Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model
•A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A phase field model for matrix and interphase fracture in polymer-matrix composites.•Extraction of fracture related material properties for vari...
Saved in:
Published in | Engineering fracture mechanics Vol. 188; pp. 287 - 299 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.02.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0013-7944 1873-7315 |
DOI | 10.1016/j.engfracmech.2017.08.002 |
Cover
Abstract | •A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A phase field model for matrix and interphase fracture in polymer-matrix composites.•Extraction of fracture related material properties for various input parameters, particularly for the interphase zone.
We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase behavior between the polymeric matrix and clay reinforcement. A phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material. The effect of the interphase zones, e.g. thickness and mechanical properties (Young’s modulus and strain energy release rate) on the tensile strength, and fracture parameters of the composite is studied in detail. The dissipation energy due to fracture in the PNCs is extracted for different thicknesses and properties of the interphase zones. We show through numerical experiments that the interphase thickness has the most influence on the tensile strength while the critical strain energy release rate of the interphase zones affects the dissipation energy depending on the interphase zone thickness. |
---|---|
AbstractList | •A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A phase field model for matrix and interphase fracture in polymer-matrix composites.•Extraction of fracture related material properties for various input parameters, particularly for the interphase zone.
We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase behavior between the polymeric matrix and clay reinforcement. A phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material. The effect of the interphase zones, e.g. thickness and mechanical properties (Young’s modulus and strain energy release rate) on the tensile strength, and fracture parameters of the composite is studied in detail. The dissipation energy due to fracture in the PNCs is extracted for different thicknesses and properties of the interphase zones. We show through numerical experiments that the interphase thickness has the most influence on the tensile strength while the critical strain energy release rate of the interphase zones affects the dissipation energy depending on the interphase zone thickness. We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase behavior between the polymeric matrix and clay reinforcement. A phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material. The effect of the interphase zones, e.g. thickness and mechanical properties (Young’s modulus and strain energy release rate) on the tensile strength, and fracture parameters of the composite is studied in detail. The dissipation energy due to fracture in the PNCs is extracted for different thicknesses and properties of the interphase zones. We show through numerical experiments that the interphase thickness has the most influence on the tensile strength while the critical strain energy release rate of the interphase zones affects the dissipation energy depending on the interphase zone thickness. |
Author | Msekh, Mohammed A. Zi, G. Areias, P. Zhuang, X. Rabczuk, Timon Cuong, N.H. |
Author_xml | – sequence: 1 givenname: Mohammed A. surname: Msekh fullname: Msekh, Mohammed A. organization: Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus-University Weimar, Germany – sequence: 2 givenname: N.H. surname: Cuong fullname: Cuong, N.H. organization: Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus-University Weimar, Germany – sequence: 3 givenname: G. surname: Zi fullname: Zi, G. organization: School of Civil, Environmental and Architectural Engineering, Korea University, Republic of Korea – sequence: 4 givenname: P. surname: Areias fullname: Areias, P. organization: Departamento de Física, Universidade de Évora, Portugal – sequence: 5 givenname: X. surname: Zhuang fullname: Zhuang, X. organization: Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus-University Weimar, Germany – sequence: 6 givenname: Timon surname: Rabczuk fullname: Rabczuk, Timon email: timon.rabczuk@tdt.edu.vn organization: Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam |
BookMark | eNqNkMFuGyEURVHlSLWd_gNR1x4_ZhgGr6LIqptIkbpp1wgzDxt3DFPASdyvL5a7qLrK6j2hew9wZmTig0dC7hhUDJhYHir0Oxu1OaLZVzWwrgJZAdQfyJTJrll0DWsnZArAyr7i_COZpXQAgE5ImJKfm9LNp4h0jGHEmB2msmLvTHbB02CpGfR5iWN4O1OvfTDhOIbkcsm9urynzmeM414npL_L2xI9Jed3VNPrmXU49PQYehxuyY3VQ8JPf-ec_Nh8-b5-XDx_-_q0fnheGA6QFzVYaKxoJWeA0nLRcMPqbS0ai61tQazqbd9sy9Smq9lW8LaT3DYgexSstc2cfL5yy5d-nTBldQin6MuVqgZRAEyueEmtrikTQ0oRrRqjO-p4VgzUxa06qH_cqotbBVIVt6V7_1_XuKwvwnLUbngXYX0lYBHx4jCqZBx6U8RHNFn1wb2D8gf-FaEj |
CitedBy_id | crossref_primary_10_1007_s00366_021_01529_x crossref_primary_10_1016_j_ast_2019_105656 crossref_primary_10_1007_s42493_019_00022_4 crossref_primary_10_1016_j_jmps_2022_104839 crossref_primary_10_1016_j_msea_2022_143515 crossref_primary_10_1007_s00366_022_01670_1 crossref_primary_10_1016_j_istruc_2024_106729 crossref_primary_10_1016_j_engfracmech_2022_108481 crossref_primary_10_1115_1_4045236 crossref_primary_10_1016_j_aej_2022_09_019 crossref_primary_10_1080_10255842_2021_2023135 crossref_primary_10_1016_j_cma_2020_113019 crossref_primary_10_1177_07316844241279685 crossref_primary_10_1016_j_commatsci_2019_05_053 crossref_primary_10_1016_j_dental_2022_09_009 crossref_primary_10_1080_15397734_2022_2044850 crossref_primary_10_1016_j_compscitech_2018_10_031 crossref_primary_10_1016_j_compstruct_2024_118396 crossref_primary_10_1016_j_dt_2019_11_005 crossref_primary_10_1016_j_tafmec_2020_102662 crossref_primary_10_1007_s00339_022_05427_x crossref_primary_10_1515_polyeng_2023_0103 crossref_primary_10_1016_j_engfracmech_2022_108591 crossref_primary_10_1007_s11709_021_0699_7 crossref_primary_10_1016_j_polymertesting_2019_04_021 crossref_primary_10_1016_j_jmbbm_2023_106219 crossref_primary_10_1016_j_conbuildmat_2020_118680 crossref_primary_10_1016_j_dt_2020_03_010 crossref_primary_10_1007_s00366_021_01528_y crossref_primary_10_1016_j_jmps_2020_103968 crossref_primary_10_1088_1757_899X_1079_4_042098 crossref_primary_10_1016_j_compositesb_2018_06_015 crossref_primary_10_1016_j_istruc_2023_05_032 crossref_primary_10_1007_s11831_021_09650_2 crossref_primary_10_1016_j_compositesb_2019_05_053 crossref_primary_10_1016_j_carbon_2020_02_014 crossref_primary_10_1007_s11709_020_0663_y crossref_primary_10_1016_j_enganabound_2023_03_043 crossref_primary_10_1016_j_compstruct_2021_115129 crossref_primary_10_1016_j_cma_2021_113874 crossref_primary_10_1016_j_tws_2024_112147 crossref_primary_10_1007_s11709_018_0496_0 crossref_primary_10_1177_0021955X231162187 crossref_primary_10_1016_j_dt_2020_03_004 crossref_primary_10_1080_15376494_2019_1625987 crossref_primary_10_1016_j_dt_2020_03_003 crossref_primary_10_1002_pc_25412 crossref_primary_10_1016_j_apm_2022_12_006 crossref_primary_10_1007_s11012_020_01224_z crossref_primary_10_1002_pc_27826 crossref_primary_10_1016_j_ast_2022_107384 crossref_primary_10_1016_j_ijmecsci_2019_07_007 crossref_primary_10_1016_j_tws_2020_106945 crossref_primary_10_1016_j_msea_2023_145501 crossref_primary_10_1016_j_compstruct_2019_03_100 crossref_primary_10_1007_s00339_022_05670_2 crossref_primary_10_3390_ma15072562 crossref_primary_10_1111_ffe_13366 crossref_primary_10_1088_1361_651X_ab1f63 crossref_primary_10_1016_j_compositesb_2019_05_069 crossref_primary_10_1016_j_cma_2018_06_015 crossref_primary_10_1016_j_ijmecsci_2020_105633 crossref_primary_10_1016_j_istruc_2024_106057 crossref_primary_10_1016_j_polymertesting_2024_108358 crossref_primary_10_1007_s11051_019_4697_9 crossref_primary_10_1016_j_ijmecsci_2023_108687 crossref_primary_10_1016_j_tafmec_2023_103836 crossref_primary_10_1016_j_mseb_2021_115527 crossref_primary_10_1016_j_jmbbm_2019_04_045 crossref_primary_10_1016_j_tafmec_2022_103415 crossref_primary_10_1016_j_engfracmech_2020_107195 crossref_primary_10_1016_j_engfracmech_2020_107197 crossref_primary_10_34133_2020_7815462 crossref_primary_10_1016_j_porgcoat_2022_107147 crossref_primary_10_3390_polym13152399 crossref_primary_10_1016_j_compstruct_2023_116959 crossref_primary_10_1016_j_euromechsol_2024_105322 crossref_primary_10_1016_j_ijsolstr_2023_112553 crossref_primary_10_1177_0021998319830777 crossref_primary_10_1016_j_camwa_2021_11_010 crossref_primary_10_1016_j_surfin_2020_100454 crossref_primary_10_1007_s10409_023_23468_x crossref_primary_10_1016_j_compositesb_2022_110432 crossref_primary_10_1016_j_compositesb_2019_107405 crossref_primary_10_1177_07316844241252324 crossref_primary_10_1016_j_jmbbm_2020_104171 crossref_primary_10_1155_2021_6105360 crossref_primary_10_1007_s13726_024_01402_w crossref_primary_10_1016_j_dt_2020_02_013 crossref_primary_10_1016_j_dt_2020_02_018 crossref_primary_10_1021_acsanm_1c02778 crossref_primary_10_1002_pc_27200 crossref_primary_10_1002_pc_27685 crossref_primary_10_1016_j_compscitech_2021_109242 crossref_primary_10_1016_j_compositesb_2021_108640 crossref_primary_10_1016_j_compscitech_2024_110536 crossref_primary_10_1016_j_polymer_2022_124527 crossref_primary_10_1016_j_compositesa_2025_108882 crossref_primary_10_1007_s00419_024_02618_1 crossref_primary_10_1016_j_undsp_2018_08_001 crossref_primary_10_1007_s00707_022_03224_4 crossref_primary_10_1007_s10999_022_09636_3 crossref_primary_10_1007_s11595_022_2594_z crossref_primary_10_1007_s11668_021_01273_w crossref_primary_10_1016_j_dt_2020_02_010 crossref_primary_10_1186_s11671_018_2624_0 crossref_primary_10_1111_ffe_14524 crossref_primary_10_1002_pc_27235 crossref_primary_10_1016_j_compstruct_2019_111551 crossref_primary_10_1007_s00521_020_05035_x crossref_primary_10_1007_s11709_019_0588_5 crossref_primary_10_1016_j_engfracmech_2022_108667 crossref_primary_10_1088_2053_1591_aaec28 crossref_primary_10_1002_pc_28207 crossref_primary_10_1007_s11709_021_0732_x crossref_primary_10_1088_1757_899X_1166_1_012023 crossref_primary_10_1177_0021998319868523 crossref_primary_10_1016_j_compositesb_2022_110213 crossref_primary_10_1016_j_compositesb_2019_01_047 crossref_primary_10_1016_j_engfracmech_2019_106599 crossref_primary_10_1080_07370652_2019_1684594 crossref_primary_10_1016_j_cma_2020_113270 crossref_primary_10_1016_j_conbuildmat_2020_119868 crossref_primary_10_1142_S0219876220410078 crossref_primary_10_1016_j_ijsolstr_2019_07_031 crossref_primary_10_1016_j_heliyon_2020_e04575 crossref_primary_10_1016_j_commatsci_2022_111747 crossref_primary_10_1002_app_51332 crossref_primary_10_1038_s41598_024_73871_1 crossref_primary_10_1002_pc_28314 crossref_primary_10_1016_j_mechmat_2022_104444 crossref_primary_10_1108_IJSI_03_2024_0049 crossref_primary_10_1016_j_compstruc_2025_107651 crossref_primary_10_1039_C9CP04091A crossref_primary_10_1016_j_engfracmech_2021_107705 crossref_primary_10_1016_j_advengsoft_2018_08_010 crossref_primary_10_1016_j_engfracmech_2021_107945 crossref_primary_10_1016_j_carbon_2020_08_067 crossref_primary_10_1016_j_engfracmech_2019_106568 crossref_primary_10_1155_2020_9720167 crossref_primary_10_3390_app8122350 crossref_primary_10_1016_j_compstruct_2018_10_083 crossref_primary_10_1038_s41598_024_71573_2 crossref_primary_10_1016_j_msea_2021_141325 crossref_primary_10_1080_15376494_2021_1963508 crossref_primary_10_1002_pc_25358 crossref_primary_10_1016_j_enganabound_2022_11_014 crossref_primary_10_1177_0731684418804346 crossref_primary_10_1016_j_ijmecsci_2023_108270 crossref_primary_10_1016_j_jmrt_2021_03_104 crossref_primary_10_1016_j_jmps_2024_105881 crossref_primary_10_1016_j_mtcomm_2022_104547 crossref_primary_10_1007_s00339_022_05505_0 crossref_primary_10_1016_j_compstruct_2020_112324 crossref_primary_10_1016_j_compositesa_2019_03_012 crossref_primary_10_1016_j_compstruct_2019_111569 crossref_primary_10_1016_j_cma_2021_113821 crossref_primary_10_1016_j_tafmec_2019_102384 crossref_primary_10_1177_0954406219888958 crossref_primary_10_1016_j_mtcomm_2023_106544 crossref_primary_10_1039_D4NR01834F crossref_primary_10_1016_j_engfracmech_2021_107962 crossref_primary_10_1016_j_ijimpeng_2020_103500 crossref_primary_10_1016_j_dt_2020_01_003 crossref_primary_10_1016_j_compositesb_2021_109411 crossref_primary_10_1016_j_compscitech_2019_107789 crossref_primary_10_1016_j_engfracmech_2023_109676 crossref_primary_10_1002_pc_27318 crossref_primary_10_1155_2021_6621530 crossref_primary_10_1016_j_cma_2022_114650 crossref_primary_10_1016_j_cma_2022_115861 crossref_primary_10_1016_j_compositesb_2021_109534 crossref_primary_10_1177_07316844221135150 crossref_primary_10_1016_j_engfracmech_2023_109792 crossref_primary_10_1016_j_compstruct_2022_116589 crossref_primary_10_1007_s11709_020_0617_4 crossref_primary_10_1002_admt_202100507 crossref_primary_10_1016_j_engfracmech_2020_106926 crossref_primary_10_1007_s00339_024_07657_7 crossref_primary_10_1002_pc_27554 crossref_primary_10_1002_pc_28520 crossref_primary_10_1016_j_compstruct_2018_06_087 crossref_primary_10_1016_j_matdes_2022_110498 crossref_primary_10_3390_en12020271 crossref_primary_10_1016_j_measurement_2022_111368 crossref_primary_10_1016_j_apm_2020_05_005 crossref_primary_10_1016_j_istruc_2024_106337 crossref_primary_10_1016_j_polymer_2019_121682 crossref_primary_10_1016_j_ijimpeng_2019_05_019 crossref_primary_10_1016_j_mechmat_2018_09_002 crossref_primary_10_1177_14644207241262398 crossref_primary_10_1002_pc_27785 crossref_primary_10_1007_s11709_020_0573_z crossref_primary_10_1038_s41598_018_32452_9 crossref_primary_10_1016_j_compscitech_2022_109722 crossref_primary_10_1177_00219983231185840 crossref_primary_10_1016_j_engfracmech_2019_01_031 crossref_primary_10_1016_j_carbon_2020_06_012 crossref_primary_10_1177_0021998320960774 crossref_primary_10_1016_j_compositesa_2018_10_010 crossref_primary_10_1002_nme_6509 crossref_primary_10_1080_15397734_2022_2149553 crossref_primary_10_1016_j_cma_2019_06_002 crossref_primary_10_1016_j_compositesa_2019_105570 crossref_primary_10_1016_j_commatsci_2020_110203 crossref_primary_10_1016_j_matpr_2022_04_080 crossref_primary_10_1016_j_compscitech_2021_108665 crossref_primary_10_1002_pc_25552 crossref_primary_10_1007_s13369_021_06199_x crossref_primary_10_1016_j_conbuildmat_2022_126829 crossref_primary_10_1016_j_engfracmech_2023_109779 crossref_primary_10_1016_j_mechrescom_2021_103698 crossref_primary_10_1016_j_compositesb_2018_06_033 crossref_primary_10_1016_j_jmbbm_2020_103937 crossref_primary_10_1016_j_conbuildmat_2021_125199 crossref_primary_10_1016_j_engfracmech_2019_01_021 crossref_primary_10_1016_j_compositesa_2020_105861 crossref_primary_10_1016_j_mtcomm_2021_102026 crossref_primary_10_1016_j_ijmecsci_2024_109848 crossref_primary_10_1177_0021998320976794 crossref_primary_10_1177_07316844241252045 crossref_primary_10_1016_j_commatsci_2020_109694 crossref_primary_10_1002_pc_26072 crossref_primary_10_1016_j_jmps_2018_06_006 crossref_primary_10_1016_j_compstruct_2022_116299 crossref_primary_10_1016_j_compstruct_2021_114372 crossref_primary_10_1021_acssuschemeng_9b02602 crossref_primary_10_1002_pc_28256 crossref_primary_10_1007_s00289_025_05638_1 crossref_primary_10_1093_jcde_qwaf012 crossref_primary_10_1177_14644207231221244 crossref_primary_10_1016_j_engfracmech_2020_107371 crossref_primary_10_1016_j_msea_2022_144544 crossref_primary_10_1007_s00707_024_04212_6 crossref_primary_10_1016_j_jsv_2019_115115 crossref_primary_10_1016_j_cma_2021_114254 crossref_primary_10_1016_j_compositesb_2020_108400 crossref_primary_10_1080_15397734_2021_1988635 crossref_primary_10_1002_nme_6767 crossref_primary_10_1016_j_mtcomm_2022_103745 crossref_primary_10_1016_j_matpr_2022_04_659 crossref_primary_10_1177_07316844211063571 crossref_primary_10_1080_23311916_2021_1991229 crossref_primary_10_1016_j_physe_2020_114318 crossref_primary_10_1016_j_compstruct_2020_112534 crossref_primary_10_1016_j_compstruc_2020_106373 crossref_primary_10_1002_adem_202000963 crossref_primary_10_1016_j_cma_2020_113434 crossref_primary_10_1016_j_compstruct_2022_115730 crossref_primary_10_1016_j_compositesa_2020_105889 crossref_primary_10_1016_j_commatsci_2020_109912 crossref_primary_10_1007_s10237_021_01524_7 crossref_primary_10_1007_s11831_021_09700_9 crossref_primary_10_1016_j_compscitech_2020_108487 crossref_primary_10_1007_s00366_022_01600_1 crossref_primary_10_1016_j_jmbbm_2024_106577 crossref_primary_10_1016_j_jmrt_2022_06_098 crossref_primary_10_1016_j_tws_2022_110227 crossref_primary_10_1080_15376494_2024_2311235 crossref_primary_10_1016_j_jnucmat_2024_154963 crossref_primary_10_1016_j_compositesa_2019_05_024 crossref_primary_10_1016_j_compositesa_2020_106055 crossref_primary_10_1080_15376494_2022_2048146 crossref_primary_10_1002_pc_28035 crossref_primary_10_1007_s11517_023_02901_3 crossref_primary_10_1007_s00366_021_01566_6 crossref_primary_10_1016_j_cma_2019_02_017 crossref_primary_10_1002_pc_26897 crossref_primary_10_1007_s40430_021_03059_5 crossref_primary_10_1016_j_compscitech_2019_107743 |
Cites_doi | 10.1016/j.compositesb.2012.04.012 10.1016/j.tca.2012.11.017 10.1016/j.cma.2012.01.008 10.1016/j.advengsoft.2014.09.016 10.1016/j.scriptamat.2006.01.018 10.4028/www.scientific.net/KEM.334-335.785 10.1016/j.compscitech.2016.02.012 10.1016/j.polymer.2004.11.022 10.1016/j.engfracmech.2015.10.042 10.1016/j.compositesb.2014.09.008 10.4028/www.scientific.net/KEM.312.199 10.1016/j.carbon.2015.10.058 10.1016/0010-4361(92)90282-Y 10.1002/pen.11007 10.1002/pi.4980100107 10.1177/0021998312445592 10.1016/j.clay.2014.12.016 10.1002/nme.963 10.1016/j.commatsci.2015.05.034 10.1007/s00466-013-0948-2 10.1016/j.carbon.2013.04.048 10.1016/j.commatsci.2014.05.071 10.1016/j.cma.2016.01.020 10.1007/s00466-017-1373-8 10.1016/j.eurpolymj.2011.06.010 10.1021/ma048465n 10.1016/j.ijadhadh.2014.05.004 10.1016/j.compscitech.2007.10.033 10.1002/nme.2861 10.1007/s00466-014-1109-y 10.1007/s00466-013-0952-6 10.1016/j.compstruct.2015.08.051 10.1016/j.commatsci.2012.03.010 10.1016/j.cma.2010.04.011 10.1016/S0022-5096(98)00034-9 10.1016/j.tafmec.2014.06.009 10.1016/0010-4361(90)90240-W 10.1016/j.eurpolymj.2004.10.035 10.1016/S0032-3861(00)00901-0 10.1007/s10659-012-9410-5 10.1002/pen.760302106 10.1016/j.commatsci.2014.04.066 10.1016/j.commatsci.2016.04.009 10.1016/j.tafmec.2013.12.004 10.1016/j.commatsci.2015.02.045 10.1016/j.compscitech.2008.11.022 10.1016/j.jocs.2015.11.007 10.1016/j.polymer.2006.11.062 10.1016/j.compstruct.2014.07.009 10.1016/j.commatsci.2012.11.035 10.1016/j.finel.2017.05.001 10.1016/j.compstruc.2008.08.010 10.1038/nmat1873 10.1016/j.clay.2015.07.021 10.1007/s00466-013-0891-2 10.1016/j.compstruct.2015.07.061 10.1002/app.30547 10.1016/j.compscitech.2004.06.002 10.1016/j.progpolymsci.2003.09.003 10.1016/j.compositesb.2016.02.022 10.1016/j.cma.2011.08.013 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Feb 1, 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2018 |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.engfracmech.2017.08.002 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7315 |
EndPage | 299 |
ExternalDocumentID | 10_1016_j_engfracmech_2017_08_002 S0013794417308020 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SSH VH1 WUQ ZY4 7SR 7TB 8BQ 8FD EFKBS FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c400t-20f03f658410e8f4634c12b263fe5f50692bd3b069ac721b645784f308de615f3 |
IEDL.DBID | AIKHN |
ISSN | 0013-7944 |
IngestDate | Fri Jul 25 06:22:08 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Tue Jul 01 01:50:06 EDT 2025 Fri Feb 23 02:33:30 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method Phase field model Interphase zone Polymer layered silicate Polymer nanocomposite Brittle fracture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-20f03f658410e8f4634c12b263fe5f50692bd3b069ac721b645784f308de615f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0013794417308020?via%3Dihub |
PQID | 2065061894 |
PQPubID | 2045482 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2065061894 crossref_primary_10_1016_j_engfracmech_2017_08_002 crossref_citationtrail_10_1016_j_engfracmech_2017_08_002 elsevier_sciencedirect_doi_10_1016_j_engfracmech_2017_08_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 2018-02-00 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Engineering fracture mechanics |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Galeski (b0050) 2003; 28 Mortazavi, Hassouna, Laachachi, Rajabpour, Ahzi, Chapron (b0040) 2013; 552 Qiao, Brinson (b0165) 2009; 69 Mortazavi, Benzerara, Meyer, Bardon, Ahzi (b0045) 2013; 60 Areias, Rabczuk (b9005) 2017; 132 Miehe, Hofacker, Welschinger (b0225) 2010; 199 Silani, Talebi, Ziaei-Rad, Kerfriden, Bordas, Rabczuk (b0200) 2014; 118 Liu, Li, Msekh, Zuo (b0245) 2016; 121 Msekh, Silani, Jamshidian, Areias, Zhuang, Zi (b0290) 2016; 93 Pukánszky (b0065) 2005; 41 Saber-Samandari, Afaghi Khatibi (b0125) 2006; 312 Arash, Park, Rabczuk (b0285) 2016; 96 Kendall (b0195) 1978; 10 Francfort, Marigo (b0250) 1998; 46 Budarapu, Gracie, Shih-Wei, Zhuang, Rabczuk (b9020) 2014; 69 Asif, Kyong, Soo, David (b0310) 2013; 45 Anderson (b0275) 1995 Chia, Hbaieb, Wang (b0135) 2007; 334 Ambati, Gerasimov, De Lorenzis (b0240) 2015; 55 Odegard, Clancy, Gates (b0155) 2005; 46 Silani, Ziaei-Rad, Talebi, Rabczuk (b9035) 2014; 74 Sicsic, Marigo (b0270) 2013; 113 Vu-Bac, Silani, Lahmer, Zhuang, Rabczuk (b0090) 2015; 96 Msekh, Sargado, Jamshidian, Areias, Rabczuk (b0265) 2015; 96 Budarapu, Gracie, Bordas, Rabczuk (b9015) 2014; 53 Talebi, Silani, Rabczuk (b9030) 2015; 80 Borden, Verhoosel, Scott, Hughes, Landis (b0295) 2012; 217 Zare, Garmabi (b0080) 2015; 105 Hamdia, Lahmer, Nguyen-Thoi, Rabczuk (b0100) 2015; 102 Talebi, Silani, Bordas, Kerfriden, Rabczuk (b9040) 2014; 53 Amiri, Anitescu, Arroyo, Bordas, Rabczuk (b9010) 2014; 53 Gao (b0010) 2012 Chen, Rabczuk, Bordas, Liu, Zeng, Kerfriden (b0260) 2012 Dominkovics, Hári, Kovács, Fekete, Pukánszky (b0060) 2011; 47 Mesbah, Zaïri, Boutaleb, Gloaguen, Naït-Abdelaziz, Xie (b0170) 2009; 114 Zare (b0085) 2014; 54 Hamdia, Msekh, Silani, Vu-Bac, Zhuang, Nguyen-Thoi (b0105) 2015; 133 Silani, Ziaei-Rad, Talebi, Rabczuk (b0215) 2014; 74 Rabczuk, Bordas, Zi (b0255) 2010; 88 Kuhn, Schlüter, Müller (b0300) 2015; 108 Ji, Jing, Jiang, Jiang (b0070) 2002; 42 Albdiry, Yousif, Ku, Lau (b0190) 2013; 47 Schadler (b0015) 2007; 6 Mortazavi, Bardon, Ahzi (b0120) 2013; 69 Gloaguen, Lefebvre (b0055) 2001; 42 Akay (b0180) 1990; 30 Hbaieb, Wang, Chia, Cotterell (b0005) 2007; 48 Areias, Msekh, Rabczuk (b0230) 2016; 158 Adamson AW, Gast AP, et al. Physical chemistry of surfaces; 1967. Fertig, Garnich (b0130) 2004; 64 Almasi, Silani, Talebi, Rabczuk (b0115) 2015; 133 Hamdia, Zhuang, He, Rabczuk (b0110) 2016; 126 Drzal (b0030) 1986 Biqiong, Julian R.G. (b0205) 2006; 54 Gross, Seelig (b0280) 2011 Zare (b0185) 2015; 115 Vu-Bac, Rafiee, Lahmer, Zhuang, Rabczuk (b0095) 2014; 68 Adam, Delaere, Kaszacs, Grard, Assaker, Doghri (b0160) 2009; 2 Pukanszky (b0075) 1990; 21 Zhang, Vignes, Sloan, Sheng (b0305) 2017; 59 Silani, Talebi, Hamouda, Rabczuk (b9025) 2016; 15 De Borst, Gutiérrez, Wells, Remmers, Askes (b0145) 2004; 60 Miehe, Welschinger, Hofacker (b0220) 2010; 83 Wang, Chen, Wu, Toh, He, Yee (b0210) 2005; 38 Areias, Rabczuk, Msekh (b0235) 2016; 312 Liu, Brinson (b0175) 2008; 68 Peng, Zhou, Wang, Mishnaevsky (b0150) 2012; 60 Herrera-Franco, Drzal (b0035) 1992; 23 Dominkovics Z. Polymer/layered silicate nanocomposites: structure formation, interactions and deformation mechanisms. PhD thesis; Budapest University of Technology and Economics; 2011. Chia (b0140) 2009 Gao (10.1016/j.engfracmech.2017.08.002_b0010) 2012 Talebi (10.1016/j.engfracmech.2017.08.002_b9040) 2014; 53 Herrera-Franco (10.1016/j.engfracmech.2017.08.002_b0035) 1992; 23 Amiri (10.1016/j.engfracmech.2017.08.002_b9010) 2014; 53 Hamdia (10.1016/j.engfracmech.2017.08.002_b0100) 2015; 102 Fertig (10.1016/j.engfracmech.2017.08.002_b0130) 2004; 64 Gloaguen (10.1016/j.engfracmech.2017.08.002_b0055) 2001; 42 Chen (10.1016/j.engfracmech.2017.08.002_b0260) 2012 Schadler (10.1016/j.engfracmech.2017.08.002_b0015) 2007; 6 Msekh (10.1016/j.engfracmech.2017.08.002_b0290) 2016; 93 Kuhn (10.1016/j.engfracmech.2017.08.002_b0300) 2015; 108 Silani (10.1016/j.engfracmech.2017.08.002_b9025) 2016; 15 Francfort (10.1016/j.engfracmech.2017.08.002_b0250) 1998; 46 Mortazavi (10.1016/j.engfracmech.2017.08.002_b0120) 2013; 69 Vu-Bac (10.1016/j.engfracmech.2017.08.002_b0090) 2015; 96 Miehe (10.1016/j.engfracmech.2017.08.002_b0225) 2010; 199 Odegard (10.1016/j.engfracmech.2017.08.002_b0155) 2005; 46 Galeski (10.1016/j.engfracmech.2017.08.002_b0050) 2003; 28 Chia (10.1016/j.engfracmech.2017.08.002_b0135) 2007; 334 Arash (10.1016/j.engfracmech.2017.08.002_b0285) 2016; 96 Chia (10.1016/j.engfracmech.2017.08.002_b0140) 2009 Pukanszky (10.1016/j.engfracmech.2017.08.002_b0075) 1990; 21 Qiao (10.1016/j.engfracmech.2017.08.002_b0165) 2009; 69 Talebi (10.1016/j.engfracmech.2017.08.002_b9030) 2015; 80 Dominkovics (10.1016/j.engfracmech.2017.08.002_b0060) 2011; 47 Budarapu (10.1016/j.engfracmech.2017.08.002_b9015) 2014; 53 Kendall (10.1016/j.engfracmech.2017.08.002_b0195) 1978; 10 Budarapu (10.1016/j.engfracmech.2017.08.002_b9020) 2014; 69 Asif (10.1016/j.engfracmech.2017.08.002_b0310) 2013; 45 Pukánszky (10.1016/j.engfracmech.2017.08.002_b0065) 2005; 41 Vu-Bac (10.1016/j.engfracmech.2017.08.002_b0095) 2014; 68 Drzal (10.1016/j.engfracmech.2017.08.002_b0030) 1986 Zare (10.1016/j.engfracmech.2017.08.002_b0185) 2015; 115 Albdiry (10.1016/j.engfracmech.2017.08.002_b0190) 2013; 47 Silani (10.1016/j.engfracmech.2017.08.002_b0215) 2014; 74 Silani (10.1016/j.engfracmech.2017.08.002_b9035) 2014; 74 Peng (10.1016/j.engfracmech.2017.08.002_b0150) 2012; 60 Miehe (10.1016/j.engfracmech.2017.08.002_b0220) 2010; 83 Hamdia (10.1016/j.engfracmech.2017.08.002_b0105) 2015; 133 Zare (10.1016/j.engfracmech.2017.08.002_b0080) 2015; 105 Anderson (10.1016/j.engfracmech.2017.08.002_b0275) 1995 Gross (10.1016/j.engfracmech.2017.08.002_b0280) 2011 Msekh (10.1016/j.engfracmech.2017.08.002_b0265) 2015; 96 Zhang (10.1016/j.engfracmech.2017.08.002_b0305) 2017; 59 Mortazavi (10.1016/j.engfracmech.2017.08.002_b0045) 2013; 60 Mortazavi (10.1016/j.engfracmech.2017.08.002_b0040) 2013; 552 Areias (10.1016/j.engfracmech.2017.08.002_b0230) 2016; 158 Borden (10.1016/j.engfracmech.2017.08.002_b0295) 2012; 217 Areias (10.1016/j.engfracmech.2017.08.002_b0235) 2016; 312 10.1016/j.engfracmech.2017.08.002_b0020 Biqiong (10.1016/j.engfracmech.2017.08.002_b0205) 2006; 54 Rabczuk (10.1016/j.engfracmech.2017.08.002_b0255) 2010; 88 10.1016/j.engfracmech.2017.08.002_b0025 Ambati (10.1016/j.engfracmech.2017.08.002_b0240) 2015; 55 Sicsic (10.1016/j.engfracmech.2017.08.002_b0270) 2013; 113 Akay (10.1016/j.engfracmech.2017.08.002_b0180) 1990; 30 Silani (10.1016/j.engfracmech.2017.08.002_b0200) 2014; 118 Liu (10.1016/j.engfracmech.2017.08.002_b0245) 2016; 121 Almasi (10.1016/j.engfracmech.2017.08.002_b0115) 2015; 133 Zare (10.1016/j.engfracmech.2017.08.002_b0085) 2014; 54 Areias (10.1016/j.engfracmech.2017.08.002_b9005) 2017; 132 Adam (10.1016/j.engfracmech.2017.08.002_b0160) 2009; 2 Ji (10.1016/j.engfracmech.2017.08.002_b0070) 2002; 42 De Borst (10.1016/j.engfracmech.2017.08.002_b0145) 2004; 60 Wang (10.1016/j.engfracmech.2017.08.002_b0210) 2005; 38 Hbaieb (10.1016/j.engfracmech.2017.08.002_b0005) 2007; 48 Saber-Samandari (10.1016/j.engfracmech.2017.08.002_b0125) 2006; 312 Liu (10.1016/j.engfracmech.2017.08.002_b0175) 2008; 68 Hamdia (10.1016/j.engfracmech.2017.08.002_b0110) 2016; 126 Mesbah (10.1016/j.engfracmech.2017.08.002_b0170) 2009; 114 |
References_xml | – year: 2011 ident: b0280 article-title: Fracture mechanics: with an introduction to micromechanics – volume: 47 start-page: 1093 year: 2013 end-page: 1115 ident: b0190 article-title: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites publication-title: J Compos Mater – volume: 2 start-page: 515 year: 2009 end-page: 518 ident: b0160 article-title: Multi-scale modeling of polymer nanocomposites publication-title: Nanotech Conf Expo – volume: 68 start-page: 1502 year: 2008 end-page: 1512 ident: b0175 article-title: Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites publication-title: Compos Sci Technol – volume: 38 start-page: 788 year: 2005 end-page: 800 ident: b0210 article-title: Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms publication-title: Macromolecules – volume: 113 start-page: 55 year: 2013 end-page: 74 ident: b0270 article-title: From gradient damage laws to Griffith’s theory of crack propagation publication-title: J Elast – volume: 54 start-page: 67 year: 2014 end-page: 71 ident: b0085 article-title: Determination of polymer-nanoparticles interfacial adhesion and its role in shape memory behavior of shape memory polymer nanocomposites publication-title: Int J Adhes Adhes – volume: 108 start-page: 374 year: 2015 end-page: 384 ident: b0300 article-title: On degradation functions in phase field fracture models publication-title: Comput Mater Sci – volume: 96 start-page: 472 year: 2015 end-page: 484 ident: b0265 article-title: Abaqus implementation of phase-field model for brittle fracture publication-title: Comput Mater Sci – year: 2012 ident: b0010 article-title: Advances in polymer nanocomposites: types and applications – volume: 23 start-page: 2 year: 1992 end-page: 27 ident: b0035 article-title: Comparison of methods for the measurement of fibre/matrix adhesion in composites publication-title: Composites – volume: 80 start-page: 82 year: 2015 end-page: 92 ident: b9030 article-title: Concurrent multiscale modelling of three dimensional crack and dislocation propagation publication-title: Adv Eng Softw – start-page: 241 year: 2009 end-page: 248 ident: b0140 article-title: Finite element modelling clay nanocomposites and interface effects on mechanical properties publication-title: IUTAM symposium on modelling nanomaterials and nanosystems – volume: 48 start-page: 901 year: 2007 end-page: 909 ident: b0005 article-title: Modelling stiffness of polymer/clay nanocomposites publication-title: Polymer – volume: 217 start-page: 77 year: 2012 end-page: 95 ident: b0295 article-title: A phase-field description of dynamic brittle fracture publication-title: Comput Meth Appl Mech Eng – volume: 60 start-page: 356 year: 2013 end-page: 365 ident: b0045 article-title: Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites publication-title: Carbon – volume: 96 start-page: 520 year: 2015 end-page: 535 ident: b0090 article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites publication-title: Comput Mater Sci – volume: 114 start-page: 3274 year: 2009 end-page: 3291 ident: b0170 article-title: Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework publication-title: J Appl Polym Sci – volume: 41 start-page: 645 year: 2005 end-page: 662 ident: b0065 article-title: Interfaces and interphases in multicomponent materials: past, present, future publication-title: Euro Polym J – volume: 118 start-page: 241 year: 2014 end-page: 249 ident: b0200 article-title: Stochastic modelling of clay/epoxy nanocomposites publication-title: Compos Struct – volume: 59 start-page: 737 year: 2017 end-page: 752 ident: b0305 article-title: Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale publication-title: Comput Mech – volume: 88 start-page: 1391 year: 2010 end-page: 1411 ident: b0255 article-title: On three-dimensional modelling of crack growth using partition of unity methods publication-title: Comput Struct – volume: 15 start-page: 18 year: 2016 end-page: 23 ident: b9025 article-title: Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach publication-title: J Comput Sci – volume: 47 start-page: 1765 year: 2011 end-page: 1774 ident: b0060 article-title: Estimation of interphase thickness and properties in pp/layered silicate nanocomposites publication-title: Euro Polym J – volume: 10 start-page: 35 year: 1978 end-page: 38 ident: b0195 article-title: Fracture of particulate filled polymers publication-title: Brit Polym J – volume: 133 start-page: 1177 year: 2015 end-page: 1190 ident: b0105 article-title: Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling publication-title: Compos Struct – volume: 74 start-page: 30 year: 2014 end-page: 38 ident: b9035 article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites publication-title: Theor Appl Fract Mec – volume: 46 start-page: 1319 year: 1998 end-page: 1342 ident: b0250 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J Mech Phys Solids – volume: 552 start-page: 106 year: 2013 end-page: 113 ident: b0040 article-title: Experimental and multiscale modeling of thermal conductivity and elastic properties of pla/expanded graphite polymer nanocomposites publication-title: Thermochim Acta – volume: 69 start-page: 491 year: 2009 end-page: 499 ident: b0165 article-title: Simulation of interphase percolation and gradients in polymer nanocomposites publication-title: Compos Sci Technol – volume: 30 start-page: 1361 year: 1990 end-page: 1372 ident: b0180 article-title: Flow induced polymer-filler interactions: bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing publication-title: Polym Eng Sci – volume: 132 start-page: 27 year: 2017 end-page: 41 ident: b9005 article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture publication-title: Finite Elem Anal Des – volume: 74 start-page: 30 year: 2014 end-page: 38 ident: b0215 article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites publication-title: Theor Appl Fract Mech – volume: 53 start-page: 45 year: 2014 end-page: 57 ident: b9010 article-title: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods publication-title: Comput Mech – volume: 42 start-page: 5841 year: 2001 end-page: 5847 ident: b0055 article-title: Plastic deformation behaviour of thermoplastic/clay nanocomposites publication-title: Polymer – reference: Adamson AW, Gast AP, et al. Physical chemistry of surfaces; 1967. – volume: 21 start-page: 255 year: 1990 end-page: 262 ident: b0075 article-title: Influence of interface interaction on the ultimate tensile properties of polymer composites publication-title: Composites – volume: 334 start-page: 785 year: 2007 end-page: 788 ident: b0135 article-title: Finite element modelling epoxy/clay nanocomposites publication-title: Key Eng Mater – volume: 105 start-page: 66 year: 2015 end-page: 70 ident: b0080 article-title: Thickness, modulus and strength of interphase in clay/polymer nanocomposites publication-title: Appl Clay Sci – volume: 45 start-page: 308 year: 2013 end-page: 320 ident: b0310 article-title: Epoxy clay nanocomposites: processing, properties and applications: a review publication-title: Compos Part B – volume: 53 start-page: 1129 year: 2014 end-page: 1148 ident: b9015 article-title: An adaptive multiscale method for quasi-static crack growth publication-title: Comput Mech – volume: 69 start-page: 126 year: 2014 end-page: 143 ident: b9020 article-title: Efficient coarse graining in multiscale modeling of fracture publication-title: Theor Appl Fract Mec – volume: 133 start-page: 1302 year: 2015 end-page: 1312 ident: b0115 article-title: Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites publication-title: Compos Struct – volume: 158 start-page: 116 year: 2016 end-page: 143 ident: b0230 article-title: Damage and fracture algorithm using the screened poisson equation and local remeshing publication-title: Eng Fract Mech – volume: 115 start-page: 61 year: 2015 end-page: 66 ident: b0185 article-title: Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data publication-title: Appl Clay Sci – volume: 96 start-page: 1084 year: 2016 end-page: 1092 ident: b0285 article-title: Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites publication-title: Carbon – volume: 28 start-page: 1643 year: 2003 end-page: 1699 ident: b0050 article-title: Strength and toughness of crystalline polymer systems publication-title: Prog Polym Sci – volume: 6 start-page: 257 year: 2007 end-page: 258 ident: b0015 article-title: Nanocomposites: model interfaces publication-title: Nat Mater – volume: 53 start-page: 1047 year: 2014 end-page: 1071 ident: b9040 article-title: A computational library for multiscale modelling of material failure publication-title: Comput Mech – volume: 42 start-page: 983 year: 2002 end-page: 993 ident: b0070 article-title: Tensile modulus of polymer nanocomposites publication-title: Polym Eng Sci – year: 1995 ident: b0275 article-title: Fracture mechanics fundamentals and application – volume: 60 start-page: 19 year: 2012 end-page: 31 ident: b0150 article-title: Modeling of nano-reinforced polymer composites: microstructure effect on young’s modulus publication-title: Comput Mater Sci – volume: 312 start-page: 322 year: 2016 end-page: 350 ident: b0235 article-title: Phase-field analysis of finite-strain plates and shells including element subdivision publication-title: Comput Meth Appl Mech Eng – start-page: 250 year: 2012 end-page: 265 ident: b0260 article-title: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth publication-title: Comput Meth Appl Mech Eng – volume: 55 start-page: 383 year: 2015 end-page: 405 ident: b0240 article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation publication-title: Comput Mech – volume: 54 start-page: 1581 year: 2006 end-page: 1585 ident: b0205 article-title: Elastic moduli of clay platelets publication-title: Scripta Mater – year: 1986 ident: b0030 article-title: The interphase in epoxy composites publication-title: Epoxy resins and composites II – volume: 83 start-page: 1273 year: 2010 end-page: 1311 ident: b0220 article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations publication-title: Int J Numer Meth Eng – volume: 68 start-page: 446 year: 2014 end-page: 464 ident: b0095 article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters publication-title: Compos Part B-Eng – volume: 46 start-page: 553 year: 2005 end-page: 562 ident: b0155 article-title: Modeling of the mechanical properties of nanoparticle/polymer composites publication-title: Polymer – volume: 102 start-page: 304 year: 2015 end-page: 313 ident: b0100 article-title: Predicting the fracture toughness of PNCS: a stochastic approach based on ann and anfis publication-title: Comput Mater Sci – reference: Dominkovics Z. Polymer/layered silicate nanocomposites: structure formation, interactions and deformation mechanisms. PhD thesis; Budapest University of Technology and Economics; 2011. – volume: 69 start-page: 100 year: 2013 end-page: 106 ident: b0120 article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study publication-title: Comput Mater Sci – volume: 199 start-page: 2765 year: 2010 end-page: -2778 ident: b0225 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput Meth Appl Mech Eng – volume: 121 start-page: 35 year: 2016 end-page: 47 ident: b0245 article-title: Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model publication-title: Comput Mater Sci – volume: 64 start-page: 2577 year: 2004 end-page: 2588 ident: b0130 article-title: Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite publication-title: Compos Sci Technol – volume: 60 start-page: 289 year: 2004 end-page: 315 ident: b0145 article-title: Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis publication-title: Int J Numer Meth Eng – volume: 126 start-page: 122 year: 2016 end-page: 129 ident: b0110 article-title: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method publication-title: Compos Sci Technol – volume: 312 start-page: 199 year: 2006 end-page: 204 ident: b0125 article-title: The effect of interphase on the elastic modulus of polymer based nanocomposites publication-title: Key Eng Mater – volume: 93 start-page: 97 year: 2016 end-page: 114 ident: b0290 article-title: Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model publication-title: Compos Part B: Eng – volume: 45 start-page: 308 year: 2013 ident: 10.1016/j.engfracmech.2017.08.002_b0310 article-title: Epoxy clay nanocomposites: processing, properties and applications: a review publication-title: Compos Part B doi: 10.1016/j.compositesb.2012.04.012 – volume: 552 start-page: 106 year: 2013 ident: 10.1016/j.engfracmech.2017.08.002_b0040 article-title: Experimental and multiscale modeling of thermal conductivity and elastic properties of pla/expanded graphite polymer nanocomposites publication-title: Thermochim Acta doi: 10.1016/j.tca.2012.11.017 – volume: 217 start-page: 77 year: 2012 ident: 10.1016/j.engfracmech.2017.08.002_b0295 article-title: A phase-field description of dynamic brittle fracture publication-title: Comput Meth Appl Mech Eng doi: 10.1016/j.cma.2012.01.008 – volume: 80 start-page: 82 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b9030 article-title: Concurrent multiscale modelling of three dimensional crack and dislocation propagation publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2014.09.016 – volume: 54 start-page: 1581 year: 2006 ident: 10.1016/j.engfracmech.2017.08.002_b0205 article-title: Elastic moduli of clay platelets publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2006.01.018 – volume: 334 start-page: 785 year: 2007 ident: 10.1016/j.engfracmech.2017.08.002_b0135 article-title: Finite element modelling epoxy/clay nanocomposites publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.334-335.785 – volume: 126 start-page: 122 year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b0110 article-title: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2016.02.012 – volume: 46 start-page: 553 issue: 2 year: 2005 ident: 10.1016/j.engfracmech.2017.08.002_b0155 article-title: Modeling of the mechanical properties of nanoparticle/polymer composites publication-title: Polymer doi: 10.1016/j.polymer.2004.11.022 – volume: 158 start-page: 116 year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b0230 article-title: Damage and fracture algorithm using the screened poisson equation and local remeshing publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2015.10.042 – volume: 68 start-page: 446 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b0095 article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters publication-title: Compos Part B-Eng doi: 10.1016/j.compositesb.2014.09.008 – volume: 312 start-page: 199 year: 2006 ident: 10.1016/j.engfracmech.2017.08.002_b0125 article-title: The effect of interphase on the elastic modulus of polymer based nanocomposites publication-title: Key Eng Mater doi: 10.4028/www.scientific.net/KEM.312.199 – volume: 96 start-page: 1084 year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b0285 article-title: Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites publication-title: Carbon doi: 10.1016/j.carbon.2015.10.058 – volume: 23 start-page: 2 issue: 1 year: 1992 ident: 10.1016/j.engfracmech.2017.08.002_b0035 article-title: Comparison of methods for the measurement of fibre/matrix adhesion in composites publication-title: Composites doi: 10.1016/0010-4361(92)90282-Y – volume: 42 start-page: 983 issue: 5 year: 2002 ident: 10.1016/j.engfracmech.2017.08.002_b0070 article-title: Tensile modulus of polymer nanocomposites publication-title: Polym Eng Sci doi: 10.1002/pen.11007 – volume: 10 start-page: 35 issue: 1 year: 1978 ident: 10.1016/j.engfracmech.2017.08.002_b0195 article-title: Fracture of particulate filled polymers publication-title: Brit Polym J doi: 10.1002/pi.4980100107 – volume: 47 start-page: 1093 issue: 9 year: 2013 ident: 10.1016/j.engfracmech.2017.08.002_b0190 article-title: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites publication-title: J Compos Mater doi: 10.1177/0021998312445592 – volume: 105 start-page: 66 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0080 article-title: Thickness, modulus and strength of interphase in clay/polymer nanocomposites publication-title: Appl Clay Sci doi: 10.1016/j.clay.2014.12.016 – volume: 60 start-page: 289 issue: 1 year: 2004 ident: 10.1016/j.engfracmech.2017.08.002_b0145 article-title: Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis publication-title: Int J Numer Meth Eng doi: 10.1002/nme.963 – volume: 108 start-page: 374 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0300 article-title: On degradation functions in phase field fracture models publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2015.05.034 – volume: 53 start-page: 1047 issue: 5 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b9040 article-title: A computational library for multiscale modelling of material failure publication-title: Comput Mech doi: 10.1007/s00466-013-0948-2 – year: 2012 ident: 10.1016/j.engfracmech.2017.08.002_b0010 – volume: 60 start-page: 356 year: 2013 ident: 10.1016/j.engfracmech.2017.08.002_b0045 article-title: Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites publication-title: Carbon doi: 10.1016/j.carbon.2013.04.048 – volume: 96 start-page: 472 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0265 article-title: Abaqus implementation of phase-field model for brittle fracture publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.05.071 – volume: 312 start-page: 322 issue: C year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b0235 article-title: Phase-field analysis of finite-strain plates and shells including element subdivision publication-title: Comput Meth Appl Mech Eng doi: 10.1016/j.cma.2016.01.020 – volume: 59 start-page: 737 issue: 5 year: 2017 ident: 10.1016/j.engfracmech.2017.08.002_b0305 article-title: Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale publication-title: Comput Mech doi: 10.1007/s00466-017-1373-8 – volume: 47 start-page: 1765 issue: 9 year: 2011 ident: 10.1016/j.engfracmech.2017.08.002_b0060 article-title: Estimation of interphase thickness and properties in pp/layered silicate nanocomposites publication-title: Euro Polym J doi: 10.1016/j.eurpolymj.2011.06.010 – volume: 38 start-page: 788 issue: 3 year: 2005 ident: 10.1016/j.engfracmech.2017.08.002_b0210 article-title: Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms publication-title: Macromolecules doi: 10.1021/ma048465n – volume: 2 start-page: 515 year: 2009 ident: 10.1016/j.engfracmech.2017.08.002_b0160 article-title: Multi-scale modeling of polymer nanocomposites publication-title: Nanotech Conf Expo – year: 2011 ident: 10.1016/j.engfracmech.2017.08.002_b0280 – volume: 54 start-page: 67 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b0085 article-title: Determination of polymer-nanoparticles interfacial adhesion and its role in shape memory behavior of shape memory polymer nanocomposites publication-title: Int J Adhes Adhes doi: 10.1016/j.ijadhadh.2014.05.004 – volume: 68 start-page: 1502 issue: 6 year: 2008 ident: 10.1016/j.engfracmech.2017.08.002_b0175 article-title: Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2007.10.033 – volume: 83 start-page: 1273 issue: 10 year: 2010 ident: 10.1016/j.engfracmech.2017.08.002_b0220 article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations publication-title: Int J Numer Meth Eng doi: 10.1002/nme.2861 – volume: 55 start-page: 383 issue: 2 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0240 article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation publication-title: Comput Mech doi: 10.1007/s00466-014-1109-y – volume: 53 start-page: 1129 issue: 6 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b9015 article-title: An adaptive multiscale method for quasi-static crack growth publication-title: Comput Mech doi: 10.1007/s00466-013-0952-6 – ident: 10.1016/j.engfracmech.2017.08.002_b0020 – volume: 133 start-page: 1177 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0105 article-title: Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.08.051 – volume: 60 start-page: 19 year: 2012 ident: 10.1016/j.engfracmech.2017.08.002_b0150 article-title: Modeling of nano-reinforced polymer composites: microstructure effect on young’s modulus publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.03.010 – volume: 199 start-page: 2765 year: 2010 ident: 10.1016/j.engfracmech.2017.08.002_b0225 article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits publication-title: Comput Meth Appl Mech Eng doi: 10.1016/j.cma.2010.04.011 – volume: 46 start-page: 1319 issue: 8 year: 1998 ident: 10.1016/j.engfracmech.2017.08.002_b0250 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(98)00034-9 – year: 1986 ident: 10.1016/j.engfracmech.2017.08.002_b0030 article-title: The interphase in epoxy composites – volume: 74 start-page: 30 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b0215 article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2014.06.009 – volume: 21 start-page: 255 issue: 3 year: 1990 ident: 10.1016/j.engfracmech.2017.08.002_b0075 article-title: Influence of interface interaction on the ultimate tensile properties of polymer composites publication-title: Composites doi: 10.1016/0010-4361(90)90240-W – volume: 41 start-page: 645 issue: 4 year: 2005 ident: 10.1016/j.engfracmech.2017.08.002_b0065 article-title: Interfaces and interphases in multicomponent materials: past, present, future publication-title: Euro Polym J doi: 10.1016/j.eurpolymj.2004.10.035 – volume: 42 start-page: 5841 issue: 13 year: 2001 ident: 10.1016/j.engfracmech.2017.08.002_b0055 article-title: Plastic deformation behaviour of thermoplastic/clay nanocomposites publication-title: Polymer doi: 10.1016/S0032-3861(00)00901-0 – volume: 74 start-page: 30 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b9035 article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites publication-title: Theor Appl Fract Mec doi: 10.1016/j.tafmec.2014.06.009 – volume: 113 start-page: 55 issue: 1 year: 2013 ident: 10.1016/j.engfracmech.2017.08.002_b0270 article-title: From gradient damage laws to Griffith’s theory of crack propagation publication-title: J Elast doi: 10.1007/s10659-012-9410-5 – volume: 30 start-page: 1361 issue: 21 year: 1990 ident: 10.1016/j.engfracmech.2017.08.002_b0180 article-title: Flow induced polymer-filler interactions: bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing publication-title: Polym Eng Sci doi: 10.1002/pen.760302106 – volume: 96 start-page: 520 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0090 article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.04.066 – volume: 121 start-page: 35 year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b0245 article-title: Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2016.04.009 – volume: 69 start-page: 126 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b9020 article-title: Efficient coarse graining in multiscale modeling of fracture publication-title: Theor Appl Fract Mec doi: 10.1016/j.tafmec.2013.12.004 – volume: 102 start-page: 304 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0100 article-title: Predicting the fracture toughness of PNCS: a stochastic approach based on ann and anfis publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2015.02.045 – volume: 69 start-page: 491 issue: 3 year: 2009 ident: 10.1016/j.engfracmech.2017.08.002_b0165 article-title: Simulation of interphase percolation and gradients in polymer nanocomposites publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2008.11.022 – ident: 10.1016/j.engfracmech.2017.08.002_b0025 – volume: 15 start-page: 18 year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b9025 article-title: Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach publication-title: J Comput Sci doi: 10.1016/j.jocs.2015.11.007 – volume: 48 start-page: 901 issue: 3 year: 2007 ident: 10.1016/j.engfracmech.2017.08.002_b0005 article-title: Modelling stiffness of polymer/clay nanocomposites publication-title: Polymer doi: 10.1016/j.polymer.2006.11.062 – volume: 118 start-page: 241 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b0200 article-title: Stochastic modelling of clay/epoxy nanocomposites publication-title: Compos Struct doi: 10.1016/j.compstruct.2014.07.009 – volume: 69 start-page: 100 year: 2013 ident: 10.1016/j.engfracmech.2017.08.002_b0120 article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2012.11.035 – volume: 132 start-page: 27 year: 2017 ident: 10.1016/j.engfracmech.2017.08.002_b9005 article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2017.05.001 – volume: 88 start-page: 1391 year: 2010 ident: 10.1016/j.engfracmech.2017.08.002_b0255 article-title: On three-dimensional modelling of crack growth using partition of unity methods publication-title: Comput Struct doi: 10.1016/j.compstruc.2008.08.010 – volume: 6 start-page: 257 issue: 4 year: 2007 ident: 10.1016/j.engfracmech.2017.08.002_b0015 article-title: Nanocomposites: model interfaces publication-title: Nat Mater doi: 10.1038/nmat1873 – volume: 115 start-page: 61 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0185 article-title: Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data publication-title: Appl Clay Sci doi: 10.1016/j.clay.2015.07.021 – volume: 53 start-page: 45 issue: 1 year: 2014 ident: 10.1016/j.engfracmech.2017.08.002_b9010 article-title: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods publication-title: Comput Mech doi: 10.1007/s00466-013-0891-2 – volume: 133 start-page: 1302 year: 2015 ident: 10.1016/j.engfracmech.2017.08.002_b0115 article-title: Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites publication-title: Compos Struct doi: 10.1016/j.compstruct.2015.07.061 – volume: 114 start-page: 3274 issue: 5 year: 2009 ident: 10.1016/j.engfracmech.2017.08.002_b0170 article-title: Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework publication-title: J Appl Polym Sci doi: 10.1002/app.30547 – year: 1995 ident: 10.1016/j.engfracmech.2017.08.002_b0275 – volume: 64 start-page: 2577 issue: 16 year: 2004 ident: 10.1016/j.engfracmech.2017.08.002_b0130 article-title: Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2004.06.002 – start-page: 241 year: 2009 ident: 10.1016/j.engfracmech.2017.08.002_b0140 article-title: Finite element modelling clay nanocomposites and interface effects on mechanical properties – volume: 28 start-page: 1643 issue: 12 year: 2003 ident: 10.1016/j.engfracmech.2017.08.002_b0050 article-title: Strength and toughness of crystalline polymer systems publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2003.09.003 – volume: 93 start-page: 97 year: 2016 ident: 10.1016/j.engfracmech.2017.08.002_b0290 article-title: Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model publication-title: Compos Part B: Eng doi: 10.1016/j.compositesb.2016.02.022 – start-page: 250 year: 2012 ident: 10.1016/j.engfracmech.2017.08.002_b0260 article-title: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth publication-title: Comput Meth Appl Mech Eng doi: 10.1016/j.cma.2011.08.013 |
SSID | ssj0007680 |
Score | 2.6247046 |
Snippet | •A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A... We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 287 |
SubjectTerms | Brittle fracture Brittleness Clay Dissipation Epoxy coatings Finite element method Fracture mechanics Fracture toughness Interphase zone Mathematical models Mechanical properties Modulus of elasticity Nanocomposites Phase field model Platelets (materials) Polymer layered silicate Polymer matrix composites Polymer nanocomposite Strain energy release rate Tensile strength |
Title | Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model |
URI | https://dx.doi.org/10.1016/j.engfracmech.2017.08.002 https://www.proquest.com/docview/2065061894 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7WFUQP4hPXFxG81m2TtGbBi4jLqrgnBW8laRJdH3VZd0E9-Nud6cMXCIKntmmnLZPMzNf0ywzArg5p0cG-D6z2OpBKigDDcBRo6x23IgxtUTrhvJ_0LuXpVXzVgKN6LQzRKivfX_r0wltXLe1Km-3hYEBrfCOBo0lGOEgVop4pmOaik8RNmD48Oev1PxwyIuqwLmRAAjOw80nzcvm1H-nswRW_JqL9vZJc-VuY-uGwiyjUXYD5Cj6yw_INF6Hh8iWY-5JUcBnuurTwaTJybEgT7SPKmIq79EOGOoE9epbd65c2Iu_nF5br_JFo5cTdwutoWpYNCiLiDcY39kqp_BmR46-ZZmVbQXpjRQmdFbjsHl8c9YKqpEKQobGO0SZ8KDyhjih0ystEyCzihifCu9jHYdLhxgqDW53ht6FJJFq09Khg6xD7eLEKzRyfvAZMcGsIrBnltZSaG5UZHntlbMZtx8UtULUG06zKN05lL-7Tmlh2m35RfkrKT6kkZshbwD9Eh2XSjb8IHdTdlH4bQSkGh7-Ib9Zdm1Zm_ITnEcAmkerI9f_dfQNm8UiVdO9NaI5HE7eFaGZstmFq7y3arsbsOx359y0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB68wFEfxHMR7ycHfK3bJmk3C76IuKwe9UnBt5A0ia6udVlXUB_87c704g0EwaeWXNoyycx8Tb7MAGyamA4dtEPkTDCRVFJE6IaTyLjguRNx7MrUCUfHWe9UHpylZxOw25yFIVplbfsrm15a67qkVUuzNez36YxvInA2yQQnqULUMwnTMhVt4vVtPb3yPBBPx00aA2r-A_69krx8cR5GJr_25cZE0t6qqJWfOakP5rr0Qd0FmK_BI9upvu8nTPjiF8y9CSn4G666dOzpbuTZkJbZRxQvFW9pO4aGgN0Elg_MQwtx9_0DK0xxQ6RyYm5hO1qUZf2ShniB3o09UiB_RtT4c2ZYVVZS3liZQOcPnHb3TnZ7UZ1QIcpRVceoESEWgTBHEnsVZCZknnDLMxF8GtI463DrhMWryfHP0GYS9VkGFK_ziHyCWISpAt-8BExwZwmqWRWMlIZblVueBmVdzl3Hp8ugGgnqvI42TkkvBrqhlV3qN8LXJHxNCTFjvgz8peuwCrnxlU7bzTDpd_NHo2v4Sve1Zmh1rcS3WI_wNUtUR6587-l_YaZ3cnSoD_eP_6_CLNaoivi9BlPj0Z1fR1wzthvlvH0GOzj3-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fracture+properties+prediction+of+clay%2Fepoxy+nanocomposites+with+interphase+zones+using+a+phase+field+model&rft.jtitle=Engineering+fracture+mechanics&rft.au=Msekh%2C+Mohammed+A&rft.au=Cuong%2C+NH&rft.au=Zi%2C+G&rft.au=Areias%2C+P&rft.date=2018-02-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=188&rft.spage=287&rft_id=info:doi/10.1016%2Fj.engfracmech.2017.08.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon |