Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model

•A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A phase field model for matrix and interphase fracture in polymer-matrix composites.•Extraction of fracture related material properties for vari...

Full description

Saved in:
Bibliographic Details
Published inEngineering fracture mechanics Vol. 188; pp. 287 - 299
Main Authors Msekh, Mohammed A., Cuong, N.H., Zi, G., Areias, P., Zhuang, X., Rabczuk, Timon
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.02.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0013-7944
1873-7315
DOI10.1016/j.engfracmech.2017.08.002

Cover

Abstract •A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A phase field model for matrix and interphase fracture in polymer-matrix composites.•Extraction of fracture related material properties for various input parameters, particularly for the interphase zone. We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase behavior between the polymeric matrix and clay reinforcement. A phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material. The effect of the interphase zones, e.g. thickness and mechanical properties (Young’s modulus and strain energy release rate) on the tensile strength, and fracture parameters of the composite is studied in detail. The dissipation energy due to fracture in the PNCs is extracted for different thicknesses and properties of the interphase zones. We show through numerical experiments that the interphase thickness has the most influence on the tensile strength while the critical strain energy release rate of the interphase zones affects the dissipation energy depending on the interphase zone thickness.
AbstractList •A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A phase field model for matrix and interphase fracture in polymer-matrix composites.•Extraction of fracture related material properties for various input parameters, particularly for the interphase zone. We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase behavior between the polymeric matrix and clay reinforcement. A phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material. The effect of the interphase zones, e.g. thickness and mechanical properties (Young’s modulus and strain energy release rate) on the tensile strength, and fracture parameters of the composite is studied in detail. The dissipation energy due to fracture in the PNCs is extracted for different thicknesses and properties of the interphase zones. We show through numerical experiments that the interphase thickness has the most influence on the tensile strength while the critical strain energy release rate of the interphase zones affects the dissipation energy depending on the interphase zone thickness.
We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase behavior between the polymeric matrix and clay reinforcement. A phase field approach is employed to model fracture in the matrix and the interphase zone of the polymeric nanocomposites (PNCs) while the stiff clay platelets are considered as linear elastic material. The effect of the interphase zones, e.g. thickness and mechanical properties (Young’s modulus and strain energy release rate) on the tensile strength, and fracture parameters of the composite is studied in detail. The dissipation energy due to fracture in the PNCs is extracted for different thicknesses and properties of the interphase zones. We show through numerical experiments that the interphase thickness has the most influence on the tensile strength while the critical strain energy release rate of the interphase zones affects the dissipation energy depending on the interphase zone thickness.
Author Msekh, Mohammed A.
Zi, G.
Areias, P.
Zhuang, X.
Rabczuk, Timon
Cuong, N.H.
Author_xml – sequence: 1
  givenname: Mohammed A.
  surname: Msekh
  fullname: Msekh, Mohammed A.
  organization: Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus-University Weimar, Germany
– sequence: 2
  givenname: N.H.
  surname: Cuong
  fullname: Cuong, N.H.
  organization: Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus-University Weimar, Germany
– sequence: 3
  givenname: G.
  surname: Zi
  fullname: Zi, G.
  organization: School of Civil, Environmental and Architectural Engineering, Korea University, Republic of Korea
– sequence: 4
  givenname: P.
  surname: Areias
  fullname: Areias, P.
  organization: Departamento de Física, Universidade de Évora, Portugal
– sequence: 5
  givenname: X.
  surname: Zhuang
  fullname: Zhuang, X.
  organization: Institute of Structural Mechanics, Faculty of Civil Engineering, Bauhaus-University Weimar, Germany
– sequence: 6
  givenname: Timon
  surname: Rabczuk
  fullname: Rabczuk, Timon
  email: timon.rabczuk@tdt.edu.vn
  organization: Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
BookMark eNqNkMFuGyEURVHlSLWd_gNR1x4_ZhgGr6LIqptIkbpp1wgzDxt3DFPASdyvL5a7qLrK6j2hew9wZmTig0dC7hhUDJhYHir0Oxu1OaLZVzWwrgJZAdQfyJTJrll0DWsnZArAyr7i_COZpXQAgE5ImJKfm9LNp4h0jGHEmB2msmLvTHbB02CpGfR5iWN4O1OvfTDhOIbkcsm9urynzmeM414npL_L2xI9Jed3VNPrmXU49PQYehxuyY3VQ8JPf-ec_Nh8-b5-XDx_-_q0fnheGA6QFzVYaKxoJWeA0nLRcMPqbS0ai61tQazqbd9sy9Smq9lW8LaT3DYgexSstc2cfL5yy5d-nTBldQin6MuVqgZRAEyueEmtrikTQ0oRrRqjO-p4VgzUxa06qH_cqotbBVIVt6V7_1_XuKwvwnLUbngXYX0lYBHx4jCqZBx6U8RHNFn1wb2D8gf-FaEj
CitedBy_id crossref_primary_10_1007_s00366_021_01529_x
crossref_primary_10_1016_j_ast_2019_105656
crossref_primary_10_1007_s42493_019_00022_4
crossref_primary_10_1016_j_jmps_2022_104839
crossref_primary_10_1016_j_msea_2022_143515
crossref_primary_10_1007_s00366_022_01670_1
crossref_primary_10_1016_j_istruc_2024_106729
crossref_primary_10_1016_j_engfracmech_2022_108481
crossref_primary_10_1115_1_4045236
crossref_primary_10_1016_j_aej_2022_09_019
crossref_primary_10_1080_10255842_2021_2023135
crossref_primary_10_1016_j_cma_2020_113019
crossref_primary_10_1177_07316844241279685
crossref_primary_10_1016_j_commatsci_2019_05_053
crossref_primary_10_1016_j_dental_2022_09_009
crossref_primary_10_1080_15397734_2022_2044850
crossref_primary_10_1016_j_compscitech_2018_10_031
crossref_primary_10_1016_j_compstruct_2024_118396
crossref_primary_10_1016_j_dt_2019_11_005
crossref_primary_10_1016_j_tafmec_2020_102662
crossref_primary_10_1007_s00339_022_05427_x
crossref_primary_10_1515_polyeng_2023_0103
crossref_primary_10_1016_j_engfracmech_2022_108591
crossref_primary_10_1007_s11709_021_0699_7
crossref_primary_10_1016_j_polymertesting_2019_04_021
crossref_primary_10_1016_j_jmbbm_2023_106219
crossref_primary_10_1016_j_conbuildmat_2020_118680
crossref_primary_10_1016_j_dt_2020_03_010
crossref_primary_10_1007_s00366_021_01528_y
crossref_primary_10_1016_j_jmps_2020_103968
crossref_primary_10_1088_1757_899X_1079_4_042098
crossref_primary_10_1016_j_compositesb_2018_06_015
crossref_primary_10_1016_j_istruc_2023_05_032
crossref_primary_10_1007_s11831_021_09650_2
crossref_primary_10_1016_j_compositesb_2019_05_053
crossref_primary_10_1016_j_carbon_2020_02_014
crossref_primary_10_1007_s11709_020_0663_y
crossref_primary_10_1016_j_enganabound_2023_03_043
crossref_primary_10_1016_j_compstruct_2021_115129
crossref_primary_10_1016_j_cma_2021_113874
crossref_primary_10_1016_j_tws_2024_112147
crossref_primary_10_1007_s11709_018_0496_0
crossref_primary_10_1177_0021955X231162187
crossref_primary_10_1016_j_dt_2020_03_004
crossref_primary_10_1080_15376494_2019_1625987
crossref_primary_10_1016_j_dt_2020_03_003
crossref_primary_10_1002_pc_25412
crossref_primary_10_1016_j_apm_2022_12_006
crossref_primary_10_1007_s11012_020_01224_z
crossref_primary_10_1002_pc_27826
crossref_primary_10_1016_j_ast_2022_107384
crossref_primary_10_1016_j_ijmecsci_2019_07_007
crossref_primary_10_1016_j_tws_2020_106945
crossref_primary_10_1016_j_msea_2023_145501
crossref_primary_10_1016_j_compstruct_2019_03_100
crossref_primary_10_1007_s00339_022_05670_2
crossref_primary_10_3390_ma15072562
crossref_primary_10_1111_ffe_13366
crossref_primary_10_1088_1361_651X_ab1f63
crossref_primary_10_1016_j_compositesb_2019_05_069
crossref_primary_10_1016_j_cma_2018_06_015
crossref_primary_10_1016_j_ijmecsci_2020_105633
crossref_primary_10_1016_j_istruc_2024_106057
crossref_primary_10_1016_j_polymertesting_2024_108358
crossref_primary_10_1007_s11051_019_4697_9
crossref_primary_10_1016_j_ijmecsci_2023_108687
crossref_primary_10_1016_j_tafmec_2023_103836
crossref_primary_10_1016_j_mseb_2021_115527
crossref_primary_10_1016_j_jmbbm_2019_04_045
crossref_primary_10_1016_j_tafmec_2022_103415
crossref_primary_10_1016_j_engfracmech_2020_107195
crossref_primary_10_1016_j_engfracmech_2020_107197
crossref_primary_10_34133_2020_7815462
crossref_primary_10_1016_j_porgcoat_2022_107147
crossref_primary_10_3390_polym13152399
crossref_primary_10_1016_j_compstruct_2023_116959
crossref_primary_10_1016_j_euromechsol_2024_105322
crossref_primary_10_1016_j_ijsolstr_2023_112553
crossref_primary_10_1177_0021998319830777
crossref_primary_10_1016_j_camwa_2021_11_010
crossref_primary_10_1016_j_surfin_2020_100454
crossref_primary_10_1007_s10409_023_23468_x
crossref_primary_10_1016_j_compositesb_2022_110432
crossref_primary_10_1016_j_compositesb_2019_107405
crossref_primary_10_1177_07316844241252324
crossref_primary_10_1016_j_jmbbm_2020_104171
crossref_primary_10_1155_2021_6105360
crossref_primary_10_1007_s13726_024_01402_w
crossref_primary_10_1016_j_dt_2020_02_013
crossref_primary_10_1016_j_dt_2020_02_018
crossref_primary_10_1021_acsanm_1c02778
crossref_primary_10_1002_pc_27200
crossref_primary_10_1002_pc_27685
crossref_primary_10_1016_j_compscitech_2021_109242
crossref_primary_10_1016_j_compositesb_2021_108640
crossref_primary_10_1016_j_compscitech_2024_110536
crossref_primary_10_1016_j_polymer_2022_124527
crossref_primary_10_1016_j_compositesa_2025_108882
crossref_primary_10_1007_s00419_024_02618_1
crossref_primary_10_1016_j_undsp_2018_08_001
crossref_primary_10_1007_s00707_022_03224_4
crossref_primary_10_1007_s10999_022_09636_3
crossref_primary_10_1007_s11595_022_2594_z
crossref_primary_10_1007_s11668_021_01273_w
crossref_primary_10_1016_j_dt_2020_02_010
crossref_primary_10_1186_s11671_018_2624_0
crossref_primary_10_1111_ffe_14524
crossref_primary_10_1002_pc_27235
crossref_primary_10_1016_j_compstruct_2019_111551
crossref_primary_10_1007_s00521_020_05035_x
crossref_primary_10_1007_s11709_019_0588_5
crossref_primary_10_1016_j_engfracmech_2022_108667
crossref_primary_10_1088_2053_1591_aaec28
crossref_primary_10_1002_pc_28207
crossref_primary_10_1007_s11709_021_0732_x
crossref_primary_10_1088_1757_899X_1166_1_012023
crossref_primary_10_1177_0021998319868523
crossref_primary_10_1016_j_compositesb_2022_110213
crossref_primary_10_1016_j_compositesb_2019_01_047
crossref_primary_10_1016_j_engfracmech_2019_106599
crossref_primary_10_1080_07370652_2019_1684594
crossref_primary_10_1016_j_cma_2020_113270
crossref_primary_10_1016_j_conbuildmat_2020_119868
crossref_primary_10_1142_S0219876220410078
crossref_primary_10_1016_j_ijsolstr_2019_07_031
crossref_primary_10_1016_j_heliyon_2020_e04575
crossref_primary_10_1016_j_commatsci_2022_111747
crossref_primary_10_1002_app_51332
crossref_primary_10_1038_s41598_024_73871_1
crossref_primary_10_1002_pc_28314
crossref_primary_10_1016_j_mechmat_2022_104444
crossref_primary_10_1108_IJSI_03_2024_0049
crossref_primary_10_1016_j_compstruc_2025_107651
crossref_primary_10_1039_C9CP04091A
crossref_primary_10_1016_j_engfracmech_2021_107705
crossref_primary_10_1016_j_advengsoft_2018_08_010
crossref_primary_10_1016_j_engfracmech_2021_107945
crossref_primary_10_1016_j_carbon_2020_08_067
crossref_primary_10_1016_j_engfracmech_2019_106568
crossref_primary_10_1155_2020_9720167
crossref_primary_10_3390_app8122350
crossref_primary_10_1016_j_compstruct_2018_10_083
crossref_primary_10_1038_s41598_024_71573_2
crossref_primary_10_1016_j_msea_2021_141325
crossref_primary_10_1080_15376494_2021_1963508
crossref_primary_10_1002_pc_25358
crossref_primary_10_1016_j_enganabound_2022_11_014
crossref_primary_10_1177_0731684418804346
crossref_primary_10_1016_j_ijmecsci_2023_108270
crossref_primary_10_1016_j_jmrt_2021_03_104
crossref_primary_10_1016_j_jmps_2024_105881
crossref_primary_10_1016_j_mtcomm_2022_104547
crossref_primary_10_1007_s00339_022_05505_0
crossref_primary_10_1016_j_compstruct_2020_112324
crossref_primary_10_1016_j_compositesa_2019_03_012
crossref_primary_10_1016_j_compstruct_2019_111569
crossref_primary_10_1016_j_cma_2021_113821
crossref_primary_10_1016_j_tafmec_2019_102384
crossref_primary_10_1177_0954406219888958
crossref_primary_10_1016_j_mtcomm_2023_106544
crossref_primary_10_1039_D4NR01834F
crossref_primary_10_1016_j_engfracmech_2021_107962
crossref_primary_10_1016_j_ijimpeng_2020_103500
crossref_primary_10_1016_j_dt_2020_01_003
crossref_primary_10_1016_j_compositesb_2021_109411
crossref_primary_10_1016_j_compscitech_2019_107789
crossref_primary_10_1016_j_engfracmech_2023_109676
crossref_primary_10_1002_pc_27318
crossref_primary_10_1155_2021_6621530
crossref_primary_10_1016_j_cma_2022_114650
crossref_primary_10_1016_j_cma_2022_115861
crossref_primary_10_1016_j_compositesb_2021_109534
crossref_primary_10_1177_07316844221135150
crossref_primary_10_1016_j_engfracmech_2023_109792
crossref_primary_10_1016_j_compstruct_2022_116589
crossref_primary_10_1007_s11709_020_0617_4
crossref_primary_10_1002_admt_202100507
crossref_primary_10_1016_j_engfracmech_2020_106926
crossref_primary_10_1007_s00339_024_07657_7
crossref_primary_10_1002_pc_27554
crossref_primary_10_1002_pc_28520
crossref_primary_10_1016_j_compstruct_2018_06_087
crossref_primary_10_1016_j_matdes_2022_110498
crossref_primary_10_3390_en12020271
crossref_primary_10_1016_j_measurement_2022_111368
crossref_primary_10_1016_j_apm_2020_05_005
crossref_primary_10_1016_j_istruc_2024_106337
crossref_primary_10_1016_j_polymer_2019_121682
crossref_primary_10_1016_j_ijimpeng_2019_05_019
crossref_primary_10_1016_j_mechmat_2018_09_002
crossref_primary_10_1177_14644207241262398
crossref_primary_10_1002_pc_27785
crossref_primary_10_1007_s11709_020_0573_z
crossref_primary_10_1038_s41598_018_32452_9
crossref_primary_10_1016_j_compscitech_2022_109722
crossref_primary_10_1177_00219983231185840
crossref_primary_10_1016_j_engfracmech_2019_01_031
crossref_primary_10_1016_j_carbon_2020_06_012
crossref_primary_10_1177_0021998320960774
crossref_primary_10_1016_j_compositesa_2018_10_010
crossref_primary_10_1002_nme_6509
crossref_primary_10_1080_15397734_2022_2149553
crossref_primary_10_1016_j_cma_2019_06_002
crossref_primary_10_1016_j_compositesa_2019_105570
crossref_primary_10_1016_j_commatsci_2020_110203
crossref_primary_10_1016_j_matpr_2022_04_080
crossref_primary_10_1016_j_compscitech_2021_108665
crossref_primary_10_1002_pc_25552
crossref_primary_10_1007_s13369_021_06199_x
crossref_primary_10_1016_j_conbuildmat_2022_126829
crossref_primary_10_1016_j_engfracmech_2023_109779
crossref_primary_10_1016_j_mechrescom_2021_103698
crossref_primary_10_1016_j_compositesb_2018_06_033
crossref_primary_10_1016_j_jmbbm_2020_103937
crossref_primary_10_1016_j_conbuildmat_2021_125199
crossref_primary_10_1016_j_engfracmech_2019_01_021
crossref_primary_10_1016_j_compositesa_2020_105861
crossref_primary_10_1016_j_mtcomm_2021_102026
crossref_primary_10_1016_j_ijmecsci_2024_109848
crossref_primary_10_1177_0021998320976794
crossref_primary_10_1177_07316844241252045
crossref_primary_10_1016_j_commatsci_2020_109694
crossref_primary_10_1002_pc_26072
crossref_primary_10_1016_j_jmps_2018_06_006
crossref_primary_10_1016_j_compstruct_2022_116299
crossref_primary_10_1016_j_compstruct_2021_114372
crossref_primary_10_1021_acssuschemeng_9b02602
crossref_primary_10_1002_pc_28256
crossref_primary_10_1007_s00289_025_05638_1
crossref_primary_10_1093_jcde_qwaf012
crossref_primary_10_1177_14644207231221244
crossref_primary_10_1016_j_engfracmech_2020_107371
crossref_primary_10_1016_j_msea_2022_144544
crossref_primary_10_1007_s00707_024_04212_6
crossref_primary_10_1016_j_jsv_2019_115115
crossref_primary_10_1016_j_cma_2021_114254
crossref_primary_10_1016_j_compositesb_2020_108400
crossref_primary_10_1080_15397734_2021_1988635
crossref_primary_10_1002_nme_6767
crossref_primary_10_1016_j_mtcomm_2022_103745
crossref_primary_10_1016_j_matpr_2022_04_659
crossref_primary_10_1177_07316844211063571
crossref_primary_10_1080_23311916_2021_1991229
crossref_primary_10_1016_j_physe_2020_114318
crossref_primary_10_1016_j_compstruct_2020_112534
crossref_primary_10_1016_j_compstruc_2020_106373
crossref_primary_10_1002_adem_202000963
crossref_primary_10_1016_j_cma_2020_113434
crossref_primary_10_1016_j_compstruct_2022_115730
crossref_primary_10_1016_j_compositesa_2020_105889
crossref_primary_10_1016_j_commatsci_2020_109912
crossref_primary_10_1007_s10237_021_01524_7
crossref_primary_10_1007_s11831_021_09700_9
crossref_primary_10_1016_j_compscitech_2020_108487
crossref_primary_10_1007_s00366_022_01600_1
crossref_primary_10_1016_j_jmbbm_2024_106577
crossref_primary_10_1016_j_jmrt_2022_06_098
crossref_primary_10_1016_j_tws_2022_110227
crossref_primary_10_1080_15376494_2024_2311235
crossref_primary_10_1016_j_jnucmat_2024_154963
crossref_primary_10_1016_j_compositesa_2019_05_024
crossref_primary_10_1016_j_compositesa_2020_106055
crossref_primary_10_1080_15376494_2022_2048146
crossref_primary_10_1002_pc_28035
crossref_primary_10_1007_s11517_023_02901_3
crossref_primary_10_1007_s00366_021_01566_6
crossref_primary_10_1016_j_cma_2019_02_017
crossref_primary_10_1002_pc_26897
crossref_primary_10_1007_s40430_021_03059_5
crossref_primary_10_1016_j_compscitech_2019_107743
Cites_doi 10.1016/j.compositesb.2012.04.012
10.1016/j.tca.2012.11.017
10.1016/j.cma.2012.01.008
10.1016/j.advengsoft.2014.09.016
10.1016/j.scriptamat.2006.01.018
10.4028/www.scientific.net/KEM.334-335.785
10.1016/j.compscitech.2016.02.012
10.1016/j.polymer.2004.11.022
10.1016/j.engfracmech.2015.10.042
10.1016/j.compositesb.2014.09.008
10.4028/www.scientific.net/KEM.312.199
10.1016/j.carbon.2015.10.058
10.1016/0010-4361(92)90282-Y
10.1002/pen.11007
10.1002/pi.4980100107
10.1177/0021998312445592
10.1016/j.clay.2014.12.016
10.1002/nme.963
10.1016/j.commatsci.2015.05.034
10.1007/s00466-013-0948-2
10.1016/j.carbon.2013.04.048
10.1016/j.commatsci.2014.05.071
10.1016/j.cma.2016.01.020
10.1007/s00466-017-1373-8
10.1016/j.eurpolymj.2011.06.010
10.1021/ma048465n
10.1016/j.ijadhadh.2014.05.004
10.1016/j.compscitech.2007.10.033
10.1002/nme.2861
10.1007/s00466-014-1109-y
10.1007/s00466-013-0952-6
10.1016/j.compstruct.2015.08.051
10.1016/j.commatsci.2012.03.010
10.1016/j.cma.2010.04.011
10.1016/S0022-5096(98)00034-9
10.1016/j.tafmec.2014.06.009
10.1016/0010-4361(90)90240-W
10.1016/j.eurpolymj.2004.10.035
10.1016/S0032-3861(00)00901-0
10.1007/s10659-012-9410-5
10.1002/pen.760302106
10.1016/j.commatsci.2014.04.066
10.1016/j.commatsci.2016.04.009
10.1016/j.tafmec.2013.12.004
10.1016/j.commatsci.2015.02.045
10.1016/j.compscitech.2008.11.022
10.1016/j.jocs.2015.11.007
10.1016/j.polymer.2006.11.062
10.1016/j.compstruct.2014.07.009
10.1016/j.commatsci.2012.11.035
10.1016/j.finel.2017.05.001
10.1016/j.compstruc.2008.08.010
10.1038/nmat1873
10.1016/j.clay.2015.07.021
10.1007/s00466-013-0891-2
10.1016/j.compstruct.2015.07.061
10.1002/app.30547
10.1016/j.compscitech.2004.06.002
10.1016/j.progpolymsci.2003.09.003
10.1016/j.compositesb.2016.02.022
10.1016/j.cma.2011.08.013
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2018
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.engfracmech.2017.08.002
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7315
EndPage 299
ExternalDocumentID 10_1016_j_engfracmech_2017_08_002
S0013794417308020
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SSH
VH1
WUQ
ZY4
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c400t-20f03f658410e8f4634c12b263fe5f50692bd3b069ac721b645784f308de615f3
IEDL.DBID AIKHN
ISSN 0013-7944
IngestDate Fri Jul 25 06:22:08 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Tue Jul 01 01:50:06 EDT 2025
Fri Feb 23 02:33:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Phase field model
Interphase zone
Polymer layered silicate
Polymer nanocomposite
Brittle fracture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-20f03f658410e8f4634c12b263fe5f50692bd3b069ac721b645784f308de615f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0013794417308020?via%3Dihub
PQID 2065061894
PQPubID 2045482
PageCount 13
ParticipantIDs proquest_journals_2065061894
crossref_primary_10_1016_j_engfracmech_2017_08_002
crossref_citationtrail_10_1016_j_engfracmech_2017_08_002
elsevier_sciencedirect_doi_10_1016_j_engfracmech_2017_08_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
2018-02-00
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Engineering fracture mechanics
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Galeski (b0050) 2003; 28
Mortazavi, Hassouna, Laachachi, Rajabpour, Ahzi, Chapron (b0040) 2013; 552
Qiao, Brinson (b0165) 2009; 69
Mortazavi, Benzerara, Meyer, Bardon, Ahzi (b0045) 2013; 60
Areias, Rabczuk (b9005) 2017; 132
Miehe, Hofacker, Welschinger (b0225) 2010; 199
Silani, Talebi, Ziaei-Rad, Kerfriden, Bordas, Rabczuk (b0200) 2014; 118
Liu, Li, Msekh, Zuo (b0245) 2016; 121
Msekh, Silani, Jamshidian, Areias, Zhuang, Zi (b0290) 2016; 93
Pukánszky (b0065) 2005; 41
Saber-Samandari, Afaghi Khatibi (b0125) 2006; 312
Arash, Park, Rabczuk (b0285) 2016; 96
Kendall (b0195) 1978; 10
Francfort, Marigo (b0250) 1998; 46
Budarapu, Gracie, Shih-Wei, Zhuang, Rabczuk (b9020) 2014; 69
Asif, Kyong, Soo, David (b0310) 2013; 45
Anderson (b0275) 1995
Chia, Hbaieb, Wang (b0135) 2007; 334
Ambati, Gerasimov, De Lorenzis (b0240) 2015; 55
Odegard, Clancy, Gates (b0155) 2005; 46
Silani, Ziaei-Rad, Talebi, Rabczuk (b9035) 2014; 74
Sicsic, Marigo (b0270) 2013; 113
Vu-Bac, Silani, Lahmer, Zhuang, Rabczuk (b0090) 2015; 96
Msekh, Sargado, Jamshidian, Areias, Rabczuk (b0265) 2015; 96
Budarapu, Gracie, Bordas, Rabczuk (b9015) 2014; 53
Talebi, Silani, Rabczuk (b9030) 2015; 80
Borden, Verhoosel, Scott, Hughes, Landis (b0295) 2012; 217
Zare, Garmabi (b0080) 2015; 105
Hamdia, Lahmer, Nguyen-Thoi, Rabczuk (b0100) 2015; 102
Talebi, Silani, Bordas, Kerfriden, Rabczuk (b9040) 2014; 53
Amiri, Anitescu, Arroyo, Bordas, Rabczuk (b9010) 2014; 53
Gao (b0010) 2012
Chen, Rabczuk, Bordas, Liu, Zeng, Kerfriden (b0260) 2012
Dominkovics, Hári, Kovács, Fekete, Pukánszky (b0060) 2011; 47
Mesbah, Zaïri, Boutaleb, Gloaguen, Naït-Abdelaziz, Xie (b0170) 2009; 114
Zare (b0085) 2014; 54
Hamdia, Msekh, Silani, Vu-Bac, Zhuang, Nguyen-Thoi (b0105) 2015; 133
Silani, Ziaei-Rad, Talebi, Rabczuk (b0215) 2014; 74
Rabczuk, Bordas, Zi (b0255) 2010; 88
Kuhn, Schlüter, Müller (b0300) 2015; 108
Ji, Jing, Jiang, Jiang (b0070) 2002; 42
Albdiry, Yousif, Ku, Lau (b0190) 2013; 47
Schadler (b0015) 2007; 6
Mortazavi, Bardon, Ahzi (b0120) 2013; 69
Gloaguen, Lefebvre (b0055) 2001; 42
Akay (b0180) 1990; 30
Hbaieb, Wang, Chia, Cotterell (b0005) 2007; 48
Areias, Msekh, Rabczuk (b0230) 2016; 158
Adamson AW, Gast AP, et al. Physical chemistry of surfaces; 1967.
Fertig, Garnich (b0130) 2004; 64
Almasi, Silani, Talebi, Rabczuk (b0115) 2015; 133
Hamdia, Zhuang, He, Rabczuk (b0110) 2016; 126
Drzal (b0030) 1986
Biqiong, Julian R.G. (b0205) 2006; 54
Gross, Seelig (b0280) 2011
Zare (b0185) 2015; 115
Vu-Bac, Rafiee, Lahmer, Zhuang, Rabczuk (b0095) 2014; 68
Adam, Delaere, Kaszacs, Grard, Assaker, Doghri (b0160) 2009; 2
Pukanszky (b0075) 1990; 21
Zhang, Vignes, Sloan, Sheng (b0305) 2017; 59
Silani, Talebi, Hamouda, Rabczuk (b9025) 2016; 15
De Borst, Gutiérrez, Wells, Remmers, Askes (b0145) 2004; 60
Miehe, Welschinger, Hofacker (b0220) 2010; 83
Wang, Chen, Wu, Toh, He, Yee (b0210) 2005; 38
Areias, Rabczuk, Msekh (b0235) 2016; 312
Liu, Brinson (b0175) 2008; 68
Peng, Zhou, Wang, Mishnaevsky (b0150) 2012; 60
Herrera-Franco, Drzal (b0035) 1992; 23
Dominkovics Z. Polymer/layered silicate nanocomposites: structure formation, interactions and deformation mechanisms. PhD thesis; Budapest University of Technology and Economics; 2011.
Chia (b0140) 2009
Gao (10.1016/j.engfracmech.2017.08.002_b0010) 2012
Talebi (10.1016/j.engfracmech.2017.08.002_b9040) 2014; 53
Herrera-Franco (10.1016/j.engfracmech.2017.08.002_b0035) 1992; 23
Amiri (10.1016/j.engfracmech.2017.08.002_b9010) 2014; 53
Hamdia (10.1016/j.engfracmech.2017.08.002_b0100) 2015; 102
Fertig (10.1016/j.engfracmech.2017.08.002_b0130) 2004; 64
Gloaguen (10.1016/j.engfracmech.2017.08.002_b0055) 2001; 42
Chen (10.1016/j.engfracmech.2017.08.002_b0260) 2012
Schadler (10.1016/j.engfracmech.2017.08.002_b0015) 2007; 6
Msekh (10.1016/j.engfracmech.2017.08.002_b0290) 2016; 93
Kuhn (10.1016/j.engfracmech.2017.08.002_b0300) 2015; 108
Silani (10.1016/j.engfracmech.2017.08.002_b9025) 2016; 15
Francfort (10.1016/j.engfracmech.2017.08.002_b0250) 1998; 46
Mortazavi (10.1016/j.engfracmech.2017.08.002_b0120) 2013; 69
Vu-Bac (10.1016/j.engfracmech.2017.08.002_b0090) 2015; 96
Miehe (10.1016/j.engfracmech.2017.08.002_b0225) 2010; 199
Odegard (10.1016/j.engfracmech.2017.08.002_b0155) 2005; 46
Galeski (10.1016/j.engfracmech.2017.08.002_b0050) 2003; 28
Chia (10.1016/j.engfracmech.2017.08.002_b0135) 2007; 334
Arash (10.1016/j.engfracmech.2017.08.002_b0285) 2016; 96
Chia (10.1016/j.engfracmech.2017.08.002_b0140) 2009
Pukanszky (10.1016/j.engfracmech.2017.08.002_b0075) 1990; 21
Qiao (10.1016/j.engfracmech.2017.08.002_b0165) 2009; 69
Talebi (10.1016/j.engfracmech.2017.08.002_b9030) 2015; 80
Dominkovics (10.1016/j.engfracmech.2017.08.002_b0060) 2011; 47
Budarapu (10.1016/j.engfracmech.2017.08.002_b9015) 2014; 53
Kendall (10.1016/j.engfracmech.2017.08.002_b0195) 1978; 10
Budarapu (10.1016/j.engfracmech.2017.08.002_b9020) 2014; 69
Asif (10.1016/j.engfracmech.2017.08.002_b0310) 2013; 45
Pukánszky (10.1016/j.engfracmech.2017.08.002_b0065) 2005; 41
Vu-Bac (10.1016/j.engfracmech.2017.08.002_b0095) 2014; 68
Drzal (10.1016/j.engfracmech.2017.08.002_b0030) 1986
Zare (10.1016/j.engfracmech.2017.08.002_b0185) 2015; 115
Albdiry (10.1016/j.engfracmech.2017.08.002_b0190) 2013; 47
Silani (10.1016/j.engfracmech.2017.08.002_b0215) 2014; 74
Silani (10.1016/j.engfracmech.2017.08.002_b9035) 2014; 74
Peng (10.1016/j.engfracmech.2017.08.002_b0150) 2012; 60
Miehe (10.1016/j.engfracmech.2017.08.002_b0220) 2010; 83
Hamdia (10.1016/j.engfracmech.2017.08.002_b0105) 2015; 133
Zare (10.1016/j.engfracmech.2017.08.002_b0080) 2015; 105
Anderson (10.1016/j.engfracmech.2017.08.002_b0275) 1995
Gross (10.1016/j.engfracmech.2017.08.002_b0280) 2011
Msekh (10.1016/j.engfracmech.2017.08.002_b0265) 2015; 96
Zhang (10.1016/j.engfracmech.2017.08.002_b0305) 2017; 59
Mortazavi (10.1016/j.engfracmech.2017.08.002_b0045) 2013; 60
Mortazavi (10.1016/j.engfracmech.2017.08.002_b0040) 2013; 552
Areias (10.1016/j.engfracmech.2017.08.002_b0230) 2016; 158
Borden (10.1016/j.engfracmech.2017.08.002_b0295) 2012; 217
Areias (10.1016/j.engfracmech.2017.08.002_b0235) 2016; 312
10.1016/j.engfracmech.2017.08.002_b0020
Biqiong (10.1016/j.engfracmech.2017.08.002_b0205) 2006; 54
Rabczuk (10.1016/j.engfracmech.2017.08.002_b0255) 2010; 88
10.1016/j.engfracmech.2017.08.002_b0025
Ambati (10.1016/j.engfracmech.2017.08.002_b0240) 2015; 55
Sicsic (10.1016/j.engfracmech.2017.08.002_b0270) 2013; 113
Akay (10.1016/j.engfracmech.2017.08.002_b0180) 1990; 30
Silani (10.1016/j.engfracmech.2017.08.002_b0200) 2014; 118
Liu (10.1016/j.engfracmech.2017.08.002_b0245) 2016; 121
Almasi (10.1016/j.engfracmech.2017.08.002_b0115) 2015; 133
Zare (10.1016/j.engfracmech.2017.08.002_b0085) 2014; 54
Areias (10.1016/j.engfracmech.2017.08.002_b9005) 2017; 132
Adam (10.1016/j.engfracmech.2017.08.002_b0160) 2009; 2
Ji (10.1016/j.engfracmech.2017.08.002_b0070) 2002; 42
De Borst (10.1016/j.engfracmech.2017.08.002_b0145) 2004; 60
Wang (10.1016/j.engfracmech.2017.08.002_b0210) 2005; 38
Hbaieb (10.1016/j.engfracmech.2017.08.002_b0005) 2007; 48
Saber-Samandari (10.1016/j.engfracmech.2017.08.002_b0125) 2006; 312
Liu (10.1016/j.engfracmech.2017.08.002_b0175) 2008; 68
Hamdia (10.1016/j.engfracmech.2017.08.002_b0110) 2016; 126
Mesbah (10.1016/j.engfracmech.2017.08.002_b0170) 2009; 114
References_xml – year: 2011
  ident: b0280
  article-title: Fracture mechanics: with an introduction to micromechanics
– volume: 47
  start-page: 1093
  year: 2013
  end-page: 1115
  ident: b0190
  article-title: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites
  publication-title: J Compos Mater
– volume: 2
  start-page: 515
  year: 2009
  end-page: 518
  ident: b0160
  article-title: Multi-scale modeling of polymer nanocomposites
  publication-title: Nanotech Conf Expo
– volume: 68
  start-page: 1502
  year: 2008
  end-page: 1512
  ident: b0175
  article-title: Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites
  publication-title: Compos Sci Technol
– volume: 38
  start-page: 788
  year: 2005
  end-page: 800
  ident: b0210
  article-title: Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms
  publication-title: Macromolecules
– volume: 113
  start-page: 55
  year: 2013
  end-page: 74
  ident: b0270
  article-title: From gradient damage laws to Griffith’s theory of crack propagation
  publication-title: J Elast
– volume: 54
  start-page: 67
  year: 2014
  end-page: 71
  ident: b0085
  article-title: Determination of polymer-nanoparticles interfacial adhesion and its role in shape memory behavior of shape memory polymer nanocomposites
  publication-title: Int J Adhes Adhes
– volume: 108
  start-page: 374
  year: 2015
  end-page: 384
  ident: b0300
  article-title: On degradation functions in phase field fracture models
  publication-title: Comput Mater Sci
– volume: 96
  start-page: 472
  year: 2015
  end-page: 484
  ident: b0265
  article-title: Abaqus implementation of phase-field model for brittle fracture
  publication-title: Comput Mater Sci
– year: 2012
  ident: b0010
  article-title: Advances in polymer nanocomposites: types and applications
– volume: 23
  start-page: 2
  year: 1992
  end-page: 27
  ident: b0035
  article-title: Comparison of methods for the measurement of fibre/matrix adhesion in composites
  publication-title: Composites
– volume: 80
  start-page: 82
  year: 2015
  end-page: 92
  ident: b9030
  article-title: Concurrent multiscale modelling of three dimensional crack and dislocation propagation
  publication-title: Adv Eng Softw
– start-page: 241
  year: 2009
  end-page: 248
  ident: b0140
  article-title: Finite element modelling clay nanocomposites and interface effects on mechanical properties
  publication-title: IUTAM symposium on modelling nanomaterials and nanosystems
– volume: 48
  start-page: 901
  year: 2007
  end-page: 909
  ident: b0005
  article-title: Modelling stiffness of polymer/clay nanocomposites
  publication-title: Polymer
– volume: 217
  start-page: 77
  year: 2012
  end-page: 95
  ident: b0295
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput Meth Appl Mech Eng
– volume: 60
  start-page: 356
  year: 2013
  end-page: 365
  ident: b0045
  article-title: Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites
  publication-title: Carbon
– volume: 96
  start-page: 520
  year: 2015
  end-page: 535
  ident: b0090
  article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites
  publication-title: Comput Mater Sci
– volume: 114
  start-page: 3274
  year: 2009
  end-page: 3291
  ident: b0170
  article-title: Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework
  publication-title: J Appl Polym Sci
– volume: 41
  start-page: 645
  year: 2005
  end-page: 662
  ident: b0065
  article-title: Interfaces and interphases in multicomponent materials: past, present, future
  publication-title: Euro Polym J
– volume: 118
  start-page: 241
  year: 2014
  end-page: 249
  ident: b0200
  article-title: Stochastic modelling of clay/epoxy nanocomposites
  publication-title: Compos Struct
– volume: 59
  start-page: 737
  year: 2017
  end-page: 752
  ident: b0305
  article-title: Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale
  publication-title: Comput Mech
– volume: 88
  start-page: 1391
  year: 2010
  end-page: 1411
  ident: b0255
  article-title: On three-dimensional modelling of crack growth using partition of unity methods
  publication-title: Comput Struct
– volume: 15
  start-page: 18
  year: 2016
  end-page: 23
  ident: b9025
  article-title: Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach
  publication-title: J Comput Sci
– volume: 47
  start-page: 1765
  year: 2011
  end-page: 1774
  ident: b0060
  article-title: Estimation of interphase thickness and properties in pp/layered silicate nanocomposites
  publication-title: Euro Polym J
– volume: 10
  start-page: 35
  year: 1978
  end-page: 38
  ident: b0195
  article-title: Fracture of particulate filled polymers
  publication-title: Brit Polym J
– volume: 133
  start-page: 1177
  year: 2015
  end-page: 1190
  ident: b0105
  article-title: Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling
  publication-title: Compos Struct
– volume: 74
  start-page: 30
  year: 2014
  end-page: 38
  ident: b9035
  article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites
  publication-title: Theor Appl Fract Mec
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  ident: b0250
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J Mech Phys Solids
– volume: 552
  start-page: 106
  year: 2013
  end-page: 113
  ident: b0040
  article-title: Experimental and multiscale modeling of thermal conductivity and elastic properties of pla/expanded graphite polymer nanocomposites
  publication-title: Thermochim Acta
– volume: 69
  start-page: 491
  year: 2009
  end-page: 499
  ident: b0165
  article-title: Simulation of interphase percolation and gradients in polymer nanocomposites
  publication-title: Compos Sci Technol
– volume: 30
  start-page: 1361
  year: 1990
  end-page: 1372
  ident: b0180
  article-title: Flow induced polymer-filler interactions: bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing
  publication-title: Polym Eng Sci
– volume: 132
  start-page: 27
  year: 2017
  end-page: 41
  ident: b9005
  article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture
  publication-title: Finite Elem Anal Des
– volume: 74
  start-page: 30
  year: 2014
  end-page: 38
  ident: b0215
  article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites
  publication-title: Theor Appl Fract Mech
– volume: 53
  start-page: 45
  year: 2014
  end-page: 57
  ident: b9010
  article-title: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods
  publication-title: Comput Mech
– volume: 42
  start-page: 5841
  year: 2001
  end-page: 5847
  ident: b0055
  article-title: Plastic deformation behaviour of thermoplastic/clay nanocomposites
  publication-title: Polymer
– reference: Adamson AW, Gast AP, et al. Physical chemistry of surfaces; 1967.
– volume: 21
  start-page: 255
  year: 1990
  end-page: 262
  ident: b0075
  article-title: Influence of interface interaction on the ultimate tensile properties of polymer composites
  publication-title: Composites
– volume: 334
  start-page: 785
  year: 2007
  end-page: 788
  ident: b0135
  article-title: Finite element modelling epoxy/clay nanocomposites
  publication-title: Key Eng Mater
– volume: 105
  start-page: 66
  year: 2015
  end-page: 70
  ident: b0080
  article-title: Thickness, modulus and strength of interphase in clay/polymer nanocomposites
  publication-title: Appl Clay Sci
– volume: 45
  start-page: 308
  year: 2013
  end-page: 320
  ident: b0310
  article-title: Epoxy clay nanocomposites: processing, properties and applications: a review
  publication-title: Compos Part B
– volume: 53
  start-page: 1129
  year: 2014
  end-page: 1148
  ident: b9015
  article-title: An adaptive multiscale method for quasi-static crack growth
  publication-title: Comput Mech
– volume: 69
  start-page: 126
  year: 2014
  end-page: 143
  ident: b9020
  article-title: Efficient coarse graining in multiscale modeling of fracture
  publication-title: Theor Appl Fract Mec
– volume: 133
  start-page: 1302
  year: 2015
  end-page: 1312
  ident: b0115
  article-title: Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites
  publication-title: Compos Struct
– volume: 158
  start-page: 116
  year: 2016
  end-page: 143
  ident: b0230
  article-title: Damage and fracture algorithm using the screened poisson equation and local remeshing
  publication-title: Eng Fract Mech
– volume: 115
  start-page: 61
  year: 2015
  end-page: 66
  ident: b0185
  article-title: Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data
  publication-title: Appl Clay Sci
– volume: 96
  start-page: 1084
  year: 2016
  end-page: 1092
  ident: b0285
  article-title: Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites
  publication-title: Carbon
– volume: 28
  start-page: 1643
  year: 2003
  end-page: 1699
  ident: b0050
  article-title: Strength and toughness of crystalline polymer systems
  publication-title: Prog Polym Sci
– volume: 6
  start-page: 257
  year: 2007
  end-page: 258
  ident: b0015
  article-title: Nanocomposites: model interfaces
  publication-title: Nat Mater
– volume: 53
  start-page: 1047
  year: 2014
  end-page: 1071
  ident: b9040
  article-title: A computational library for multiscale modelling of material failure
  publication-title: Comput Mech
– volume: 42
  start-page: 983
  year: 2002
  end-page: 993
  ident: b0070
  article-title: Tensile modulus of polymer nanocomposites
  publication-title: Polym Eng Sci
– year: 1995
  ident: b0275
  article-title: Fracture mechanics fundamentals and application
– volume: 60
  start-page: 19
  year: 2012
  end-page: 31
  ident: b0150
  article-title: Modeling of nano-reinforced polymer composites: microstructure effect on young’s modulus
  publication-title: Comput Mater Sci
– volume: 312
  start-page: 322
  year: 2016
  end-page: 350
  ident: b0235
  article-title: Phase-field analysis of finite-strain plates and shells including element subdivision
  publication-title: Comput Meth Appl Mech Eng
– start-page: 250
  year: 2012
  end-page: 265
  ident: b0260
  article-title: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
  publication-title: Comput Meth Appl Mech Eng
– volume: 55
  start-page: 383
  year: 2015
  end-page: 405
  ident: b0240
  article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation
  publication-title: Comput Mech
– volume: 54
  start-page: 1581
  year: 2006
  end-page: 1585
  ident: b0205
  article-title: Elastic moduli of clay platelets
  publication-title: Scripta Mater
– year: 1986
  ident: b0030
  article-title: The interphase in epoxy composites
  publication-title: Epoxy resins and composites II
– volume: 83
  start-page: 1273
  year: 2010
  end-page: 1311
  ident: b0220
  article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations
  publication-title: Int J Numer Meth Eng
– volume: 68
  start-page: 446
  year: 2014
  end-page: 464
  ident: b0095
  article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters
  publication-title: Compos Part B-Eng
– volume: 46
  start-page: 553
  year: 2005
  end-page: 562
  ident: b0155
  article-title: Modeling of the mechanical properties of nanoparticle/polymer composites
  publication-title: Polymer
– volume: 102
  start-page: 304
  year: 2015
  end-page: 313
  ident: b0100
  article-title: Predicting the fracture toughness of PNCS: a stochastic approach based on ann and anfis
  publication-title: Comput Mater Sci
– reference: Dominkovics Z. Polymer/layered silicate nanocomposites: structure formation, interactions and deformation mechanisms. PhD thesis; Budapest University of Technology and Economics; 2011.
– volume: 69
  start-page: 100
  year: 2013
  end-page: 106
  ident: b0120
  article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study
  publication-title: Comput Mater Sci
– volume: 199
  start-page: 2765
  year: 2010
  end-page: -2778
  ident: b0225
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput Meth Appl Mech Eng
– volume: 121
  start-page: 35
  year: 2016
  end-page: 47
  ident: b0245
  article-title: Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model
  publication-title: Comput Mater Sci
– volume: 64
  start-page: 2577
  year: 2004
  end-page: 2588
  ident: b0130
  article-title: Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite
  publication-title: Compos Sci Technol
– volume: 60
  start-page: 289
  year: 2004
  end-page: 315
  ident: b0145
  article-title: Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis
  publication-title: Int J Numer Meth Eng
– volume: 126
  start-page: 122
  year: 2016
  end-page: 129
  ident: b0110
  article-title: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method
  publication-title: Compos Sci Technol
– volume: 312
  start-page: 199
  year: 2006
  end-page: 204
  ident: b0125
  article-title: The effect of interphase on the elastic modulus of polymer based nanocomposites
  publication-title: Key Eng Mater
– volume: 93
  start-page: 97
  year: 2016
  end-page: 114
  ident: b0290
  article-title: Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model
  publication-title: Compos Part B: Eng
– volume: 45
  start-page: 308
  year: 2013
  ident: 10.1016/j.engfracmech.2017.08.002_b0310
  article-title: Epoxy clay nanocomposites: processing, properties and applications: a review
  publication-title: Compos Part B
  doi: 10.1016/j.compositesb.2012.04.012
– volume: 552
  start-page: 106
  year: 2013
  ident: 10.1016/j.engfracmech.2017.08.002_b0040
  article-title: Experimental and multiscale modeling of thermal conductivity and elastic properties of pla/expanded graphite polymer nanocomposites
  publication-title: Thermochim Acta
  doi: 10.1016/j.tca.2012.11.017
– volume: 217
  start-page: 77
  year: 2012
  ident: 10.1016/j.engfracmech.2017.08.002_b0295
  article-title: A phase-field description of dynamic brittle fracture
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2012.01.008
– volume: 80
  start-page: 82
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b9030
  article-title: Concurrent multiscale modelling of three dimensional crack and dislocation propagation
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2014.09.016
– volume: 54
  start-page: 1581
  year: 2006
  ident: 10.1016/j.engfracmech.2017.08.002_b0205
  article-title: Elastic moduli of clay platelets
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2006.01.018
– volume: 334
  start-page: 785
  year: 2007
  ident: 10.1016/j.engfracmech.2017.08.002_b0135
  article-title: Finite element modelling epoxy/clay nanocomposites
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.334-335.785
– volume: 126
  start-page: 122
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b0110
  article-title: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2016.02.012
– volume: 46
  start-page: 553
  issue: 2
  year: 2005
  ident: 10.1016/j.engfracmech.2017.08.002_b0155
  article-title: Modeling of the mechanical properties of nanoparticle/polymer composites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.11.022
– volume: 158
  start-page: 116
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b0230
  article-title: Damage and fracture algorithm using the screened poisson equation and local remeshing
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2015.10.042
– volume: 68
  start-page: 446
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b0095
  article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters
  publication-title: Compos Part B-Eng
  doi: 10.1016/j.compositesb.2014.09.008
– volume: 312
  start-page: 199
  year: 2006
  ident: 10.1016/j.engfracmech.2017.08.002_b0125
  article-title: The effect of interphase on the elastic modulus of polymer based nanocomposites
  publication-title: Key Eng Mater
  doi: 10.4028/www.scientific.net/KEM.312.199
– volume: 96
  start-page: 1084
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b0285
  article-title: Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.058
– volume: 23
  start-page: 2
  issue: 1
  year: 1992
  ident: 10.1016/j.engfracmech.2017.08.002_b0035
  article-title: Comparison of methods for the measurement of fibre/matrix adhesion in composites
  publication-title: Composites
  doi: 10.1016/0010-4361(92)90282-Y
– volume: 42
  start-page: 983
  issue: 5
  year: 2002
  ident: 10.1016/j.engfracmech.2017.08.002_b0070
  article-title: Tensile modulus of polymer nanocomposites
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.11007
– volume: 10
  start-page: 35
  issue: 1
  year: 1978
  ident: 10.1016/j.engfracmech.2017.08.002_b0195
  article-title: Fracture of particulate filled polymers
  publication-title: Brit Polym J
  doi: 10.1002/pi.4980100107
– volume: 47
  start-page: 1093
  issue: 9
  year: 2013
  ident: 10.1016/j.engfracmech.2017.08.002_b0190
  article-title: A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites
  publication-title: J Compos Mater
  doi: 10.1177/0021998312445592
– volume: 105
  start-page: 66
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0080
  article-title: Thickness, modulus and strength of interphase in clay/polymer nanocomposites
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2014.12.016
– volume: 60
  start-page: 289
  issue: 1
  year: 2004
  ident: 10.1016/j.engfracmech.2017.08.002_b0145
  article-title: Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.963
– volume: 108
  start-page: 374
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0300
  article-title: On degradation functions in phase field fracture models
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2015.05.034
– volume: 53
  start-page: 1047
  issue: 5
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b9040
  article-title: A computational library for multiscale modelling of material failure
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0948-2
– year: 2012
  ident: 10.1016/j.engfracmech.2017.08.002_b0010
– volume: 60
  start-page: 356
  year: 2013
  ident: 10.1016/j.engfracmech.2017.08.002_b0045
  article-title: Combined molecular dynamics-finite element multiscale modeling of thermal conduction in graphene epoxy nanocomposites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.04.048
– volume: 96
  start-page: 472
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0265
  article-title: Abaqus implementation of phase-field model for brittle fracture
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.05.071
– volume: 312
  start-page: 322
  issue: C
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b0235
  article-title: Phase-field analysis of finite-strain plates and shells including element subdivision
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2016.01.020
– volume: 59
  start-page: 737
  issue: 5
  year: 2017
  ident: 10.1016/j.engfracmech.2017.08.002_b0305
  article-title: Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale
  publication-title: Comput Mech
  doi: 10.1007/s00466-017-1373-8
– volume: 47
  start-page: 1765
  issue: 9
  year: 2011
  ident: 10.1016/j.engfracmech.2017.08.002_b0060
  article-title: Estimation of interphase thickness and properties in pp/layered silicate nanocomposites
  publication-title: Euro Polym J
  doi: 10.1016/j.eurpolymj.2011.06.010
– volume: 38
  start-page: 788
  issue: 3
  year: 2005
  ident: 10.1016/j.engfracmech.2017.08.002_b0210
  article-title: Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms
  publication-title: Macromolecules
  doi: 10.1021/ma048465n
– volume: 2
  start-page: 515
  year: 2009
  ident: 10.1016/j.engfracmech.2017.08.002_b0160
  article-title: Multi-scale modeling of polymer nanocomposites
  publication-title: Nanotech Conf Expo
– year: 2011
  ident: 10.1016/j.engfracmech.2017.08.002_b0280
– volume: 54
  start-page: 67
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b0085
  article-title: Determination of polymer-nanoparticles interfacial adhesion and its role in shape memory behavior of shape memory polymer nanocomposites
  publication-title: Int J Adhes Adhes
  doi: 10.1016/j.ijadhadh.2014.05.004
– volume: 68
  start-page: 1502
  issue: 6
  year: 2008
  ident: 10.1016/j.engfracmech.2017.08.002_b0175
  article-title: Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2007.10.033
– volume: 83
  start-page: 1273
  issue: 10
  year: 2010
  ident: 10.1016/j.engfracmech.2017.08.002_b0220
  article-title: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.2861
– volume: 55
  start-page: 383
  issue: 2
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0240
  article-title: A review on phase-field models of brittle fracture and a new fast hybrid formulation
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1109-y
– volume: 53
  start-page: 1129
  issue: 6
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b9015
  article-title: An adaptive multiscale method for quasi-static crack growth
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0952-6
– ident: 10.1016/j.engfracmech.2017.08.002_b0020
– volume: 133
  start-page: 1177
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0105
  article-title: Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.08.051
– volume: 60
  start-page: 19
  year: 2012
  ident: 10.1016/j.engfracmech.2017.08.002_b0150
  article-title: Modeling of nano-reinforced polymer composites: microstructure effect on young’s modulus
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.03.010
– volume: 199
  start-page: 2765
  year: 2010
  ident: 10.1016/j.engfracmech.2017.08.002_b0225
  article-title: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2010.04.011
– volume: 46
  start-page: 1319
  issue: 8
  year: 1998
  ident: 10.1016/j.engfracmech.2017.08.002_b0250
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(98)00034-9
– year: 1986
  ident: 10.1016/j.engfracmech.2017.08.002_b0030
  article-title: The interphase in epoxy composites
– volume: 74
  start-page: 30
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b0215
  article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2014.06.009
– volume: 21
  start-page: 255
  issue: 3
  year: 1990
  ident: 10.1016/j.engfracmech.2017.08.002_b0075
  article-title: Influence of interface interaction on the ultimate tensile properties of polymer composites
  publication-title: Composites
  doi: 10.1016/0010-4361(90)90240-W
– volume: 41
  start-page: 645
  issue: 4
  year: 2005
  ident: 10.1016/j.engfracmech.2017.08.002_b0065
  article-title: Interfaces and interphases in multicomponent materials: past, present, future
  publication-title: Euro Polym J
  doi: 10.1016/j.eurpolymj.2004.10.035
– volume: 42
  start-page: 5841
  issue: 13
  year: 2001
  ident: 10.1016/j.engfracmech.2017.08.002_b0055
  article-title: Plastic deformation behaviour of thermoplastic/clay nanocomposites
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00901-0
– volume: 74
  start-page: 30
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b9035
  article-title: A semi-concurrent multiscale approach for modeling damage in nanocomposites
  publication-title: Theor Appl Fract Mec
  doi: 10.1016/j.tafmec.2014.06.009
– volume: 113
  start-page: 55
  issue: 1
  year: 2013
  ident: 10.1016/j.engfracmech.2017.08.002_b0270
  article-title: From gradient damage laws to Griffith’s theory of crack propagation
  publication-title: J Elast
  doi: 10.1007/s10659-012-9410-5
– volume: 30
  start-page: 1361
  issue: 21
  year: 1990
  ident: 10.1016/j.engfracmech.2017.08.002_b0180
  article-title: Flow induced polymer-filler interactions: bound polymer properties and bound polymer-free polymer phase separation and subsequent phase inversion during mixing
  publication-title: Polym Eng Sci
  doi: 10.1002/pen.760302106
– volume: 96
  start-page: 520
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0090
  article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.04.066
– volume: 121
  start-page: 35
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b0245
  article-title: Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2016.04.009
– volume: 69
  start-page: 126
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b9020
  article-title: Efficient coarse graining in multiscale modeling of fracture
  publication-title: Theor Appl Fract Mec
  doi: 10.1016/j.tafmec.2013.12.004
– volume: 102
  start-page: 304
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0100
  article-title: Predicting the fracture toughness of PNCS: a stochastic approach based on ann and anfis
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2015.02.045
– volume: 69
  start-page: 491
  issue: 3
  year: 2009
  ident: 10.1016/j.engfracmech.2017.08.002_b0165
  article-title: Simulation of interphase percolation and gradients in polymer nanocomposites
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2008.11.022
– ident: 10.1016/j.engfracmech.2017.08.002_b0025
– volume: 15
  start-page: 18
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b9025
  article-title: Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.11.007
– volume: 48
  start-page: 901
  issue: 3
  year: 2007
  ident: 10.1016/j.engfracmech.2017.08.002_b0005
  article-title: Modelling stiffness of polymer/clay nanocomposites
  publication-title: Polymer
  doi: 10.1016/j.polymer.2006.11.062
– volume: 118
  start-page: 241
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b0200
  article-title: Stochastic modelling of clay/epoxy nanocomposites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2014.07.009
– volume: 69
  start-page: 100
  year: 2013
  ident: 10.1016/j.engfracmech.2017.08.002_b0120
  article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2012.11.035
– volume: 132
  start-page: 27
  year: 2017
  ident: 10.1016/j.engfracmech.2017.08.002_b9005
  article-title: Steiner-point free edge cutting of tetrahedral meshes with applications in fracture
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2017.05.001
– volume: 88
  start-page: 1391
  year: 2010
  ident: 10.1016/j.engfracmech.2017.08.002_b0255
  article-title: On three-dimensional modelling of crack growth using partition of unity methods
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2008.08.010
– volume: 6
  start-page: 257
  issue: 4
  year: 2007
  ident: 10.1016/j.engfracmech.2017.08.002_b0015
  article-title: Nanocomposites: model interfaces
  publication-title: Nat Mater
  doi: 10.1038/nmat1873
– volume: 115
  start-page: 61
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0185
  article-title: Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2015.07.021
– volume: 53
  start-page: 45
  issue: 1
  year: 2014
  ident: 10.1016/j.engfracmech.2017.08.002_b9010
  article-title: XLME interpolants, a seamless bridge between XFEM and enriched meshless methods
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0891-2
– volume: 133
  start-page: 1302
  year: 2015
  ident: 10.1016/j.engfracmech.2017.08.002_b0115
  article-title: Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2015.07.061
– volume: 114
  start-page: 3274
  issue: 5
  year: 2009
  ident: 10.1016/j.engfracmech.2017.08.002_b0170
  article-title: Experimental characterization and modeling stiffness of polymer/clay nanocomposites within a hierarchical multiscale framework
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.30547
– year: 1995
  ident: 10.1016/j.engfracmech.2017.08.002_b0275
– volume: 64
  start-page: 2577
  issue: 16
  year: 2004
  ident: 10.1016/j.engfracmech.2017.08.002_b0130
  article-title: Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2004.06.002
– start-page: 241
  year: 2009
  ident: 10.1016/j.engfracmech.2017.08.002_b0140
  article-title: Finite element modelling clay nanocomposites and interface effects on mechanical properties
– volume: 28
  start-page: 1643
  issue: 12
  year: 2003
  ident: 10.1016/j.engfracmech.2017.08.002_b0050
  article-title: Strength and toughness of crystalline polymer systems
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2003.09.003
– volume: 93
  start-page: 97
  year: 2016
  ident: 10.1016/j.engfracmech.2017.08.002_b0290
  article-title: Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model
  publication-title: Compos Part B: Eng
  doi: 10.1016/j.compositesb.2016.02.022
– start-page: 250
  year: 2012
  ident: 10.1016/j.engfracmech.2017.08.002_b0260
  article-title: Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth
  publication-title: Comput Meth Appl Mech Eng
  doi: 10.1016/j.cma.2011.08.013
SSID ssj0007680
Score 2.6247046
Snippet •A phase field model for fracture in heterogeneous structure.•A hybrid hierarchical/concurrent multiscale method for fracture in polymer-matrix composites.•A...
We predict the macroscopic tensile strength and fracture toughness of fully exfoliated nano silicate clay epoxy composites accounting for the interphase...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 287
SubjectTerms Brittle fracture
Brittleness
Clay
Dissipation
Epoxy coatings
Finite element method
Fracture mechanics
Fracture toughness
Interphase zone
Mathematical models
Mechanical properties
Modulus of elasticity
Nanocomposites
Phase field model
Platelets (materials)
Polymer layered silicate
Polymer matrix composites
Polymer nanocomposite
Strain energy release rate
Tensile strength
Title Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model
URI https://dx.doi.org/10.1016/j.engfracmech.2017.08.002
https://www.proquest.com/docview/2065061894
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7WFUQP4hPXFxG81m2TtGbBi4jLqrgnBW8laRJdH3VZd0E9-Nud6cMXCIKntmmnLZPMzNf0ywzArg5p0cG-D6z2OpBKigDDcBRo6x23IgxtUTrhvJ_0LuXpVXzVgKN6LQzRKivfX_r0wltXLe1Km-3hYEBrfCOBo0lGOEgVop4pmOaik8RNmD48Oev1PxwyIuqwLmRAAjOw80nzcvm1H-nswRW_JqL9vZJc-VuY-uGwiyjUXYD5Cj6yw_INF6Hh8iWY-5JUcBnuurTwaTJybEgT7SPKmIq79EOGOoE9epbd65c2Iu_nF5br_JFo5cTdwutoWpYNCiLiDcY39kqp_BmR46-ZZmVbQXpjRQmdFbjsHl8c9YKqpEKQobGO0SZ8KDyhjih0ystEyCzihifCu9jHYdLhxgqDW53ht6FJJFq09Khg6xD7eLEKzRyfvAZMcGsIrBnltZSaG5UZHntlbMZtx8UtULUG06zKN05lL-7Tmlh2m35RfkrKT6kkZshbwD9Eh2XSjb8IHdTdlH4bQSkGh7-Ib9Zdm1Zm_ITnEcAmkerI9f_dfQNm8UiVdO9NaI5HE7eFaGZstmFq7y3arsbsOx359y0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-wwEB68wFEfxHMR7ycHfK3bJmk3C76IuKwe9UnBt5A0ia6udVlXUB_87c704g0EwaeWXNoyycx8Tb7MAGyamA4dtEPkTDCRVFJE6IaTyLjguRNx7MrUCUfHWe9UHpylZxOw25yFIVplbfsrm15a67qkVUuzNez36YxvInA2yQQnqULUMwnTMhVt4vVtPb3yPBBPx00aA2r-A_69krx8cR5GJr_25cZE0t6qqJWfOakP5rr0Qd0FmK_BI9upvu8nTPjiF8y9CSn4G666dOzpbuTZkJbZRxQvFW9pO4aGgN0Elg_MQwtx9_0DK0xxQ6RyYm5hO1qUZf2ShniB3o09UiB_RtT4c2ZYVVZS3liZQOcPnHb3TnZ7UZ1QIcpRVceoESEWgTBHEnsVZCZknnDLMxF8GtI463DrhMWryfHP0GYS9VkGFK_ziHyCWISpAt-8BExwZwmqWRWMlIZblVueBmVdzl3Hp8ugGgnqvI42TkkvBrqhlV3qN8LXJHxNCTFjvgz8peuwCrnxlU7bzTDpd_NHo2v4Sve1Zmh1rcS3WI_wNUtUR6587-l_YaZ3cnSoD_eP_6_CLNaoivi9BlPj0Z1fR1wzthvlvH0GOzj3-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fracture+properties+prediction+of+clay%2Fepoxy+nanocomposites+with+interphase+zones+using+a+phase+field+model&rft.jtitle=Engineering+fracture+mechanics&rft.au=Msekh%2C+Mohammed+A&rft.au=Cuong%2C+NH&rft.au=Zi%2C+G&rft.au=Areias%2C+P&rft.date=2018-02-01&rft.pub=Elsevier+BV&rft.issn=0013-7944&rft.eissn=1873-7315&rft.volume=188&rft.spage=287&rft_id=info:doi/10.1016%2Fj.engfracmech.2017.08.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7944&client=summon