 10.3389/fneur.2021.662162 – volume: 141 start-page: 3399 year: 2014 ident: 10.1016/j.medj.2023.03.001_bib5 article-title: Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton publication-title: Development doi: 10.1242/dev.106773 – volume: 46 year: 2018 ident: 10.1016/j.medj.2023.03.001_bib40 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky427 – volume: 9 start-page: 23846 year: 2018 ident: 10.1016/j.medj.2023.03.001_bib11 article-title: Gαo (GNAO1) encephalopathies: plasma membrane vs. Golgi functions publication-title: Oncotarget doi: 10.18632/oncotarget.22067 – volume: 21 start-page: 2734 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib48 article-title: The Liberfarb syndrome, a multisystem disorder affecting eye, ear, bone, and brain development, is caused by a founder pathogenic variant in thePISD gene publication-title: Genet. Med. doi: 10.1038/s41436-019-0595-x – volume: 265 start-page: 1405 year: 1994 ident: 10.1016/j.medj.2023.03.001_bib37 article-title: Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis publication-title: Science doi: 10.1126/science.8073283 – volume: 46 start-page: D1062 year: 2018 ident: 10.1016/j.medj.2023.03.001_bib9 article-title: ClinVar: improving access to variant interpretations and supporting evidence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1153 – volume: 15 start-page: 343 year: 2020 ident: 10.1016/j.medj.2023.03.001_bib22 article-title: Spectrum of movement disorders in GNAO1 encephalopathy: in-depth phenotyping and case-by-case analysis publication-title: Orphanet J. Rare Dis. doi: 10.1186/s13023-020-01594-3 – volume: 98 start-page: 963 year: 2018 ident: 10.1016/j.medj.2023.03.001_bib39 article-title: A genetically encoded biosensor reveals location bias of opioid drug action publication-title: Neuron doi: 10.1016/j.neuron.2018.04.021 – volume: 433 start-page: 435 year: 2011 ident: 10.1016/j.medj.2023.03.001_bib4 article-title: Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins publication-title: Biochem. J. doi: 10.1042/BJ20101878 – volume: 34 issue: suppl 2 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib15 article-title: GNAO1 gene mutation: generalized dystonia without epilepsy publication-title: Mov. Disord. – volume: 103 start-page: 6524 year: 2006 ident: 10.1016/j.medj.2023.03.001_bib6 article-title: Dual roles for the trimeric G protein Go in asymmetric cell division in Drosophila publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601853103 – volume: 170 start-page: 939 year: 2017 ident: 10.1016/j.medj.2023.03.001_bib2 article-title: Golgi-resident galphao promotes protrusive membrane dynamics publication-title: Cell doi: 10.1016/j.cell.2017.07.015 – volume: 104 start-page: 1182 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib14 article-title: Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2019.04.011 – volume: 116 start-page: 12054 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib31 article-title: Variable G protein determinants of GPCR coupling selectivity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905993116 – volume: 239 start-page: 168 year: 2010 ident: 10.1016/j.medj.2023.03.001_bib26 article-title: The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway publication-title: Dev. Dyn. doi: 10.1002/dvdy.22060 – volume: 11 start-page: 563 year: 2018 ident: 10.1016/j.medj.2023.03.001_bib46 article-title: A novel technique for isolating DNA from Tempus™ blood RNA tubes after RNA isolation publication-title: BMC Res. Notes doi: 10.1186/s13104-018-3671-4 – volume: 366 start-page: 654 year: 1993 ident: 10.1016/j.medj.2023.03.001_bib20 article-title: The 2.2 A crystal structure of transducin-alpha complexed with GTP gamma S publication-title: Nature doi: 10.1038/366654a0 – volume: 11 start-page: 377 year: 2004 ident: 10.1016/j.medj.2023.03.001_bib18 article-title: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals publication-title: J. Comput. Biol. doi: 10.1089/1066527041410418 – volume: 0 start-page: 0 year: 2023 ident: 10.1016/j.medj.2023.03.001_bib32 article-title: Pediatric GNAO1 encephalopathies: from molecular etiology of the disease to drug discovery publication-title: Neural Regen. Res. – volume: 60 start-page: 406 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib7 article-title: Spectrum of neurodevelopmental disease associated with the GNAO1 guanosine triphosphate-binding region publication-title: Epilepsia doi: 10.1111/epi.14653 – volume: 280 start-page: 35696 year: 2005 ident: 10.1016/j.medj.2023.03.001_bib36 article-title: A switch 3 point mutation in the alpha subunit of transducin yields a unique dominant-negative inhibitor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504935200 – volume: 95 start-page: 3269 year: 1998 ident: 10.1016/j.medj.2023.03.001_bib1 article-title: Multiple neurological abnormalities in mice deficient in the G protein Go publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.6.3269 – volume: 10 start-page: 9 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib34 article-title: Mouse models characterize GNAO1 encephalopathy as a neurodevelopmental disorder leading to motor anomalies: from a severe G203R to a milder C215Y mutation publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-022-01312-z – volume: 8 start-page: eabn9350 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib3 article-title: Restoration of the GTPase activity and cellular interactions of Gαo mutants by Zn2+ in GNAO1 encephalopathy models publication-title: Sci. Adv. doi: 10.1126/sciadv.abn9350 – volume: 112 start-page: E3095 year: 2015 ident: 10.1016/j.medj.2023.03.001_bib44 article-title: Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1500851112 – volume: 43 start-page: 11.10.11 year: 2013 ident: 10.1016/j.medj.2023.03.001_bib41 article-title: From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline publication-title: Curr. Protoc. Bioinformatics doi: 10.1002/0471250953.bi1110s43 – volume: 9 start-page: e1003207 year: 2013 ident: 10.1016/j.medj.2023.03.001_bib21 article-title: Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003207 – volume: 89 start-page: 762 year: 2017 ident: 10.1016/j.medj.2023.03.001_bib10 article-title: Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations publication-title: Neurology doi: 10.1212/WNL.0000000000004262 – volume: 796 start-page: 133 year: 2012 ident: 10.1016/j.medj.2023.03.001_bib35 article-title: Allosteric mechanisms of G protein-Coupled Receptor signaling: a structural perspective publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-334-9_8 – volume: 23 start-page: 129 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib16 article-title: An intronic GNAO1 variant leading to in-frame insertion cause movement disorder controlled by deep brain stimulation publication-title: Neurogenetics doi: 10.1007/s10048-022-00686-5 – volume: 13 start-page: 2072 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib30 article-title: Local and substrate-specific S-palmitoylation determines subcellular localization of Gαo publication-title: Nat. Commun. doi: 10.1038/s41467-022-29685-8 – volume: 37 start-page: 1547 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib23 article-title: Highlighting the dystonic phenotype related to GNAO1 publication-title: Mov. Disord. doi: 10.1002/mds.29074 – volume: 10 start-page: 2749 year: 2021 ident: 10.1016/j.medj.2023.03.001_bib27 article-title: Pediatric encephalopathy: clinical, biochemical and cellular insights into the role of Gln52 of GNAO1 and GNAI1 for the dominant disease publication-title: Cells doi: 10.3390/cells10102749 – volume: 1-2 start-page: 19 year: 2015 ident: 10.1016/j.medj.2023.03.001_bib42 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 14 start-page: 71 year: 2017 ident: 10.1016/j.medj.2023.03.001_bib43 article-title: CHARMM36m: an improved force field for folded and intrinsically disordered proteins publication-title: Nat. Methods doi: 10.1038/nmeth.4067 – volume: 383 start-page: 172 year: 1996 ident: 10.1016/j.medj.2023.03.001_bib47 article-title: RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits publication-title: Nature doi: 10.1038/383172a0 – volume: 20 start-page: 3865 year: 2009 ident: 10.1016/j.medj.2023.03.001_bib24 article-title: Drosophila GoLoco-protein pins is a target of Galpha(o)-mediated G protein-coupled receptor signaling publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e09-01-0021 – volume: 53 start-page: 663 year: 2014 ident: 10.1016/j.medj.2023.03.001_bib25 article-title: Double suppression of the Galpha protein activity by RGS proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.01.014 – volume: 14 start-page: eabf1653 year: 2021 ident: 10.1016/j.medj.2023.03.001_bib38 article-title: Quantitative assessment of constitutive G protein-coupled receptor activity with BRET-based G protein biosensors publication-title: Sci. Signal. doi: 10.1126/scisignal.abf1653 – volume: 61 start-page: 19 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib8 article-title: Phenomenology and clinical course of movement disorder in GNAO1 variants: results from an analytical review publication-title: Parkinsonism Relat. Disord. doi: 10.1016/j.parkreldis.2018.11.019 – volume: 50 start-page: W90 year: 2022 ident: 10.1016/j.medj.2023.03.001_bib45 article-title: BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac345 – volume: 18 start-page: 696 year: 2016 ident: 10.1016/j.medj.2023.03.001_bib12 article-title: Clinical application of whole-exome sequencing across clinical indications publication-title: Genet. Med. doi: 10.1038/gim.2015.148 – volume: 272 start-page: 21673 year: 1997 ident: 10.1016/j.medj.2023.03.001_bib28 article-title: Communication between switch II and switch III of the transducin alpha subunit is essential for target activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.35.21673 – volume: 8 start-page: 234 year: 2001 ident: 10.1016/j.medj.2023.03.001_bib29 article-title: Prediction and confirmation of a site critical for effector regulation of RGS domain activity publication-title: Nat. Struct. Biol. doi: 10.1038/84974 – volume: 176 start-page: 535 year: 2019 ident: 10.1016/j.medj.2023.03.001_bib19 article-title: Predicting splicing from primary sequence with deep learning publication-title: Cell doi: 10.1016/j.cell.2018.12.015 |
SSID | ssj0002513192 |
Score | 2.2887084 |
Snippet | The GNAO1 gene, encoding the major neuronal G protein Gαo, is mutated in a subset of pediatric encephalopathies. Most such mutations consist of missense... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 311 |
SubjectTerms | Child drug discovery Drug Evaluation, Preclinical G protein GNAO1 GTP-Binding Protein alpha Subunits, Gi-Go - chemistry GTP-Binding Protein alpha Subunits, Gi-Go - genetics GTP-Binding Protein alpha Subunits, Gi-Go - metabolism GTP-Binding Proteins - genetics GTP-Binding Proteins - metabolism Guanosine Triphosphate High-Throughput Screening Assays Humans Mutation - genetics pediatric encephalopathy personalized medicine signaling |
Title | In-depth molecular profiling of an intronic GNAO1 mutant as the basis for personalized high-throughput drug screening |
URI | https://dx.doi.org/10.1016/j.medj.2023.03.001 https://www.ncbi.nlm.nih.gov/pubmed/37001522 https://www.proquest.com/docview/2793989369 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5swELayVJr2Mu33sl_ypL0hEGAS4DGatnbr0k1rq_UN2cZpk6YQpdCH_GX783aHjcOqtNr6gpAVwMp9-L47Pt8R8iEWSuRMpW4eQWwSCcldkUxzlwH9lT73R9OmlNLkYLR3HH09GZ70er87qqW6Ep5cb91XcherwhjYFXfJ_odl7U1hAM7BvnAEC8Pxn2z8pXBztazOnIu2ya2je3AbKTNHGaNpcrN7MP4eOBc1dg3G5jJIOMGFzZp6DFi9WHPyNRBQLGHsmgY-y7py8lV96sDyAiFv6-jaHlAq39bOp8kzdIuYmt01V3zRbqpRNpX_ja84SooaZwBTPefO2LOJH341q0x-dzI7P-soQg5L08p9tyzWfFE6P7xuCiNsBIPBJuC1e2v-kn4Ccxi5I6aLOXlqy5hZv6MOTIedtZiZVVy7dRYOPRVvdRo6fzH3gH7MPZyfLnsbbFykFS4e4gxwAhC5NeW37pGdMIaRPtkZ7__8tW_ze8AbYXXDj1h20mbPlpYXXn_YTbzoprin4T9Hj8hDE7jQsUbhY9JTxRNyf2KkGU9J3YKRWjBSC0ZaTikvaAtG2oCRajBSfkkBjLQBIwUw0i4Y6TUwUgQjtWB8Ro4_fzr6uOeanh6uBG9RuWEiMfUuWawCFYg8iLB8E09yKVM-SgTy2USxJErjHHiTD-dS8KkM89jngvvsOekXZaFeEiq5DAKWyFSKIJIqT5kQfs65UknC09AfkKD9RzNpCt5j35VF1iob5xlaIUMrZD5DeeeAOPaapS73cuuvh62hMkNYNRHNAFq3Xve-tWoGqzl-ouOFKuvLLAR3mSbYZHNAXmhz23kwlIhAuPTqjk99TR5sXr43pF-tavUWGHUl3hnw_gFg68wf |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-depth+molecular+profiling+of+an+intronic+GNAO1+mutant+as+the+basis+for+personalized+high-throughput+drug+screening&rft.jtitle=Med+%28New+York%2C+N.Y.+%3A+Online%29&rft.au=Koval%2C+Alexey&rft.au=Larasati%2C+Yonika+A.&rft.au=Savitsky%2C+Mikhail&rft.au=Solis%2C+Gonzalo+P.&rft.date=2023-05-12&rft.pub=Elsevier+Inc&rft.issn=2666-6340&rft.eissn=2666-6340&rft.volume=4&rft.issue=5&rft.spage=311&rft.epage=325.e7&rft_id=info:doi/10.1016%2Fj.medj.2023.03.001&rft.externalDocID=S2666634023000971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-6340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-6340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-6340&client=summon |