Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment
Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths. Typically, seismic risk assessment can be performed by means of structural damage information computed based on the maximum displacement of the str...
Saved in:
| Published in | ISPRS international journal of geo-information Vol. 10; no. 9; p. 574 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2220-9964 2220-9964 |
| DOI | 10.3390/ijgi10090574 |
Cover
| Abstract | Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths. Typically, seismic risk assessment can be performed by means of structural damage information computed based on the maximum displacement of the structure. In this study, machine learning models based on GPR are developed in order to estimate the maximum displacement of the structures from seismic activities and then used to construct fragility curves as an application. During construction of the models, 13 features of seismic waves are considered, and six wave features are selected to establish the seismic models with the correlation analysis normalizing the variables with the peak ground acceleration. Two models for six-floor and 13-floor buildings are developed, and a sensitivity analysis is performed to identify the relationship between prediction accuracy and sampling size. A 10-fold cross-validation method is used to evaluate the model performance, using the R-squared, root mean squared error, Nash criterion, and mean bias. Results of the six-parameter-based model apparently indicate a similar performance to that of the 13-parameter-based model for the two types of buildings. The model for the six-floor building affords a steadily enhanced performance by increasing the sampling size, while the model for the 13-floor building shows a significantly improved performance with a sampling size of over 200. The results indicate that the heighted structure requires a larger sampling size because it has more degrees of freedom that can influence the model performance. Finally, the proposed models are successfully constructed to estimate the maximum displacement, and applied to obtain fragility curves with various performance levels. Then, the regional seismic damage is assessed in Gyeonjgu city of South Korea as an application of the developed models. The damage assessment with the fragility curve provides the structural response from the seismic activities, which can assist in minimizing damage. |
|---|---|
| AbstractList | Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths. Typically, seismic risk assessment can be performed by means of structural damage information computed based on the maximum displacement of the structure. In this study, machine learning models based on GPR are developed in order to estimate the maximum displacement of the structures from seismic activities and then used to construct fragility curves as an application. During construction of the models, 13 features of seismic waves are considered, and six wave features are selected to establish the seismic models with the correlation analysis normalizing the variables with the peak ground acceleration. Two models for six-floor and 13-floor buildings are developed, and a sensitivity analysis is performed to identify the relationship between prediction accuracy and sampling size. A 10-fold cross-validation method is used to evaluate the model performance, using the R-squared, root mean squared error, Nash criterion, and mean bias. Results of the six-parameter-based model apparently indicate a similar performance to that of the 13-parameter-based model for the two types of buildings. The model for the six-floor building affords a steadily enhanced performance by increasing the sampling size, while the model for the 13-floor building shows a significantly improved performance with a sampling size of over 200. The results indicate that the heighted structure requires a larger sampling size because it has more degrees of freedom that can influence the model performance. Finally, the proposed models are successfully constructed to estimate the maximum displacement, and applied to obtain fragility curves with various performance levels. Then, the regional seismic damage is assessed in Gyeonjgu city of South Korea as an application of the developed models. The damage assessment with the fragility curve provides the structural response from the seismic activities, which can assist in minimizing damage. |
| Author | Park, Sangki Jung, Kichul |
| Author_xml | – sequence: 1 givenname: Sangki orcidid: 0000-0002-6436-0641 surname: Park fullname: Park, Sangki – sequence: 2 givenname: Kichul surname: Jung fullname: Jung, Kichul |
| BookMark | eNqFkV1rFTEQhhepYK298wcseOOFq_nabHJ5rNoeqCh-XC9zkskhh-xmTbJI_71pj5RSBHMzQ_LMM_DmeXMyxxmb5iUlbznX5J0_7D0lRJN-EE-aU8YY6bSW4uRB_6w5z_lA6tGUK0FOm-kS1pw9zO3XFA3m3H7DfarVx7l7Dxlt-72k1ZQ1QahveYlzxvZztBhamG27LbndLEvwBkqdaUu8NdSu4h9ggj22m5yrcMK5vGieOggZz__Ws-bnp48_Lq666y-X24vNdWcEIaVjkkqmLBrqtKNOWM17S3g_cNc7g0xLrSRRCgjVuBO831lKlJNSGYJyx_hZsz16bYTDuCQ_QboZI_jx7iKm_QipeBNwtG6ghFurZI9C9hKsIMpSlNY6Tnekurqja50XuPkNIdwLKRlvox8fRl_510d-SfHXirmMk88GQ4AZ45pHJrlUdFC6r-irR-ghrqkmV6l-kIJyLYZKvTlSJsWcE7r_7WePcOPL3d-UBD78e-gPi6ayQA |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2023_115820 crossref_primary_10_1016_j_jobe_2022_105797 crossref_primary_10_3390_ijgi11010037 crossref_primary_10_1016_j_conbuildmat_2023_132825 crossref_primary_10_1080_19475705_2023_2182658 |
| Cites_doi | 10.1061/(ASCE)0733-9399(2000)126:12(1224) 10.1016/j.strusafe.2016.01.006 10.1193/1.2798241 10.1016/j.engstruct.2006.01.004 10.1016/j.jobe.2020.101905 10.1007/s12205-019-0929-x 10.1016/B978-0-12-800768-6.00004-3 10.1061/(ASCE)0733-9399(2000)126:12(1287) 10.1007/s00477-017-1384-1 10.1016/j.engstruct.2019.01.006 10.1029/2006WR005142 10.1193/1.2192560 10.3390/su12187787 10.5467/JKESS.2015.36.4.351 10.1016/j.heliyon.2018.e00784 10.1002/eqe.1084 10.1193/1.1774181 10.1061/(ASCE)ST.1943-541X.0001321 10.1002/eqe.2214 10.1007/s11709-020-0623-6 10.1016/j.engstruct.2018.02.024 10.1193/1.1586176 10.1007/s12303-017-0050-4 10.3390/buildings11060238 10.1175/JHM-D-20-0053.1 10.5000/EESK.2003.7.6.059 10.7551/mitpress/3206.001.0001 10.1016/j.soildyn.2013.05.002 10.3390/su12187803 10.1007/s10518-020-00960-7 10.1016/j.jmp.2018.03.001 10.1016/j.probengmech.2015.10.008 10.1109/TPAMI.2009.187 10.1785/gssrl.68.1.41 10.1016/j.engstruct.2010.12.028 10.1016/j.jobe.2020.101227 10.1016/j.ijdrr.2020.101705 10.1214/aoms/1177700384 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/ijgi10090574 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts |
| EISSN | 2220-9964 |
| ExternalDocumentID | oai_doaj_org_article_df7103dd865e4656ad408d1e6ddf31b0 10.3390/ijgi10090574 10_3390_ijgi10090574 |
| GeographicLocations | Korean Peninsula South Korea |
| GeographicLocations_xml | – name: Korean Peninsula – name: South Korea |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 ADTOC IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c400t-261628dec1f9f1f4d935d03573f5fce296986088a019eb435bd108f668c0e6b23 |
| IEDL.DBID | UNPAY |
| ISSN | 2220-9964 |
| IngestDate | Fri Oct 03 12:47:17 EDT 2025 Sun Oct 26 03:56:48 EDT 2025 Fri Sep 05 10:47:55 EDT 2025 Fri Jul 25 12:00:39 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Wed Oct 01 05:39:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-261628dec1f9f1f4d935d03573f5fce296986088a019eb435bd108f668c0e6b23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6436-0641 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/10/9/574/pdf?version=1641457170 |
| PQID | 2576413947 |
| PQPubID | 2032387 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_df7103dd865e4656ad408d1e6ddf31b0 unpaywall_primary_10_3390_ijgi10090574 proquest_miscellaneous_2636817895 proquest_journals_2576413947 crossref_primary_10_3390_ijgi10090574 crossref_citationtrail_10_3390_ijgi10090574 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | ISPRS international journal of geo-information |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Song (ref_44) 2019; 23 Noh (ref_48) 1995; 31 Chalupka (ref_26) 2013; 14 Polat (ref_9) 2006; 28 Lagaros (ref_15) 2007; 23 Park (ref_23) 1971; 4 Burton (ref_5) 2016; 142 Shinozuka (ref_6) 2000; 126 Kim (ref_47) 2015; 36 Miller (ref_31) 1964; 35 Kalkan (ref_42) 2010; 1068 Kunnath (ref_40) 2004; 20 ref_22 ref_21 Rodriguez (ref_36) 2010; 32 ref_20 Toro (ref_49) 1997; 68 Jo (ref_50) 2003; 7 Parra (ref_10) 2019; 183 ref_29 ref_28 Wang (ref_2) 2018; 162 Schulz (ref_25) 2018; 85 Porter (ref_3) 2001; 17 Kalkan (ref_41) 2006; 22 ref_34 Saha (ref_17) 2016; 43 ref_33 ref_32 ref_30 Rezaei (ref_46) 2020; 29 Unnikrishnan (ref_16) 2013; 42 Shafei (ref_11) 2011; 33 Jung (ref_37) 2021; 22 Ferreira (ref_12) 2020; 14 Hwang (ref_14) 2021; 34 Phan (ref_27) 2020; 18 Cimellaro (ref_1) 2011; 40 ref_45 ref_43 Calabrese (ref_18) 2013; 52 Singh (ref_35) 2011; 4 Papazafeiropoulos (ref_39) 2018; 4 Gehl (ref_19) 2016; 60 ref_8 Yariyan (ref_13) 2020; 50 Rahman (ref_38) 2018; 32 Park (ref_24) 2018; 22 ref_4 Shinozuka (ref_7) 2000; 126 |
| References_xml | – volume: 126 start-page: 1224 year: 2000 ident: ref_6 article-title: Statistical analysis of fragility curves publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224) – ident: ref_32 – volume: 60 start-page: 37 year: 2016 ident: ref_19 article-title: Development of Bayesian Networks for the multi-hazard fragility assessment of bridge systems publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.01.006 – volume: 23 start-page: 735 year: 2007 ident: ref_15 article-title: Fragility assessment of steel frames using neural networks publication-title: Earthq. Spectra doi: 10.1193/1.2798241 – volume: 28 start-page: 1335 year: 2006 ident: ref_9 article-title: Fragility analysis of mid-rise R/C frame buildings publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2006.01.004 – volume: 34 start-page: 101905 year: 2021 ident: ref_14 article-title: Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101905 – volume: 23 start-page: 2958 year: 2019 ident: ref_44 article-title: Canonical Correlation Analysis of Selecting Optimal Ground Motion Intensity Measures for Bridges publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-019-0929-x – ident: ref_21 doi: 10.1016/B978-0-12-800768-6.00004-3 – volume: 126 start-page: 1287 year: 2000 ident: ref_7 article-title: Nonlinear static procedure for fragility curve development publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1287) – ident: ref_8 – volume: 32 start-page: 123 year: 2018 ident: ref_38 article-title: Development of regional flood frequency analysis techniques using generalized additive models for Australia publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-017-1384-1 – volume: 183 start-page: 770 year: 2019 ident: ref_10 article-title: Collapse risk assessment of a Chilean dual wall-frame reinforced concrete office building publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.01.006 – ident: ref_33 doi: 10.1029/2006WR005142 – ident: ref_4 – volume: 22 start-page: 367 year: 2006 ident: ref_41 article-title: Effects of fling step and forward directivity on seismic response of buildings publication-title: Earthq. Spectra doi: 10.1193/1.2192560 – ident: ref_22 doi: 10.3390/su12187787 – volume: 36 start-page: 351 year: 2015 ident: ref_47 article-title: An analysis of the sensitivity of input parameters for the seismic hazard analysis in the Korean Peninsula publication-title: J. Korean Earth Sci. Soc. doi: 10.5467/JKESS.2015.36.4.351 – volume: 14 start-page: 333 year: 2013 ident: ref_26 article-title: A framework for evaluating approximation methods for Gaussian progress regression publication-title: J. Mach. Learn. Res. – volume: 4 start-page: e00784 year: 2018 ident: ref_39 article-title: OpenSeismoMatlab: A new open-source software for strong ground motion data processing publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00784 – volume: 40 start-page: 1197 year: 2011 ident: ref_1 article-title: Performance-based metamodel for healthcare facilities publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.1084 – volume: 20 start-page: 883 year: 2004 ident: ref_40 article-title: Modeling and response prediction in performance-based seismic evaluation: Case studies of instrumented steel moment-frame buildings publication-title: Earthq. Spectra doi: 10.1193/1.1774181 – volume: 142 start-page: C4015007 year: 2016 ident: ref_5 article-title: Framework for incorporating probabilistic building performance in the assessment of community seismic resilience publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0001321 – ident: ref_45 – volume: 31 start-page: 175 year: 1995 ident: ref_48 article-title: Estimation of Peak Ground Motions in the Southeastern Part of the Korean peninsula (II): Development of Predictive Equations publication-title: J. Geol. Soc. Korea – volume: 42 start-page: 419 year: 2013 ident: ref_16 article-title: Development of fragility curves using high-dimensional model representation publication-title: Earthq. Eng. Struct. Dyn. doi: 10.1002/eqe.2214 – volume: 4 start-page: 443 year: 2011 ident: ref_35 article-title: Daily sediment yield modelling with artificial neural network using 10-fold cross validation method: A small agricultural watershed, Kapgari, India publication-title: Int. J. Earth Sci. Eng. – volume: 14 start-page: 609 year: 2020 ident: ref_12 article-title: The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-020-0623-6 – volume: 162 start-page: 213 year: 2018 ident: ref_2 article-title: Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.02.024 – ident: ref_30 – volume: 1068 start-page: 126 year: 2010 ident: ref_42 article-title: Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures publication-title: US Geol. Surv. Open-File Rep. – volume: 17 start-page: 291 year: 2001 ident: ref_3 article-title: Assembly-based vulnerability of buildings and its use in performance evaluation publication-title: Earthq. Spectra doi: 10.1193/1.1586176 – volume: 4 start-page: 39 year: 1971 ident: ref_23 article-title: Recent tectonism in the Korean Peninsula and sea floor spreading publication-title: Econ. Environ. Geol. – ident: ref_34 – volume: 22 start-page: 337 year: 2018 ident: ref_24 article-title: Did the 12 September 2016 Gyeongju, South Korea earthquake cause surface deformation? publication-title: Geosci. J. doi: 10.1007/s12303-017-0050-4 – ident: ref_28 doi: 10.3390/buildings11060238 – volume: 22 start-page: 201 year: 2021 ident: ref_37 article-title: On the value of river network information in regional frequency analysis publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-20-0053.1 – volume: 7 start-page: 59 year: 2003 ident: ref_50 article-title: Estimation of spectrum decay parameter k and stochastic prediction of strong ground motions in southeastern Korea publication-title: J. Earthq. Eng. Soc. Korea doi: 10.5000/EESK.2003.7.6.059 – ident: ref_29 doi: 10.7551/mitpress/3206.001.0001 – volume: 52 start-page: 88 year: 2013 ident: ref_18 article-title: Fragility functions of blockwork wharves using artificial neural networks publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2013.05.002 – ident: ref_20 doi: 10.3390/su12187803 – volume: 18 start-page: 6883 year: 2020 ident: ref_27 article-title: Seismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regression publication-title: Bull. Earthq. Eng. doi: 10.1007/s10518-020-00960-7 – volume: 85 start-page: 1 year: 2018 ident: ref_25 article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2018.03.001 – volume: 43 start-page: 20 year: 2016 ident: ref_17 article-title: Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models publication-title: Probabilistic Eng. Mech. doi: 10.1016/j.probengmech.2015.10.008 – volume: 32 start-page: 569 year: 2010 ident: ref_36 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 68 start-page: 41 year: 1997 ident: ref_49 article-title: Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties publication-title: Seismol. Res. Lett. doi: 10.1785/gssrl.68.1.41 – ident: ref_43 – volume: 33 start-page: 1107 year: 2011 ident: ref_11 article-title: A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.12.028 – volume: 29 start-page: 101227 year: 2020 ident: ref_46 article-title: Seismic performance evaluation of steel structures equipped with dissipative columns publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2020.101227 – volume: 50 start-page: 101705 year: 2020 ident: ref_13 article-title: Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2020.101705 – volume: 35 start-page: 1594 year: 1964 ident: ref_31 article-title: A trustworthy jackknife publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177700384 |
| SSID | ssj0000913840 |
| Score | 2.2370732 |
| Snippet | Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths.... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 574 |
| SubjectTerms | Buildings Construction Correlation analysis Damage assessment Disasters Displacement Earthquake damage Earthquakes Fragility fragility curve Gaussian process Gaussian process regression geophysics Hazard assessment Investigations Learning algorithms Machine learning maximum displacement model validation Neural networks Normal distribution Normalizing P-waves Parameters Performance enhancement Performance evaluation prediction Property damage Regional analysis regional seismic damage assessment Regression analysis Regression models Risk assessment Sampling Seismic activity Seismic hazard Seismic response Seismic waves Sensitivity analysis South Korea spatial data Structural damage Structural models Structural response Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BTxUxEG4MF-BgBDSuIqkJejEbtttttz0-QAQTOaAYbpu20-Izj30k-14M_95pd1kfB-XidTrZNJ1p55vt9BtC9kvGXSkUz4tgIK-4s7nlrs6dchbFvuQmvnf-ci5PL6vPV-JqpdVXrAnr6YH7hTuAgDGQAygpfOT2MlAVCpiXAIEzm7L1QumVZCqdwZpxTF36SneOef3B9Of1lKEc8Un1IAYlqv4H-HJ92d6au19mNlsJNSfPyNMBI9JJP7ct8sS322R9aFf-426bbH6fdsteo9shN5_MsotvIelQ9U8v_HVf3trmhxilgH5NLLGRYQPHUlGsp7EL2oyaFujZoqOTPxfZdDGPX0j_COmxucETh05GAs_n5PLk47ej03zoopA73J-LHFMkWSrwjgUdWKhAcwEFFzUPIjhfaqmVxLPGINjzFtGTBVaoIKVyhZe25C_IWjtv_UtCMZIFbWuQItQV1M5aFCDg4V7UwKzPyIf7dW3cQDEeO13MGkw1ohWaVStk5N2ofdtTa_xF7zCaaNSJhNhJgG7SDG7SPOYmGdm9N3Az7NKuickWBnFd1Rl5Ow7j_oqXJqb18yXqSC4Vq5UWGXk_OsY_J_zqf0z4NdkoY_lMKmfbJWvoJ_4N4p-F3Uuu_htFkgPP priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aFwQFBApBRkJOCCoiZx4jgHhHahpSCxQoWi3iI_l0Xb7JbsCvXfM5NX2wO9jkdJlLFnPtsz3wC8SmJukkzyMPLKhik3OtTc5KGRRqPYJVxRvfPXqTg-Tb-cZWdbMO1rYSitsveJjaO2S0Nn5AcEjNHhFmn-fnURUtcoul3tW2iorrWCfddQjN2B7YSYsUawPTmcfjsZTl2IBRO3NG0GPMf9_sH892weoxxxS3ojNjUU_jdw586mWqnLv2qxuBaCjh7A_Q47snFr7Iew5apd2OnamP-63IV7P-f1ptWoH8H5J7WpqUaSddUA7MTN2rTXKpxg9LLse8MeS8wbONYkyzpG3dEWTFWWfV7XbHx1wc3WS3pCc3bIPqpz9ERsPBB7PobTo8MfH47DrrtCaHDdrkPcOolEWmdiX_jYp7bgmY14lnOfeeOSQhRSoA9SCAKdRlSlbRxJL4Q0kRM64U9gVC0r9xQYRjhf6NyKzOepzY3WKEAgxF2W21i7AN72_7U0HfU4dcBYlLgFISuU160QwOtBe9VSbvxHb0ImGnSIKLsRLP_Mym7dldYjhOLWSpE5ooZTNo2kjZ2w1vNYRwHs9wYuu9Vbl1dzLYCXwzCuO7pMUZVbblBHcCHjXBZZAG-GiXHrB-_d_q5ncDehhJkmgW0fRjgD3HNEPGv9opvG_wAgnQFq priority: 102 providerName: ProQuest |
| Title | Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment |
| URI | https://www.proquest.com/docview/2576413947 https://www.proquest.com/docview/2636817895 https://www.mdpi.com/2220-9964/10/9/574/pdf?version=1641457170 https://doaj.org/article/df7103dd865e4656ad408d1e6ddf31b0 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B-zB44GOACIzKSMALyprEseM8oRbWDSSqaVA0nqL4qxS6tCItaPz1nBO3bEggxKt9iRL5Pn5nn38H8CSJqUqYoGFkSx2mVMlQUpWFSiiJwyahpbvv_HbMjybpm1N26jfcal9Wian4rHHSGLuiEAF5irbdzzF3T_tLbV988ztJiPTjlGE-gil7lzPE4h3oTsbHg4-uo9zm2bbanWJu3599ns5iBBWIUdJLcaih67-EMXfW1bI8_17O5xfCzegmFJsPbatMvuyvV3Jf_fiNw_H__-QW3PBIlAxa1bkNV0y1Czu-Kfqn8124_mFWr1uJ-g6cHZbr2t24JP5uATkx07aItgqHGAs1eddw0ToeD5xrSm8Ncb3W5qSsNHm9qsng13E5WS3cG5qdSPKqPEO_RgZbmtC7MBkdvH95FPpeDaFCL7AKMRHjidBGxTa3sU11TpmOKMuoZVaZJOe54OjRSoSURiJGkzqOhOVcqMhwmdB70KkWlbkPBOOlzWWmObNZqjMlJQ4grKKGZTqWJoDnm5UrlCcyd_005gUmNG6di4vrHMDTrfSyJfD4g9zQKcFWxtFuNwOLr9PCW3GhLQIyqrXgzDiiuVKnkdCx4VpbGssogL2NChXeF9SFS-kQKuRpFsDj7TRasTuaKSuzWKMMp1zEmchZAM-2qvfXD37wr4IP4VriCnGawrg96KAumEeIpFayB1fF6LAH3eHB-Pik1-xH9LwJ_QSfihxM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1V7SFwQFBAGAosEuWCrNpee70-VCihLQltI1Ra1Ju7nyEotQNOVOXP8duYtddue6C3XtcjJ_LMzrzZnXmD0PsoJDJKGPEDw5UfEyl8QWTqSyYFLOuIcNvvfDymw7P463lyvob-tr0wtqyy9Ym1o1altGfkOxYYg8PN4vTT_Ldvp0bZ29V2hAZ3oxXUbk0x5ho7DvXqClK4ane0B_rejqKD_dPPQ99NGfAl2O_ChxSCRkxpGZrMhCZWGUlUQJKUmMRIHWU0YxT2IgcwpAWgC6HCgBlKmQw0FZb4AELARkziDJK_jcH--NtJd8pjWTchhWoq7gnJgp3pr8k0hHXASfGtWFiPDLiFc3vLYs5XV3w2uxHyDh6jRw6r4n5jXE_Qmi42Uc-NTf-52kQPf0yrZSNRPUWXX_iysj2Z2HUf4BM9acpsC38A0VLh7zVbrWX6gGd1ca7GdhrbDPNC4dGiwv3rC3W8KO0b6rNKvMcvwfPhfkck-gyd3ct3fo7Wi7LQLxCGiGoykSqamDRWqRQCFgB4EZ2kKhTaQx_b75pLR3VuJ27Mckh5rBbym1rw0HYnPW8oPv4jN7Aq6mQsMXe9UP6Z5G6f58oAZCNKMZpoS0XHVRwwFWqqlCGhCDy01So4d96iyq9t20Pvusewz-3lDS90uQQZSigLU5YlHvrQGcadf_jl3b_1FvWGp8dH-dFofPgKPYhssU5dPLeF1sEa9GtAWwvxxpk0Rhf3vYv-AUbQPSQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRaJwQFBAGAosEuWCrNhee20fEEoJaUOhQkBRb8b7CkGpHXCiKn-NX8eMX20P9Nbr7si2PI_9dnfmG4CXgc9VECXc9Wyu3ZAr6UquYlclSuKwCXhO9c6fjsTBcfjhJDrZgL9dLQylVXYxsQ7UulR0Rj4gYIwBNw3jgW3TIj6Pxm8Xv13qIEU3rV07jcZEDs36DLdv1ZvJCHW9GwTj99_eHbhthwFXoe0uXdw-iCDRRvk2tb4Ndcoj7fEo5jayygSpSBOBfpgjEDISkYXUvpdYIRLlGSGJ9ADD_42YWNypSn2835_vEN8mbp6aXHvOU28w-zWd-TiOCCm8tArWzQIuIdytVbHI12f5fH5hsRvfhTstSmXDxqzuwYYptmGrbZj-c70Nt7_PqlUjUd2H0_18VVE1JmvrDtgXM20SbAt3D9dJzb7WPLXE8YFzdVquYdSHbc7yQrPJsmLD86t0tizpCfUpJRvlpxjz2LCnEH0Ax9fylx_CZlEW5hEwXEttKmMtIhuHOlZS4gBCLm6iWPvSOPC6-6-ZaknOqdfGPMPNDmkhu6gFB3Z76UVD7vEfuT1SUS9DlNz1QPlnmrUenmmLYI1rnYjIEAldrkMv0b4RWlvuS8-BnU7BWRsnquzcqh140U-jh9O1TV6YcoUyAs3Lj5M0cuBVbxhXfvDjq9_1HG6i72QfJ0eHT-BWQFk6ddbcDmyiMZinCLOW8lltzwx-XLcD_QOaYjq- |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9lA48CggFgoyEnBB6cbxI84JbYFSkKgQsKicIj-XhW12RRJQ-fWME29okUCIqz2JEnke39jjbxB6kBFqMi5pknplE0aNTjQ1eWKk0TDsMqrCfefXR-Jwxl4d8-O44VbHskpIxRedk4bYlSYAyBnY9qSA3J1N1tY_-RZ3kgDpE8YhH4GUfUtwwOIjtDU7ejP9GDrKbZ7tq90p5PaTxef5ggCoAIzCzsWhjq7_HMbcbqu1Ov2ulssz4ebgCio3H9pXmXzZaxu9Z378xuH4_39yFV2OSBRPe9W5hi64agdtx6bon0530KUPi7rtJerr6OSFautw4xLHuwX4rZv3RbRVsg-x0OJ3HRdt4PGAua701uHQa22JVWXxy6bG01_H5bhZhTd0O5H4mToBv4anA03oDTQ7eP7-6WESezUkBrxAk0AiJjJpnSG-8MQzW1BuU8pz6rk3LitEIQV4NAWQ0mnAaNqSVHohpEmd0Bm9iUbVqnK3EIZ46QudW8F9zmxutIYBgFXU8dwS7cbo8WblShOJzEM_jWUJCU1Y5_LsOo_Rw0F63RN4_EFuPyjBIBNot7uB1dd5Ga24tB4AGbVWCu4C0ZyyLJWWOGGtp0SnY7S7UaEy-oK6DCkdQIWC5WN0f5gGKw5HM6pyqxZkBBWS5LLgY_RoUL2_fvDtfxW8gy5moRCnK4zbRSPQBXcXkFSj70Vz-QmUmhjX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+Process+Regression-Based+Structural+Response+Model+and+Its+Application+to+Regional+Damage+Assessment+%5BErratum%3A+January+2022%2C+v.11%281%29%5D&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Park%2C+Sangki&rft.au=Jung%2C+Kichul&rft.date=2021-09-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fijgi10090574&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |