Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels

Catalytic conversion of CO 2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO 2 can be converted into a wide range of valuable products, including CO, formic acid, methan...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 28; no. 4; pp. 245 - 264
Main Authors Gao, Dunfeng, Li, Wanjun, Wang, Hanyu, Wang, Guoxiong, Cai, Rui
Format Journal Article
LanguageEnglish
Published Tianjin Tianjin University 01.08.2022
Springer Nature B.V
University of Chinese Academy of Sciences,Beijing 100049,China
State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China
Subjects
Online AccessGet full text
ISSN1006-4982
1995-8196
DOI10.1007/s12209-022-00326-x

Cover

Abstract Catalytic conversion of CO 2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO 2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO 2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO 2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO 2 reduction product/fraction should be further improved at an industrially relevant CO 2 conversion rate with considerable stability in the future. Graphical Abstract
AbstractList Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefi ns, aromatics, and gasoline, as well as fi ne chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO2 conversion into chemicals and fuels and highlight some representative studies of diff erent conversion routes. The structure–performance correlations of typical catalytic materials used for the CO2 conversion reactions have been revealed by combining advanced insitu/operando spectroscopy and microscopy characterizations and density functional theory cal-culations. Catalytic selectivity toward a single CO2 reduction product/fraction should be further improved at an industrially relevant CO2 conversion rate with considerable stability in the future.
Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO2 reduction product/fraction should be further improved at an industrially relevant CO2 conversion rate with considerable stability in the future.
Catalytic conversion of CO 2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO 2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO 2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO 2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO 2 reduction product/fraction should be further improved at an industrially relevant CO 2 conversion rate with considerable stability in the future. Graphical Abstract
Author Li, Wanjun
Wang, Guoxiong
Wang, Hanyu
Cai, Rui
Gao, Dunfeng
AuthorAffiliation State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China;University of Chinese Academy of Sciences,Beijing 100049,China
AuthorAffiliation_xml – name: State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China;University of Chinese Academy of Sciences,Beijing 100049,China
Author_xml – sequence: 1
  givenname: Dunfeng
  surname: Gao
  fullname: Gao, Dunfeng
  organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Wanjun
  surname: Li
  fullname: Li, Wanjun
  organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 3
  givenname: Hanyu
  surname: Wang
  fullname: Wang, Hanyu
  organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Guoxiong
  surname: Wang
  fullname: Wang, Guoxiong
  email: wanggx@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Rui
  surname: Cai
  fullname: Cai, Rui
  email: cairui@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
BookMark eNp9kE1LAzEQhoMoWKt_wNOCV1cn2a_mKItaQehFz2GandQtbVKTVOu_N7pCwUNPMwzPM5O8Z-zYOkuMXXK44QDNbeBCgMxBiBygEHW-O2IjLmWVT7isj1MPUOelnIhTdhbCEqCU0PARa6cUybsFWXLbkLUYcfUV-pAZ57N2JrLW2Q_yoXc26210WftG617jKmRou-xhS6twzk5MGtDFXx2z14f7l3aaP88en9q751yXADHnaNAUspY1GdJakJB1VwpukAMn0c01YkHamK7RXUUV8QopDaoGykmJ82LMroe9n2gN2oVauq236aKKPdplt9vNFYmUAaR7RcKvBnzj3fuWQtzzooGmkLLmZaImA6W9C8GTUbqPGNN_o8d-pTion4TVkLBK29VvwmqXVPFP3fh-jf7rsFQMUkiwXZDfv-qA9Q2l2pFZ
CitedBy_id crossref_primary_10_1007_s11090_024_10512_5
crossref_primary_10_1016_j_apsusc_2024_161945
crossref_primary_10_3390_molecules29184411
crossref_primary_10_1021_acsami_4c18267
crossref_primary_10_1039_D3NJ01660A
crossref_primary_10_1016_S1872_2067_23_64508_5
crossref_primary_10_1007_s12598_024_02919_y
crossref_primary_10_3390_catal13050902
crossref_primary_10_1016_j_ica_2024_122435
crossref_primary_10_1021_jacs_4c11276
crossref_primary_10_1007_s11426_024_2292_3
crossref_primary_10_1039_D4EE00037D
crossref_primary_10_1039_D4NJ02206H
crossref_primary_10_1021_acs_chemrev_4c00282
crossref_primary_10_1016_j_inoche_2024_113863
crossref_primary_10_1002_asia_202500091
crossref_primary_10_1016_j_ces_2023_119228
crossref_primary_10_1016_j_chempr_2024_08_017
crossref_primary_10_1007_s12274_024_6955_0
crossref_primary_10_1016_j_apsusc_2023_157897
crossref_primary_10_3390_catal13121508
crossref_primary_10_1002_smll_202408146
crossref_primary_10_1016_j_cclet_2023_108313
crossref_primary_10_1016_j_jes_2023_06_022
crossref_primary_10_1007_s11426_024_2365_9
crossref_primary_10_1039_D4TA02224F
crossref_primary_10_1016_j_cclet_2024_110204
crossref_primary_10_1021_acsami_4c05680
crossref_primary_10_1039_D3EY00155E
crossref_primary_10_1039_D4SC01931H
crossref_primary_10_1002_adfm_202303335
crossref_primary_10_1021_acsenergylett_4c02851
crossref_primary_10_1039_D3SC04310J
crossref_primary_10_1080_17518253_2024_2426503
crossref_primary_10_1016_j_biotechadv_2023_108276
crossref_primary_10_1016_j_ces_2023_118729
crossref_primary_10_1016_S1872_2067_24_60188_9
crossref_primary_10_1002_aenm_202301276
crossref_primary_10_1002_aic_18669
crossref_primary_10_1016_j_cattod_2023_114133
crossref_primary_10_1002_cctc_202400272
crossref_primary_10_1038_s41467_023_37818_w
crossref_primary_10_1039_D3SC01040F
crossref_primary_10_1002_adfm_202425601
crossref_primary_10_1016_j_jechem_2022_12_022
crossref_primary_10_34133_research_0067
crossref_primary_10_1021_acsanm_3c03071
crossref_primary_10_1016_j_ces_2024_120672
crossref_primary_10_1002_cctc_202401687
crossref_primary_10_1002_smll_202406345
crossref_primary_10_1016_j_ces_2024_120304
crossref_primary_10_1002_anie_202402950
crossref_primary_10_1021_acs_iecr_4c04350
crossref_primary_10_1016_j_cogsc_2024_100911
crossref_primary_10_1021_acsami_3c08187
crossref_primary_10_1007_s12209_023_00361_2
crossref_primary_10_1002_ange_202407638
crossref_primary_10_1021_cbe_3c00124
crossref_primary_10_1002_anie_202300129
crossref_primary_10_1021_acs_iecr_5c00153
crossref_primary_10_1016_j_apcatb_2024_124065
crossref_primary_10_1021_acsami_4c07953
crossref_primary_10_1007_s12209_024_00413_1
crossref_primary_10_1039_D3SC02647G
crossref_primary_10_1002_anie_202300122
crossref_primary_10_1016_j_ces_2023_118911
crossref_primary_10_1007_s11426_024_2256_8
crossref_primary_10_3390_pr13020573
crossref_primary_10_1021_jacsau_4c00583
crossref_primary_10_1039_D3CP04841A
crossref_primary_10_1002_ange_202402950
crossref_primary_10_1007_s10562_024_04800_0
crossref_primary_10_1016_j_cclet_2023_108651
crossref_primary_10_1021_acsanm_3c00230
crossref_primary_10_1002_anie_202407638
crossref_primary_10_2174_1570178620666230608160836
crossref_primary_10_1002_ange_202300129
crossref_primary_10_1007_s12274_022_5073_0
crossref_primary_10_1038_s41467_024_49038_x
crossref_primary_10_1002_ange_202300122
crossref_primary_10_1002_cssc_202400776
crossref_primary_10_1002_adfm_202410339
Cites_doi 10.1038/s41929-020-0440-2
10.1002/adma.201902033
10.1016/j.nanoen.2018.04.054
10.1002/cnma.202100110
10.1021/acssuschemeng.1c06095
10.1016/j.jechem.2019.06.013
10.1021/acs.accounts.8b00478
10.1002/anie.201911995
10.1021/jacs.8b09344
10.1038/s41929-022-00757-8
10.1073/pnas.1702405114
10.1021/acscatal.7b03251
10.1007/s11426-020-9847-9
10.1039/C8CY02275E
10.1016/j.jpowsour.2013.11.047
10.1038/s41893-022-00879-8
10.1007/s12274-019-2316-9
10.1016/j.jpowsour.2010.05.037
10.1021/acsami.9b13081
10.1021/jacs.1c12603
10.1021/acscatal.0c04371
10.1002/aenm.202002105
10.1002/anie.202114238
10.1007/s11426-020-9825-9
10.1021/acssuschemeng.7b02678
10.1039/C4CY00030G
10.1038/nchem.2262
10.1016/j.jechem.2019.11.021
10.1002/asia.202001384
10.1021/acscatal.9b03709
10.1016/j.jechem.2019.03.001
10.1016/j.jpowsour.2020.227846
10.1016/j.jechem.2018.11.002
10.1021/jacs.8b12381
10.1038/s41557-020-0481-9
10.1002/anie.202113135
10.1038/s41560-021-00973-9
10.1039/C5CC07079A
10.1002/anie.201916538
10.1021/acs.nanolett.1c02227
10.1007/s12274-017-1514-6
10.1246/cl.1985.1695
10.1016/j.apcatb.2021.120342
10.1016/j.jcat.2017.12.027
10.1038/s41467-020-19135-8
10.1038/s41467-021-24936-6
10.1039/D0CC00805B
10.1002/anie.202009191
10.1016/j.ijhydene.2021.03.134
10.1007/s12274-021-3448-2
10.1038/ncomms15174
10.1039/C6CC08801E
10.1002/cctc.201901643
10.1021/jacs.1c13024
10.1039/C8NR03882A
10.1021/jacs.7b00102
10.1016/S1872-2067(20)63577-X
10.1021/acscatal.6b02188
10.1021/acscatal.0c01579
10.1021/jacs.5b00046
10.1016/j.jechem.2019.06.001
10.1016/j.cogsc.2016.10.004
10.1016/j.jcat.2015.10.025
10.1021/acscatal.1c05907
10.1016/j.nanoen.2020.104598
10.1038/s41929-022-00760-z
10.1021/acscatal.7b03612
10.1002/anie.202003847
10.1039/C6CY00160B
10.1016/j.apcatb.2020.119648
10.1039/C6TA06202D
10.1038/s41467-020-17120-9
10.1021/acssuschemeng.7b00947
10.1021/acscatal.1c01610
10.1038/s41929-022-00763-w
10.1016/j.apcatb.2021.120556
10.1039/C7CY00842B
10.1021/acscatal.5b01774
10.1007/s10853-020-04983-y
10.1016/j.joule.2018.10.027
10.1021/acs.jpclett.0c03416
10.1039/C8TA02858C
10.1016/j.cej.2022.134621
10.1021/acssuschemeng.9b01985
10.1016/j.jcat.2020.06.018
10.1016/S2095-4956(15)60322-9
10.1016/S1872-2067(21)63940-2
10.1021/acsenergylett.9b01142
10.1021/jp806587y
10.1016/S2095-4956(14)60201-1
10.1039/C8CC01873A
10.1016/j.chempr.2018.12.014
10.1016/j.apcata.2016.01.006
10.1039/C9TA03065D
10.1038/s41565-019-0551-6
10.1007/s12209-021-00283-x
10.1039/C7GC00923B
10.1021/acscatal.9b00401
10.1021/acscatal.1c04785
10.1039/D1CS00260K
10.1016/j.jpowsour.2019.227268
10.1038/s41929-021-00584-3
10.1093/nsr/nwv024
10.1002/adma.202005113
10.1021/acsami.1c04624
10.1002/anie.202102657
10.1039/C6SC04966D
10.1039/C7GC03801A
10.1039/C9EE01204D
10.1126/science.abg6582
10.1021/acs.chemrev.7b00435
10.1021/jacs.0c08607
10.1016/j.jechem.2017.07.003
10.1016/j.jechem.2016.03.009
10.1016/j.catcom.2013.10.034
10.1021/acssuschemeng.8b01548
10.1038/s41560-020-0594-9
10.1016/j.jcat.2021.02.024
10.1038/s41565-021-00974-5
10.1038/s41929-022-00761-y
10.1038/s41929-019-0235-5
10.1016/j.scib.2020.01.020
10.1007/s12274-022-4540-y
10.1002/adma.201906193
10.1021/acssuschemeng.8b06160
10.1016/j.fuel.2020.119151
10.1039/c1ee01035b
10.1002/anie.202006536
10.1038/s41467-020-16742-3
10.1039/C8TA08613C
10.1038/s41467-018-05880-4
10.1021/jacs.0c08139
10.1016/j.nanoen.2016.06.035
10.1021/acscatal.7b00571
10.1021/acscatal.8b05060
10.1021/ie8014582
10.1002/anie.201910662
10.1016/j.joule.2021.01.007
10.1126/science.abh4049
10.1007/s41918-022-00140-y
10.1021/acscatal.5b00007
10.1039/C3CY00868A
10.1016/j.catcom.2019.105711
10.1016/j.jechem.2021.10.017
10.1039/C9GC00811J
10.1126/science.aaf1835
10.1016/j.apcatb.2018.12.059
10.1021/acssuschemeng.8b04538
10.1126/science.aav3506
10.1038/s41560-017-0078-8
10.1021/acscatal.9b02113
10.1039/D0GC02302G
10.1039/D0TA09293B
10.1038/s41929-021-00655-5
10.1126/sciadv.1701290
10.1021/acs.chemrev.0c01012
10.1021/acscatal.7b00903
10.1039/D0EE00047G
10.1021/acssuschemeng.9b07471
10.1002/adma.201903470
10.1038/nchem.2794
10.1016/j.elecom.2017.01.009
10.1016/j.cogsc.2022.100589
10.1016/j.elecom.2016.05.003
10.1016/S1872-2067(21)63907-4
10.1038/s41929-020-0450-0
10.1002/cssc.201702229
10.1016/j.joule.2018.08.016
10.1038/s41467-017-01673-3
10.1021/acscatal.0c03215
10.1016/j.elecom.2015.03.008
10.1039/C8EE00133B
10.1038/s41467-021-26001-8
10.1038/s42004-018-0012-4
10.1021/acscatal.8b02267
10.1038/s41929-019-0266-y
10.1021/acscatal.0c03484
10.1021/acsenergylett.1c00392
10.1039/D0TA08088H
10.1016/j.apcatb.2019.118391
10.1246/cl.1986.897
10.1021/acs.iecr.9b01546
10.1002/aenm.202001645
10.1021/acscatal.0c03292
10.1016/j.jcat.2019.12.022
10.1021/acsenergylett.0c02665
10.1002/cssc.202002054
10.1002/cssc.202001002
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID C6C
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-022-00326-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1995-8196
EndPage 264
ExternalDocumentID tianjdxxb_e202204003
10_1007_s12209_022_00326_x
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92D
92I
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AACDK
AAHNG
AAHTB
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
C6C
CAG
CAJEC
CCEZO
CEKLB
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
4A8
PSX
ID FETCH-LOGICAL-c400t-1afaf39696efecc2e296d421fa101e2dbcaa3ecffd7cd5e5e15ae3ec570484ab3
IEDL.DBID AGYKE
ISSN 1006-4982
IngestDate Thu May 29 04:11:18 EDT 2025
Mon Aug 11 22:10:47 EDT 2025
Tue Jul 01 02:15:56 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Fri Feb 21 02:45:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords electroreduction
CO
Fuels
hydrogenation
Chemicals
conversion
CO2 electroreduction
CO2 conversion
CO2 hydrogenation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-1afaf39696efecc2e296d421fa101e2dbcaa3ecffd7cd5e5e15ae3ec570484ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12209-022-00326-x
PQID 2707399614
PQPubID 2043634
PageCount 20
ParticipantIDs wanfang_journals_tianjdxxb_e202204003
proquest_journals_2707399614
crossref_citationtrail_10_1007_s12209_022_00326_x
crossref_primary_10_1007_s12209_022_00326_x
springer_journals_10_1007_s12209_022_00326_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Tianjin
PublicationPlace_xml – name: Tianjin
– name: New York
PublicationSubtitle Advanced Energy Chemistry and Materials
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitle_FL Transactions of Tianjin University
PublicationYear 2022
Publisher Tianjin University
Springer Nature B.V
University of Chinese Academy of Sciences,Beijing 100049,China
State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China
Publisher_xml – name: Tianjin University
– name: Springer Nature B.V
– name: State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China
– name: University of Chinese Academy of Sciences,Beijing 100049,China
References Wei, Yao, Ge (CR61) 2018; 8
Liang, Sun, Ma (CR52) 2019; 9
Yu, Guo, Ge (CR112) 2020; 453
Ozden, Wang, Li (CR185) 2021; 5
Zhang, Han, Zhu (CR45) 2020; 3
Lohr, Marks (CR50) 2015; 7
Liu, Yang, Su (CR133) 2019; 36
Shi, Ji, Long (CR142) 2020; 11
Shao, Yang, Xu (CR28) 2019; 5
Lin, Liu, Xiao (CR149) 2020; 59
Zheng, Liu, Guo (CR147) 2021; 16
Ma, Su, Huang (CR128) 2019; 11
Artz, Müller, Thenert (CR1) 2018; 118
Wei, Sun, Wen (CR51) 2016; 6
Wang, Meeprasert, Han (CR26) 2022; 43
Gao, Cai, Wang (CR109) 2017; 3
Endrődi, Kecsenovity, Samu (CR173) 2019; 4
Wang, Jiang, Ji (CR83) 2020; 8
Gao, Zhou, Cai (CR118) 2017; 10
Song, Zhou, Zhang (CR91) 2018; 6
Hu, Zhang, Liu (CR93) 2019; 36
Zhan, Zhao (CR87) 2010; 195
Gao, Jiang, Liu (CR36) 2018; 10
Chen, Zhong, Tao (CR79) 2018; 20
Han, Tang, Sha (CR23) 2021; 396
Gao, Yan, Wang (CR111) 2018; 24
Ma, Xie, Liu (CR151) 2020; 3
Liang, Duan, Sun (CR47) 2019; 7
Zhang, Qiu, Yao (CR141) 2019; 7
Zang, Wei, Li (CR117) 2022
Cai, Sun, Qiao (CR6) 2021; 373
Ling, Ma, Yu (CR4) 2021; 27
Pan, Peng, Sun (CR34) 2014; 45
Wang, Qu, Song (CR18) 2020; 47
Xu, Su, Liu (CR21) 2016; 514
Gao, Bai, Gao (CR188) 2020; 56
Wei, Yao, Han (CR63) 2021; 50
Han, Fang, Ji (CR48) 2020; 10
Lin, Li, Yan (CR126) 2019; 31
Yao, Li, Qiu (CR132) 2021; 9
Yan, Li, Ye (CR124) 2018; 11
Monteiro, Dattila, Hagedoorn (CR182) 2021; 4
Hori, Kikuchi, Suzuki (CR106) 1985; 14
Gao, Zhang, Zhou (CR123) 2017; 139
Xu, Yang, Hong (CR165) 2021; 11
Liu, Song, Li (CR96) 2021; 46
Li, Cao, Zheng (CR143) 2021; 33
Zhang, Ge, Liu (CR67) 2020; 10
Zhang, Ma, Tu (CR127) 2019; 12
Li, Cheng, Richter (CR190) 2021; 6
Chen, Zhu, Wen (CR84) 2020; 12
Tackett, Gomez, Chen (CR3) 2019; 2
Guo, Sun, Ji (CR46) 2018; 1
Xu, Su, Duan (CR32) 2016; 333
Gu, Liu, Ni (CR184) 2022; 5
Xin, Lin, Li (CR42) 2022; 144
Liu, Wang, Yin (CR166) 2020; 10
Lv, Lin, Zhang (CR101) 2019; 7
Velasco-Vélez, Chuang, Gao (CR157) 2020; 10
Gao, Wei, Li (CR169) 2021; 37
Pan, Peng, Wang (CR35) 2014; 4
Wei, Ge, Yao (CR60) 2017; 8
Jiao, Li, Pan (CR53) 2016; 351
Dong, Fu, Li (CR68) 2020; 142
Wang, Qu, Song (CR17) 2020; 40
Yao, Gu, Sun (CR66) 2009; 48
Wei, Li, Lin (CR171) 2020; 63
Huang, Li, Ozden (CR181) 2021; 372
Jiang, Cai, Gao (CR108) 2016; 68
Gao, Li, Bu (CR5) 2017; 9
Ye, Ma, Yu (CR65) 2022; 67
Yao, Qiu, Zhang (CR134) 2019; 7
Gao, Fu, Wei (CR33) 2016; 6
Li, Yu, Miao (CR54) 2019; 129
Ni, Chen, Fu (CR56) 2018; 9
Lv, Zhou, Zhang (CR99) 2019; 35
Ye, Zhou, Shao (CR144) 2020; 59
Liao, Chen, Ye (CR39) 2021; 16
de Luna, Hahn, Higgins (CR85) 2019; 364
Zhou, Lin, Song (CR97) 2020; 71
Hori, Kikuchi, Murata (CR107) 1986; 15
Lv, Liu, Zhang (CR103) 2020; 59
Wang, Liu, Li (CR70) 2022; 12
Jiang, Li, Yang (CR137) 2020; 55
Su, Xu, Qiu (CR140) 2018; 11
Ren, Liu, Li (CR131) 2020; 63
Yin, Peng, Wei (CR170) 2019; 12
Yu, Yang, Zhang (CR16) 2020; 10
Wang, Qu, Song (CR19) 2020; 382
Su, Yang, Huang (CR11) 2019; 52
Cai, Gao, Zhou (CR122) 2017; 8
Ji, Chen, Wei (CR152) 2022; 5
Larrazábal, Strøm-Hansen, Heli (CR176) 2019; 11
Zhang, Zhang, Yang (CR40) 2020; 22
Li, Liu, Wei (CR161) 2021; 60
Li, Wang, Qu (CR55) 2017; 7
Ye, Liao, Reina (CR38) 2021; 285
Jayakumar, Li, Tao (CR78) 2018; 6
Shao, Wang, Gao (CR146) 2020; 41
Wang, Li, Li (CR22) 2017; 3
Chen, Wang, Qin (CR76) 2019; 21
Monteiro, Philips, Schouten (CR183) 2021; 12
Gao, Zhou, Wang (CR8) 2015; 137
Gao, Cai, Xu (CR168) 2014; 23
Burkart, Hazari, Tway (CR2) 2019; 9
Wang, Shang, Shen (CR189) 2020; 11
Yang, Deng, Pan (CR10) 2015; 2
Hu, Zhang, Cai (CR95) 2020; 8
Wang, Zhang, Zhang (CR186) 2018; 140
Yin, Gao, Yao (CR120) 2016; 27
Zhang, Yan, Qi (CR41) 2022; 12
Li, Qu, Wang (CR57) 2019; 3
Pan, Jiao, Miao (CR29) 2021; 121
Wu, Liu, Yang (CR82) 2017; 5
Jiang, Chen, Tong (CR73) 2016; 6
Li, Goldbach, Li (CR74) 2008; 112
Wang, Wang, Li (CR77) 2017; 5
Song, Zhang, Xie (CR86) 2019; 31
Zhou, Zhou, Song (CR92) 2018; 50
Yan, Chen, Dogdibegovic (CR90) 2014; 252
Ye, Liu, Song (CR114) 2021; 296
Timoshenko, Bergmann, Rettenmaier (CR159) 2022; 5
Kim, Zhu, Chen (CR179) 2022; 5
Shih, Zhang, Li (CR12) 2018; 2
Zhang, Song, Guan (CR98) 2018; 359
Yan, Lin, Gao (CR110) 2018; 6
Zhang, Li, Lu (CR105) 2021; 21
Wu, Sun, Liu (CR81) 2017; 19
Rabinowitz, Kanan (CR174) 2020; 11
Ma, Clark, Therkildsen (CR177) 2020; 13
Liu, Yang, Li (CR27) 2017; 8
Yao, Wei, Ge (CR49) 2021; 298
Fujinuma, Ikoma, Lofland (CR180) 2020; 10
Li, Lin, Pan (CR37) 2019; 9
Gao (CR160) 2022; 15
Han, Tang, Wang (CR24) 2021; 394
Lv, Lin, Zhang (CR102) 2020; 32
Zhu, Sun, Yang (CR59) 2017; 7
Ding, Feng, Mei (CR130) 2020; 268
Zhong, Qiu, Zhang (CR139) 2016; 4
Ozden, García de Arquer, Huang (CR175) 2022; 5
Xu, Wang, Lin (CR7) 1997; 6
Gao, Liu, Wang (CR116) 2021; 6
Hu, Yu, Deng (CR25) 2021; 4
Jeong, Lee, Moon (CR71) 2022; 433
Liu, Yang, Hung (CR129) 2020; 59
Wang, de Araújo, Ju (CR164) 2019; 14
Zhao, Zhang, Zhang (CR75) 2015; 24
Feng, Song, Zhang (CR100) 2020; 13
Liang, Ma, Su (CR14) 2019; 58
Cheng, Shao, Wei (CR135) 2021; 7
Xiao, Goddard, Cheng (CR158) 2017; 114
Chen, Su, Su (CR43) 2017; 7
Noreen, Li, Fu (CR62) 2020; 10
Huang, Mensi, Oveisi (CR163) 2019; 141
Siritanaratkul, Forster, Greenwell (CR178) 2022; 144
Xie, Zhang, Meng (CR89) 2011; 4
Ma, Porosoff (CR167) 2019; 9
Hou, Luo, Cui (CR187) 2019; 245
Tang, Chen, Meng (CR9) 2018; 54
Tian, Wei, Ye (CR13) 2015; 5
Wang, Lu, Li (CR20) 2015; 51
Sang, Wei, Liu (CR155) 2022; 61
Zhu, Cui, Liu (CR162) 2021; 14
Zhang, Chen, Wang (CR191) 2020; 10
Hu, Zhang, Liu (CR94) 2019; 443
Liu, Jayakumar, Chen (CR80) 2021; 13
Ye, Yang, Pan (CR64) 2020; 142
Cai, Gao, Si (CR121) 2017; 76
Gao, Li, Wei (CR115) 2022; 43
Qiu, Zhong, Zhang (CR148) 2017; 7
Lv, Lin, Zhang (CR104) 2021; 12
Wei, Yao, Ge (CR58) 2021; 283
Lin, Ma, Sun (CR113) 2021; 12
Su, Xu, Liang (CR30) 2016; 25
Zhang, Song, Wang (CR88) 2017; 26
Arán-Ais, Scholten, Kunze (CR154) 2020; 5
Jiang, Chen, Tong (CR72) 2017; 53
Lin, Li, Wang (CR138) 2021; 60
Chen, Su, Liu (CR150) 2020; 59
Li, Wei, Gao (CR156) 2022; 34
Gao, Zhou, Cai (CR119) 2018; 8
Wang, Zhang, Lei (CR69) 2021; 9
Ye, Cao, Shao (CR145) 2020; 65
Yang, Hung, Liu (CR125) 2018; 3
Lin, Liu, Jiang (CR31) 2014; 4
Sha, Han, Tang (CR15) 2020; 13
Li, Lin, Li (CR44) 2020; 59
Gao, Wang, Wu (CR136) 2015; 55
Wakerley, Lamaison, Wicks (CR172) 2022; 7
Gao, Arán-Ais, Jeon (CR153) 2019; 2
RG Li (326_CR190) 2021; 6
D Xu (326_CR165) 2021; 11
K Ye (326_CR145) 2020; 65
J Timoshenko (326_CR159) 2022; 5
YT Zhu (326_CR162) 2021; 14
F Jiao (326_CR53) 2016; 351
BL Liang (326_CR52) 2019; 9
K Ye (326_CR144) 2020; 59
JQ Shao (326_CR146) 2020; 41
J Gu (326_CR184) 2022; 5
J Wei (326_CR60) 2017; 8
L Liao (326_CR39) 2021; 16
YM Ni (326_CR56) 2018; 9
HB Yang (326_CR125) 2018; 3
WL Wang (326_CR77) 2017; 5
X Su (326_CR30) 2016; 25
XM Zhang (326_CR88) 2017; 26
S Jayakumar (326_CR78) 2018; 6
F Cai (326_CR122) 2017; 8
XL Jiang (326_CR108) 2016; 68
SQ Hu (326_CR94) 2019; 443
X Ye (326_CR65) 2022; 67
XL Pan (326_CR29) 2021; 121
CC Yan (326_CR124) 2018; 11
JQ Sang (326_CR155) 2022; 61
GQ Wang (326_CR83) 2020; 8
L Lin (326_CR149) 2020; 59
WW Wang (326_CR17) 2020; 40
HF Lv (326_CR103) 2020; 59
P Gao (326_CR5) 2017; 9
Y Hori (326_CR106) 1985; 14
JP Wang (326_CR70) 2022; 12
L Lin (326_CR138) 2021; 60
GD Zhao (326_CR75) 2015; 24
H Xin (326_CR42) 2022; 144
LY Xu (326_CR7) 1997; 6
ZL Wu (326_CR81) 2017; 19
QS Pan (326_CR34) 2014; 45
J Chen (326_CR79) 2018; 20
JF Yu (326_CR16) 2020; 10
DF Gao (326_CR118) 2017; 10
Y Han (326_CR48) 2020; 10
PP Su (326_CR140) 2018; 11
JB Yan (326_CR90) 2014; 252
BL Liang (326_CR14) 2019; 58
ZQ Ma (326_CR167) 2019; 9
JH Xu (326_CR32) 2016; 333
H Li (326_CR74) 2008; 112
J Gao (326_CR36) 2018; 10
YJ Zhou (326_CR92) 2018; 50
JF Huang (326_CR163) 2019; 141
W Gao (326_CR188) 2020; 56
DF Gao (326_CR168) 2014; 23
PF Wei (326_CR171) 2020; 63
J Wei (326_CR61) 2018; 8
LJ Gao (326_CR33) 2016; 6
JJ Velasco-Vélez (326_CR157) 2020; 10
YD Chen (326_CR76) 2019; 21
SD Yao (326_CR66) 2009; 48
SS Ma (326_CR128) 2019; 11
MCO Monteiro (326_CR182) 2021; 4
A Ozden (326_CR185) 2021; 5
WC Feng (326_CR100) 2020; 13
RW Yao (326_CR49) 2021; 298
QX Liu (326_CR96) 2021; 46
WW Wang (326_CR19) 2020; 382
RM Arán-Ais (326_CR154) 2020; 5
PF Zhu (326_CR59) 2017; 7
HF Li (326_CR156) 2022; 34
XB Zhang (326_CR45) 2020; 3
L Lin (326_CR126) 2019; 31
YF Ling (326_CR4) 2021; 27
D Wakerley (326_CR172) 2022; 7
M Ma (326_CR177) 2020; 13
ZL Li (326_CR55) 2017; 7
DF Gao (326_CR160) 2022; 15
MCO Monteiro (326_CR183) 2021; 12
XY Ren (326_CR131) 2020; 63
Y Wang (326_CR186) 2018; 140
QQ Jiang (326_CR72) 2017; 53
ZL Yin (326_CR170) 2019; 12
YF Song (326_CR91) 2018; 6
Q Yu (326_CR112) 2020; 453
B Siritanaratkul (326_CR178) 2022; 144
JH Dong (326_CR68) 2020; 142
ZL Zhan (326_CR87) 2010; 195
CC Yan (326_CR110) 2018; 6
Y Hori (326_CR107) 1986; 15
L Liu (326_CR80) 2021; 13
LQ Tang (326_CR9) 2018; 54
DF Gao (326_CR116) 2021; 6
YM Shi (326_CR142) 2020; 11
GO Larrazábal (326_CR176) 2019; 11
J Wei (326_CR63) 2021; 50
JC Zhang (326_CR67) 2020; 10
F Sha (326_CR15) 2020; 13
YR Zhang (326_CR41) 2022; 12
LX Zhang (326_CR105) 2021; 21
S Liu (326_CR133) 2019; 36
CF Cheng (326_CR135) 2021; 7
XM Zhang (326_CR98) 2018; 359
QQ Lin (326_CR31) 2014; 4
HF Li (326_CR161) 2021; 60
J Li (326_CR37) 2019; 9
HF Lv (326_CR99) 2019; 35
BM Tackett (326_CR3) 2019; 2
XZ Shao (326_CR28) 2019; 5
WC Ma (326_CR151) 2020; 3
P de Luna (326_CR85) 2019; 364
MH Jeong (326_CR71) 2022; 433
DF Gao (326_CR115) 2022; 43
J Wei (326_CR58) 2021; 283
X Ye (326_CR64) 2020; 142
SQ Hu (326_CR95) 2020; 8
JJ Wang (326_CR26) 2022; 43
QQ Jiang (326_CR73) 2016; 6
DF Gao (326_CR119) 2018; 8
DF Gao (326_CR153) 2019; 2
B Endrődi (326_CR173) 2019; 4
YF Song (326_CR86) 2019; 31
DF Gao (326_CR111) 2018; 24
XD Chen (326_CR43) 2017; 7
H Xiao (326_CR158) 2017; 114
K Xie (326_CR89) 2011; 4
JY Kim (326_CR179) 2022; 5
TT Zhang (326_CR141) 2019; 7
Z Zhang (326_CR127) 2019; 12
BL Liang (326_CR47) 2019; 7
TT Hou (326_CR187) 2019; 245
QS Pan (326_CR35) 2014; 4
F Cai (326_CR121) 2017; 76
YL Ji (326_CR152) 2022; 5
YL Qiu (326_CR148) 2017; 7
SQ Hu (326_CR93) 2019; 36
DF Gao (326_CR123) 2017; 139
A Noreen (326_CR62) 2020; 10
QG Liu (326_CR27) 2017; 8
J Li (326_CR54) 2019; 129
ZL Wu (326_CR82) 2017; 5
TT Zheng (326_CR147) 2021; 16
HF Lv (326_CR101) 2019; 7
DF Gao (326_CR109) 2017; 3
HF Lv (326_CR102) 2020; 32
JE Huang (326_CR181) 2021; 372
T Cai (326_CR6) 2021; 373
JJ Wang (326_CR20) 2015; 51
LS Guo (326_CR46) 2018; 1
Z Yin (326_CR120) 2016; 27
HF Zhang (326_CR191) 2020; 10
C Chen (326_CR84) 2020; 12
JT Hu (326_CR25) 2021; 4
WW Wang (326_CR18) 2020; 47
JA Rabinowitz (326_CR174) 2020; 11
XL Wang (326_CR164) 2019; 14
DF Gao (326_CR8) 2015; 137
CM Ding (326_CR130) 2020; 268
XL Liu (326_CR166) 2020; 10
JH Xu (326_CR21) 2016; 514
DF Gao (326_CR169) 2021; 37
HF Lv (326_CR104) 2021; 12
YJ Zhou (326_CR97) 2020; 71
F Yang (326_CR10) 2015; 2
DF Gao (326_CR136) 2015; 55
HX Zhong (326_CR139) 2016; 4
A Ozden (326_CR175) 2022; 5
MD Burkart (326_CR2) 2019; 9
PF Yao (326_CR132) 2021; 9
YR Zhang (326_CR40) 2020; 22
ZL Li (326_CR57) 2019; 3
J Wei (326_CR51) 2016; 6
PF Yao (326_CR134) 2019; 7
Z Han (326_CR23) 2021; 396
Y Wang (326_CR189) 2020; 11
J Artz (326_CR1) 2018; 118
ZJ Li (326_CR143) 2021; 33
CF Shih (326_CR12) 2018; 2
S Liu (326_CR129) 2020; 59
JJ Wang (326_CR22) 2017; 3
XZ Lin (326_CR113) 2021; 12
X Su (326_CR11) 2019; 52
P Tian (326_CR13) 2015; 5
RP Ye (326_CR38) 2021; 285
XY Li (326_CR44) 2020; 59
TL Lohr (326_CR50) 2015; 7
RX Chen (326_CR150) 2020; 59
Z Han (326_CR24) 2021; 394
YH Wang (326_CR69) 2021; 9
XL Jiang (326_CR137) 2020; 55
N Fujinuma (326_CR180) 2020; 10
K Ye (326_CR114) 2021; 296
YP Zang (326_CR117) 2022
References_xml – volume: 3
  start-page: 411
  issue: 4
  year: 2020
  end-page: 417
  ident: CR45
  article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO hydrogenation
  publication-title: Nat Catal
  doi: 10.1038/s41929-020-0440-2
– volume: 31
  issue: 50
  year: 2019
  ident: CR86
  article-title: High-temperature CO electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects
  publication-title: Adv Mater
  doi: 10.1002/adma.201902033
– volume: 50
  start-page: 43
  year: 2018
  end-page: 51
  ident: CR92
  article-title: Enhancing CO electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.054
– volume: 7
  start-page: 635
  issue: 6
  year: 2021
  end-page: 640
  ident: CR135
  article-title: Nitrogen and boron co-doped carbon spheres for carbon dioxide electroreduction
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202100110
– volume: 9
  start-page: 17301
  issue: 51
  year: 2021
  end-page: 17309
  ident: CR69
  article-title: Defect-dependent selective C-H/C–C bond cleavage of propane in the presence of CO over FeNi/ceria catalysts
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c06095
– volume: 13
  start-page: 6160
  issue: 23
  year: 2020
  end-page: 6181
  ident: CR15
  article-title: Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts
  publication-title: Chemsuschem
– volume: 36
  start-page: 95
  year: 2019
  end-page: 105
  ident: CR133
  article-title: Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.06.013
– volume: 52
  start-page: 656
  issue: 3
  year: 2019
  end-page: 664
  ident: CR11
  article-title: Single-atom catalysis toward efficient CO conversion to CO and formate products
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.8b00478
– volume: 59
  start-page: 798
  issue: 2
  year: 2020
  end-page: 803
  ident: CR129
  article-title: Elucidating the electrocatalytic CO reduction reaction over a model single-atom nickel catalyst
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201911995
– volume: 140
  start-page: 14595
  issue: 44
  year: 2018
  end-page: 14598
  ident: CR186
  article-title: Visible-light driven overall conversion of CO and H O to CH and O on 3D-SiC@2D-MoS heterostructure
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b09344
– volume: 5
  start-page: 251
  issue: 4
  year: 2022
  end-page: 258
  ident: CR152
  article-title: Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00757-8
– volume: 114
  start-page: 6685
  issue: 26
  year: 2017
  end-page: 6688
  ident: CR158
  article-title: Cu metal embedded in oxidized matrix catalyst to promote CO activation and CO dimerization for electrochemical reduction of CO
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1702405114
– volume: 7
  start-page: 8544
  issue: 12
  year: 2017
  end-page: 8548
  ident: CR55
  article-title: Highly selective conversion of carbon dioxide to lower olefins
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b03251
– volume: 63
  start-page: 1727
  issue: 12
  year: 2020
  end-page: 1733
  ident: CR131
  article-title: Electron-withdrawing functional ligand promotes CO reduction catalysis in single atom catalyst
  publication-title: Sci China Chem
  doi: 10.1007/s11426-020-9847-9
– volume: 9
  start-page: 456
  issue: 2
  year: 2019
  end-page: 464
  ident: CR52
  article-title: Mn decorated Na/Fe catalysts for CO hydrogenation to light olefins
  publication-title: Catal Sci Technol
  doi: 10.1039/C8CY02275E
– volume: 252
  start-page: 79
  year: 2014
  end-page: 84
  ident: CR90
  article-title: High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.11.047
– volume: 5
  start-page: 563
  issue: 7
  year: 2022
  end-page: 573
  ident: CR175
  article-title: Carbon-efficient carbon dioxide electrolysers
  publication-title: Nat Sustain
  doi: 10.1038/s41893-022-00879-8
– volume: 12
  start-page: 2313
  issue: 9
  year: 2019
  end-page: 2317
  ident: CR127
  article-title: Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO reduction to CO
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2316-9
– volume: 195
  start-page: 7250
  issue: 21
  year: 2010
  end-page: 7254
  ident: CR87
  article-title: Electrochemical reduction of CO in solid oxide electrolysis cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.05.037
– volume: 11
  start-page: 41281
  issue: 44
  year: 2019
  end-page: 41288
  ident: CR176
  article-title: Analysis of mass flows and membrane cross-over in CO reduction at high current densities in an MEA-type electrolyzer
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b13081
– volume: 144
  start-page: 4874
  issue: 11
  year: 2022
  end-page: 4882
  ident: CR42
  article-title: Overturning CO hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c12603
– volume: 10
  start-page: 14694
  issue: 24
  year: 2020
  end-page: 14706
  ident: CR16
  article-title: Stabilizing Cu in Cu/SiO catalysts with a shattuckite-like structure boosts CO hydrogenation into methanol
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c04371
– volume: 10
  start-page: 2002105
  issue: 44
  year: 2020
  ident: CR191
  article-title: Carbon encapsulation of organic-inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202002105
– volume: 61
  issue: 5
  year: 2022
  ident: CR155
  article-title: A reconstructed Cu P O catalyst for selective CO electroreduction to multicarbon products
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202114238
– volume: 63
  start-page: 1711
  issue: 12
  year: 2020
  end-page: 1715
  ident: CR171
  article-title: CO electrolysis at industrial current densities using anion exchange membrane based electrolyzers
  publication-title: Sci China Chem
  doi: 10.1007/s11426-020-9825-9
– volume: 5
  start-page: 9634
  issue: 11
  year: 2017
  end-page: 9639
  ident: CR82
  article-title: Knitting aryl network polymers-incorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO as carboxylic acid
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02678
– volume: 4
  start-page: 2058
  issue: 7
  year: 2014
  end-page: 2063
  ident: CR31
  article-title: Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO hydrogenation
  publication-title: Catal Sci Technol
  doi: 10.1039/C4CY00030G
– volume: 7
  start-page: 477
  issue: 6
  year: 2015
  end-page: 482
  ident: CR50
  article-title: Orthogonal tandem catalysis
  publication-title: Nat Chem
  doi: 10.1038/nchem.2262
– volume: 47
  start-page: 18
  year: 2020
  end-page: 28
  ident: CR18
  article-title: An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce Zr O catalyst for CO hydrogenation to CH OH
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.11.021
– volume: 13
  start-page: 6290
  issue: 23
  year: 2020
  end-page: 6295
  ident: CR100
  article-title: Platinum-decorated ceria enhances CO electroreduction in solid oxide electrolysis cells
  publication-title: ChemSusChem
– volume: 16
  start-page: 678
  issue: 6
  year: 2021
  end-page: 689
  ident: CR39
  article-title: Robust nickel silicate catalysts with high Ni loading for CO methanation
  publication-title: Chem Asian J
  doi: 10.1002/asia.202001384
– volume: 10
  start-page: 783
  issue: 1
  year: 2020
  end-page: 791
  ident: CR67
  article-title: Robust ruthenium-saving catalyst for high-temperature carbon dioxide reforming of methane
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03709
– volume: 40
  start-page: 22
  year: 2020
  end-page: 30
  ident: CR17
  article-title: CO hydrogenation to methanol over Cu/CeO and Cu/ZrO catalysts: tuning methanol selectivity via metal-support interaction
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.03.001
– volume: 453
  year: 2020
  ident: CR112
  article-title: Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.227846
– volume: 35
  start-page: 71
  year: 2019
  end-page: 78
  ident: CR99
  article-title: Infiltration of Ce Gd O nanoparticles on Sr Fe Mo O cathode for CO electroreduction in solid oxide electrolysis cell
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2018.11.002
– volume: 141
  start-page: 2490
  issue: 6
  year: 2019
  end-page: 2499
  ident: CR163
  article-title: Structural sensitivities in bimetallic catalysts for electrochemical CO reduction revealed by Ag-Cu nanodimers
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b12381
– volume: 12
  start-page: 717
  issue: 8
  year: 2020
  end-page: 724
  ident: CR84
  article-title: Coupling N and CO in H O to synthesize urea under ambient conditions
  publication-title: Nat Chem
  doi: 10.1038/s41557-020-0481-9
– volume: 60
  start-page: 26582
  issue: 51
  year: 2021
  end-page: 26586
  ident: CR138
  article-title: Temperature-dependent CO electroreduction over Fe-N-C and Ni-N-C single-atom catalysts
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202113135
– volume: 7
  start-page: 130
  issue: 2
  year: 2022
  end-page: 143
  ident: CR172
  article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO electrolysers
  publication-title: Nat Energy
  doi: 10.1038/s41560-021-00973-9
– volume: 51
  start-page: 17615
  issue: 99
  year: 2015
  end-page: 17618
  ident: CR20
  article-title: A remarkable difference in CO hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes
  publication-title: Chem Commun
  doi: 10.1039/C5CC07079A
– volume: 59
  start-page: 4814
  issue: 12
  year: 2020
  end-page: 4821
  ident: CR144
  article-title: In situ reconstruction of a hierarchical Sn-Cu/SnO core/shell catalyst for high-performance CO electroreduction
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201916538
– volume: 21
  start-page: 6952
  issue: 16
  year: 2021
  end-page: 6959
  ident: CR105
  article-title: In situ dispersed nano-Au on Zr-suboxides as active cathode for direct CO electroreduction in solid oxide electrolysis cells
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.1c02227
– volume: 10
  start-page: 2181
  issue: 6
  year: 2017
  end-page: 2191
  ident: CR118
  article-title: Switchable CO electroreduction via engineering active phases of Pd nanoparticles
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1514-6
– volume: 14
  start-page: 1695
  issue: 11
  year: 1985
  end-page: 1698
  ident: CR106
  article-title: Production of CO and CH in electrochemical reduction of CO at metal electrodes in aqueous hydrogencarbonate solution
  publication-title: Chem Lett
  doi: 10.1246/cl.1985.1695
– volume: 296
  year: 2021
  ident: CR114
  article-title: Tailoring the interactions of heterogeneous Ag S/Ag interface for efficient CO electroreduction
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2021.120342
– volume: 359
  start-page: 8
  year: 2018
  end-page: 16
  ident: CR98
  article-title: Enhancing electrocatalytic CO reduction in solid oxide electrolysis cell with Ce Mn O nanoparticles-modified LSCM-GDC cathode
  publication-title: J Catal
  doi: 10.1016/j.jcat.2017.12.027
– volume: 11
  start-page: 5231
  year: 2020
  ident: CR174
  article-title: The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19135-8
– volume: 12
  start-page: 4943
  year: 2021
  ident: CR183
  article-title: Efficiency and selectivity of CO reduction to CO on gold gas diffusion electrodes in acidic media
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24936-6
– volume: 56
  start-page: 7777
  issue: 56
  year: 2020
  end-page: 7780
  ident: CR188
  article-title: Anchoring of black phosphorus quantum dots onto WO nanowires to boost photocatalytic CO conversion into solar fuels
  publication-title: Chem Commun
  doi: 10.1039/D0CC00805B
– volume: 59
  start-page: 22408
  issue: 50
  year: 2020
  end-page: 22413
  ident: CR149
  article-title: Enhancing CO electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202009191
– volume: 46
  start-page: 19814
  issue: 38
  year: 2021
  end-page: 19821
  ident: CR96
  article-title: A vanadium-doped BSCF perovskite for CO electrolysis in solid oxide electrolysis cells
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.03.134
– volume: 14
  start-page: 4471
  issue: 12
  year: 2021
  end-page: 4486
  ident: CR162
  article-title: Tandem catalysis in electrochemical CO reduction reaction
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3448-2
– volume: 8
  start-page: 15174
  year: 2017
  ident: CR60
  article-title: Directly converting CO into a gasoline fuel
  publication-title: Nat Commun
  doi: 10.1038/ncomms15174
– volume: 53
  start-page: 1188
  issue: 6
  year: 2017
  end-page: 1191
  ident: CR72
  article-title: Direct thermolysis of CO into CO and O
  publication-title: Chem Commun
  doi: 10.1039/C6CC08801E
– volume: 11
  start-page: 6092
  issue: 24
  year: 2019
  end-page: 6098
  ident: CR128
  article-title: Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO reduction
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901643
– volume: 144
  start-page: 7551
  issue: 17
  year: 2022
  end-page: 7556
  ident: CR178
  article-title: Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c13024
– volume: 10
  start-page: 14207
  issue: 29
  year: 2018
  end-page: 14219
  ident: CR36
  article-title: Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO hybrids for the CO reduction reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR03882A
– volume: 139
  start-page: 5652
  issue: 16
  year: 2017
  end-page: 5655
  ident: CR123
  article-title: Enhancing CO electroreduction with the metal-oxide interface
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b00102
– volume: 41
  start-page: 1393
  issue: 9
  year: 2020
  end-page: 1400
  ident: CR146
  article-title: Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(20)63577-X
– volume: 6
  start-page: 6814
  issue: 10
  year: 2016
  end-page: 6822
  ident: CR33
  article-title: Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02188
– volume: 10
  start-page: 8303
  issue: 15
  year: 2020
  end-page: 8314
  ident: CR166
  article-title: Tandem catalysis for hydrogenation of CO and CO to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c01579
– volume: 137
  start-page: 4288
  issue: 13
  year: 2015
  end-page: 4291
  ident: CR8
  article-title: Size-dependent electrocatalytic reduction of CO over Pd nanoparticles
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b00046
– volume: 36
  start-page: 87
  year: 2019
  end-page: 94
  ident: CR93
  article-title: Detrimental phase evolution triggered by Ni in perovskite-type cathodes for CO electroreduction
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.06.001
– volume: 3
  start-page: 39
  year: 2017
  end-page: 44
  ident: CR109
  article-title: Nanostructured heterogeneous catalysts for electrochemical reduction of CO
  publication-title: Curr Opin Green Sustain Chem
  doi: 10.1016/j.cogsc.2016.10.004
– volume: 333
  start-page: 227
  year: 2016
  end-page: 237
  ident: CR32
  article-title: Influence of pretreatment temperature on catalytic performance of rutile TiO -supported ruthenium catalyst in CO methanation
  publication-title: J Catal
  doi: 10.1016/j.jcat.2015.10.025
– volume: 12
  start-page: 5930
  issue: 10
  year: 2022
  end-page: 5938
  ident: CR70
  article-title: Elucidating the active-phase evolution of Fe-based catalysts during isobutane dehydrogenation with and without CO in feed gas
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c05907
– volume: 71
  year: 2020
  ident: CR97
  article-title: Pd single site-anchored perovskite cathode for CO electrolysis in solid oxide electrolysis cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104598
– volume: 5
  start-page: 259
  issue: 4
  year: 2022
  end-page: 267
  ident: CR159
  article-title: Steering the structure and selectivity of CO electroreduction catalysts by potential pulses
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00760-z
– volume: 8
  start-page: 1510
  issue: 2
  year: 2018
  end-page: 1519
  ident: CR119
  article-title: Pd-containing nanostructures for electrochemical CO reduction reaction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b03612
– volume: 59
  start-page: 19983
  issue: 45
  year: 2020
  end-page: 19989
  ident: CR44
  article-title: Controlling CO hydrogenation selectivity by metal-supported electron transfer
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202003847
– volume: 6
  start-page: 4786
  issue: 13
  year: 2016
  end-page: 4793
  ident: CR51
  article-title: New insights into the effect of sodium on Fe O -based nanocatalysts for CO hydrogenation to light olefins
  publication-title: Catal Sci Technol
  doi: 10.1039/C6CY00160B
– volume: 283
  year: 2021
  ident: CR58
  article-title: Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO hydrogenation
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2020.119648
– volume: 4
  start-page: 13746
  issue: 36
  year: 2016
  end-page: 13753
  ident: CR139
  article-title: Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO to formate
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA06202D
– volume: 11
  start-page: 3415
  year: 2020
  ident: CR142
  article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17120-9
– volume: 5
  start-page: 4523
  issue: 6
  year: 2017
  end-page: 4528
  ident: CR77
  article-title: State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO to cyclic carbonates
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b00947
– volume: 11
  start-page: 8978
  issue: 15
  year: 2021
  end-page: 8984
  ident: CR165
  article-title: Tandem catalysis of direct CO hydrogenation to higher alcohols
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c01610
– volume: 5
  start-page: 288
  issue: 4
  year: 2022
  end-page: 299
  ident: CR179
  article-title: Recovering carbon losses in CO electrolysis using a solid electrolyte reactor
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00763-w
– volume: 298
  year: 2021
  ident: CR49
  article-title: Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO hydrogenation
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2021.120556
– volume: 7
  start-page: 2695
  issue: 13
  year: 2017
  end-page: 2699
  ident: CR59
  article-title: Tandem catalytic synthesis of benzene from CO and H
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY00842B
– volume: 6
  start-page: 1172
  issue: 2
  year: 2016
  end-page: 1180
  ident: CR73
  article-title: Catalytic function of IrO in the two-step thermochemical CO -splitting reaction at high temperatures
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b01774
– volume: 55
  start-page: 13916
  issue: 28
  year: 2020
  end-page: 13926
  ident: CR137
  article-title: pH dependence of CO electroreduction selectivity over size-selected Au nanoparticles
  publication-title: J Mater Sci
  doi: 10.1007/s10853-020-04983-y
– volume: 3
  start-page: 570
  issue: 2
  year: 2019
  end-page: 583
  ident: CR57
  article-title: Highly selective conversion of carbon dioxide to aromatics over tandem catalysts
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.027
– volume: 12
  start-page: 552
  issue: 1
  year: 2021
  end-page: 557
  ident: CR113
  article-title: [AuAg (SR) S] : open shell structure and high faradaic efficiency in electrochemical reduction of CO to CO
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.0c03416
– volume: 6
  start-page: 13661
  issue: 28
  year: 2018
  end-page: 13667
  ident: CR91
  article-title: Pure CO electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA02858C
– volume: 433
  year: 2022
  ident: CR71
  article-title: Oxidative dehydrogenation of ethane and subsequent CO activation on Ce-incorporated FeTiO metal oxides
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.134621
– volume: 7
  start-page: 15190
  issue: 18
  year: 2019
  end-page: 15196
  ident: CR141
  article-title: Bi-modified Zn catalyst for efficient CO electrochemical reduction to formate
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b01985
– volume: 394
  start-page: 236
  year: 2021
  end-page: 244
  ident: CR24
  article-title: Atomically dispersed Pt species as highly active sites in Pt/In O catalysts for methanol synthesis from CO hydrogenation
  publication-title: J Catal
  doi: 10.1016/j.jcat.2020.06.018
– volume: 37
  start-page: 2009021
  issue: 5
  year: 2021
  ident: CR169
  article-title: Designing electrolyzers for electrocatalytic CO reduction
  publication-title: Acta Phys-Chim Sin
– volume: 24
  start-page: 353
  issue: 3
  year: 2015
  end-page: 358
  ident: CR75
  article-title: Direct synthesis of propylene carbonate from propylene and carbon dioxide catalyzed by quaternary ammonium heteropolyphosphatotungstate-TBAB system
  publication-title: J Energy Chem
  doi: 10.1016/S2095-4956(15)60322-9
– volume: 43
  start-page: 1001
  issue: 4
  year: 2022
  end-page: 1016
  ident: CR115
  article-title: Electrochemical synthesis of catalytic materials for energy catalysis
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(21)63940-2
– volume: 4
  start-page: 1770
  issue: 7
  year: 2019
  end-page: 1777
  ident: CR173
  article-title: Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.9b01142
– volume: 112
  start-page: 12182
  issue: 39
  year: 2008
  end-page: 12184
  ident: CR74
  article-title: CO decomposition over Pd membrane surfaces
  publication-title: J Phys Chem B
  doi: 10.1021/jp806587y
– volume: 23
  start-page: 694
  issue: 6
  year: 2014
  end-page: 700
  ident: CR168
  article-title: Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane
  publication-title: J Energy Chem
  doi: 10.1016/S2095-4956(14)60201-1
– volume: 54
  start-page: 5126
  issue: 40
  year: 2018
  end-page: 5129
  ident: CR9
  article-title: Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO into solar fuels
  publication-title: Chem Commun
  doi: 10.1039/C8CC01873A
– volume: 5
  start-page: 693
  issue: 3
  year: 2019
  end-page: 705
  ident: CR28
  article-title: Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO to formate
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.014
– volume: 514
  start-page: 51
  year: 2016
  end-page: 59
  ident: CR21
  article-title: Methanol synthesis from CO and H over Pd/ZnO/Al O : catalyst structure dependence of methanol selectivity
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2016.01.006
– volume: 7
  start-page: 11967
  issue: 19
  year: 2019
  end-page: 11975
  ident: CR101
  article-title: In situ exsolved FeNi nanoparticles on nickel doped Sr Fe Mo O perovskite for efficient electrochemical CO reduction reaction
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA03065D
– volume: 14
  start-page: 1063
  issue: 11
  year: 2019
  end-page: 1070
  ident: CR164
  article-title: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO -CO co-feeds on Cu and Cu-tandem electrocatalysts
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0551-6
– volume: 27
  start-page: 180
  issue: 3
  year: 2021
  end-page: 200
  ident: CR4
  article-title: Optimization strategies for selective CO electroreduction to fuels
  publication-title: Trans Tianjin Univ
  doi: 10.1007/s12209-021-00283-x
– volume: 19
  start-page: 2080
  issue: 9
  year: 2017
  end-page: 2085
  ident: CR81
  article-title: A Schiff base-modified silver catalyst for efficient fixation of CO as carboxylic acid at ambient pressure
  publication-title: Green Chem
  doi: 10.1039/C7GC00923B
– volume: 9
  start-page: 6342
  issue: 7
  year: 2019
  end-page: 6348
  ident: CR37
  article-title: Enhanced CO methanation activity of Ni/anatase catalyst by tuning strong metal-support interactions
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b00401
– volume: 12
  start-page: 1697
  issue: 3
  year: 2022
  end-page: 1705
  ident: CR41
  article-title: Strong metal-support interaction of Ru on TiO derived from the co-reduction mechanism of Ru Ti O interphase
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c04785
– volume: 50
  start-page: 10764
  issue: 19
  year: 2021
  end-page: 10805
  ident: CR63
  article-title: Towards the development of the emerging process of CO heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons
  publication-title: Chem Soc Rev
  doi: 10.1039/D1CS00260K
– volume: 443
  year: 2019
  ident: CR94
  article-title: Alkaline-earth elements (Ca, Sr and Ba) doped LaFeO cathodes for CO electroreduction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.227268
– volume: 4
  start-page: 242
  issue: 3
  year: 2021
  end-page: 250
  ident: CR25
  article-title: Sulfur vacancy-rich MoS as a catalyst for the hydrogenation of CO to methanol
  publication-title: Nat Catal
  doi: 10.1038/s41929-021-00584-3
– volume: 2
  start-page: 183
  issue: 2
  year: 2015
  end-page: 201
  ident: CR10
  article-title: Understanding nano effects in catalysis
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwv024
– volume: 33
  issue: 2
  year: 2021
  ident: CR143
  article-title: Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO electroreduction to formate
  publication-title: Adv Mater
  doi: 10.1002/adma.202005113
– volume: 13
  start-page: 29522
  issue: 25
  year: 2021
  end-page: 29531
  ident: CR80
  article-title: Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO to cyclic carbonates
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c04624
– volume: 60
  start-page: 14329
  issue: 26
  year: 2021
  end-page: 14333
  ident: CR161
  article-title: High-rate CO electroreduction to C products over a copper-copper iodide catalyst
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202102657
– volume: 8
  start-page: 2569
  issue: 4
  year: 2017
  end-page: 2573
  ident: CR122
  article-title: Electrochemical promotion of catalysis over Pd nanoparticles for CO reduction
  publication-title: Chem Sci
  doi: 10.1039/C6SC04966D
– volume: 20
  start-page: 903
  issue: 4
  year: 2018
  end-page: 911
  ident: CR79
  article-title: The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO cycloaddition reaction
  publication-title: Green Chem
  doi: 10.1039/C7GC03801A
– volume: 12
  start-page: 2455
  issue: 8
  year: 2019
  end-page: 2462
  ident: CR170
  article-title: An alkaline polymer electrolyte CO electrolyzer operated with pure water
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE01204D
– volume: 372
  start-page: 1074
  issue: 6546
  year: 2021
  end-page: 1078
  ident: CR181
  article-title: CO electrolysis to multicarbon products in strong acid
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 118
  start-page: 434
  issue: 2
  year: 2018
  end-page: 504
  ident: CR1
  article-title: Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00435
– volume: 142
  start-page: 19001
  issue: 45
  year: 2020
  end-page: 19005
  ident: CR64
  article-title: Highly selective hydrogenation of CO to ethanol via designed bifunctional Ir -In O single-atom catalyst
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c08607
– volume: 26
  start-page: 839
  issue: 5
  year: 2017
  end-page: 853
  ident: CR88
  article-title: Co-electrolysis of CO and H O in high-temperature solid oxide electrolysis cells: recent advance in cathodes
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.07.003
– volume: 25
  start-page: 553
  issue: 4
  year: 2016
  end-page: 565
  ident: CR30
  article-title: Catalytic carbon dioxide hydrogenation to methane: a review of recent studies
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2016.03.009
– volume: 45
  start-page: 74
  year: 2014
  end-page: 78
  ident: CR34
  article-title: Insight into the reaction route of CO methanation: promotion effect of medium basic sites
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2013.10.034
– volume: 6
  start-page: 9237
  year: 2018
  end-page: 9245
  ident: CR78
  article-title: Cationic Zn-porphyrin immobilized in mesoporous silicas as bifunctional catalyst for CO cycloaddition reaction under cocatalyst free conditions
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b01548
– volume: 5
  start-page: 317
  issue: 4
  year: 2020
  end-page: 325
  ident: CR154
  article-title: The role of in situ generated morphological motifs and Cu(i) species in C product selectivity during CO pulsed electroreduction
  publication-title: Nat Energy
  doi: 10.1038/s41560-020-0594-9
– volume: 396
  start-page: 242
  year: 2021
  end-page: 250
  ident: CR23
  article-title: CO hydrogenation to methanol on ZnO-ZrO solid solution catalysts with ordered mesoporous structure
  publication-title: J Catal
  doi: 10.1016/j.jcat.2021.02.024
– volume: 16
  start-page: 1386
  issue: 12
  year: 2021
  end-page: 1393
  ident: CR147
  article-title: Copper-catalysed exclusive CO to pure formic acid conversion via single-atom alloying
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-021-00974-5
– volume: 5
  start-page: 268
  issue: 4
  year: 2022
  end-page: 276
  ident: CR184
  article-title: Modulating electric field distribution by alkali cations for CO electroreduction in strongly acidic medium
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00761-y
– volume: 2
  start-page: 198
  issue: 3
  year: 2019
  end-page: 210
  ident: CR153
  article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0235-5
– volume: 65
  start-page: 711
  issue: 9
  year: 2020
  end-page: 719
  ident: CR145
  article-title: Synergy effects on Sn-Cu alloy catalyst for efficient CO electroreduction to formate with high mass activity
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.01.020
– volume: 15
  start-page: 6860
  year: 2022
  end-page: 6861
  ident: CR160
  article-title: Revealing structure-selectivity correlations in pulsed CO electrolysis via time-resolved operando synchrotron X-ray studies
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4540-y
– volume: 32
  start-page: e1906193
  issue: 6
  year: 2020
  ident: CR102
  article-title: In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a co-doped Sr Fe Mo O cathode for CO electrolysis
  publication-title: Adv Mater
  doi: 10.1002/adma.201906193
– volume: 7
  start-page: 5249
  issue: 5
  year: 2019
  end-page: 5255
  ident: CR134
  article-title: N-doped nanoporous carbon from biomass as a highly efficient electrocatalyst for the CO reduction reaction
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b06160
– volume: 285
  year: 2021
  ident: CR38
  article-title: Engineering Ni/SiO catalysts for enhanced CO methanation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119151
– volume: 4
  start-page: 2218
  issue: 6
  year: 2011
  ident: CR89
  article-title: Direct synthesis of methane from CO /H O in an oxygen-ion conducting solid oxide electrolyser
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee01035b
– volume: 59
  start-page: 15968
  issue: 37
  year: 2020
  end-page: 15973
  ident: CR103
  article-title: Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La Sr Co Fe Mo O with efficient CO electrolysis
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202006536
– volume: 11
  start-page: 3043
  year: 2020
  ident: CR189
  article-title: Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO reduction and H O oxidation
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16742-3
– volume: 6
  start-page: 19743
  issue: 40
  year: 2018
  end-page: 19749
  ident: CR110
  article-title: Selective CO electroreduction over an oxide-derived gallium catalyst
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA08613C
– volume: 9
  start-page: 3457
  year: 2018
  ident: CR56
  article-title: Selective conversion of CO and H into aromatics
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05880-4
– volume: 142
  start-page: 17167
  issue: 40
  year: 2020
  end-page: 17174
  ident: CR68
  article-title: Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c08139
– volume: 27
  start-page: 35
  year: 2016
  end-page: 43
  ident: CR120
  article-title: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO to CO
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.035
– volume: 7
  start-page: 6302
  issue: 9
  year: 2017
  end-page: 6310
  ident: CR148
  article-title: Copper electrode fabricated via pulse electrodeposition: toward high methane selectivity and activity for CO electroreduction
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00571
– volume: 9
  start-page: 2639
  issue: 3
  year: 2019
  end-page: 2656
  ident: CR167
  article-title: Development of tandem catalysts for CO hydrogenation to olefins
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b05060
– volume: 48
  start-page: 713
  issue: 2
  year: 2009
  end-page: 718
  ident: CR66
  article-title: Combined methane CO reforming and dehydroaromatization for enhancing the catalyst stability
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie8014582
– volume: 59
  start-page: 154
  issue: 1
  year: 2020
  end-page: 160
  ident: CR150
  article-title: Highly selective production of ethylene by the electroreduction of carbon monoxide
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201910662
– volume: 5
  start-page: 706
  issue: 3
  year: 2021
  end-page: 719
  ident: CR185
  article-title: Cascade CO electroreduction enables efficient carbonate-free production of ethylene
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.007
– volume: 373
  start-page: 1523
  issue: 6562
  year: 2021
  end-page: 1527
  ident: CR6
  article-title: Cell-free chemoenzymatic starch synthesis from carbon dioxide
  publication-title: Science
  doi: 10.1126/science.abh4049
– year: 2022
  ident: CR117
  article-title: Catalyst design for electrolytic CO reduction toward low-carbon fuels and chemicals
  publication-title: Electrochem Energy Rev
  doi: 10.1007/s41918-022-00140-y
– volume: 5
  start-page: 1922
  issue: 3
  year: 2015
  end-page: 1938
  ident: CR13
  article-title: Methanol to olefins (MTO): from fundamentals to commercialization
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00007
– volume: 4
  start-page: 502
  issue: 2
  year: 2014
  end-page: 509
  ident: CR35
  article-title: In situ FTIR spectroscopic study of the CO methanation mechanism on Ni/Ce Zr O
  publication-title: Catal Sci Technol
  doi: 10.1039/C3CY00868A
– volume: 129
  year: 2019
  ident: CR54
  article-title: Carbon dioxide hydrogenation to light olefins over ZnO-Y O and SAPO-34 bifunctional catalysts
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2019.105711
– volume: 67
  start-page: 184
  year: 2022
  end-page: 192
  ident: CR65
  article-title: Construction of bifunctional single-atom catalysts on the optimized β-Mo C surface for highly selective hydrogenation of CO into ethanol
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.10.017
– volume: 21
  start-page: 4642
  issue: 17
  year: 2019
  end-page: 4649
  ident: CR76
  article-title: Ti Ce O nanocomposites: a monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate
  publication-title: Green Chem
  doi: 10.1039/C9GC00811J
– volume: 351
  start-page: 1065
  issue: 6277
  year: 2016
  end-page: 1068
  ident: CR53
  article-title: Selective conversion of syngas to light olefins
  publication-title: Science
  doi: 10.1126/science.aaf1835
– volume: 245
  start-page: 262
  year: 2019
  end-page: 270
  ident: CR187
  article-title: Selective reduction of CO to CO under visible light by controlling coordination structures of CeO -S/ZnIn S hybrid catalysts
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2018.12.059
– volume: 7
  start-page: 925
  issue: 1
  year: 2019
  end-page: 932
  ident: CR47
  article-title: Effect of Na promoter on Fe-based catalyst for CO hydrogenation to alkenes
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b04538
– volume: 364
  start-page: eaav3506
  issue: 6438
  year: 2019
  ident: CR85
  article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes?
  publication-title: Science
  doi: 10.1126/science.aav3506
– volume: 3
  start-page: 140
  issue: 2
  year: 2018
  end-page: 147
  ident: CR125
  article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO reduction
  publication-title: Nat Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 9
  start-page: 7937
  issue: 9
  year: 2019
  end-page: 7956
  ident: CR2
  article-title: Opportunities and challenges for catalysis in carbon dioxide utilization
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b02113
– volume: 22
  start-page: 6855
  issue: 20
  year: 2020
  end-page: 6861
  ident: CR40
  article-title: Tuning selectivity of CO hydrogenation by modulating the strong metal–support interaction over Ir/TiO catalysts
  publication-title: Green Chem
  doi: 10.1039/D0GC02302G
– volume: 9
  start-page: 320
  issue: 1
  year: 2021
  end-page: 326
  ident: CR132
  article-title: N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO reduction
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA09293B
– volume: 4
  start-page: 654
  issue: 8
  year: 2021
  end-page: 662
  ident: CR182
  article-title: Absence of CO electroreduction on copper, gold and silver electrodes without metal cations in solution
  publication-title: Nat Catal
  doi: 10.1038/s41929-021-00655-5
– volume: 3
  issue: 10
  year: 2017
  ident: CR22
  article-title: A highly selective and stable ZnO-ZrO solid solution catalyst for CO hydrogenation to methanol
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1701290
– volume: 121
  start-page: 6588
  issue: 11
  year: 2021
  end-page: 6609
  ident: CR29
  article-title: Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01012
– volume: 6
  start-page: 111
  issue: 2
  year: 1997
  end-page: 120
  ident: CR7
  article-title: Production of light olefins from CO hydrogenation over Fe/silicalite-2 catalysts I. Catalytic reactivity and reaction mechanism
  publication-title: J Nat Gas Chem
– volume: 7
  start-page: 4613
  issue: 7
  year: 2017
  end-page: 4620
  ident: CR43
  article-title: Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO to CO conversion
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00903
– volume: 13
  start-page: 977
  issue: 3
  year: 2020
  end-page: 985
  ident: CR177
  article-title: Insights into the carbon balance for CO electroreduction on Cu using gas diffusion electrode reactor designs
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE00047G
– volume: 8
  start-page: 5576
  issue: 14
  year: 2020
  end-page: 5583
  ident: CR83
  article-title: Bifunctional heterogeneous Ru/POP catalyst embedded with alkali for the N-formylation of amine and CO
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b07471
– volume: 31
  issue: 41
  year: 2019
  ident: CR126
  article-title: Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO electroreduction
  publication-title: Adv Mater
  doi: 10.1002/adma.201903470
– volume: 9
  start-page: 1019
  issue: 10
  year: 2017
  end-page: 1024
  ident: CR5
  article-title: Direct conversion of CO into liquid fuels with high selectivity over a bifunctional catalyst
  publication-title: Nat Chem
  doi: 10.1038/nchem.2794
– volume: 76
  start-page: 1
  year: 2017
  end-page: 5
  ident: CR121
  article-title: Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO electroreduction to formate
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2017.01.009
– volume: 34
  year: 2022
  ident: CR156
  article-title: In situ Raman spectroscopy studies for electrochemical CO reduction over Cu catalysts
  publication-title: Curr Opin Green Sustain Chem
  doi: 10.1016/j.cogsc.2022.100589
– volume: 68
  start-page: 67
  year: 2016
  end-page: 70
  ident: CR108
  article-title: Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2016.05.003
– volume: 43
  start-page: 761
  issue: 3
  year: 2022
  end-page: 770
  ident: CR26
  article-title: Highly dispersed Cd cluster supported on TiO as an efficient catalyst for CO hydrogenation to methanol
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(21)63907-4
– volume: 3
  start-page: 478
  issue: 6
  year: 2020
  end-page: 487
  ident: CR151
  article-title: Electrocatalytic reduction of CO to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper
  publication-title: Nat Catal
  doi: 10.1038/s41929-020-0450-0
– volume: 11
  start-page: 848
  issue: 5
  year: 2018
  end-page: 853
  ident: CR140
  article-title: Ultrathin bismuth nanosheets as a highly efficient CO reduction electrocatalyst
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702229
– volume: 2
  start-page: 1925
  issue: 10
  year: 2018
  end-page: 1949
  ident: CR12
  article-title: Powering the future with liquid sunshine
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.016
– volume: 8
  start-page: 1407
  year: 2017
  ident: CR27
  article-title: Direct catalytic hydrogenation of CO to formate over a Schiff-base-mediated gold nanocatalyst
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01673-3
– volume: 10
  start-page: 12098
  issue: 20
  year: 2020
  end-page: 12108
  ident: CR48
  article-title: Interfacing with carbonaceous potassium promoters boosts catalytic CO hydrogenation of iron
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03215
– volume: 55
  start-page: 1
  year: 2015
  end-page: 5
  ident: CR136
  article-title: pH effect on electrocatalytic reduction of CO over Pd and Pt nanoparticles
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2015.03.008
– volume: 11
  start-page: 1204
  issue: 5
  year: 2018
  end-page: 1210
  ident: CR124
  article-title: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO electroreduction
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE00133B
– volume: 12
  start-page: 5665
  year: 2021
  ident: CR104
  article-title: Promoting exsolution of RuFe alloy nanoparticles on Sr Fe Ru Mo O via repeated redox manipulations for CO electrolysis
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26001-8
– volume: 1
  start-page: 11
  year: 2018
  ident: CR46
  article-title: Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts
  publication-title: Commun Chem
  doi: 10.1038/s42004-018-0012-4
– volume: 24
  start-page: 757
  issue: 6
  year: 2018
  end-page: 765
  ident: CR111
  article-title: Pd/C catalysts for CO electroreduction to CO: Pd loading effect
  publication-title: J Electrochem
– volume: 8
  start-page: 9958
  issue: 11
  year: 2018
  end-page: 9967
  ident: CR61
  article-title: Catalytic hydrogenation of CO to isoparaffins over Fe-based multifunctional catalysts
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b02267
– volume: 2
  start-page: 381
  issue: 5
  year: 2019
  end-page: 386
  ident: CR3
  article-title: Net reduction of CO via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0266-y
– volume: 10
  start-page: 11510
  issue: 19
  year: 2020
  end-page: 11518
  ident: CR157
  article-title: On the activity/selectivity and phase stability of thermally grown copper oxides during the electrocatalytic reduction of CO
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03484
– volume: 6
  start-page: 1849
  issue: 5
  year: 2021
  end-page: 1856
  ident: CR190
  article-title: Unassisted highly selective gas-phase CO reduction with a plasmonic Au/p-GaN photocatalyst using H O as an electron donor
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.1c00392
– volume: 8
  start-page: 21053
  issue: 40
  year: 2020
  end-page: 21061
  ident: CR95
  article-title: Iron stabilized 1/3 A-site deficient La–Ti–O perovskite cathodes for efficient CO electroreduction
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA08088H
– volume: 268
  year: 2020
  ident: CR130
  article-title: Carbon nitride embedded with transition metals for selective electrocatalytic CO reduction
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.118391
– volume: 15
  start-page: 897
  issue: 6
  year: 1986
  end-page: 898
  ident: CR107
  article-title: Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution
  publication-title: Chem Lett
  doi: 10.1246/cl.1986.897
– volume: 58
  start-page: 9030
  issue: 21
  year: 2019
  end-page: 9037
  ident: CR14
  article-title: Investigation on deactivation of Cu/ZnO/Al O catalyst for CO hydrogenation to methanol
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b01546
– volume: 10
  start-page: 2001645
  issue: 39
  year: 2020
  ident: CR180
  article-title: Highly efficient electrochemical CO reduction reaction to CO with one-pot synthesized co-pyridine-derived catalyst incorporated in a nafion-based membrane electrode assembly
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202001645
– volume: 10
  start-page: 14186
  issue: 23
  year: 2020
  end-page: 14194
  ident: CR62
  article-title: One-pass hydrogenation of CO to multibranched isoparaffins over bifunctional zeolite-based catalysts
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03292
– volume: 382
  start-page: 129
  year: 2020
  end-page: 140
  ident: CR19
  article-title: Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO hydrogenation to methanol using high pressure in situ DRIFTS
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.12.022
– volume: 6
  start-page: 713
  issue: 2
  year: 2021
  end-page: 727
  ident: CR116
  article-title: Structure sensitivity in single-atom catalysis toward CO electroreduction
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.0c02665
– volume: 12
  start-page: 5930
  issue: 10
  year: 2022
  ident: 326_CR70
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c05907
– volume: 43
  start-page: 1001
  issue: 4
  year: 2022
  ident: 326_CR115
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(21)63940-2
– volume: 7
  start-page: 6302
  issue: 9
  year: 2017
  ident: 326_CR148
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00571
– volume: 63
  start-page: 1711
  issue: 12
  year: 2020
  ident: 326_CR171
  publication-title: Sci China Chem
  doi: 10.1007/s11426-020-9825-9
– volume: 11
  start-page: 5231
  year: 2020
  ident: 326_CR174
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19135-8
– volume: 1
  start-page: 11
  year: 2018
  ident: 326_CR46
  publication-title: Commun Chem
  doi: 10.1038/s42004-018-0012-4
– volume: 11
  start-page: 848
  issue: 5
  year: 2018
  ident: 326_CR140
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702229
– volume: 7
  start-page: 477
  issue: 6
  year: 2015
  ident: 326_CR50
  publication-title: Nat Chem
  doi: 10.1038/nchem.2262
– volume: 58
  start-page: 9030
  issue: 21
  year: 2019
  ident: 326_CR14
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b01546
– volume: 6
  start-page: 1172
  issue: 2
  year: 2016
  ident: 326_CR73
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b01774
– volume: 7
  start-page: 130
  issue: 2
  year: 2022
  ident: 326_CR172
  publication-title: Nat Energy
  doi: 10.1038/s41560-021-00973-9
– volume: 9
  start-page: 456
  issue: 2
  year: 2019
  ident: 326_CR52
  publication-title: Catal Sci Technol
  doi: 10.1039/C8CY02275E
– volume: 10
  start-page: 14207
  issue: 29
  year: 2018
  ident: 326_CR36
  publication-title: Nanoscale
  doi: 10.1039/C8NR03882A
– volume: 50
  start-page: 43
  year: 2018
  ident: 326_CR92
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.054
– volume: 37
  start-page: 2009021
  issue: 5
  year: 2021
  ident: 326_CR169
  publication-title: Acta Phys-Chim Sin
– volume: 137
  start-page: 4288
  issue: 13
  year: 2015
  ident: 326_CR8
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.5b00046
– volume: 144
  start-page: 4874
  issue: 11
  year: 2022
  ident: 326_CR42
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c12603
– volume: 3
  issue: 10
  year: 2017
  ident: 326_CR22
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1701290
– volume: 12
  start-page: 2455
  issue: 8
  year: 2019
  ident: 326_CR170
  publication-title: Energy Environ Sci
  doi: 10.1039/C9EE01204D
– volume: 10
  start-page: 2001645
  issue: 39
  year: 2020
  ident: 326_CR180
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202001645
– volume: 12
  start-page: 4943
  year: 2021
  ident: 326_CR183
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24936-6
– volume: 2
  start-page: 381
  issue: 5
  year: 2019
  ident: 326_CR3
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0266-y
– volume: 6
  start-page: 9237
  year: 2018
  ident: 326_CR78
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b01548
– volume: 59
  start-page: 22408
  issue: 50
  year: 2020
  ident: 326_CR149
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202009191
– volume: 14
  start-page: 1063
  issue: 11
  year: 2019
  ident: 326_CR164
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-019-0551-6
– volume: 4
  start-page: 242
  issue: 3
  year: 2021
  ident: 326_CR25
  publication-title: Nat Catal
  doi: 10.1038/s41929-021-00584-3
– volume: 7
  start-page: 2695
  issue: 13
  year: 2017
  ident: 326_CR59
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY00842B
– volume: 59
  start-page: 15968
  issue: 37
  year: 2020
  ident: 326_CR103
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202006536
– volume: 9
  start-page: 2639
  issue: 3
  year: 2019
  ident: 326_CR167
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b05060
– volume: 71
  year: 2020
  ident: 326_CR97
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104598
– volume: 9
  start-page: 1019
  issue: 10
  year: 2017
  ident: 326_CR5
  publication-title: Nat Chem
  doi: 10.1038/nchem.2794
– volume: 3
  start-page: 411
  issue: 4
  year: 2020
  ident: 326_CR45
  publication-title: Nat Catal
  doi: 10.1038/s41929-020-0440-2
– volume: 12
  start-page: 1697
  issue: 3
  year: 2022
  ident: 326_CR41
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c04785
– volume: 19
  start-page: 2080
  issue: 9
  year: 2017
  ident: 326_CR81
  publication-title: Green Chem
  doi: 10.1039/C7GC00923B
– volume: 11
  start-page: 1204
  issue: 5
  year: 2018
  ident: 326_CR124
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE00133B
– volume: 141
  start-page: 2490
  issue: 6
  year: 2019
  ident: 326_CR163
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b12381
– volume: 60
  start-page: 14329
  issue: 26
  year: 2021
  ident: 326_CR161
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202102657
– volume: 296
  year: 2021
  ident: 326_CR114
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2021.120342
– volume: 142
  start-page: 19001
  issue: 45
  year: 2020
  ident: 326_CR64
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c08607
– volume: 6
  start-page: 13661
  issue: 28
  year: 2018
  ident: 326_CR91
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA02858C
– volume: 11
  start-page: 6092
  issue: 24
  year: 2019
  ident: 326_CR128
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201901643
– volume: 2
  start-page: 183
  issue: 2
  year: 2015
  ident: 326_CR10
  publication-title: Natl Sci Rev
  doi: 10.1093/nsr/nwv024
– volume: 52
  start-page: 656
  issue: 3
  year: 2019
  ident: 326_CR11
  publication-title: Acc Chem Res
  doi: 10.1021/acs.accounts.8b00478
– volume: 6
  start-page: 111
  issue: 2
  year: 1997
  ident: 326_CR7
  publication-title: J Nat Gas Chem
– volume: 268
  year: 2020
  ident: 326_CR130
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.118391
– volume: 6
  start-page: 4786
  issue: 13
  year: 2016
  ident: 326_CR51
  publication-title: Catal Sci Technol
  doi: 10.1039/C6CY00160B
– volume: 12
  start-page: 2313
  issue: 9
  year: 2019
  ident: 326_CR127
  publication-title: Nano Res
  doi: 10.1007/s12274-019-2316-9
– volume: 25
  start-page: 553
  issue: 4
  year: 2016
  ident: 326_CR30
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2016.03.009
– volume: 8
  start-page: 21053
  issue: 40
  year: 2020
  ident: 326_CR95
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA08088H
– volume: 20
  start-page: 903
  issue: 4
  year: 2018
  ident: 326_CR79
  publication-title: Green Chem
  doi: 10.1039/C7GC03801A
– volume: 27
  start-page: 35
  year: 2016
  ident: 326_CR120
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.035
– volume: 13
  start-page: 977
  issue: 3
  year: 2020
  ident: 326_CR177
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE00047G
– volume: 16
  start-page: 1386
  issue: 12
  year: 2021
  ident: 326_CR147
  publication-title: Nat Nanotechnol
  doi: 10.1038/s41565-021-00974-5
– volume: 4
  start-page: 654
  issue: 8
  year: 2021
  ident: 326_CR182
  publication-title: Nat Catal
  doi: 10.1038/s41929-021-00655-5
– volume: 443
  year: 2019
  ident: 326_CR94
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.227268
– volume: 33
  issue: 2
  year: 2021
  ident: 326_CR143
  publication-title: Adv Mater
  doi: 10.1002/adma.202005113
– volume: 11
  start-page: 3043
  year: 2020
  ident: 326_CR189
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16742-3
– volume: 15
  start-page: 6860
  year: 2022
  ident: 326_CR160
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4540-y
– volume: 34
  year: 2022
  ident: 326_CR156
  publication-title: Curr Opin Green Sustain Chem
  doi: 10.1016/j.cogsc.2022.100589
– volume: 6
  start-page: 713
  issue: 2
  year: 2021
  ident: 326_CR116
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.0c02665
– volume: 26
  start-page: 839
  issue: 5
  year: 2017
  ident: 326_CR88
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.07.003
– volume: 4
  start-page: 502
  issue: 2
  year: 2014
  ident: 326_CR35
  publication-title: Catal Sci Technol
  doi: 10.1039/C3CY00868A
– volume: 55
  start-page: 13916
  issue: 28
  year: 2020
  ident: 326_CR137
  publication-title: J Mater Sci
  doi: 10.1007/s10853-020-04983-y
– volume: 27
  start-page: 180
  issue: 3
  year: 2021
  ident: 326_CR4
  publication-title: Trans Tianjin Univ
  doi: 10.1007/s12209-021-00283-x
– volume: 7
  start-page: 4613
  issue: 7
  year: 2017
  ident: 326_CR43
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00903
– volume: 9
  start-page: 320
  issue: 1
  year: 2021
  ident: 326_CR132
  publication-title: J Mater Chem A
  doi: 10.1039/D0TA09293B
– volume: 11
  start-page: 41281
  issue: 44
  year: 2019
  ident: 326_CR176
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b13081
– volume: 4
  start-page: 1770
  issue: 7
  year: 2019
  ident: 326_CR173
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.9b01142
– volume: 7
  start-page: 8544
  issue: 12
  year: 2017
  ident: 326_CR55
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b03251
– volume: 59
  start-page: 154
  issue: 1
  year: 2020
  ident: 326_CR150
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201910662
– volume: 40
  start-page: 22
  year: 2020
  ident: 326_CR17
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.03.001
– volume: 36
  start-page: 87
  year: 2019
  ident: 326_CR93
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.06.001
– volume: 245
  start-page: 262
  year: 2019
  ident: 326_CR187
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2018.12.059
– volume: 16
  start-page: 678
  issue: 6
  year: 2021
  ident: 326_CR39
  publication-title: Chem Asian J
  doi: 10.1002/asia.202001384
– volume: 9
  start-page: 3457
  year: 2018
  ident: 326_CR56
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05880-4
– volume: 283
  year: 2021
  ident: 326_CR58
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2020.119648
– volume: 10
  start-page: 783
  issue: 1
  year: 2020
  ident: 326_CR67
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b03709
– volume: 63
  start-page: 1727
  issue: 12
  year: 2020
  ident: 326_CR131
  publication-title: Sci China Chem
  doi: 10.1007/s11426-020-9847-9
– volume: 8
  start-page: 5576
  issue: 14
  year: 2020
  ident: 326_CR83
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b07471
– volume: 31
  issue: 50
  year: 2019
  ident: 326_CR86
  publication-title: Adv Mater
  doi: 10.1002/adma.201902033
– volume: 129
  year: 2019
  ident: 326_CR54
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2019.105711
– volume: 67
  start-page: 184
  year: 2022
  ident: 326_CR65
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2021.10.017
– volume: 9
  start-page: 7937
  issue: 9
  year: 2019
  ident: 326_CR2
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b02113
– volume: 10
  start-page: 8303
  issue: 15
  year: 2020
  ident: 326_CR166
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c01579
– volume: 46
  start-page: 19814
  issue: 38
  year: 2021
  ident: 326_CR96
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.03.134
– volume: 2
  start-page: 198
  issue: 3
  year: 2019
  ident: 326_CR153
  publication-title: Nat Catal
  doi: 10.1038/s41929-019-0235-5
– volume: 4
  start-page: 2218
  issue: 6
  year: 2011
  ident: 326_CR89
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee01035b
– volume: 22
  start-page: 6855
  issue: 20
  year: 2020
  ident: 326_CR40
  publication-title: Green Chem
  doi: 10.1039/D0GC02302G
– volume: 24
  start-page: 757
  issue: 6
  year: 2018
  ident: 326_CR111
  publication-title: J Electrochem
– volume: 396
  start-page: 242
  year: 2021
  ident: 326_CR23
  publication-title: J Catal
  doi: 10.1016/j.jcat.2021.02.024
– volume: 453
  year: 2020
  ident: 326_CR112
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.227846
– volume: 13
  start-page: 6160
  issue: 23
  year: 2020
  ident: 326_CR15
  publication-title: Chemsuschem
  doi: 10.1002/cssc.202002054
– volume: 32
  start-page: e1906193
  issue: 6
  year: 2020
  ident: 326_CR102
  publication-title: Adv Mater
  doi: 10.1002/adma.201906193
– volume: 51
  start-page: 17615
  issue: 99
  year: 2015
  ident: 326_CR20
  publication-title: Chem Commun
  doi: 10.1039/C5CC07079A
– volume: 4
  start-page: 2058
  issue: 7
  year: 2014
  ident: 326_CR31
  publication-title: Catal Sci Technol
  doi: 10.1039/C4CY00030G
– volume: 112
  start-page: 12182
  issue: 39
  year: 2008
  ident: 326_CR74
  publication-title: J Phys Chem B
  doi: 10.1021/jp806587y
– volume: 7
  start-page: 11967
  issue: 19
  year: 2019
  ident: 326_CR101
  publication-title: J Mater Chem A
  doi: 10.1039/C9TA03065D
– volume: 140
  start-page: 14595
  issue: 44
  year: 2018
  ident: 326_CR186
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b09344
– volume: 3
  start-page: 39
  year: 2017
  ident: 326_CR109
  publication-title: Curr Opin Green Sustain Chem
  doi: 10.1016/j.cogsc.2016.10.004
– volume: 5
  start-page: 288
  issue: 4
  year: 2022
  ident: 326_CR179
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00763-w
– volume: 5
  start-page: 268
  issue: 4
  year: 2022
  ident: 326_CR184
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00761-y
– volume: 50
  start-page: 10764
  issue: 19
  year: 2021
  ident: 326_CR63
  publication-title: Chem Soc Rev
  doi: 10.1039/D1CS00260K
– volume: 3
  start-page: 570
  issue: 2
  year: 2019
  ident: 326_CR57
  publication-title: Joule
  doi: 10.1016/j.joule.2018.10.027
– volume: 12
  start-page: 552
  issue: 1
  year: 2021
  ident: 326_CR113
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.0c03416
– volume: 285
  year: 2021
  ident: 326_CR38
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119151
– volume: 6
  start-page: 1849
  issue: 5
  year: 2021
  ident: 326_CR190
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.1c00392
– volume: 514
  start-page: 51
  year: 2016
  ident: 326_CR21
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2016.01.006
– volume: 12
  start-page: 5665
  year: 2021
  ident: 326_CR104
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-26001-8
– volume: 142
  start-page: 17167
  issue: 40
  year: 2020
  ident: 326_CR68
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.0c08139
– volume: 7
  start-page: 635
  issue: 6
  year: 2021
  ident: 326_CR135
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202100110
– volume: 333
  start-page: 227
  year: 2016
  ident: 326_CR32
  publication-title: J Catal
  doi: 10.1016/j.jcat.2015.10.025
– volume: 6
  start-page: 19743
  issue: 40
  year: 2018
  ident: 326_CR110
  publication-title: J Mater Chem A
  doi: 10.1039/C8TA08613C
– volume: 10
  start-page: 11510
  issue: 19
  year: 2020
  ident: 326_CR157
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03484
– volume: 13
  start-page: 6290
  issue: 23
  year: 2020
  ident: 326_CR100
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001002
– volume: 5
  start-page: 317
  issue: 4
  year: 2020
  ident: 326_CR154
  publication-title: Nat Energy
  doi: 10.1038/s41560-020-0594-9
– volume: 252
  start-page: 79
  year: 2014
  ident: 326_CR90
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.11.047
– volume: 41
  start-page: 1393
  issue: 9
  year: 2020
  ident: 326_CR146
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(20)63577-X
– volume: 53
  start-page: 1188
  issue: 6
  year: 2017
  ident: 326_CR72
  publication-title: Chem Commun
  doi: 10.1039/C6CC08801E
– volume: 433
  year: 2022
  ident: 326_CR71
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.134621
– volume: 8
  start-page: 1510
  issue: 2
  year: 2018
  ident: 326_CR119
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b03612
– volume: 3
  start-page: 140
  issue: 2
  year: 2018
  ident: 326_CR125
  publication-title: Nat Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 5
  start-page: 9634
  issue: 11
  year: 2017
  ident: 326_CR82
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b02678
– volume: 7
  start-page: 925
  issue: 1
  year: 2019
  ident: 326_CR47
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b04538
– volume: 8
  start-page: 2569
  issue: 4
  year: 2017
  ident: 326_CR122
  publication-title: Chem Sci
  doi: 10.1039/C6SC04966D
– volume: 394
  start-page: 236
  year: 2021
  ident: 326_CR24
  publication-title: J Catal
  doi: 10.1016/j.jcat.2020.06.018
– volume: 351
  start-page: 1065
  issue: 6277
  year: 2016
  ident: 326_CR53
  publication-title: Science
  doi: 10.1126/science.aaf1835
– volume: 9
  start-page: 17301
  issue: 51
  year: 2021
  ident: 326_CR69
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c06095
– volume: 59
  start-page: 19983
  issue: 45
  year: 2020
  ident: 326_CR44
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202003847
– volume: 61
  issue: 5
  year: 2022
  ident: 326_CR155
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202114238
– volume: 21
  start-page: 4642
  issue: 17
  year: 2019
  ident: 326_CR76
  publication-title: Green Chem
  doi: 10.1039/C9GC00811J
– volume: 54
  start-page: 5126
  issue: 40
  year: 2018
  ident: 326_CR9
  publication-title: Chem Commun
  doi: 10.1039/C8CC01873A
– year: 2022
  ident: 326_CR117
  publication-title: Electrochem Energy Rev
  doi: 10.1007/s41918-022-00140-y
– volume: 10
  start-page: 2002105
  issue: 44
  year: 2020
  ident: 326_CR191
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202002105
– volume: 364
  start-page: eaav3506
  issue: 6438
  year: 2019
  ident: 326_CR85
  publication-title: Science
  doi: 10.1126/science.aav3506
– volume: 45
  start-page: 74
  year: 2014
  ident: 326_CR34
  publication-title: Catal Commun
  doi: 10.1016/j.catcom.2013.10.034
– volume: 10
  start-page: 14186
  issue: 23
  year: 2020
  ident: 326_CR62
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03292
– volume: 373
  start-page: 1523
  issue: 6562
  year: 2021
  ident: 326_CR6
  publication-title: Science
  doi: 10.1126/science.abh4049
– volume: 2
  start-page: 1925
  issue: 10
  year: 2018
  ident: 326_CR12
  publication-title: Joule
  doi: 10.1016/j.joule.2018.08.016
– volume: 382
  start-page: 129
  year: 2020
  ident: 326_CR19
  publication-title: J Catal
  doi: 10.1016/j.jcat.2019.12.022
– volume: 359
  start-page: 8
  year: 2018
  ident: 326_CR98
  publication-title: J Catal
  doi: 10.1016/j.jcat.2017.12.027
– volume: 21
  start-page: 6952
  issue: 16
  year: 2021
  ident: 326_CR105
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.1c02227
– volume: 114
  start-page: 6685
  issue: 26
  year: 2017
  ident: 326_CR158
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1702405114
– volume: 4
  start-page: 13746
  issue: 36
  year: 2016
  ident: 326_CR139
  publication-title: J Mater Chem A
  doi: 10.1039/C6TA06202D
– volume: 14
  start-page: 1695
  issue: 11
  year: 1985
  ident: 326_CR106
  publication-title: Chem Lett
  doi: 10.1246/cl.1985.1695
– volume: 8
  start-page: 15174
  year: 2017
  ident: 326_CR60
  publication-title: Nat Commun
  doi: 10.1038/ncomms15174
– volume: 5
  start-page: 563
  issue: 7
  year: 2022
  ident: 326_CR175
  publication-title: Nat Sustain
  doi: 10.1038/s41893-022-00879-8
– volume: 31
  issue: 41
  year: 2019
  ident: 326_CR126
  publication-title: Adv Mater
  doi: 10.1002/adma.201903470
– volume: 3
  start-page: 478
  issue: 6
  year: 2020
  ident: 326_CR151
  publication-title: Nat Catal
  doi: 10.1038/s41929-020-0450-0
– volume: 13
  start-page: 29522
  issue: 25
  year: 2021
  ident: 326_CR80
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c04624
– volume: 23
  start-page: 694
  issue: 6
  year: 2014
  ident: 326_CR168
  publication-title: J Energy Chem
  doi: 10.1016/S2095-4956(14)60201-1
– volume: 5
  start-page: 706
  issue: 3
  year: 2021
  ident: 326_CR185
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.007
– volume: 36
  start-page: 95
  year: 2019
  ident: 326_CR133
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.06.013
– volume: 24
  start-page: 353
  issue: 3
  year: 2015
  ident: 326_CR75
  publication-title: J Energy Chem
  doi: 10.1016/S2095-4956(15)60322-9
– volume: 12
  start-page: 717
  issue: 8
  year: 2020
  ident: 326_CR84
  publication-title: Nat Chem
  doi: 10.1038/s41557-020-0481-9
– volume: 372
  start-page: 1074
  issue: 6546
  year: 2021
  ident: 326_CR181
  publication-title: Science
  doi: 10.1126/science.abg6582
– volume: 59
  start-page: 4814
  issue: 12
  year: 2020
  ident: 326_CR144
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201916538
– volume: 144
  start-page: 7551
  issue: 17
  year: 2022
  ident: 326_CR178
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.1c13024
– volume: 5
  start-page: 1922
  issue: 3
  year: 2015
  ident: 326_CR13
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00007
– volume: 7
  start-page: 15190
  issue: 18
  year: 2019
  ident: 326_CR141
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.9b01985
– volume: 68
  start-page: 67
  year: 2016
  ident: 326_CR108
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2016.05.003
– volume: 6
  start-page: 6814
  issue: 10
  year: 2016
  ident: 326_CR33
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02188
– volume: 14
  start-page: 4471
  issue: 12
  year: 2021
  ident: 326_CR162
  publication-title: Nano Res
  doi: 10.1007/s12274-021-3448-2
– volume: 118
  start-page: 434
  issue: 2
  year: 2018
  ident: 326_CR1
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00435
– volume: 5
  start-page: 251
  issue: 4
  year: 2022
  ident: 326_CR152
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00757-8
– volume: 5
  start-page: 4523
  issue: 6
  year: 2017
  ident: 326_CR77
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.7b00947
– volume: 195
  start-page: 7250
  issue: 21
  year: 2010
  ident: 326_CR87
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.05.037
– volume: 139
  start-page: 5652
  issue: 16
  year: 2017
  ident: 326_CR123
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b00102
– volume: 11
  start-page: 3415
  year: 2020
  ident: 326_CR142
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17120-9
– volume: 11
  start-page: 8978
  issue: 15
  year: 2021
  ident: 326_CR165
  publication-title: ACS Catal
  doi: 10.1021/acscatal.1c01610
– volume: 15
  start-page: 897
  issue: 6
  year: 1986
  ident: 326_CR107
  publication-title: Chem Lett
  doi: 10.1246/cl.1986.897
– volume: 65
  start-page: 711
  issue: 9
  year: 2020
  ident: 326_CR145
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2020.01.020
– volume: 43
  start-page: 761
  issue: 3
  year: 2022
  ident: 326_CR26
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(21)63907-4
– volume: 60
  start-page: 26582
  issue: 51
  year: 2021
  ident: 326_CR138
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202113135
– volume: 47
  start-page: 18
  year: 2020
  ident: 326_CR18
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.11.021
– volume: 59
  start-page: 798
  issue: 2
  year: 2020
  ident: 326_CR129
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201911995
– volume: 121
  start-page: 6588
  issue: 11
  year: 2021
  ident: 326_CR29
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c01012
– volume: 48
  start-page: 713
  issue: 2
  year: 2009
  ident: 326_CR66
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie8014582
– volume: 55
  start-page: 1
  year: 2015
  ident: 326_CR136
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2015.03.008
– volume: 76
  start-page: 1
  year: 2017
  ident: 326_CR121
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2017.01.009
– volume: 56
  start-page: 7777
  issue: 56
  year: 2020
  ident: 326_CR188
  publication-title: Chem Commun
  doi: 10.1039/D0CC00805B
– volume: 8
  start-page: 1407
  year: 2017
  ident: 326_CR27
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01673-3
– volume: 5
  start-page: 693
  issue: 3
  year: 2019
  ident: 326_CR28
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.12.014
– volume: 10
  start-page: 2181
  issue: 6
  year: 2017
  ident: 326_CR118
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1514-6
– volume: 298
  year: 2021
  ident: 326_CR49
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2021.120556
– volume: 35
  start-page: 71
  year: 2019
  ident: 326_CR99
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2018.11.002
– volume: 5
  start-page: 259
  issue: 4
  year: 2022
  ident: 326_CR159
  publication-title: Nat Catal
  doi: 10.1038/s41929-022-00760-z
– volume: 10
  start-page: 14694
  issue: 24
  year: 2020
  ident: 326_CR16
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c04371
– volume: 10
  start-page: 12098
  issue: 20
  year: 2020
  ident: 326_CR48
  publication-title: ACS Catal
  doi: 10.1021/acscatal.0c03215
– volume: 9
  start-page: 6342
  issue: 7
  year: 2019
  ident: 326_CR37
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b00401
– volume: 7
  start-page: 5249
  issue: 5
  year: 2019
  ident: 326_CR134
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b06160
– volume: 8
  start-page: 9958
  issue: 11
  year: 2018
  ident: 326_CR61
  publication-title: ACS Catal
  doi: 10.1021/acscatal.8b02267
SSID ssj0049071
Score 2.5333302
SecondaryResourceType review_article
Snippet Catalytic conversion of CO 2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis,...
Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis,...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms Acetic acid
Alkenes
Carbon dioxide
Catalytic converters
Conversion
Density functional theory
Engineering
Ethanol
Fine chemicals
Formic acid
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Review
Science
Selectivity
Title Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels
URI https://link.springer.com/article/10.1007/s12209-022-00326-x
https://www.proquest.com/docview/2707399614
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e202204003
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPSg1gdWa9mDgqIRs9kkzbEEa1HUiwU9hX1FfJCKSaH4651NN00VEXrJIdksybx2ZmfmW4BDxnkn6gjfYVIKh1G8RFRL5yLkLpcy4IKbjO7tXdAfsOtH_9E2heVVtXuVkiwtdd3sRqnZyMfgCSWRBg56jss-Biiojsvdq6eby8oCMwz4ykDLRMss6lDbLPP3LD8XpNrLnCZGy3aeLOXZ88zK01uHQfXNk4KTt_NRIc7l1y84x3l_agPWrCtKuhPZacCCzjZhdQagcBMaVvVzcmzxqU-2IO6bEpohSp4ejnISmw0gg2tC0P8l8T0lsalkL7fhyEtWDEkFSpATninSG-FyvA2D3uVD3HfsWQyORC0vHJenPPUMlI5OketU0yhQjLopR53WVAnJuadlmqpQKl_72vW5xht-iCaCceHtwFI2zPQukEgFEWOqEyl0H5SrDOS-ZkJdBMKT2gub4FYMSaQFKjfnZbwnNcSyoVqCVEtKqiXjJpxO3_mYwHT8O7pV8TmxKpsnNDRJywjdlSacVcyqH_8325GVj3q0sc6vajwWiaamlxlp6O3NN-0-rNBSLkyxYQuWis-RPkAHqBBtK-9tWIyDGK8D2v0G9pf9tg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-pBtCpWq-5BQdGg2WyS5ijBErWtlxa8LfuKKJKKrdCf70y6aaqI4CWHZDOHeezM7Mx8S8gJl7KdtFXoca2Vxxk8Ema1dx1LX2odSSWxotvrR9mQ3z-FTw4mB2dhftTvr8Y-Y3h8DykT6B-LPIgXV7ByiTj5aZRWuy6HJK9MrjBD5kmbuQGZ32l8d0J1ZDkvhpYjPEUui-cFb9PZJBsuTKQ3M7lukSVbNMj6Anhgg2w5sxzTM4cdfb5N0gzbW0agFRZSepri4QxijlCITWn6yGiKXeblERl9KSYjWgEGjKksDO18gqvcIcPO7SDNPHdPgqfBAieeL3OZBwhzY3OQCLMsiQxnfi7B3iwzSksZWJ3nJtYmtKH1Q2nhRRiD-XKpgl2yXIwKu0doYqKEc9NODLh24xuEw7dcmetIBdoGcZP4FeOEdiDieJfFm6jhj5HZApgtSmaLaZNczP95n0Fo_Lm6VclDOHMaCxZjQTGBUKJJLisZ1Z__onbq5Fivxp3z1UynSliGc8bAw2D_f2SPyWo26HVF967_cEDWWKla2BTYIsuTj097CIHKRB2VGvoF6lzdig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_KCaU-tPULz9p2HyxYNKfZbJLLo6SeZ21tHxT0admvlFbJiZeDw7_emdzGXEsRxJc8JJslmZ2Znc_fAmwJpfpZX8eBMEYHguMl484E-6kKlTGJ0ooyut9Pk-G5-HoRX8x18dfV7k1KctbTQChNZbV3Y4u9tvGNcwrqoyOFXMmTAK3IBUFnSHRg4eDo8uSw0cYCnb_a6SLPWWR97htn_j_L35tTa3E-JEnr1p6yUOWvuV1o8AZU8_2z4pOr3qTSPXP3D7Tjc37wLbz2Jio7mPHUErxw5TIszgEXLsOSVwljtu1xqz-vQD6k0poRcqQbTcYsp8AQ4Z0wtItZ_oOznCrc6_Ac-11WI9aAFYyZKi0bTHCbXoXzweFZPgz8GQ2BQemvglAVqogIYscVyA3c8SyxgoeFQll33GqjVORMUdjU2NjFLoyVwxtxiqpDKB2tQacclW4dWGaTTAjbzyyaFTa0BMXvhLb7iY6Mi9IuhM3iSOMBzOkcjWvZQi8T1SRSTdZUk9Mu7Dy8czOD73h09Gaz5tKL8ljylJKZGZoxXdhtFq59_NhsnzyvtKNJa_-x06mWjlOPM9Iw2njatB_h5c8vA_nt-PTkHbziNYtQPeImdKrbiXuPNlKlP3gxuAd98QfL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Catalysis+for+CO2+Conversion+into+Chemicals+and+Fuels&rft.jtitle=%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Dunfeng+Gao&rft.au=Wanjun+Li&rft.au=Hanyu+Wang&rft.au=Guoxiong+Wang&rft.date=2022-08-01&rft.pub=University+of+Chinese+Academy+of+Sciences%2CBeijing+100049%2CChina&rft.issn=1006-4982&rft.volume=28&rft.issue=4&rft.spage=245&rft.epage=264&rft_id=info:doi/10.1007%2Fs12209-022-00326-x&rft.externalDocID=tianjdxxb_e202204003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg