Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment

Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths. Typically, seismic risk assessment can be performed by means of structural damage information computed based on the maximum displacement of the str...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 10; no. 9; p. 574
Main Authors Park, Sangki, Jung, Kichul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2021
Subjects
Online AccessGet full text
ISSN2220-9964
2220-9964
DOI10.3390/ijgi10090574

Cover

Abstract Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths. Typically, seismic risk assessment can be performed by means of structural damage information computed based on the maximum displacement of the structure. In this study, machine learning models based on GPR are developed in order to estimate the maximum displacement of the structures from seismic activities and then used to construct fragility curves as an application. During construction of the models, 13 features of seismic waves are considered, and six wave features are selected to establish the seismic models with the correlation analysis normalizing the variables with the peak ground acceleration. Two models for six-floor and 13-floor buildings are developed, and a sensitivity analysis is performed to identify the relationship between prediction accuracy and sampling size. A 10-fold cross-validation method is used to evaluate the model performance, using the R-squared, root mean squared error, Nash criterion, and mean bias. Results of the six-parameter-based model apparently indicate a similar performance to that of the 13-parameter-based model for the two types of buildings. The model for the six-floor building affords a steadily enhanced performance by increasing the sampling size, while the model for the 13-floor building shows a significantly improved performance with a sampling size of over 200. The results indicate that the heighted structure requires a larger sampling size because it has more degrees of freedom that can influence the model performance. Finally, the proposed models are successfully constructed to estimate the maximum displacement, and applied to obtain fragility curves with various performance levels. Then, the regional seismic damage is assessed in Gyeonjgu city of South Korea as an application of the developed models. The damage assessment with the fragility curve provides the structural response from the seismic activities, which can assist in minimizing damage.
AbstractList Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths. Typically, seismic risk assessment can be performed by means of structural damage information computed based on the maximum displacement of the structure. In this study, machine learning models based on GPR are developed in order to estimate the maximum displacement of the structures from seismic activities and then used to construct fragility curves as an application. During construction of the models, 13 features of seismic waves are considered, and six wave features are selected to establish the seismic models with the correlation analysis normalizing the variables with the peak ground acceleration. Two models for six-floor and 13-floor buildings are developed, and a sensitivity analysis is performed to identify the relationship between prediction accuracy and sampling size. A 10-fold cross-validation method is used to evaluate the model performance, using the R-squared, root mean squared error, Nash criterion, and mean bias. Results of the six-parameter-based model apparently indicate a similar performance to that of the 13-parameter-based model for the two types of buildings. The model for the six-floor building affords a steadily enhanced performance by increasing the sampling size, while the model for the 13-floor building shows a significantly improved performance with a sampling size of over 200. The results indicate that the heighted structure requires a larger sampling size because it has more degrees of freedom that can influence the model performance. Finally, the proposed models are successfully constructed to estimate the maximum displacement, and applied to obtain fragility curves with various performance levels. Then, the regional seismic damage is assessed in Gyeonjgu city of South Korea as an application of the developed models. The damage assessment with the fragility curve provides the structural response from the seismic activities, which can assist in minimizing damage.
Author Park, Sangki
Jung, Kichul
Author_xml – sequence: 1
  givenname: Sangki
  orcidid: 0000-0002-6436-0641
  surname: Park
  fullname: Park, Sangki
– sequence: 2
  givenname: Kichul
  surname: Jung
  fullname: Jung, Kichul
BookMark eNqFkV1rFTEQhhepYK298wcseOOFq_nabHJ5rNoeqCh-XC9zkskhh-xmTbJI_71pj5RSBHMzQ_LMM_DmeXMyxxmb5iUlbznX5J0_7D0lRJN-EE-aU8YY6bSW4uRB_6w5z_lA6tGUK0FOm-kS1pw9zO3XFA3m3H7DfarVx7l7Dxlt-72k1ZQ1QahveYlzxvZztBhamG27LbndLEvwBkqdaUu8NdSu4h9ggj22m5yrcMK5vGieOggZz__Ws-bnp48_Lq666y-X24vNdWcEIaVjkkqmLBrqtKNOWM17S3g_cNc7g0xLrSRRCgjVuBO831lKlJNSGYJyx_hZsz16bYTDuCQ_QboZI_jx7iKm_QipeBNwtG6ghFurZI9C9hKsIMpSlNY6Tnekurqja50XuPkNIdwLKRlvox8fRl_510d-SfHXirmMk88GQ4AZ45pHJrlUdFC6r-irR-ghrqkmV6l-kIJyLYZKvTlSJsWcE7r_7WePcOPL3d-UBD78e-gPi6ayQA
CitedBy_id crossref_primary_10_1016_j_engstruct_2023_115820
crossref_primary_10_1016_j_jobe_2022_105797
crossref_primary_10_3390_ijgi11010037
crossref_primary_10_1016_j_conbuildmat_2023_132825
crossref_primary_10_1080_19475705_2023_2182658
Cites_doi 10.1061/(ASCE)0733-9399(2000)126:12(1224)
10.1016/j.strusafe.2016.01.006
10.1193/1.2798241
10.1016/j.engstruct.2006.01.004
10.1016/j.jobe.2020.101905
10.1007/s12205-019-0929-x
10.1016/B978-0-12-800768-6.00004-3
10.1061/(ASCE)0733-9399(2000)126:12(1287)
10.1007/s00477-017-1384-1
10.1016/j.engstruct.2019.01.006
10.1029/2006WR005142
10.1193/1.2192560
10.3390/su12187787
10.5467/JKESS.2015.36.4.351
10.1016/j.heliyon.2018.e00784
10.1002/eqe.1084
10.1193/1.1774181
10.1061/(ASCE)ST.1943-541X.0001321
10.1002/eqe.2214
10.1007/s11709-020-0623-6
10.1016/j.engstruct.2018.02.024
10.1193/1.1586176
10.1007/s12303-017-0050-4
10.3390/buildings11060238
10.1175/JHM-D-20-0053.1
10.5000/EESK.2003.7.6.059
10.7551/mitpress/3206.001.0001
10.1016/j.soildyn.2013.05.002
10.3390/su12187803
10.1007/s10518-020-00960-7
10.1016/j.jmp.2018.03.001
10.1016/j.probengmech.2015.10.008
10.1109/TPAMI.2009.187
10.1785/gssrl.68.1.41
10.1016/j.engstruct.2010.12.028
10.1016/j.jobe.2020.101227
10.1016/j.ijdrr.2020.101705
10.1214/aoms/1177700384
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/ijgi10090574
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_df7103dd865e4656ad408d1e6ddf31b0
10.3390/ijgi10090574
10_3390_ijgi10090574
GeographicLocations Korean Peninsula
South Korea
GeographicLocations_xml – name: Korean Peninsula
– name: South Korea
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ADTOC
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c400t-261628dec1f9f1f4d935d03573f5fce296986088a019eb435bd108f668c0e6b23
IEDL.DBID UNPAY
ISSN 2220-9964
IngestDate Fri Oct 03 12:47:17 EDT 2025
Sun Oct 26 03:56:48 EDT 2025
Fri Sep 05 10:47:55 EDT 2025
Fri Jul 25 12:00:39 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Wed Oct 01 05:39:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-261628dec1f9f1f4d935d03573f5fce296986088a019eb435bd108f668c0e6b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6436-0641
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/10/9/574/pdf?version=1641457170
PQID 2576413947
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_df7103dd865e4656ad408d1e6ddf31b0
unpaywall_primary_10_3390_ijgi10090574
proquest_miscellaneous_2636817895
proquest_journals_2576413947
crossref_primary_10_3390_ijgi10090574
crossref_citationtrail_10_3390_ijgi10090574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Song (ref_44) 2019; 23
Noh (ref_48) 1995; 31
Chalupka (ref_26) 2013; 14
Polat (ref_9) 2006; 28
Lagaros (ref_15) 2007; 23
Park (ref_23) 1971; 4
Burton (ref_5) 2016; 142
Shinozuka (ref_6) 2000; 126
Kim (ref_47) 2015; 36
Miller (ref_31) 1964; 35
Kalkan (ref_42) 2010; 1068
Kunnath (ref_40) 2004; 20
ref_22
ref_21
Rodriguez (ref_36) 2010; 32
ref_20
Toro (ref_49) 1997; 68
Jo (ref_50) 2003; 7
Parra (ref_10) 2019; 183
ref_29
ref_28
Wang (ref_2) 2018; 162
Schulz (ref_25) 2018; 85
Porter (ref_3) 2001; 17
Kalkan (ref_41) 2006; 22
ref_34
Saha (ref_17) 2016; 43
ref_33
ref_32
ref_30
Rezaei (ref_46) 2020; 29
Unnikrishnan (ref_16) 2013; 42
Shafei (ref_11) 2011; 33
Jung (ref_37) 2021; 22
Ferreira (ref_12) 2020; 14
Hwang (ref_14) 2021; 34
Phan (ref_27) 2020; 18
Cimellaro (ref_1) 2011; 40
ref_45
ref_43
Calabrese (ref_18) 2013; 52
Singh (ref_35) 2011; 4
Papazafeiropoulos (ref_39) 2018; 4
Gehl (ref_19) 2016; 60
ref_8
Yariyan (ref_13) 2020; 50
Rahman (ref_38) 2018; 32
Park (ref_24) 2018; 22
ref_4
Shinozuka (ref_7) 2000; 126
References_xml – volume: 126
  start-page: 1224
  year: 2000
  ident: ref_6
  article-title: Statistical analysis of fragility curves
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224)
– ident: ref_32
– volume: 60
  start-page: 37
  year: 2016
  ident: ref_19
  article-title: Development of Bayesian Networks for the multi-hazard fragility assessment of bridge systems
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.01.006
– volume: 23
  start-page: 735
  year: 2007
  ident: ref_15
  article-title: Fragility assessment of steel frames using neural networks
  publication-title: Earthq. Spectra
  doi: 10.1193/1.2798241
– volume: 28
  start-page: 1335
  year: 2006
  ident: ref_9
  article-title: Fragility analysis of mid-rise R/C frame buildings
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2006.01.004
– volume: 34
  start-page: 101905
  year: 2021
  ident: ref_14
  article-title: Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101905
– volume: 23
  start-page: 2958
  year: 2019
  ident: ref_44
  article-title: Canonical Correlation Analysis of Selecting Optimal Ground Motion Intensity Measures for Bridges
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-0929-x
– ident: ref_21
  doi: 10.1016/B978-0-12-800768-6.00004-3
– volume: 126
  start-page: 1287
  year: 2000
  ident: ref_7
  article-title: Nonlinear static procedure for fragility curve development
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2000)126:12(1287)
– ident: ref_8
– volume: 32
  start-page: 123
  year: 2018
  ident: ref_38
  article-title: Development of regional flood frequency analysis techniques using generalized additive models for Australia
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-017-1384-1
– volume: 183
  start-page: 770
  year: 2019
  ident: ref_10
  article-title: Collapse risk assessment of a Chilean dual wall-frame reinforced concrete office building
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.01.006
– ident: ref_33
  doi: 10.1029/2006WR005142
– ident: ref_4
– volume: 22
  start-page: 367
  year: 2006
  ident: ref_41
  article-title: Effects of fling step and forward directivity on seismic response of buildings
  publication-title: Earthq. Spectra
  doi: 10.1193/1.2192560
– ident: ref_22
  doi: 10.3390/su12187787
– volume: 36
  start-page: 351
  year: 2015
  ident: ref_47
  article-title: An analysis of the sensitivity of input parameters for the seismic hazard analysis in the Korean Peninsula
  publication-title: J. Korean Earth Sci. Soc.
  doi: 10.5467/JKESS.2015.36.4.351
– volume: 14
  start-page: 333
  year: 2013
  ident: ref_26
  article-title: A framework for evaluating approximation methods for Gaussian progress regression
  publication-title: J. Mach. Learn. Res.
– volume: 4
  start-page: e00784
  year: 2018
  ident: ref_39
  article-title: OpenSeismoMatlab: A new open-source software for strong ground motion data processing
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00784
– volume: 40
  start-page: 1197
  year: 2011
  ident: ref_1
  article-title: Performance-based metamodel for healthcare facilities
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.1084
– volume: 20
  start-page: 883
  year: 2004
  ident: ref_40
  article-title: Modeling and response prediction in performance-based seismic evaluation: Case studies of instrumented steel moment-frame buildings
  publication-title: Earthq. Spectra
  doi: 10.1193/1.1774181
– volume: 142
  start-page: C4015007
  year: 2016
  ident: ref_5
  article-title: Framework for incorporating probabilistic building performance in the assessment of community seismic resilience
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0001321
– ident: ref_45
– volume: 31
  start-page: 175
  year: 1995
  ident: ref_48
  article-title: Estimation of Peak Ground Motions in the Southeastern Part of the Korean peninsula (II): Development of Predictive Equations
  publication-title: J. Geol. Soc. Korea
– volume: 42
  start-page: 419
  year: 2013
  ident: ref_16
  article-title: Development of fragility curves using high-dimensional model representation
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.2214
– volume: 4
  start-page: 443
  year: 2011
  ident: ref_35
  article-title: Daily sediment yield modelling with artificial neural network using 10-fold cross validation method: A small agricultural watershed, Kapgari, India
  publication-title: Int. J. Earth Sci. Eng.
– volume: 14
  start-page: 609
  year: 2020
  ident: ref_12
  article-title: The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-020-0623-6
– volume: 162
  start-page: 213
  year: 2018
  ident: ref_2
  article-title: Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.02.024
– ident: ref_30
– volume: 1068
  start-page: 126
  year: 2010
  ident: ref_42
  article-title: Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures
  publication-title: US Geol. Surv. Open-File Rep.
– volume: 17
  start-page: 291
  year: 2001
  ident: ref_3
  article-title: Assembly-based vulnerability of buildings and its use in performance evaluation
  publication-title: Earthq. Spectra
  doi: 10.1193/1.1586176
– volume: 4
  start-page: 39
  year: 1971
  ident: ref_23
  article-title: Recent tectonism in the Korean Peninsula and sea floor spreading
  publication-title: Econ. Environ. Geol.
– ident: ref_34
– volume: 22
  start-page: 337
  year: 2018
  ident: ref_24
  article-title: Did the 12 September 2016 Gyeongju, South Korea earthquake cause surface deformation?
  publication-title: Geosci. J.
  doi: 10.1007/s12303-017-0050-4
– ident: ref_28
  doi: 10.3390/buildings11060238
– volume: 22
  start-page: 201
  year: 2021
  ident: ref_37
  article-title: On the value of river network information in regional frequency analysis
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-20-0053.1
– volume: 7
  start-page: 59
  year: 2003
  ident: ref_50
  article-title: Estimation of spectrum decay parameter k and stochastic prediction of strong ground motions in southeastern Korea
  publication-title: J. Earthq. Eng. Soc. Korea
  doi: 10.5000/EESK.2003.7.6.059
– ident: ref_29
  doi: 10.7551/mitpress/3206.001.0001
– volume: 52
  start-page: 88
  year: 2013
  ident: ref_18
  article-title: Fragility functions of blockwork wharves using artificial neural networks
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2013.05.002
– ident: ref_20
  doi: 10.3390/su12187803
– volume: 18
  start-page: 6883
  year: 2020
  ident: ref_27
  article-title: Seismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regression
  publication-title: Bull. Earthq. Eng.
  doi: 10.1007/s10518-020-00960-7
– volume: 85
  start-page: 1
  year: 2018
  ident: ref_25
  article-title: A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
– volume: 43
  start-page: 20
  year: 2016
  ident: ref_17
  article-title: Uncertainty quantification and seismic fragility of base-isolated liquid storage tanks using response surface models
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2015.10.008
– volume: 32
  start-page: 569
  year: 2010
  ident: ref_36
  article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 68
  start-page: 41
  year: 1997
  ident: ref_49
  article-title: Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties
  publication-title: Seismol. Res. Lett.
  doi: 10.1785/gssrl.68.1.41
– ident: ref_43
– volume: 33
  start-page: 1107
  year: 2011
  ident: ref_11
  article-title: A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.12.028
– volume: 29
  start-page: 101227
  year: 2020
  ident: ref_46
  article-title: Seismic performance evaluation of steel structures equipped with dissipative columns
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.101227
– volume: 50
  start-page: 101705
  year: 2020
  ident: ref_13
  article-title: Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101705
– volume: 35
  start-page: 1594
  year: 1964
  ident: ref_31
  article-title: A trustworthy jackknife
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177700384
SSID ssj0000913840
Score 2.2370732
Snippet Seismic activities are serious disasters that induce natural hazards resulting in an incalculable amount of damage to properties and millions of deaths....
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 574
SubjectTerms Buildings
Construction
Correlation analysis
Damage assessment
Disasters
Displacement
Earthquake damage
Earthquakes
Fragility
fragility curve
Gaussian process
Gaussian process regression
geophysics
Hazard assessment
Investigations
Learning algorithms
Machine learning
maximum displacement
model validation
Neural networks
Normal distribution
Normalizing
P-waves
Parameters
Performance enhancement
Performance evaluation
prediction
Property damage
Regional analysis
regional seismic damage assessment
Regression analysis
Regression models
Risk assessment
Sampling
Seismic activity
Seismic hazard
Seismic response
Seismic waves
Sensitivity analysis
South Korea
spatial data
Structural damage
Structural models
Structural response
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BTxUxEG4MF-BgBDSuIqkJejEbtttttz0-QAQTOaAYbpu20-Izj30k-14M_95pd1kfB-XidTrZNJ1p55vt9BtC9kvGXSkUz4tgIK-4s7nlrs6dchbFvuQmvnf-ci5PL6vPV-JqpdVXrAnr6YH7hTuAgDGQAygpfOT2MlAVCpiXAIEzm7L1QumVZCqdwZpxTF36SneOef3B9Of1lKEc8Un1IAYlqv4H-HJ92d6au19mNlsJNSfPyNMBI9JJP7ct8sS322R9aFf-426bbH6fdsteo9shN5_MsotvIelQ9U8v_HVf3trmhxilgH5NLLGRYQPHUlGsp7EL2oyaFujZoqOTPxfZdDGPX0j_COmxucETh05GAs_n5PLk47ej03zoopA73J-LHFMkWSrwjgUdWKhAcwEFFzUPIjhfaqmVxLPGINjzFtGTBVaoIKVyhZe25C_IWjtv_UtCMZIFbWuQItQV1M5aFCDg4V7UwKzPyIf7dW3cQDEeO13MGkw1ohWaVStk5N2ofdtTa_xF7zCaaNSJhNhJgG7SDG7SPOYmGdm9N3Az7NKuickWBnFd1Rl5Ow7j_oqXJqb18yXqSC4Vq5UWGXk_OsY_J_zqf0z4NdkoY_lMKmfbJWvoJ_4N4p-F3Uuu_htFkgPP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7aFwQFBApBRkJOCCoiZx4jgHhHahpSCxQoWi3iI_l0Xb7JbsCvXfM5NX2wO9jkdJlLFnPtsz3wC8SmJukkzyMPLKhik3OtTc5KGRRqPYJVxRvfPXqTg-Tb-cZWdbMO1rYSitsveJjaO2S0Nn5AcEjNHhFmn-fnURUtcoul3tW2iorrWCfddQjN2B7YSYsUawPTmcfjsZTl2IBRO3NG0GPMf9_sH892weoxxxS3ojNjUU_jdw586mWqnLv2qxuBaCjh7A_Q47snFr7Iew5apd2OnamP-63IV7P-f1ptWoH8H5J7WpqUaSddUA7MTN2rTXKpxg9LLse8MeS8wbONYkyzpG3dEWTFWWfV7XbHx1wc3WS3pCc3bIPqpz9ERsPBB7PobTo8MfH47DrrtCaHDdrkPcOolEWmdiX_jYp7bgmY14lnOfeeOSQhRSoA9SCAKdRlSlbRxJL4Q0kRM64U9gVC0r9xQYRjhf6NyKzOepzY3WKEAgxF2W21i7AN72_7U0HfU4dcBYlLgFISuU160QwOtBe9VSbvxHb0ImGnSIKLsRLP_Mym7dldYjhOLWSpE5ooZTNo2kjZ2w1vNYRwHs9wYuu9Vbl1dzLYCXwzCuO7pMUZVbblBHcCHjXBZZAG-GiXHrB-_d_q5ncDehhJkmgW0fRjgD3HNEPGv9opvG_wAgnQFq
  priority: 102
  providerName: ProQuest
Title Gaussian Process Regression-Based Structural Response Model and Its Application to Regional Damage Assessment
URI https://www.proquest.com/docview/2576413947
https://www.proquest.com/docview/2636817895
https://www.mdpi.com/2220-9964/10/9/574/pdf?version=1641457170
https://doaj.org/article/df7103dd865e4656ad408d1e6ddf31b0
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B-zB44GOACIzKSMALyprEseM8oRbWDSSqaVA0nqL4qxS6tCItaPz1nBO3bEggxKt9iRL5Pn5nn38H8CSJqUqYoGFkSx2mVMlQUpWFSiiJwyahpbvv_HbMjybpm1N26jfcal9Wian4rHHSGLuiEAF5irbdzzF3T_tLbV988ztJiPTjlGE-gil7lzPE4h3oTsbHg4-uo9zm2bbanWJu3599ns5iBBWIUdJLcaih67-EMXfW1bI8_17O5xfCzegmFJsPbatMvuyvV3Jf_fiNw_H__-QW3PBIlAxa1bkNV0y1Czu-Kfqn8124_mFWr1uJ-g6cHZbr2t24JP5uATkx07aItgqHGAs1eddw0ToeD5xrSm8Ncb3W5qSsNHm9qsng13E5WS3cG5qdSPKqPEO_RgZbmtC7MBkdvH95FPpeDaFCL7AKMRHjidBGxTa3sU11TpmOKMuoZVaZJOe54OjRSoSURiJGkzqOhOVcqMhwmdB70KkWlbkPBOOlzWWmObNZqjMlJQ4grKKGZTqWJoDnm5UrlCcyd_005gUmNG6di4vrHMDTrfSyJfD4g9zQKcFWxtFuNwOLr9PCW3GhLQIyqrXgzDiiuVKnkdCx4VpbGssogL2NChXeF9SFS-kQKuRpFsDj7TRasTuaKSuzWKMMp1zEmchZAM-2qvfXD37wr4IP4VriCnGawrg96KAumEeIpFayB1fF6LAH3eHB-Pik1-xH9LwJ_QSfihxM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1V7SFwQFBAGAosEuWCrNpee70-VCihLQltI1Ra1Ju7nyEotQNOVOXP8duYtddue6C3XtcjJ_LMzrzZnXmD0PsoJDJKGPEDw5UfEyl8QWTqSyYFLOuIcNvvfDymw7P463lyvob-tr0wtqyy9Ym1o1altGfkOxYYg8PN4vTT_Ldvp0bZ29V2hAZ3oxXUbk0x5ho7DvXqClK4ane0B_rejqKD_dPPQ99NGfAl2O_ChxSCRkxpGZrMhCZWGUlUQJKUmMRIHWU0YxT2IgcwpAWgC6HCgBlKmQw0FZb4AELARkziDJK_jcH--NtJd8pjWTchhWoq7gnJgp3pr8k0hHXASfGtWFiPDLiFc3vLYs5XV3w2uxHyDh6jRw6r4n5jXE_Qmi42Uc-NTf-52kQPf0yrZSNRPUWXX_iysj2Z2HUf4BM9acpsC38A0VLh7zVbrWX6gGd1ca7GdhrbDPNC4dGiwv3rC3W8KO0b6rNKvMcvwfPhfkck-gyd3ct3fo7Wi7LQLxCGiGoykSqamDRWqRQCFgB4EZ2kKhTaQx_b75pLR3VuJ27Mckh5rBbym1rw0HYnPW8oPv4jN7Aq6mQsMXe9UP6Z5G6f58oAZCNKMZpoS0XHVRwwFWqqlCGhCDy01So4d96iyq9t20Pvusewz-3lDS90uQQZSigLU5YlHvrQGcadf_jl3b_1FvWGp8dH-dFofPgKPYhssU5dPLeF1sEa9GtAWwvxxpk0Rhf3vYv-AUbQPSQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRaJwQFBAGAosEuWCrNhee20fEEoJaUOhQkBRb8b7CkGpHXCiKn-NX8eMX20P9Nbr7si2PI_9dnfmG4CXgc9VECXc9Wyu3ZAr6UquYlclSuKwCXhO9c6fjsTBcfjhJDrZgL9dLQylVXYxsQ7UulR0Rj4gYIwBNw3jgW3TIj6Pxm8Xv13qIEU3rV07jcZEDs36DLdv1ZvJCHW9GwTj99_eHbhthwFXoe0uXdw-iCDRRvk2tb4Ndcoj7fEo5jayygSpSBOBfpgjEDISkYXUvpdYIRLlGSGJ9ADD_42YWNypSn2835_vEN8mbp6aXHvOU28w-zWd-TiOCCm8tArWzQIuIdytVbHI12f5fH5hsRvfhTstSmXDxqzuwYYptmGrbZj-c70Nt7_PqlUjUd2H0_18VVE1JmvrDtgXM20SbAt3D9dJzb7WPLXE8YFzdVquYdSHbc7yQrPJsmLD86t0tizpCfUpJRvlpxjz2LCnEH0Ax9fylx_CZlEW5hEwXEttKmMtIhuHOlZS4gBCLm6iWPvSOPC6-6-ZaknOqdfGPMPNDmkhu6gFB3Z76UVD7vEfuT1SUS9DlNz1QPlnmrUenmmLYI1rnYjIEAldrkMv0b4RWlvuS8-BnU7BWRsnquzcqh140U-jh9O1TV6YcoUyAs3Lj5M0cuBVbxhXfvDjq9_1HG6i72QfJ0eHT-BWQFk6ddbcDmyiMZinCLOW8lltzwx-XLcD_QOaYjq-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbQ9lA48CggFgoyEnBB6cbxI84JbYFSkKgQsKicIj-XhW12RRJQ-fWME29okUCIqz2JEnke39jjbxB6kBFqMi5pknplE0aNTjQ1eWKk0TDsMqrCfefXR-Jwxl4d8-O44VbHskpIxRedk4bYlSYAyBnY9qSA3J1N1tY_-RZ3kgDpE8YhH4GUfUtwwOIjtDU7ejP9GDrKbZ7tq90p5PaTxef5ggCoAIzCzsWhjq7_HMbcbqu1Ov2ulssz4ebgCio3H9pXmXzZaxu9Z378xuH4_39yFV2OSBRPe9W5hi64agdtx6bon0530KUPi7rtJerr6OSFautw4xLHuwX4rZv3RbRVsg-x0OJ3HRdt4PGAua701uHQa22JVWXxy6bG01_H5bhZhTd0O5H4mToBv4anA03oDTQ7eP7-6WESezUkBrxAk0AiJjJpnSG-8MQzW1BuU8pz6rk3LitEIQV4NAWQ0mnAaNqSVHohpEmd0Bm9iUbVqnK3EIZ46QudW8F9zmxutIYBgFXU8dwS7cbo8WblShOJzEM_jWUJCU1Y5_LsOo_Rw0F63RN4_EFuPyjBIBNot7uB1dd5Ga24tB4AGbVWCu4C0ZyyLJWWOGGtp0SnY7S7UaEy-oK6DCkdQIWC5WN0f5gGKw5HM6pyqxZkBBWS5LLgY_RoUL2_fvDtfxW8gy5moRCnK4zbRSPQBXcXkFSj70Vz-QmUmhjX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+Process+Regression-Based+Structural+Response+Model+and+Its+Application+to+Regional+Damage+Assessment+%5BErratum%3A+January+2022%2C+v.11%281%29%5D&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Park%2C+Sangki&rft.au=Jung%2C+Kichul&rft.date=2021-09-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=10&rft.issue=9&rft_id=info:doi/10.3390%2Fijgi10090574&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon