Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels
Catalytic conversion of CO 2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO 2 can be converted into a wide range of valuable products, including CO, formic acid, methan...
Saved in:
Published in | Transactions of Tianjin University Vol. 28; no. 4; pp. 245 - 264 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tianjin
Tianjin University
01.08.2022
Springer Nature B.V University of Chinese Academy of Sciences,Beijing 100049,China State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China |
Subjects | |
Online Access | Get full text |
ISSN | 1006-4982 1995-8196 |
DOI | 10.1007/s12209-022-00326-x |
Cover
Abstract | Catalytic conversion of CO
2
into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO
2
can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO
2
conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO
2
conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO
2
reduction product/fraction should be further improved at an industrially relevant CO
2
conversion rate with considerable stability in the future.
Graphical Abstract |
---|---|
AbstractList | Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefi ns, aromatics, and gasoline, as well as fi ne chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO2 conversion into chemicals and fuels and highlight some representative studies of diff erent conversion routes. The structure–performance correlations of typical catalytic materials used for the CO2 conversion reactions have been revealed by combining advanced insitu/operando spectroscopy and microscopy characterizations and density functional theory cal-culations. Catalytic selectivity toward a single CO2 reduction product/fraction should be further improved at an industrially relevant CO2 conversion rate with considerable stability in the future. Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO2 reduction product/fraction should be further improved at an industrially relevant CO2 conversion rate with considerable stability in the future. Catalytic conversion of CO 2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis, electrocatalysis, and photo(electro)catalysis, CO 2 can be converted into a wide range of valuable products, including CO, formic acid, methanol, methane, ethanol, acetic acid, propanol, light olefins, aromatics, and gasoline, as well as fine chemicals. In this mini-review, we summarize the recent progress in heterogeneous catalysis for CO 2 conversion into chemicals and fuels and highlight some representative studies of different conversion routes. The structure–performance correlations of typical catalytic materials used for the CO 2 conversion reactions have been revealed by combining advanced in situ/operando spectroscopy and microscopy characterizations and density functional theory calculations. Catalytic selectivity toward a single CO 2 reduction product/fraction should be further improved at an industrially relevant CO 2 conversion rate with considerable stability in the future. Graphical Abstract |
Author | Li, Wanjun Wang, Guoxiong Wang, Hanyu Cai, Rui Gao, Dunfeng |
AuthorAffiliation | State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China;University of Chinese Academy of Sciences,Beijing 100049,China |
AuthorAffiliation_xml | – name: State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China;University of Chinese Academy of Sciences,Beijing 100049,China |
Author_xml | – sequence: 1 givenname: Dunfeng surname: Gao fullname: Gao, Dunfeng organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 2 givenname: Wanjun surname: Li fullname: Li, Wanjun organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 3 givenname: Hanyu surname: Wang fullname: Wang, Hanyu organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 4 givenname: Guoxiong surname: Wang fullname: Wang, Guoxiong email: wanggx@dicp.ac.cn organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences – sequence: 5 givenname: Rui surname: Cai fullname: Cai, Rui email: cairui@dicp.ac.cn organization: State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
BookMark | eNp9kE1LAzEQhoMoWKt_wNOCV1cn2a_mKItaQehFz2GandQtbVKTVOu_N7pCwUNPMwzPM5O8Z-zYOkuMXXK44QDNbeBCgMxBiBygEHW-O2IjLmWVT7isj1MPUOelnIhTdhbCEqCU0PARa6cUybsFWXLbkLUYcfUV-pAZ57N2JrLW2Q_yoXc26210WftG617jKmRou-xhS6twzk5MGtDFXx2z14f7l3aaP88en9q751yXADHnaNAUspY1GdJakJB1VwpukAMn0c01YkHamK7RXUUV8QopDaoGykmJ82LMroe9n2gN2oVauq236aKKPdplt9vNFYmUAaR7RcKvBnzj3fuWQtzzooGmkLLmZaImA6W9C8GTUbqPGNN_o8d-pTion4TVkLBK29VvwmqXVPFP3fh-jf7rsFQMUkiwXZDfv-qA9Q2l2pFZ |
CitedBy_id | crossref_primary_10_1007_s11090_024_10512_5 crossref_primary_10_1016_j_apsusc_2024_161945 crossref_primary_10_3390_molecules29184411 crossref_primary_10_1021_acsami_4c18267 crossref_primary_10_1039_D3NJ01660A crossref_primary_10_1016_S1872_2067_23_64508_5 crossref_primary_10_1007_s12598_024_02919_y crossref_primary_10_3390_catal13050902 crossref_primary_10_1016_j_ica_2024_122435 crossref_primary_10_1021_jacs_4c11276 crossref_primary_10_1007_s11426_024_2292_3 crossref_primary_10_1039_D4EE00037D crossref_primary_10_1039_D4NJ02206H crossref_primary_10_1021_acs_chemrev_4c00282 crossref_primary_10_1016_j_inoche_2024_113863 crossref_primary_10_1002_asia_202500091 crossref_primary_10_1016_j_ces_2023_119228 crossref_primary_10_1016_j_chempr_2024_08_017 crossref_primary_10_1007_s12274_024_6955_0 crossref_primary_10_1016_j_apsusc_2023_157897 crossref_primary_10_3390_catal13121508 crossref_primary_10_1002_smll_202408146 crossref_primary_10_1016_j_cclet_2023_108313 crossref_primary_10_1016_j_jes_2023_06_022 crossref_primary_10_1007_s11426_024_2365_9 crossref_primary_10_1039_D4TA02224F crossref_primary_10_1016_j_cclet_2024_110204 crossref_primary_10_1021_acsami_4c05680 crossref_primary_10_1039_D3EY00155E crossref_primary_10_1039_D4SC01931H crossref_primary_10_1002_adfm_202303335 crossref_primary_10_1021_acsenergylett_4c02851 crossref_primary_10_1039_D3SC04310J crossref_primary_10_1080_17518253_2024_2426503 crossref_primary_10_1016_j_biotechadv_2023_108276 crossref_primary_10_1016_j_ces_2023_118729 crossref_primary_10_1016_S1872_2067_24_60188_9 crossref_primary_10_1002_aenm_202301276 crossref_primary_10_1002_aic_18669 crossref_primary_10_1016_j_cattod_2023_114133 crossref_primary_10_1002_cctc_202400272 crossref_primary_10_1038_s41467_023_37818_w crossref_primary_10_1039_D3SC01040F crossref_primary_10_1002_adfm_202425601 crossref_primary_10_1016_j_jechem_2022_12_022 crossref_primary_10_34133_research_0067 crossref_primary_10_1021_acsanm_3c03071 crossref_primary_10_1016_j_ces_2024_120672 crossref_primary_10_1002_cctc_202401687 crossref_primary_10_1002_smll_202406345 crossref_primary_10_1016_j_ces_2024_120304 crossref_primary_10_1002_anie_202402950 crossref_primary_10_1021_acs_iecr_4c04350 crossref_primary_10_1016_j_cogsc_2024_100911 crossref_primary_10_1021_acsami_3c08187 crossref_primary_10_1007_s12209_023_00361_2 crossref_primary_10_1002_ange_202407638 crossref_primary_10_1021_cbe_3c00124 crossref_primary_10_1002_anie_202300129 crossref_primary_10_1021_acs_iecr_5c00153 crossref_primary_10_1016_j_apcatb_2024_124065 crossref_primary_10_1021_acsami_4c07953 crossref_primary_10_1007_s12209_024_00413_1 crossref_primary_10_1039_D3SC02647G crossref_primary_10_1002_anie_202300122 crossref_primary_10_1016_j_ces_2023_118911 crossref_primary_10_1007_s11426_024_2256_8 crossref_primary_10_3390_pr13020573 crossref_primary_10_1021_jacsau_4c00583 crossref_primary_10_1039_D3CP04841A crossref_primary_10_1002_ange_202402950 crossref_primary_10_1007_s10562_024_04800_0 crossref_primary_10_1016_j_cclet_2023_108651 crossref_primary_10_1021_acsanm_3c00230 crossref_primary_10_1002_anie_202407638 crossref_primary_10_2174_1570178620666230608160836 crossref_primary_10_1002_ange_202300129 crossref_primary_10_1007_s12274_022_5073_0 crossref_primary_10_1038_s41467_024_49038_x crossref_primary_10_1002_ange_202300122 crossref_primary_10_1002_cssc_202400776 crossref_primary_10_1002_adfm_202410339 |
Cites_doi | 10.1038/s41929-020-0440-2 10.1002/adma.201902033 10.1016/j.nanoen.2018.04.054 10.1002/cnma.202100110 10.1021/acssuschemeng.1c06095 10.1016/j.jechem.2019.06.013 10.1021/acs.accounts.8b00478 10.1002/anie.201911995 10.1021/jacs.8b09344 10.1038/s41929-022-00757-8 10.1073/pnas.1702405114 10.1021/acscatal.7b03251 10.1007/s11426-020-9847-9 10.1039/C8CY02275E 10.1016/j.jpowsour.2013.11.047 10.1038/s41893-022-00879-8 10.1007/s12274-019-2316-9 10.1016/j.jpowsour.2010.05.037 10.1021/acsami.9b13081 10.1021/jacs.1c12603 10.1021/acscatal.0c04371 10.1002/aenm.202002105 10.1002/anie.202114238 10.1007/s11426-020-9825-9 10.1021/acssuschemeng.7b02678 10.1039/C4CY00030G 10.1038/nchem.2262 10.1016/j.jechem.2019.11.021 10.1002/asia.202001384 10.1021/acscatal.9b03709 10.1016/j.jechem.2019.03.001 10.1016/j.jpowsour.2020.227846 10.1016/j.jechem.2018.11.002 10.1021/jacs.8b12381 10.1038/s41557-020-0481-9 10.1002/anie.202113135 10.1038/s41560-021-00973-9 10.1039/C5CC07079A 10.1002/anie.201916538 10.1021/acs.nanolett.1c02227 10.1007/s12274-017-1514-6 10.1246/cl.1985.1695 10.1016/j.apcatb.2021.120342 10.1016/j.jcat.2017.12.027 10.1038/s41467-020-19135-8 10.1038/s41467-021-24936-6 10.1039/D0CC00805B 10.1002/anie.202009191 10.1016/j.ijhydene.2021.03.134 10.1007/s12274-021-3448-2 10.1038/ncomms15174 10.1039/C6CC08801E 10.1002/cctc.201901643 10.1021/jacs.1c13024 10.1039/C8NR03882A 10.1021/jacs.7b00102 10.1016/S1872-2067(20)63577-X 10.1021/acscatal.6b02188 10.1021/acscatal.0c01579 10.1021/jacs.5b00046 10.1016/j.jechem.2019.06.001 10.1016/j.cogsc.2016.10.004 10.1016/j.jcat.2015.10.025 10.1021/acscatal.1c05907 10.1016/j.nanoen.2020.104598 10.1038/s41929-022-00760-z 10.1021/acscatal.7b03612 10.1002/anie.202003847 10.1039/C6CY00160B 10.1016/j.apcatb.2020.119648 10.1039/C6TA06202D 10.1038/s41467-020-17120-9 10.1021/acssuschemeng.7b00947 10.1021/acscatal.1c01610 10.1038/s41929-022-00763-w 10.1016/j.apcatb.2021.120556 10.1039/C7CY00842B 10.1021/acscatal.5b01774 10.1007/s10853-020-04983-y 10.1016/j.joule.2018.10.027 10.1021/acs.jpclett.0c03416 10.1039/C8TA02858C 10.1016/j.cej.2022.134621 10.1021/acssuschemeng.9b01985 10.1016/j.jcat.2020.06.018 10.1016/S2095-4956(15)60322-9 10.1016/S1872-2067(21)63940-2 10.1021/acsenergylett.9b01142 10.1021/jp806587y 10.1016/S2095-4956(14)60201-1 10.1039/C8CC01873A 10.1016/j.chempr.2018.12.014 10.1016/j.apcata.2016.01.006 10.1039/C9TA03065D 10.1038/s41565-019-0551-6 10.1007/s12209-021-00283-x 10.1039/C7GC00923B 10.1021/acscatal.9b00401 10.1021/acscatal.1c04785 10.1039/D1CS00260K 10.1016/j.jpowsour.2019.227268 10.1038/s41929-021-00584-3 10.1093/nsr/nwv024 10.1002/adma.202005113 10.1021/acsami.1c04624 10.1002/anie.202102657 10.1039/C6SC04966D 10.1039/C7GC03801A 10.1039/C9EE01204D 10.1126/science.abg6582 10.1021/acs.chemrev.7b00435 10.1021/jacs.0c08607 10.1016/j.jechem.2017.07.003 10.1016/j.jechem.2016.03.009 10.1016/j.catcom.2013.10.034 10.1021/acssuschemeng.8b01548 10.1038/s41560-020-0594-9 10.1016/j.jcat.2021.02.024 10.1038/s41565-021-00974-5 10.1038/s41929-022-00761-y 10.1038/s41929-019-0235-5 10.1016/j.scib.2020.01.020 10.1007/s12274-022-4540-y 10.1002/adma.201906193 10.1021/acssuschemeng.8b06160 10.1016/j.fuel.2020.119151 10.1039/c1ee01035b 10.1002/anie.202006536 10.1038/s41467-020-16742-3 10.1039/C8TA08613C 10.1038/s41467-018-05880-4 10.1021/jacs.0c08139 10.1016/j.nanoen.2016.06.035 10.1021/acscatal.7b00571 10.1021/acscatal.8b05060 10.1021/ie8014582 10.1002/anie.201910662 10.1016/j.joule.2021.01.007 10.1126/science.abh4049 10.1007/s41918-022-00140-y 10.1021/acscatal.5b00007 10.1039/C3CY00868A 10.1016/j.catcom.2019.105711 10.1016/j.jechem.2021.10.017 10.1039/C9GC00811J 10.1126/science.aaf1835 10.1016/j.apcatb.2018.12.059 10.1021/acssuschemeng.8b04538 10.1126/science.aav3506 10.1038/s41560-017-0078-8 10.1021/acscatal.9b02113 10.1039/D0GC02302G 10.1039/D0TA09293B 10.1038/s41929-021-00655-5 10.1126/sciadv.1701290 10.1021/acs.chemrev.0c01012 10.1021/acscatal.7b00903 10.1039/D0EE00047G 10.1021/acssuschemeng.9b07471 10.1002/adma.201903470 10.1038/nchem.2794 10.1016/j.elecom.2017.01.009 10.1016/j.cogsc.2022.100589 10.1016/j.elecom.2016.05.003 10.1016/S1872-2067(21)63907-4 10.1038/s41929-020-0450-0 10.1002/cssc.201702229 10.1016/j.joule.2018.08.016 10.1038/s41467-017-01673-3 10.1021/acscatal.0c03215 10.1016/j.elecom.2015.03.008 10.1039/C8EE00133B 10.1038/s41467-021-26001-8 10.1038/s42004-018-0012-4 10.1021/acscatal.8b02267 10.1038/s41929-019-0266-y 10.1021/acscatal.0c03484 10.1021/acsenergylett.1c00392 10.1039/D0TA08088H 10.1016/j.apcatb.2019.118391 10.1246/cl.1986.897 10.1021/acs.iecr.9b01546 10.1002/aenm.202001645 10.1021/acscatal.0c03292 10.1016/j.jcat.2019.12.022 10.1021/acsenergylett.0c02665 10.1002/cssc.202002054 10.1002/cssc.202001002 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | C6C AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s12209-022-00326-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1995-8196 |
EndPage | 264 |
ExternalDocumentID | tianjdxxb_e202204003 10_1007_s12209_022_00326_x |
GroupedDBID | -03 -0C -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 29Q 29~ 2B. 2C- 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 6NX 8TC 92D 92I 92M 93E 93N 95- 95. 95~ 96X 9D9 9DC AAAVM AABHQ AACDK AAHNG AAHTB AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPEJ ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA C6C CAG CAJEC CCEZO CEKLB CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9P PF0 PT4 Q-- Q-2 QOS R-C R89 R9I RIG ROL RPX RSV RT3 S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8S TCJ TGH TSG TSV TUC U1F U1G U2A U5C U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ 4A8 PSX |
ID | FETCH-LOGICAL-c400t-1afaf39696efecc2e296d421fa101e2dbcaa3ecffd7cd5e5e15ae3ec570484ab3 |
IEDL.DBID | AGYKE |
ISSN | 1006-4982 |
IngestDate | Thu May 29 04:11:18 EDT 2025 Mon Aug 11 22:10:47 EDT 2025 Tue Jul 01 02:15:56 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Fri Feb 21 02:45:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | electroreduction CO Fuels hydrogenation Chemicals conversion CO2 electroreduction CO2 conversion CO2 hydrogenation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c400t-1afaf39696efecc2e296d421fa101e2dbcaa3ecffd7cd5e5e15ae3ec570484ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s12209-022-00326-x |
PQID | 2707399614 |
PQPubID | 2043634 |
PageCount | 20 |
ParticipantIDs | wanfang_journals_tianjdxxb_e202204003 proquest_journals_2707399614 crossref_citationtrail_10_1007_s12209_022_00326_x crossref_primary_10_1007_s12209_022_00326_x springer_journals_10_1007_s12209_022_00326_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tianjin |
PublicationPlace_xml | – name: Tianjin – name: New York |
PublicationSubtitle | Advanced Energy Chemistry and Materials |
PublicationTitle | Transactions of Tianjin University |
PublicationTitleAbbrev | Trans. Tianjin Univ |
PublicationTitle_FL | Transactions of Tianjin University |
PublicationYear | 2022 |
Publisher | Tianjin University Springer Nature B.V University of Chinese Academy of Sciences,Beijing 100049,China State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China |
Publisher_xml | – name: Tianjin University – name: Springer Nature B.V – name: State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China%State Key Laboratory of Catalysis,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023, China – name: University of Chinese Academy of Sciences,Beijing 100049,China |
References | Wei, Yao, Ge (CR61) 2018; 8 Liang, Sun, Ma (CR52) 2019; 9 Yu, Guo, Ge (CR112) 2020; 453 Ozden, Wang, Li (CR185) 2021; 5 Zhang, Han, Zhu (CR45) 2020; 3 Lohr, Marks (CR50) 2015; 7 Liu, Yang, Su (CR133) 2019; 36 Shi, Ji, Long (CR142) 2020; 11 Shao, Yang, Xu (CR28) 2019; 5 Lin, Liu, Xiao (CR149) 2020; 59 Zheng, Liu, Guo (CR147) 2021; 16 Ma, Su, Huang (CR128) 2019; 11 Artz, Müller, Thenert (CR1) 2018; 118 Wei, Sun, Wen (CR51) 2016; 6 Wang, Meeprasert, Han (CR26) 2022; 43 Gao, Cai, Wang (CR109) 2017; 3 Endrődi, Kecsenovity, Samu (CR173) 2019; 4 Wang, Jiang, Ji (CR83) 2020; 8 Gao, Zhou, Cai (CR118) 2017; 10 Song, Zhou, Zhang (CR91) 2018; 6 Hu, Zhang, Liu (CR93) 2019; 36 Zhan, Zhao (CR87) 2010; 195 Gao, Jiang, Liu (CR36) 2018; 10 Chen, Zhong, Tao (CR79) 2018; 20 Han, Tang, Sha (CR23) 2021; 396 Gao, Yan, Wang (CR111) 2018; 24 Ma, Xie, Liu (CR151) 2020; 3 Liang, Duan, Sun (CR47) 2019; 7 Zhang, Qiu, Yao (CR141) 2019; 7 Zang, Wei, Li (CR117) 2022 Cai, Sun, Qiao (CR6) 2021; 373 Ling, Ma, Yu (CR4) 2021; 27 Pan, Peng, Sun (CR34) 2014; 45 Wang, Qu, Song (CR18) 2020; 47 Xu, Su, Liu (CR21) 2016; 514 Gao, Bai, Gao (CR188) 2020; 56 Wei, Yao, Han (CR63) 2021; 50 Han, Fang, Ji (CR48) 2020; 10 Lin, Li, Yan (CR126) 2019; 31 Yao, Li, Qiu (CR132) 2021; 9 Yan, Li, Ye (CR124) 2018; 11 Monteiro, Dattila, Hagedoorn (CR182) 2021; 4 Hori, Kikuchi, Suzuki (CR106) 1985; 14 Gao, Zhang, Zhou (CR123) 2017; 139 Xu, Yang, Hong (CR165) 2021; 11 Liu, Song, Li (CR96) 2021; 46 Li, Cao, Zheng (CR143) 2021; 33 Zhang, Ge, Liu (CR67) 2020; 10 Zhang, Ma, Tu (CR127) 2019; 12 Li, Cheng, Richter (CR190) 2021; 6 Chen, Zhu, Wen (CR84) 2020; 12 Tackett, Gomez, Chen (CR3) 2019; 2 Guo, Sun, Ji (CR46) 2018; 1 Xu, Su, Duan (CR32) 2016; 333 Gu, Liu, Ni (CR184) 2022; 5 Xin, Lin, Li (CR42) 2022; 144 Liu, Wang, Yin (CR166) 2020; 10 Lv, Lin, Zhang (CR101) 2019; 7 Velasco-Vélez, Chuang, Gao (CR157) 2020; 10 Gao, Wei, Li (CR169) 2021; 37 Pan, Peng, Wang (CR35) 2014; 4 Wei, Ge, Yao (CR60) 2017; 8 Jiao, Li, Pan (CR53) 2016; 351 Dong, Fu, Li (CR68) 2020; 142 Wang, Qu, Song (CR17) 2020; 40 Yao, Gu, Sun (CR66) 2009; 48 Wei, Li, Lin (CR171) 2020; 63 Huang, Li, Ozden (CR181) 2021; 372 Jiang, Cai, Gao (CR108) 2016; 68 Gao, Li, Bu (CR5) 2017; 9 Ye, Ma, Yu (CR65) 2022; 67 Yao, Qiu, Zhang (CR134) 2019; 7 Gao, Fu, Wei (CR33) 2016; 6 Li, Yu, Miao (CR54) 2019; 129 Ni, Chen, Fu (CR56) 2018; 9 Lv, Zhou, Zhang (CR99) 2019; 35 Ye, Zhou, Shao (CR144) 2020; 59 Liao, Chen, Ye (CR39) 2021; 16 de Luna, Hahn, Higgins (CR85) 2019; 364 Zhou, Lin, Song (CR97) 2020; 71 Hori, Kikuchi, Murata (CR107) 1986; 15 Lv, Liu, Zhang (CR103) 2020; 59 Wang, Liu, Li (CR70) 2022; 12 Jiang, Li, Yang (CR137) 2020; 55 Su, Xu, Qiu (CR140) 2018; 11 Ren, Liu, Li (CR131) 2020; 63 Yin, Peng, Wei (CR170) 2019; 12 Yu, Yang, Zhang (CR16) 2020; 10 Wang, Qu, Song (CR19) 2020; 382 Su, Yang, Huang (CR11) 2019; 52 Cai, Gao, Zhou (CR122) 2017; 8 Ji, Chen, Wei (CR152) 2022; 5 Larrazábal, Strøm-Hansen, Heli (CR176) 2019; 11 Zhang, Zhang, Yang (CR40) 2020; 22 Li, Liu, Wei (CR161) 2021; 60 Li, Wang, Qu (CR55) 2017; 7 Ye, Liao, Reina (CR38) 2021; 285 Jayakumar, Li, Tao (CR78) 2018; 6 Shao, Wang, Gao (CR146) 2020; 41 Wang, Li, Li (CR22) 2017; 3 Chen, Wang, Qin (CR76) 2019; 21 Monteiro, Philips, Schouten (CR183) 2021; 12 Gao, Zhou, Wang (CR8) 2015; 137 Gao, Cai, Xu (CR168) 2014; 23 Burkart, Hazari, Tway (CR2) 2019; 9 Wang, Shang, Shen (CR189) 2020; 11 Yang, Deng, Pan (CR10) 2015; 2 Hu, Zhang, Cai (CR95) 2020; 8 Wang, Zhang, Zhang (CR186) 2018; 140 Yin, Gao, Yao (CR120) 2016; 27 Zhang, Yan, Qi (CR41) 2022; 12 Li, Qu, Wang (CR57) 2019; 3 Pan, Jiao, Miao (CR29) 2021; 121 Wu, Liu, Yang (CR82) 2017; 5 Jiang, Chen, Tong (CR73) 2016; 6 Li, Goldbach, Li (CR74) 2008; 112 Wang, Wang, Li (CR77) 2017; 5 Song, Zhang, Xie (CR86) 2019; 31 Zhou, Zhou, Song (CR92) 2018; 50 Yan, Chen, Dogdibegovic (CR90) 2014; 252 Ye, Liu, Song (CR114) 2021; 296 Timoshenko, Bergmann, Rettenmaier (CR159) 2022; 5 Kim, Zhu, Chen (CR179) 2022; 5 Shih, Zhang, Li (CR12) 2018; 2 Zhang, Song, Guan (CR98) 2018; 359 Yan, Lin, Gao (CR110) 2018; 6 Zhang, Li, Lu (CR105) 2021; 21 Wu, Sun, Liu (CR81) 2017; 19 Rabinowitz, Kanan (CR174) 2020; 11 Ma, Clark, Therkildsen (CR177) 2020; 13 Liu, Yang, Li (CR27) 2017; 8 Yao, Wei, Ge (CR49) 2021; 298 Fujinuma, Ikoma, Lofland (CR180) 2020; 10 Li, Lin, Pan (CR37) 2019; 9 Gao (CR160) 2022; 15 Han, Tang, Wang (CR24) 2021; 394 Lv, Lin, Zhang (CR102) 2020; 32 Zhu, Sun, Yang (CR59) 2017; 7 Ding, Feng, Mei (CR130) 2020; 268 Zhong, Qiu, Zhang (CR139) 2016; 4 Ozden, García de Arquer, Huang (CR175) 2022; 5 Xu, Wang, Lin (CR7) 1997; 6 Gao, Liu, Wang (CR116) 2021; 6 Hu, Yu, Deng (CR25) 2021; 4 Jeong, Lee, Moon (CR71) 2022; 433 Liu, Yang, Hung (CR129) 2020; 59 Wang, de Araújo, Ju (CR164) 2019; 14 Zhao, Zhang, Zhang (CR75) 2015; 24 Feng, Song, Zhang (CR100) 2020; 13 Liang, Ma, Su (CR14) 2019; 58 Cheng, Shao, Wei (CR135) 2021; 7 Xiao, Goddard, Cheng (CR158) 2017; 114 Chen, Su, Su (CR43) 2017; 7 Noreen, Li, Fu (CR62) 2020; 10 Huang, Mensi, Oveisi (CR163) 2019; 141 Siritanaratkul, Forster, Greenwell (CR178) 2022; 144 Xie, Zhang, Meng (CR89) 2011; 4 Ma, Porosoff (CR167) 2019; 9 Hou, Luo, Cui (CR187) 2019; 245 Tang, Chen, Meng (CR9) 2018; 54 Tian, Wei, Ye (CR13) 2015; 5 Wang, Lu, Li (CR20) 2015; 51 Sang, Wei, Liu (CR155) 2022; 61 Zhu, Cui, Liu (CR162) 2021; 14 Zhang, Chen, Wang (CR191) 2020; 10 Hu, Zhang, Liu (CR94) 2019; 443 Liu, Jayakumar, Chen (CR80) 2021; 13 Ye, Yang, Pan (CR64) 2020; 142 Cai, Gao, Si (CR121) 2017; 76 Gao, Li, Wei (CR115) 2022; 43 Qiu, Zhong, Zhang (CR148) 2017; 7 Lv, Lin, Zhang (CR104) 2021; 12 Wei, Yao, Ge (CR58) 2021; 283 Lin, Ma, Sun (CR113) 2021; 12 Su, Xu, Liang (CR30) 2016; 25 Zhang, Song, Wang (CR88) 2017; 26 Arán-Ais, Scholten, Kunze (CR154) 2020; 5 Jiang, Chen, Tong (CR72) 2017; 53 Lin, Li, Wang (CR138) 2021; 60 Chen, Su, Liu (CR150) 2020; 59 Li, Wei, Gao (CR156) 2022; 34 Gao, Zhou, Cai (CR119) 2018; 8 Wang, Zhang, Lei (CR69) 2021; 9 Ye, Cao, Shao (CR145) 2020; 65 Yang, Hung, Liu (CR125) 2018; 3 Lin, Liu, Jiang (CR31) 2014; 4 Sha, Han, Tang (CR15) 2020; 13 Li, Lin, Li (CR44) 2020; 59 Gao, Wang, Wu (CR136) 2015; 55 Wakerley, Lamaison, Wicks (CR172) 2022; 7 Gao, Arán-Ais, Jeon (CR153) 2019; 2 RG Li (326_CR190) 2021; 6 D Xu (326_CR165) 2021; 11 K Ye (326_CR145) 2020; 65 J Timoshenko (326_CR159) 2022; 5 YT Zhu (326_CR162) 2021; 14 F Jiao (326_CR53) 2016; 351 BL Liang (326_CR52) 2019; 9 K Ye (326_CR144) 2020; 59 JQ Shao (326_CR146) 2020; 41 J Gu (326_CR184) 2022; 5 J Wei (326_CR60) 2017; 8 L Liao (326_CR39) 2021; 16 YM Ni (326_CR56) 2018; 9 HB Yang (326_CR125) 2018; 3 WL Wang (326_CR77) 2017; 5 X Su (326_CR30) 2016; 25 XM Zhang (326_CR88) 2017; 26 S Jayakumar (326_CR78) 2018; 6 F Cai (326_CR122) 2017; 8 XL Jiang (326_CR108) 2016; 68 SQ Hu (326_CR94) 2019; 443 X Ye (326_CR65) 2022; 67 XL Pan (326_CR29) 2021; 121 CC Yan (326_CR124) 2018; 11 JQ Sang (326_CR155) 2022; 61 GQ Wang (326_CR83) 2020; 8 L Lin (326_CR149) 2020; 59 WW Wang (326_CR17) 2020; 40 HF Lv (326_CR103) 2020; 59 P Gao (326_CR5) 2017; 9 Y Hori (326_CR106) 1985; 14 JP Wang (326_CR70) 2022; 12 L Lin (326_CR138) 2021; 60 GD Zhao (326_CR75) 2015; 24 H Xin (326_CR42) 2022; 144 LY Xu (326_CR7) 1997; 6 ZL Wu (326_CR81) 2017; 19 QS Pan (326_CR34) 2014; 45 J Chen (326_CR79) 2018; 20 JF Yu (326_CR16) 2020; 10 DF Gao (326_CR118) 2017; 10 Y Han (326_CR48) 2020; 10 PP Su (326_CR140) 2018; 11 JB Yan (326_CR90) 2014; 252 BL Liang (326_CR14) 2019; 58 ZQ Ma (326_CR167) 2019; 9 JH Xu (326_CR32) 2016; 333 H Li (326_CR74) 2008; 112 J Gao (326_CR36) 2018; 10 YJ Zhou (326_CR92) 2018; 50 JF Huang (326_CR163) 2019; 141 W Gao (326_CR188) 2020; 56 DF Gao (326_CR168) 2014; 23 PF Wei (326_CR171) 2020; 63 J Wei (326_CR61) 2018; 8 LJ Gao (326_CR33) 2016; 6 JJ Velasco-Vélez (326_CR157) 2020; 10 YD Chen (326_CR76) 2019; 21 SD Yao (326_CR66) 2009; 48 SS Ma (326_CR128) 2019; 11 MCO Monteiro (326_CR182) 2021; 4 A Ozden (326_CR185) 2021; 5 WC Feng (326_CR100) 2020; 13 RW Yao (326_CR49) 2021; 298 QX Liu (326_CR96) 2021; 46 WW Wang (326_CR19) 2020; 382 RM Arán-Ais (326_CR154) 2020; 5 PF Zhu (326_CR59) 2017; 7 HF Li (326_CR156) 2022; 34 XB Zhang (326_CR45) 2020; 3 L Lin (326_CR126) 2019; 31 YF Ling (326_CR4) 2021; 27 D Wakerley (326_CR172) 2022; 7 M Ma (326_CR177) 2020; 13 ZL Li (326_CR55) 2017; 7 DF Gao (326_CR160) 2022; 15 MCO Monteiro (326_CR183) 2021; 12 XY Ren (326_CR131) 2020; 63 Y Wang (326_CR186) 2018; 140 QQ Jiang (326_CR72) 2017; 53 ZL Yin (326_CR170) 2019; 12 YF Song (326_CR91) 2018; 6 Q Yu (326_CR112) 2020; 453 B Siritanaratkul (326_CR178) 2022; 144 JH Dong (326_CR68) 2020; 142 ZL Zhan (326_CR87) 2010; 195 CC Yan (326_CR110) 2018; 6 Y Hori (326_CR107) 1986; 15 L Liu (326_CR80) 2021; 13 LQ Tang (326_CR9) 2018; 54 DF Gao (326_CR116) 2021; 6 YM Shi (326_CR142) 2020; 11 GO Larrazábal (326_CR176) 2019; 11 J Wei (326_CR63) 2021; 50 JC Zhang (326_CR67) 2020; 10 F Sha (326_CR15) 2020; 13 YR Zhang (326_CR41) 2022; 12 LX Zhang (326_CR105) 2021; 21 S Liu (326_CR133) 2019; 36 CF Cheng (326_CR135) 2021; 7 XM Zhang (326_CR98) 2018; 359 QQ Lin (326_CR31) 2014; 4 HF Li (326_CR161) 2021; 60 J Li (326_CR37) 2019; 9 HF Lv (326_CR99) 2019; 35 BM Tackett (326_CR3) 2019; 2 XZ Shao (326_CR28) 2019; 5 WC Ma (326_CR151) 2020; 3 P de Luna (326_CR85) 2019; 364 MH Jeong (326_CR71) 2022; 433 DF Gao (326_CR115) 2022; 43 J Wei (326_CR58) 2021; 283 X Ye (326_CR64) 2020; 142 SQ Hu (326_CR95) 2020; 8 JJ Wang (326_CR26) 2022; 43 QQ Jiang (326_CR73) 2016; 6 DF Gao (326_CR119) 2018; 8 DF Gao (326_CR153) 2019; 2 B Endrődi (326_CR173) 2019; 4 YF Song (326_CR86) 2019; 31 DF Gao (326_CR111) 2018; 24 XD Chen (326_CR43) 2017; 7 H Xiao (326_CR158) 2017; 114 K Xie (326_CR89) 2011; 4 JY Kim (326_CR179) 2022; 5 TT Zhang (326_CR141) 2019; 7 Z Zhang (326_CR127) 2019; 12 BL Liang (326_CR47) 2019; 7 TT Hou (326_CR187) 2019; 245 QS Pan (326_CR35) 2014; 4 F Cai (326_CR121) 2017; 76 YL Ji (326_CR152) 2022; 5 YL Qiu (326_CR148) 2017; 7 SQ Hu (326_CR93) 2019; 36 DF Gao (326_CR123) 2017; 139 A Noreen (326_CR62) 2020; 10 QG Liu (326_CR27) 2017; 8 J Li (326_CR54) 2019; 129 ZL Wu (326_CR82) 2017; 5 TT Zheng (326_CR147) 2021; 16 HF Lv (326_CR101) 2019; 7 DF Gao (326_CR109) 2017; 3 HF Lv (326_CR102) 2020; 32 JE Huang (326_CR181) 2021; 372 T Cai (326_CR6) 2021; 373 JJ Wang (326_CR20) 2015; 51 LS Guo (326_CR46) 2018; 1 Z Yin (326_CR120) 2016; 27 HF Zhang (326_CR191) 2020; 10 C Chen (326_CR84) 2020; 12 JT Hu (326_CR25) 2021; 4 WW Wang (326_CR18) 2020; 47 JA Rabinowitz (326_CR174) 2020; 11 XL Wang (326_CR164) 2019; 14 DF Gao (326_CR8) 2015; 137 CM Ding (326_CR130) 2020; 268 XL Liu (326_CR166) 2020; 10 JH Xu (326_CR21) 2016; 514 DF Gao (326_CR169) 2021; 37 HF Lv (326_CR104) 2021; 12 YJ Zhou (326_CR97) 2020; 71 F Yang (326_CR10) 2015; 2 DF Gao (326_CR136) 2015; 55 HX Zhong (326_CR139) 2016; 4 A Ozden (326_CR175) 2022; 5 MD Burkart (326_CR2) 2019; 9 PF Yao (326_CR132) 2021; 9 YR Zhang (326_CR40) 2020; 22 ZL Li (326_CR57) 2019; 3 J Wei (326_CR51) 2016; 6 PF Yao (326_CR134) 2019; 7 Z Han (326_CR23) 2021; 396 Y Wang (326_CR189) 2020; 11 J Artz (326_CR1) 2018; 118 ZJ Li (326_CR143) 2021; 33 CF Shih (326_CR12) 2018; 2 S Liu (326_CR129) 2020; 59 JJ Wang (326_CR22) 2017; 3 XZ Lin (326_CR113) 2021; 12 X Su (326_CR11) 2019; 52 P Tian (326_CR13) 2015; 5 RP Ye (326_CR38) 2021; 285 XY Li (326_CR44) 2020; 59 TL Lohr (326_CR50) 2015; 7 RX Chen (326_CR150) 2020; 59 Z Han (326_CR24) 2021; 394 YH Wang (326_CR69) 2021; 9 XL Jiang (326_CR137) 2020; 55 N Fujinuma (326_CR180) 2020; 10 K Ye (326_CR114) 2021; 296 YP Zang (326_CR117) 2022 |
References_xml | – volume: 3 start-page: 411 issue: 4 year: 2020 end-page: 417 ident: CR45 article-title: Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO hydrogenation publication-title: Nat Catal doi: 10.1038/s41929-020-0440-2 – volume: 31 issue: 50 year: 2019 ident: CR86 article-title: High-temperature CO electrolysis in solid oxide electrolysis cells: developments, challenges, and prospects publication-title: Adv Mater doi: 10.1002/adma.201902033 – volume: 50 start-page: 43 year: 2018 end-page: 51 ident: CR92 article-title: Enhancing CO electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.054 – volume: 7 start-page: 635 issue: 6 year: 2021 end-page: 640 ident: CR135 article-title: Nitrogen and boron co-doped carbon spheres for carbon dioxide electroreduction publication-title: ChemNanoMat doi: 10.1002/cnma.202100110 – volume: 9 start-page: 17301 issue: 51 year: 2021 end-page: 17309 ident: CR69 article-title: Defect-dependent selective C-H/C–C bond cleavage of propane in the presence of CO over FeNi/ceria catalysts publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.1c06095 – volume: 13 start-page: 6160 issue: 23 year: 2020 end-page: 6181 ident: CR15 article-title: Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts publication-title: Chemsuschem – volume: 36 start-page: 95 year: 2019 end-page: 105 ident: CR133 article-title: Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: a review publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.06.013 – volume: 52 start-page: 656 issue: 3 year: 2019 end-page: 664 ident: CR11 article-title: Single-atom catalysis toward efficient CO conversion to CO and formate products publication-title: Acc Chem Res doi: 10.1021/acs.accounts.8b00478 – volume: 59 start-page: 798 issue: 2 year: 2020 end-page: 803 ident: CR129 article-title: Elucidating the electrocatalytic CO reduction reaction over a model single-atom nickel catalyst publication-title: Angew Chem Int Ed doi: 10.1002/anie.201911995 – volume: 140 start-page: 14595 issue: 44 year: 2018 end-page: 14598 ident: CR186 article-title: Visible-light driven overall conversion of CO and H O to CH and O on 3D-SiC@2D-MoS heterostructure publication-title: J Am Chem Soc doi: 10.1021/jacs.8b09344 – volume: 5 start-page: 251 issue: 4 year: 2022 end-page: 258 ident: CR152 article-title: Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites publication-title: Nat Catal doi: 10.1038/s41929-022-00757-8 – volume: 114 start-page: 6685 issue: 26 year: 2017 end-page: 6688 ident: CR158 article-title: Cu metal embedded in oxidized matrix catalyst to promote CO activation and CO dimerization for electrochemical reduction of CO publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1702405114 – volume: 7 start-page: 8544 issue: 12 year: 2017 end-page: 8548 ident: CR55 article-title: Highly selective conversion of carbon dioxide to lower olefins publication-title: ACS Catal doi: 10.1021/acscatal.7b03251 – volume: 63 start-page: 1727 issue: 12 year: 2020 end-page: 1733 ident: CR131 article-title: Electron-withdrawing functional ligand promotes CO reduction catalysis in single atom catalyst publication-title: Sci China Chem doi: 10.1007/s11426-020-9847-9 – volume: 9 start-page: 456 issue: 2 year: 2019 end-page: 464 ident: CR52 article-title: Mn decorated Na/Fe catalysts for CO hydrogenation to light olefins publication-title: Catal Sci Technol doi: 10.1039/C8CY02275E – volume: 252 start-page: 79 year: 2014 end-page: 84 ident: CR90 article-title: High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.11.047 – volume: 5 start-page: 563 issue: 7 year: 2022 end-page: 573 ident: CR175 article-title: Carbon-efficient carbon dioxide electrolysers publication-title: Nat Sustain doi: 10.1038/s41893-022-00879-8 – volume: 12 start-page: 2313 issue: 9 year: 2019 end-page: 2317 ident: CR127 article-title: Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO reduction to CO publication-title: Nano Res doi: 10.1007/s12274-019-2316-9 – volume: 195 start-page: 7250 issue: 21 year: 2010 end-page: 7254 ident: CR87 article-title: Electrochemical reduction of CO in solid oxide electrolysis cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.05.037 – volume: 11 start-page: 41281 issue: 44 year: 2019 end-page: 41288 ident: CR176 article-title: Analysis of mass flows and membrane cross-over in CO reduction at high current densities in an MEA-type electrolyzer publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b13081 – volume: 144 start-page: 4874 issue: 11 year: 2022 end-page: 4882 ident: CR42 article-title: Overturning CO hydrogenation selectivity with high activity via reaction-induced strong metal-support interactions publication-title: J Am Chem Soc doi: 10.1021/jacs.1c12603 – volume: 10 start-page: 14694 issue: 24 year: 2020 end-page: 14706 ident: CR16 article-title: Stabilizing Cu in Cu/SiO catalysts with a shattuckite-like structure boosts CO hydrogenation into methanol publication-title: ACS Catal doi: 10.1021/acscatal.0c04371 – volume: 10 start-page: 2002105 issue: 44 year: 2020 ident: CR191 article-title: Carbon encapsulation of organic-inorganic hybrid perovskite toward efficient and stable photo-electrochemical carbon dioxide reduction publication-title: Adv Energy Mater doi: 10.1002/aenm.202002105 – volume: 61 issue: 5 year: 2022 ident: CR155 article-title: A reconstructed Cu P O catalyst for selective CO electroreduction to multicarbon products publication-title: Angew Chem Int Ed doi: 10.1002/anie.202114238 – volume: 63 start-page: 1711 issue: 12 year: 2020 end-page: 1715 ident: CR171 article-title: CO electrolysis at industrial current densities using anion exchange membrane based electrolyzers publication-title: Sci China Chem doi: 10.1007/s11426-020-9825-9 – volume: 5 start-page: 9634 issue: 11 year: 2017 end-page: 9639 ident: CR82 article-title: Knitting aryl network polymers-incorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO as carboxylic acid publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b02678 – volume: 4 start-page: 2058 issue: 7 year: 2014 end-page: 2063 ident: CR31 article-title: Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO hydrogenation publication-title: Catal Sci Technol doi: 10.1039/C4CY00030G – volume: 7 start-page: 477 issue: 6 year: 2015 end-page: 482 ident: CR50 article-title: Orthogonal tandem catalysis publication-title: Nat Chem doi: 10.1038/nchem.2262 – volume: 47 start-page: 18 year: 2020 end-page: 28 ident: CR18 article-title: An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce Zr O catalyst for CO hydrogenation to CH OH publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.11.021 – volume: 13 start-page: 6290 issue: 23 year: 2020 end-page: 6295 ident: CR100 article-title: Platinum-decorated ceria enhances CO electroreduction in solid oxide electrolysis cells publication-title: ChemSusChem – volume: 16 start-page: 678 issue: 6 year: 2021 end-page: 689 ident: CR39 article-title: Robust nickel silicate catalysts with high Ni loading for CO methanation publication-title: Chem Asian J doi: 10.1002/asia.202001384 – volume: 10 start-page: 783 issue: 1 year: 2020 end-page: 791 ident: CR67 article-title: Robust ruthenium-saving catalyst for high-temperature carbon dioxide reforming of methane publication-title: ACS Catal doi: 10.1021/acscatal.9b03709 – volume: 40 start-page: 22 year: 2020 end-page: 30 ident: CR17 article-title: CO hydrogenation to methanol over Cu/CeO and Cu/ZrO catalysts: tuning methanol selectivity via metal-support interaction publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.03.001 – volume: 453 year: 2020 ident: CR112 article-title: Morphology controlling of silver by plasma engineering for electrocatalytic carbon dioxide reduction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.227846 – volume: 35 start-page: 71 year: 2019 end-page: 78 ident: CR99 article-title: Infiltration of Ce Gd O nanoparticles on Sr Fe Mo O cathode for CO electroreduction in solid oxide electrolysis cell publication-title: J Energy Chem doi: 10.1016/j.jechem.2018.11.002 – volume: 141 start-page: 2490 issue: 6 year: 2019 end-page: 2499 ident: CR163 article-title: Structural sensitivities in bimetallic catalysts for electrochemical CO reduction revealed by Ag-Cu nanodimers publication-title: J Am Chem Soc doi: 10.1021/jacs.8b12381 – volume: 12 start-page: 717 issue: 8 year: 2020 end-page: 724 ident: CR84 article-title: Coupling N and CO in H O to synthesize urea under ambient conditions publication-title: Nat Chem doi: 10.1038/s41557-020-0481-9 – volume: 60 start-page: 26582 issue: 51 year: 2021 end-page: 26586 ident: CR138 article-title: Temperature-dependent CO electroreduction over Fe-N-C and Ni-N-C single-atom catalysts publication-title: Angew Chem Int Ed doi: 10.1002/anie.202113135 – volume: 7 start-page: 130 issue: 2 year: 2022 end-page: 143 ident: CR172 article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO electrolysers publication-title: Nat Energy doi: 10.1038/s41560-021-00973-9 – volume: 51 start-page: 17615 issue: 99 year: 2015 end-page: 17618 ident: CR20 article-title: A remarkable difference in CO hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes publication-title: Chem Commun doi: 10.1039/C5CC07079A – volume: 59 start-page: 4814 issue: 12 year: 2020 end-page: 4821 ident: CR144 article-title: In situ reconstruction of a hierarchical Sn-Cu/SnO core/shell catalyst for high-performance CO electroreduction publication-title: Angew Chem Int Ed doi: 10.1002/anie.201916538 – volume: 21 start-page: 6952 issue: 16 year: 2021 end-page: 6959 ident: CR105 article-title: In situ dispersed nano-Au on Zr-suboxides as active cathode for direct CO electroreduction in solid oxide electrolysis cells publication-title: Nano Lett doi: 10.1021/acs.nanolett.1c02227 – volume: 10 start-page: 2181 issue: 6 year: 2017 end-page: 2191 ident: CR118 article-title: Switchable CO electroreduction via engineering active phases of Pd nanoparticles publication-title: Nano Res doi: 10.1007/s12274-017-1514-6 – volume: 14 start-page: 1695 issue: 11 year: 1985 end-page: 1698 ident: CR106 article-title: Production of CO and CH in electrochemical reduction of CO at metal electrodes in aqueous hydrogencarbonate solution publication-title: Chem Lett doi: 10.1246/cl.1985.1695 – volume: 296 year: 2021 ident: CR114 article-title: Tailoring the interactions of heterogeneous Ag S/Ag interface for efficient CO electroreduction publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2021.120342 – volume: 359 start-page: 8 year: 2018 end-page: 16 ident: CR98 article-title: Enhancing electrocatalytic CO reduction in solid oxide electrolysis cell with Ce Mn O nanoparticles-modified LSCM-GDC cathode publication-title: J Catal doi: 10.1016/j.jcat.2017.12.027 – volume: 11 start-page: 5231 year: 2020 ident: CR174 article-title: The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem publication-title: Nat Commun doi: 10.1038/s41467-020-19135-8 – volume: 12 start-page: 4943 year: 2021 ident: CR183 article-title: Efficiency and selectivity of CO reduction to CO on gold gas diffusion electrodes in acidic media publication-title: Nat Commun doi: 10.1038/s41467-021-24936-6 – volume: 56 start-page: 7777 issue: 56 year: 2020 end-page: 7780 ident: CR188 article-title: Anchoring of black phosphorus quantum dots onto WO nanowires to boost photocatalytic CO conversion into solar fuels publication-title: Chem Commun doi: 10.1039/D0CC00805B – volume: 59 start-page: 22408 issue: 50 year: 2020 end-page: 22413 ident: CR149 article-title: Enhancing CO electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst publication-title: Angew Chem Int Ed doi: 10.1002/anie.202009191 – volume: 46 start-page: 19814 issue: 38 year: 2021 end-page: 19821 ident: CR96 article-title: A vanadium-doped BSCF perovskite for CO electrolysis in solid oxide electrolysis cells publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.03.134 – volume: 14 start-page: 4471 issue: 12 year: 2021 end-page: 4486 ident: CR162 article-title: Tandem catalysis in electrochemical CO reduction reaction publication-title: Nano Res doi: 10.1007/s12274-021-3448-2 – volume: 8 start-page: 15174 year: 2017 ident: CR60 article-title: Directly converting CO into a gasoline fuel publication-title: Nat Commun doi: 10.1038/ncomms15174 – volume: 53 start-page: 1188 issue: 6 year: 2017 end-page: 1191 ident: CR72 article-title: Direct thermolysis of CO into CO and O publication-title: Chem Commun doi: 10.1039/C6CC08801E – volume: 11 start-page: 6092 issue: 24 year: 2019 end-page: 6098 ident: CR128 article-title: Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO reduction publication-title: ChemCatChem doi: 10.1002/cctc.201901643 – volume: 144 start-page: 7551 issue: 17 year: 2022 end-page: 7556 ident: CR178 article-title: Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts publication-title: J Am Chem Soc doi: 10.1021/jacs.1c13024 – volume: 10 start-page: 14207 issue: 29 year: 2018 end-page: 14219 ident: CR36 article-title: Probing the enhanced catalytic activity of carbon nanotube supported Ni-LaO hybrids for the CO reduction reaction publication-title: Nanoscale doi: 10.1039/C8NR03882A – volume: 139 start-page: 5652 issue: 16 year: 2017 end-page: 5655 ident: CR123 article-title: Enhancing CO electroreduction with the metal-oxide interface publication-title: J Am Chem Soc doi: 10.1021/jacs.7b00102 – volume: 41 start-page: 1393 issue: 9 year: 2020 end-page: 1400 ident: CR146 article-title: Copper-indium bimetallic catalysts for the selective electrochemical reduction of carbon dioxide publication-title: Chin J Catal doi: 10.1016/S1872-2067(20)63577-X – volume: 6 start-page: 6814 issue: 10 year: 2016 end-page: 6822 ident: CR33 article-title: Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells publication-title: ACS Catal doi: 10.1021/acscatal.6b02188 – volume: 10 start-page: 8303 issue: 15 year: 2020 end-page: 8314 ident: CR166 article-title: Tandem catalysis for hydrogenation of CO and CO to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34 publication-title: ACS Catal doi: 10.1021/acscatal.0c01579 – volume: 137 start-page: 4288 issue: 13 year: 2015 end-page: 4291 ident: CR8 article-title: Size-dependent electrocatalytic reduction of CO over Pd nanoparticles publication-title: J Am Chem Soc doi: 10.1021/jacs.5b00046 – volume: 36 start-page: 87 year: 2019 end-page: 94 ident: CR93 article-title: Detrimental phase evolution triggered by Ni in perovskite-type cathodes for CO electroreduction publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.06.001 – volume: 3 start-page: 39 year: 2017 end-page: 44 ident: CR109 article-title: Nanostructured heterogeneous catalysts for electrochemical reduction of CO publication-title: Curr Opin Green Sustain Chem doi: 10.1016/j.cogsc.2016.10.004 – volume: 333 start-page: 227 year: 2016 end-page: 237 ident: CR32 article-title: Influence of pretreatment temperature on catalytic performance of rutile TiO -supported ruthenium catalyst in CO methanation publication-title: J Catal doi: 10.1016/j.jcat.2015.10.025 – volume: 12 start-page: 5930 issue: 10 year: 2022 end-page: 5938 ident: CR70 article-title: Elucidating the active-phase evolution of Fe-based catalysts during isobutane dehydrogenation with and without CO in feed gas publication-title: ACS Catal doi: 10.1021/acscatal.1c05907 – volume: 71 year: 2020 ident: CR97 article-title: Pd single site-anchored perovskite cathode for CO electrolysis in solid oxide electrolysis cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104598 – volume: 5 start-page: 259 issue: 4 year: 2022 end-page: 267 ident: CR159 article-title: Steering the structure and selectivity of CO electroreduction catalysts by potential pulses publication-title: Nat Catal doi: 10.1038/s41929-022-00760-z – volume: 8 start-page: 1510 issue: 2 year: 2018 end-page: 1519 ident: CR119 article-title: Pd-containing nanostructures for electrochemical CO reduction reaction publication-title: ACS Catal doi: 10.1021/acscatal.7b03612 – volume: 59 start-page: 19983 issue: 45 year: 2020 end-page: 19989 ident: CR44 article-title: Controlling CO hydrogenation selectivity by metal-supported electron transfer publication-title: Angew Chem Int Ed doi: 10.1002/anie.202003847 – volume: 6 start-page: 4786 issue: 13 year: 2016 end-page: 4793 ident: CR51 article-title: New insights into the effect of sodium on Fe O -based nanocatalysts for CO hydrogenation to light olefins publication-title: Catal Sci Technol doi: 10.1039/C6CY00160B – volume: 283 year: 2021 ident: CR58 article-title: Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO hydrogenation publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.119648 – volume: 4 start-page: 13746 issue: 36 year: 2016 end-page: 13753 ident: CR139 article-title: Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO to formate publication-title: J Mater Chem A doi: 10.1039/C6TA06202D – volume: 11 start-page: 3415 year: 2020 ident: CR142 article-title: Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate publication-title: Nat Commun doi: 10.1038/s41467-020-17120-9 – volume: 5 start-page: 4523 issue: 6 year: 2017 end-page: 4528 ident: CR77 article-title: State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO to cyclic carbonates publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b00947 – volume: 11 start-page: 8978 issue: 15 year: 2021 end-page: 8984 ident: CR165 article-title: Tandem catalysis of direct CO hydrogenation to higher alcohols publication-title: ACS Catal doi: 10.1021/acscatal.1c01610 – volume: 5 start-page: 288 issue: 4 year: 2022 end-page: 299 ident: CR179 article-title: Recovering carbon losses in CO electrolysis using a solid electrolyte reactor publication-title: Nat Catal doi: 10.1038/s41929-022-00763-w – volume: 298 year: 2021 ident: CR49 article-title: Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO hydrogenation publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2021.120556 – volume: 7 start-page: 2695 issue: 13 year: 2017 end-page: 2699 ident: CR59 article-title: Tandem catalytic synthesis of benzene from CO and H publication-title: Catal Sci Technol doi: 10.1039/C7CY00842B – volume: 6 start-page: 1172 issue: 2 year: 2016 end-page: 1180 ident: CR73 article-title: Catalytic function of IrO in the two-step thermochemical CO -splitting reaction at high temperatures publication-title: ACS Catal doi: 10.1021/acscatal.5b01774 – volume: 55 start-page: 13916 issue: 28 year: 2020 end-page: 13926 ident: CR137 article-title: pH dependence of CO electroreduction selectivity over size-selected Au nanoparticles publication-title: J Mater Sci doi: 10.1007/s10853-020-04983-y – volume: 3 start-page: 570 issue: 2 year: 2019 end-page: 583 ident: CR57 article-title: Highly selective conversion of carbon dioxide to aromatics over tandem catalysts publication-title: Joule doi: 10.1016/j.joule.2018.10.027 – volume: 12 start-page: 552 issue: 1 year: 2021 end-page: 557 ident: CR113 article-title: [AuAg (SR) S] : open shell structure and high faradaic efficiency in electrochemical reduction of CO to CO publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c03416 – volume: 6 start-page: 13661 issue: 28 year: 2018 end-page: 13667 ident: CR91 article-title: Pure CO electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell publication-title: J Mater Chem A doi: 10.1039/C8TA02858C – volume: 433 year: 2022 ident: CR71 article-title: Oxidative dehydrogenation of ethane and subsequent CO activation on Ce-incorporated FeTiO metal oxides publication-title: Chem Eng J doi: 10.1016/j.cej.2022.134621 – volume: 7 start-page: 15190 issue: 18 year: 2019 end-page: 15196 ident: CR141 article-title: Bi-modified Zn catalyst for efficient CO electrochemical reduction to formate publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b01985 – volume: 394 start-page: 236 year: 2021 end-page: 244 ident: CR24 article-title: Atomically dispersed Pt species as highly active sites in Pt/In O catalysts for methanol synthesis from CO hydrogenation publication-title: J Catal doi: 10.1016/j.jcat.2020.06.018 – volume: 37 start-page: 2009021 issue: 5 year: 2021 ident: CR169 article-title: Designing electrolyzers for electrocatalytic CO reduction publication-title: Acta Phys-Chim Sin – volume: 24 start-page: 353 issue: 3 year: 2015 end-page: 358 ident: CR75 article-title: Direct synthesis of propylene carbonate from propylene and carbon dioxide catalyzed by quaternary ammonium heteropolyphosphatotungstate-TBAB system publication-title: J Energy Chem doi: 10.1016/S2095-4956(15)60322-9 – volume: 43 start-page: 1001 issue: 4 year: 2022 end-page: 1016 ident: CR115 article-title: Electrochemical synthesis of catalytic materials for energy catalysis publication-title: Chin J Catal doi: 10.1016/S1872-2067(21)63940-2 – volume: 4 start-page: 1770 issue: 7 year: 2019 end-page: 1777 ident: CR173 article-title: Multilayer electrolyzer stack converts carbon dioxide to gas products at high pressure with high efficiency publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.9b01142 – volume: 112 start-page: 12182 issue: 39 year: 2008 end-page: 12184 ident: CR74 article-title: CO decomposition over Pd membrane surfaces publication-title: J Phys Chem B doi: 10.1021/jp806587y – volume: 23 start-page: 694 issue: 6 year: 2014 end-page: 700 ident: CR168 article-title: Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane publication-title: J Energy Chem doi: 10.1016/S2095-4956(14)60201-1 – volume: 54 start-page: 5126 issue: 40 year: 2018 end-page: 5129 ident: CR9 article-title: Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO into solar fuels publication-title: Chem Commun doi: 10.1039/C8CC01873A – volume: 5 start-page: 693 issue: 3 year: 2019 end-page: 705 ident: CR28 article-title: Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO to formate publication-title: Chem doi: 10.1016/j.chempr.2018.12.014 – volume: 514 start-page: 51 year: 2016 end-page: 59 ident: CR21 article-title: Methanol synthesis from CO and H over Pd/ZnO/Al O : catalyst structure dependence of methanol selectivity publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2016.01.006 – volume: 7 start-page: 11967 issue: 19 year: 2019 end-page: 11975 ident: CR101 article-title: In situ exsolved FeNi nanoparticles on nickel doped Sr Fe Mo O perovskite for efficient electrochemical CO reduction reaction publication-title: J Mater Chem A doi: 10.1039/C9TA03065D – volume: 14 start-page: 1063 issue: 11 year: 2019 end-page: 1070 ident: CR164 article-title: Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO -CO co-feeds on Cu and Cu-tandem electrocatalysts publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0551-6 – volume: 27 start-page: 180 issue: 3 year: 2021 end-page: 200 ident: CR4 article-title: Optimization strategies for selective CO electroreduction to fuels publication-title: Trans Tianjin Univ doi: 10.1007/s12209-021-00283-x – volume: 19 start-page: 2080 issue: 9 year: 2017 end-page: 2085 ident: CR81 article-title: A Schiff base-modified silver catalyst for efficient fixation of CO as carboxylic acid at ambient pressure publication-title: Green Chem doi: 10.1039/C7GC00923B – volume: 9 start-page: 6342 issue: 7 year: 2019 end-page: 6348 ident: CR37 article-title: Enhanced CO methanation activity of Ni/anatase catalyst by tuning strong metal-support interactions publication-title: ACS Catal doi: 10.1021/acscatal.9b00401 – volume: 12 start-page: 1697 issue: 3 year: 2022 end-page: 1705 ident: CR41 article-title: Strong metal-support interaction of Ru on TiO derived from the co-reduction mechanism of Ru Ti O interphase publication-title: ACS Catal doi: 10.1021/acscatal.1c04785 – volume: 50 start-page: 10764 issue: 19 year: 2021 end-page: 10805 ident: CR63 article-title: Towards the development of the emerging process of CO heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons publication-title: Chem Soc Rev doi: 10.1039/D1CS00260K – volume: 443 year: 2019 ident: CR94 article-title: Alkaline-earth elements (Ca, Sr and Ba) doped LaFeO cathodes for CO electroreduction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.227268 – volume: 4 start-page: 242 issue: 3 year: 2021 end-page: 250 ident: CR25 article-title: Sulfur vacancy-rich MoS as a catalyst for the hydrogenation of CO to methanol publication-title: Nat Catal doi: 10.1038/s41929-021-00584-3 – volume: 2 start-page: 183 issue: 2 year: 2015 end-page: 201 ident: CR10 article-title: Understanding nano effects in catalysis publication-title: Natl Sci Rev doi: 10.1093/nsr/nwv024 – volume: 33 issue: 2 year: 2021 ident: CR143 article-title: Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO electroreduction to formate publication-title: Adv Mater doi: 10.1002/adma.202005113 – volume: 13 start-page: 29522 issue: 25 year: 2021 end-page: 29531 ident: CR80 article-title: Synthesis of bifunctional porphyrin polymers for catalytic conversion of dilute CO to cyclic carbonates publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c04624 – volume: 60 start-page: 14329 issue: 26 year: 2021 end-page: 14333 ident: CR161 article-title: High-rate CO electroreduction to C products over a copper-copper iodide catalyst publication-title: Angew Chem Int Ed doi: 10.1002/anie.202102657 – volume: 8 start-page: 2569 issue: 4 year: 2017 end-page: 2573 ident: CR122 article-title: Electrochemical promotion of catalysis over Pd nanoparticles for CO reduction publication-title: Chem Sci doi: 10.1039/C6SC04966D – volume: 20 start-page: 903 issue: 4 year: 2018 end-page: 911 ident: CR79 article-title: The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO cycloaddition reaction publication-title: Green Chem doi: 10.1039/C7GC03801A – volume: 12 start-page: 2455 issue: 8 year: 2019 end-page: 2462 ident: CR170 article-title: An alkaline polymer electrolyte CO electrolyzer operated with pure water publication-title: Energy Environ Sci doi: 10.1039/C9EE01204D – volume: 372 start-page: 1074 issue: 6546 year: 2021 end-page: 1078 ident: CR181 article-title: CO electrolysis to multicarbon products in strong acid publication-title: Science doi: 10.1126/science.abg6582 – volume: 118 start-page: 434 issue: 2 year: 2018 end-page: 504 ident: CR1 article-title: Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00435 – volume: 142 start-page: 19001 issue: 45 year: 2020 end-page: 19005 ident: CR64 article-title: Highly selective hydrogenation of CO to ethanol via designed bifunctional Ir -In O single-atom catalyst publication-title: J Am Chem Soc doi: 10.1021/jacs.0c08607 – volume: 26 start-page: 839 issue: 5 year: 2017 end-page: 853 ident: CR88 article-title: Co-electrolysis of CO and H O in high-temperature solid oxide electrolysis cells: recent advance in cathodes publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.07.003 – volume: 25 start-page: 553 issue: 4 year: 2016 end-page: 565 ident: CR30 article-title: Catalytic carbon dioxide hydrogenation to methane: a review of recent studies publication-title: J Energy Chem doi: 10.1016/j.jechem.2016.03.009 – volume: 45 start-page: 74 year: 2014 end-page: 78 ident: CR34 article-title: Insight into the reaction route of CO methanation: promotion effect of medium basic sites publication-title: Catal Commun doi: 10.1016/j.catcom.2013.10.034 – volume: 6 start-page: 9237 year: 2018 end-page: 9245 ident: CR78 article-title: Cationic Zn-porphyrin immobilized in mesoporous silicas as bifunctional catalyst for CO cycloaddition reaction under cocatalyst free conditions publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01548 – volume: 5 start-page: 317 issue: 4 year: 2020 end-page: 325 ident: CR154 article-title: The role of in situ generated morphological motifs and Cu(i) species in C product selectivity during CO pulsed electroreduction publication-title: Nat Energy doi: 10.1038/s41560-020-0594-9 – volume: 396 start-page: 242 year: 2021 end-page: 250 ident: CR23 article-title: CO hydrogenation to methanol on ZnO-ZrO solid solution catalysts with ordered mesoporous structure publication-title: J Catal doi: 10.1016/j.jcat.2021.02.024 – volume: 16 start-page: 1386 issue: 12 year: 2021 end-page: 1393 ident: CR147 article-title: Copper-catalysed exclusive CO to pure formic acid conversion via single-atom alloying publication-title: Nat Nanotechnol doi: 10.1038/s41565-021-00974-5 – volume: 5 start-page: 268 issue: 4 year: 2022 end-page: 276 ident: CR184 article-title: Modulating electric field distribution by alkali cations for CO electroreduction in strongly acidic medium publication-title: Nat Catal doi: 10.1038/s41929-022-00761-y – volume: 2 start-page: 198 issue: 3 year: 2019 end-page: 210 ident: CR153 article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products publication-title: Nat Catal doi: 10.1038/s41929-019-0235-5 – volume: 65 start-page: 711 issue: 9 year: 2020 end-page: 719 ident: CR145 article-title: Synergy effects on Sn-Cu alloy catalyst for efficient CO electroreduction to formate with high mass activity publication-title: Sci Bull doi: 10.1016/j.scib.2020.01.020 – volume: 15 start-page: 6860 year: 2022 end-page: 6861 ident: CR160 article-title: Revealing structure-selectivity correlations in pulsed CO electrolysis via time-resolved operando synchrotron X-ray studies publication-title: Nano Res doi: 10.1007/s12274-022-4540-y – volume: 32 start-page: e1906193 issue: 6 year: 2020 ident: CR102 article-title: In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a co-doped Sr Fe Mo O cathode for CO electrolysis publication-title: Adv Mater doi: 10.1002/adma.201906193 – volume: 7 start-page: 5249 issue: 5 year: 2019 end-page: 5255 ident: CR134 article-title: N-doped nanoporous carbon from biomass as a highly efficient electrocatalyst for the CO reduction reaction publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b06160 – volume: 285 year: 2021 ident: CR38 article-title: Engineering Ni/SiO catalysts for enhanced CO methanation publication-title: Fuel doi: 10.1016/j.fuel.2020.119151 – volume: 4 start-page: 2218 issue: 6 year: 2011 ident: CR89 article-title: Direct synthesis of methane from CO /H O in an oxygen-ion conducting solid oxide electrolyser publication-title: Energy Environ Sci doi: 10.1039/c1ee01035b – volume: 59 start-page: 15968 issue: 37 year: 2020 end-page: 15973 ident: CR103 article-title: Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La Sr Co Fe Mo O with efficient CO electrolysis publication-title: Angew Chem Int Ed doi: 10.1002/anie.202006536 – volume: 11 start-page: 3043 year: 2020 ident: CR189 article-title: Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO reduction and H O oxidation publication-title: Nat Commun doi: 10.1038/s41467-020-16742-3 – volume: 6 start-page: 19743 issue: 40 year: 2018 end-page: 19749 ident: CR110 article-title: Selective CO electroreduction over an oxide-derived gallium catalyst publication-title: J Mater Chem A doi: 10.1039/C8TA08613C – volume: 9 start-page: 3457 year: 2018 ident: CR56 article-title: Selective conversion of CO and H into aromatics publication-title: Nat Commun doi: 10.1038/s41467-018-05880-4 – volume: 142 start-page: 17167 issue: 40 year: 2020 end-page: 17174 ident: CR68 article-title: Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets publication-title: J Am Chem Soc doi: 10.1021/jacs.0c08139 – volume: 27 start-page: 35 year: 2016 end-page: 43 ident: CR120 article-title: Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO to CO publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.035 – volume: 7 start-page: 6302 issue: 9 year: 2017 end-page: 6310 ident: CR148 article-title: Copper electrode fabricated via pulse electrodeposition: toward high methane selectivity and activity for CO electroreduction publication-title: ACS Catal doi: 10.1021/acscatal.7b00571 – volume: 9 start-page: 2639 issue: 3 year: 2019 end-page: 2656 ident: CR167 article-title: Development of tandem catalysts for CO hydrogenation to olefins publication-title: ACS Catal doi: 10.1021/acscatal.8b05060 – volume: 48 start-page: 713 issue: 2 year: 2009 end-page: 718 ident: CR66 article-title: Combined methane CO reforming and dehydroaromatization for enhancing the catalyst stability publication-title: Ind Eng Chem Res doi: 10.1021/ie8014582 – volume: 59 start-page: 154 issue: 1 year: 2020 end-page: 160 ident: CR150 article-title: Highly selective production of ethylene by the electroreduction of carbon monoxide publication-title: Angew Chem Int Ed doi: 10.1002/anie.201910662 – volume: 5 start-page: 706 issue: 3 year: 2021 end-page: 719 ident: CR185 article-title: Cascade CO electroreduction enables efficient carbonate-free production of ethylene publication-title: Joule doi: 10.1016/j.joule.2021.01.007 – volume: 373 start-page: 1523 issue: 6562 year: 2021 end-page: 1527 ident: CR6 article-title: Cell-free chemoenzymatic starch synthesis from carbon dioxide publication-title: Science doi: 10.1126/science.abh4049 – year: 2022 ident: CR117 article-title: Catalyst design for electrolytic CO reduction toward low-carbon fuels and chemicals publication-title: Electrochem Energy Rev doi: 10.1007/s41918-022-00140-y – volume: 5 start-page: 1922 issue: 3 year: 2015 end-page: 1938 ident: CR13 article-title: Methanol to olefins (MTO): from fundamentals to commercialization publication-title: ACS Catal doi: 10.1021/acscatal.5b00007 – volume: 4 start-page: 502 issue: 2 year: 2014 end-page: 509 ident: CR35 article-title: In situ FTIR spectroscopic study of the CO methanation mechanism on Ni/Ce Zr O publication-title: Catal Sci Technol doi: 10.1039/C3CY00868A – volume: 129 year: 2019 ident: CR54 article-title: Carbon dioxide hydrogenation to light olefins over ZnO-Y O and SAPO-34 bifunctional catalysts publication-title: Catal Commun doi: 10.1016/j.catcom.2019.105711 – volume: 67 start-page: 184 year: 2022 end-page: 192 ident: CR65 article-title: Construction of bifunctional single-atom catalysts on the optimized β-Mo C surface for highly selective hydrogenation of CO into ethanol publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.10.017 – volume: 21 start-page: 4642 issue: 17 year: 2019 end-page: 4649 ident: CR76 article-title: Ti Ce O nanocomposites: a monolithic catalyst for the direct conversion of carbon dioxide and methanol to dimethyl carbonate publication-title: Green Chem doi: 10.1039/C9GC00811J – volume: 351 start-page: 1065 issue: 6277 year: 2016 end-page: 1068 ident: CR53 article-title: Selective conversion of syngas to light olefins publication-title: Science doi: 10.1126/science.aaf1835 – volume: 245 start-page: 262 year: 2019 end-page: 270 ident: CR187 article-title: Selective reduction of CO to CO under visible light by controlling coordination structures of CeO -S/ZnIn S hybrid catalysts publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2018.12.059 – volume: 7 start-page: 925 issue: 1 year: 2019 end-page: 932 ident: CR47 article-title: Effect of Na promoter on Fe-based catalyst for CO hydrogenation to alkenes publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b04538 – volume: 364 start-page: eaav3506 issue: 6438 year: 2019 ident: CR85 article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes? publication-title: Science doi: 10.1126/science.aav3506 – volume: 3 start-page: 140 issue: 2 year: 2018 end-page: 147 ident: CR125 article-title: Atomically dispersed Ni(i) as the active site for electrochemical CO reduction publication-title: Nat Energy doi: 10.1038/s41560-017-0078-8 – volume: 9 start-page: 7937 issue: 9 year: 2019 end-page: 7956 ident: CR2 article-title: Opportunities and challenges for catalysis in carbon dioxide utilization publication-title: ACS Catal doi: 10.1021/acscatal.9b02113 – volume: 22 start-page: 6855 issue: 20 year: 2020 end-page: 6861 ident: CR40 article-title: Tuning selectivity of CO hydrogenation by modulating the strong metal–support interaction over Ir/TiO catalysts publication-title: Green Chem doi: 10.1039/D0GC02302G – volume: 9 start-page: 320 issue: 1 year: 2021 end-page: 326 ident: CR132 article-title: N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO reduction publication-title: J Mater Chem A doi: 10.1039/D0TA09293B – volume: 4 start-page: 654 issue: 8 year: 2021 end-page: 662 ident: CR182 article-title: Absence of CO electroreduction on copper, gold and silver electrodes without metal cations in solution publication-title: Nat Catal doi: 10.1038/s41929-021-00655-5 – volume: 3 issue: 10 year: 2017 ident: CR22 article-title: A highly selective and stable ZnO-ZrO solid solution catalyst for CO hydrogenation to methanol publication-title: Sci Adv doi: 10.1126/sciadv.1701290 – volume: 121 start-page: 6588 issue: 11 year: 2021 end-page: 6609 ident: CR29 article-title: Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01012 – volume: 6 start-page: 111 issue: 2 year: 1997 end-page: 120 ident: CR7 article-title: Production of light olefins from CO hydrogenation over Fe/silicalite-2 catalysts I. Catalytic reactivity and reaction mechanism publication-title: J Nat Gas Chem – volume: 7 start-page: 4613 issue: 7 year: 2017 end-page: 4620 ident: CR43 article-title: Theoretical insights and the corresponding construction of supported metal catalysts for highly selective CO to CO conversion publication-title: ACS Catal doi: 10.1021/acscatal.7b00903 – volume: 13 start-page: 977 issue: 3 year: 2020 end-page: 985 ident: CR177 article-title: Insights into the carbon balance for CO electroreduction on Cu using gas diffusion electrode reactor designs publication-title: Energy Environ Sci doi: 10.1039/D0EE00047G – volume: 8 start-page: 5576 issue: 14 year: 2020 end-page: 5583 ident: CR83 article-title: Bifunctional heterogeneous Ru/POP catalyst embedded with alkali for the N-formylation of amine and CO publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b07471 – volume: 31 issue: 41 year: 2019 ident: CR126 article-title: Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO electroreduction publication-title: Adv Mater doi: 10.1002/adma.201903470 – volume: 9 start-page: 1019 issue: 10 year: 2017 end-page: 1024 ident: CR5 article-title: Direct conversion of CO into liquid fuels with high selectivity over a bifunctional catalyst publication-title: Nat Chem doi: 10.1038/nchem.2794 – volume: 76 start-page: 1 year: 2017 end-page: 5 ident: CR121 article-title: Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO electroreduction to formate publication-title: Electrochem Commun doi: 10.1016/j.elecom.2017.01.009 – volume: 34 year: 2022 ident: CR156 article-title: In situ Raman spectroscopy studies for electrochemical CO reduction over Cu catalysts publication-title: Curr Opin Green Sustain Chem doi: 10.1016/j.cogsc.2022.100589 – volume: 68 start-page: 67 year: 2016 end-page: 70 ident: CR108 article-title: Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide publication-title: Electrochem Commun doi: 10.1016/j.elecom.2016.05.003 – volume: 43 start-page: 761 issue: 3 year: 2022 end-page: 770 ident: CR26 article-title: Highly dispersed Cd cluster supported on TiO as an efficient catalyst for CO hydrogenation to methanol publication-title: Chin J Catal doi: 10.1016/S1872-2067(21)63907-4 – volume: 3 start-page: 478 issue: 6 year: 2020 end-page: 487 ident: CR151 article-title: Electrocatalytic reduction of CO to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper publication-title: Nat Catal doi: 10.1038/s41929-020-0450-0 – volume: 11 start-page: 848 issue: 5 year: 2018 end-page: 853 ident: CR140 article-title: Ultrathin bismuth nanosheets as a highly efficient CO reduction electrocatalyst publication-title: ChemSusChem doi: 10.1002/cssc.201702229 – volume: 2 start-page: 1925 issue: 10 year: 2018 end-page: 1949 ident: CR12 article-title: Powering the future with liquid sunshine publication-title: Joule doi: 10.1016/j.joule.2018.08.016 – volume: 8 start-page: 1407 year: 2017 ident: CR27 article-title: Direct catalytic hydrogenation of CO to formate over a Schiff-base-mediated gold nanocatalyst publication-title: Nat Commun doi: 10.1038/s41467-017-01673-3 – volume: 10 start-page: 12098 issue: 20 year: 2020 end-page: 12108 ident: CR48 article-title: Interfacing with carbonaceous potassium promoters boosts catalytic CO hydrogenation of iron publication-title: ACS Catal doi: 10.1021/acscatal.0c03215 – volume: 55 start-page: 1 year: 2015 end-page: 5 ident: CR136 article-title: pH effect on electrocatalytic reduction of CO over Pd and Pt nanoparticles publication-title: Electrochem Commun doi: 10.1016/j.elecom.2015.03.008 – volume: 11 start-page: 1204 issue: 5 year: 2018 end-page: 1210 ident: CR124 article-title: Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO electroreduction publication-title: Energy Environ Sci doi: 10.1039/C8EE00133B – volume: 12 start-page: 5665 year: 2021 ident: CR104 article-title: Promoting exsolution of RuFe alloy nanoparticles on Sr Fe Ru Mo O via repeated redox manipulations for CO electrolysis publication-title: Nat Commun doi: 10.1038/s41467-021-26001-8 – volume: 1 start-page: 11 year: 2018 ident: CR46 article-title: Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts publication-title: Commun Chem doi: 10.1038/s42004-018-0012-4 – volume: 24 start-page: 757 issue: 6 year: 2018 end-page: 765 ident: CR111 article-title: Pd/C catalysts for CO electroreduction to CO: Pd loading effect publication-title: J Electrochem – volume: 8 start-page: 9958 issue: 11 year: 2018 end-page: 9967 ident: CR61 article-title: Catalytic hydrogenation of CO to isoparaffins over Fe-based multifunctional catalysts publication-title: ACS Catal doi: 10.1021/acscatal.8b02267 – volume: 2 start-page: 381 issue: 5 year: 2019 end-page: 386 ident: CR3 article-title: Net reduction of CO via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes publication-title: Nat Catal doi: 10.1038/s41929-019-0266-y – volume: 10 start-page: 11510 issue: 19 year: 2020 end-page: 11518 ident: CR157 article-title: On the activity/selectivity and phase stability of thermally grown copper oxides during the electrocatalytic reduction of CO publication-title: ACS Catal doi: 10.1021/acscatal.0c03484 – volume: 6 start-page: 1849 issue: 5 year: 2021 end-page: 1856 ident: CR190 article-title: Unassisted highly selective gas-phase CO reduction with a plasmonic Au/p-GaN photocatalyst using H O as an electron donor publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.1c00392 – volume: 8 start-page: 21053 issue: 40 year: 2020 end-page: 21061 ident: CR95 article-title: Iron stabilized 1/3 A-site deficient La–Ti–O perovskite cathodes for efficient CO electroreduction publication-title: J Mater Chem A doi: 10.1039/D0TA08088H – volume: 268 year: 2020 ident: CR130 article-title: Carbon nitride embedded with transition metals for selective electrocatalytic CO reduction publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.118391 – volume: 15 start-page: 897 issue: 6 year: 1986 end-page: 898 ident: CR107 article-title: Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution publication-title: Chem Lett doi: 10.1246/cl.1986.897 – volume: 58 start-page: 9030 issue: 21 year: 2019 end-page: 9037 ident: CR14 article-title: Investigation on deactivation of Cu/ZnO/Al O catalyst for CO hydrogenation to methanol publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b01546 – volume: 10 start-page: 2001645 issue: 39 year: 2020 ident: CR180 article-title: Highly efficient electrochemical CO reduction reaction to CO with one-pot synthesized co-pyridine-derived catalyst incorporated in a nafion-based membrane electrode assembly publication-title: Adv Energy Mater doi: 10.1002/aenm.202001645 – volume: 10 start-page: 14186 issue: 23 year: 2020 end-page: 14194 ident: CR62 article-title: One-pass hydrogenation of CO to multibranched isoparaffins over bifunctional zeolite-based catalysts publication-title: ACS Catal doi: 10.1021/acscatal.0c03292 – volume: 382 start-page: 129 year: 2020 end-page: 140 ident: CR19 article-title: Probing into the multifunctional role of copper species and reaction pathway on copper-cerium-zirconium catalysts for CO hydrogenation to methanol using high pressure in situ DRIFTS publication-title: J Catal doi: 10.1016/j.jcat.2019.12.022 – volume: 6 start-page: 713 issue: 2 year: 2021 end-page: 727 ident: CR116 article-title: Structure sensitivity in single-atom catalysis toward CO electroreduction publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.0c02665 – volume: 12 start-page: 5930 issue: 10 year: 2022 ident: 326_CR70 publication-title: ACS Catal doi: 10.1021/acscatal.1c05907 – volume: 43 start-page: 1001 issue: 4 year: 2022 ident: 326_CR115 publication-title: Chin J Catal doi: 10.1016/S1872-2067(21)63940-2 – volume: 7 start-page: 6302 issue: 9 year: 2017 ident: 326_CR148 publication-title: ACS Catal doi: 10.1021/acscatal.7b00571 – volume: 63 start-page: 1711 issue: 12 year: 2020 ident: 326_CR171 publication-title: Sci China Chem doi: 10.1007/s11426-020-9825-9 – volume: 11 start-page: 5231 year: 2020 ident: 326_CR174 publication-title: Nat Commun doi: 10.1038/s41467-020-19135-8 – volume: 1 start-page: 11 year: 2018 ident: 326_CR46 publication-title: Commun Chem doi: 10.1038/s42004-018-0012-4 – volume: 11 start-page: 848 issue: 5 year: 2018 ident: 326_CR140 publication-title: ChemSusChem doi: 10.1002/cssc.201702229 – volume: 7 start-page: 477 issue: 6 year: 2015 ident: 326_CR50 publication-title: Nat Chem doi: 10.1038/nchem.2262 – volume: 58 start-page: 9030 issue: 21 year: 2019 ident: 326_CR14 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b01546 – volume: 6 start-page: 1172 issue: 2 year: 2016 ident: 326_CR73 publication-title: ACS Catal doi: 10.1021/acscatal.5b01774 – volume: 7 start-page: 130 issue: 2 year: 2022 ident: 326_CR172 publication-title: Nat Energy doi: 10.1038/s41560-021-00973-9 – volume: 9 start-page: 456 issue: 2 year: 2019 ident: 326_CR52 publication-title: Catal Sci Technol doi: 10.1039/C8CY02275E – volume: 10 start-page: 14207 issue: 29 year: 2018 ident: 326_CR36 publication-title: Nanoscale doi: 10.1039/C8NR03882A – volume: 50 start-page: 43 year: 2018 ident: 326_CR92 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.054 – volume: 37 start-page: 2009021 issue: 5 year: 2021 ident: 326_CR169 publication-title: Acta Phys-Chim Sin – volume: 137 start-page: 4288 issue: 13 year: 2015 ident: 326_CR8 publication-title: J Am Chem Soc doi: 10.1021/jacs.5b00046 – volume: 144 start-page: 4874 issue: 11 year: 2022 ident: 326_CR42 publication-title: J Am Chem Soc doi: 10.1021/jacs.1c12603 – volume: 3 issue: 10 year: 2017 ident: 326_CR22 publication-title: Sci Adv doi: 10.1126/sciadv.1701290 – volume: 12 start-page: 2455 issue: 8 year: 2019 ident: 326_CR170 publication-title: Energy Environ Sci doi: 10.1039/C9EE01204D – volume: 10 start-page: 2001645 issue: 39 year: 2020 ident: 326_CR180 publication-title: Adv Energy Mater doi: 10.1002/aenm.202001645 – volume: 12 start-page: 4943 year: 2021 ident: 326_CR183 publication-title: Nat Commun doi: 10.1038/s41467-021-24936-6 – volume: 2 start-page: 381 issue: 5 year: 2019 ident: 326_CR3 publication-title: Nat Catal doi: 10.1038/s41929-019-0266-y – volume: 6 start-page: 9237 year: 2018 ident: 326_CR78 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01548 – volume: 59 start-page: 22408 issue: 50 year: 2020 ident: 326_CR149 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202009191 – volume: 14 start-page: 1063 issue: 11 year: 2019 ident: 326_CR164 publication-title: Nat Nanotechnol doi: 10.1038/s41565-019-0551-6 – volume: 4 start-page: 242 issue: 3 year: 2021 ident: 326_CR25 publication-title: Nat Catal doi: 10.1038/s41929-021-00584-3 – volume: 7 start-page: 2695 issue: 13 year: 2017 ident: 326_CR59 publication-title: Catal Sci Technol doi: 10.1039/C7CY00842B – volume: 59 start-page: 15968 issue: 37 year: 2020 ident: 326_CR103 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202006536 – volume: 9 start-page: 2639 issue: 3 year: 2019 ident: 326_CR167 publication-title: ACS Catal doi: 10.1021/acscatal.8b05060 – volume: 71 year: 2020 ident: 326_CR97 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104598 – volume: 9 start-page: 1019 issue: 10 year: 2017 ident: 326_CR5 publication-title: Nat Chem doi: 10.1038/nchem.2794 – volume: 3 start-page: 411 issue: 4 year: 2020 ident: 326_CR45 publication-title: Nat Catal doi: 10.1038/s41929-020-0440-2 – volume: 12 start-page: 1697 issue: 3 year: 2022 ident: 326_CR41 publication-title: ACS Catal doi: 10.1021/acscatal.1c04785 – volume: 19 start-page: 2080 issue: 9 year: 2017 ident: 326_CR81 publication-title: Green Chem doi: 10.1039/C7GC00923B – volume: 11 start-page: 1204 issue: 5 year: 2018 ident: 326_CR124 publication-title: Energy Environ Sci doi: 10.1039/C8EE00133B – volume: 141 start-page: 2490 issue: 6 year: 2019 ident: 326_CR163 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b12381 – volume: 60 start-page: 14329 issue: 26 year: 2021 ident: 326_CR161 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202102657 – volume: 296 year: 2021 ident: 326_CR114 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2021.120342 – volume: 142 start-page: 19001 issue: 45 year: 2020 ident: 326_CR64 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c08607 – volume: 6 start-page: 13661 issue: 28 year: 2018 ident: 326_CR91 publication-title: J Mater Chem A doi: 10.1039/C8TA02858C – volume: 11 start-page: 6092 issue: 24 year: 2019 ident: 326_CR128 publication-title: ChemCatChem doi: 10.1002/cctc.201901643 – volume: 2 start-page: 183 issue: 2 year: 2015 ident: 326_CR10 publication-title: Natl Sci Rev doi: 10.1093/nsr/nwv024 – volume: 52 start-page: 656 issue: 3 year: 2019 ident: 326_CR11 publication-title: Acc Chem Res doi: 10.1021/acs.accounts.8b00478 – volume: 6 start-page: 111 issue: 2 year: 1997 ident: 326_CR7 publication-title: J Nat Gas Chem – volume: 268 year: 2020 ident: 326_CR130 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.118391 – volume: 6 start-page: 4786 issue: 13 year: 2016 ident: 326_CR51 publication-title: Catal Sci Technol doi: 10.1039/C6CY00160B – volume: 12 start-page: 2313 issue: 9 year: 2019 ident: 326_CR127 publication-title: Nano Res doi: 10.1007/s12274-019-2316-9 – volume: 25 start-page: 553 issue: 4 year: 2016 ident: 326_CR30 publication-title: J Energy Chem doi: 10.1016/j.jechem.2016.03.009 – volume: 8 start-page: 21053 issue: 40 year: 2020 ident: 326_CR95 publication-title: J Mater Chem A doi: 10.1039/D0TA08088H – volume: 20 start-page: 903 issue: 4 year: 2018 ident: 326_CR79 publication-title: Green Chem doi: 10.1039/C7GC03801A – volume: 27 start-page: 35 year: 2016 ident: 326_CR120 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.035 – volume: 13 start-page: 977 issue: 3 year: 2020 ident: 326_CR177 publication-title: Energy Environ Sci doi: 10.1039/D0EE00047G – volume: 16 start-page: 1386 issue: 12 year: 2021 ident: 326_CR147 publication-title: Nat Nanotechnol doi: 10.1038/s41565-021-00974-5 – volume: 4 start-page: 654 issue: 8 year: 2021 ident: 326_CR182 publication-title: Nat Catal doi: 10.1038/s41929-021-00655-5 – volume: 443 year: 2019 ident: 326_CR94 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.227268 – volume: 33 issue: 2 year: 2021 ident: 326_CR143 publication-title: Adv Mater doi: 10.1002/adma.202005113 – volume: 11 start-page: 3043 year: 2020 ident: 326_CR189 publication-title: Nat Commun doi: 10.1038/s41467-020-16742-3 – volume: 15 start-page: 6860 year: 2022 ident: 326_CR160 publication-title: Nano Res doi: 10.1007/s12274-022-4540-y – volume: 34 year: 2022 ident: 326_CR156 publication-title: Curr Opin Green Sustain Chem doi: 10.1016/j.cogsc.2022.100589 – volume: 6 start-page: 713 issue: 2 year: 2021 ident: 326_CR116 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.0c02665 – volume: 26 start-page: 839 issue: 5 year: 2017 ident: 326_CR88 publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.07.003 – volume: 4 start-page: 502 issue: 2 year: 2014 ident: 326_CR35 publication-title: Catal Sci Technol doi: 10.1039/C3CY00868A – volume: 55 start-page: 13916 issue: 28 year: 2020 ident: 326_CR137 publication-title: J Mater Sci doi: 10.1007/s10853-020-04983-y – volume: 27 start-page: 180 issue: 3 year: 2021 ident: 326_CR4 publication-title: Trans Tianjin Univ doi: 10.1007/s12209-021-00283-x – volume: 7 start-page: 4613 issue: 7 year: 2017 ident: 326_CR43 publication-title: ACS Catal doi: 10.1021/acscatal.7b00903 – volume: 9 start-page: 320 issue: 1 year: 2021 ident: 326_CR132 publication-title: J Mater Chem A doi: 10.1039/D0TA09293B – volume: 11 start-page: 41281 issue: 44 year: 2019 ident: 326_CR176 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b13081 – volume: 4 start-page: 1770 issue: 7 year: 2019 ident: 326_CR173 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.9b01142 – volume: 7 start-page: 8544 issue: 12 year: 2017 ident: 326_CR55 publication-title: ACS Catal doi: 10.1021/acscatal.7b03251 – volume: 59 start-page: 154 issue: 1 year: 2020 ident: 326_CR150 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201910662 – volume: 40 start-page: 22 year: 2020 ident: 326_CR17 publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.03.001 – volume: 36 start-page: 87 year: 2019 ident: 326_CR93 publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.06.001 – volume: 245 start-page: 262 year: 2019 ident: 326_CR187 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2018.12.059 – volume: 16 start-page: 678 issue: 6 year: 2021 ident: 326_CR39 publication-title: Chem Asian J doi: 10.1002/asia.202001384 – volume: 9 start-page: 3457 year: 2018 ident: 326_CR56 publication-title: Nat Commun doi: 10.1038/s41467-018-05880-4 – volume: 283 year: 2021 ident: 326_CR58 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.119648 – volume: 10 start-page: 783 issue: 1 year: 2020 ident: 326_CR67 publication-title: ACS Catal doi: 10.1021/acscatal.9b03709 – volume: 63 start-page: 1727 issue: 12 year: 2020 ident: 326_CR131 publication-title: Sci China Chem doi: 10.1007/s11426-020-9847-9 – volume: 8 start-page: 5576 issue: 14 year: 2020 ident: 326_CR83 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b07471 – volume: 31 issue: 50 year: 2019 ident: 326_CR86 publication-title: Adv Mater doi: 10.1002/adma.201902033 – volume: 129 year: 2019 ident: 326_CR54 publication-title: Catal Commun doi: 10.1016/j.catcom.2019.105711 – volume: 67 start-page: 184 year: 2022 ident: 326_CR65 publication-title: J Energy Chem doi: 10.1016/j.jechem.2021.10.017 – volume: 9 start-page: 7937 issue: 9 year: 2019 ident: 326_CR2 publication-title: ACS Catal doi: 10.1021/acscatal.9b02113 – volume: 10 start-page: 8303 issue: 15 year: 2020 ident: 326_CR166 publication-title: ACS Catal doi: 10.1021/acscatal.0c01579 – volume: 46 start-page: 19814 issue: 38 year: 2021 ident: 326_CR96 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.03.134 – volume: 2 start-page: 198 issue: 3 year: 2019 ident: 326_CR153 publication-title: Nat Catal doi: 10.1038/s41929-019-0235-5 – volume: 4 start-page: 2218 issue: 6 year: 2011 ident: 326_CR89 publication-title: Energy Environ Sci doi: 10.1039/c1ee01035b – volume: 22 start-page: 6855 issue: 20 year: 2020 ident: 326_CR40 publication-title: Green Chem doi: 10.1039/D0GC02302G – volume: 24 start-page: 757 issue: 6 year: 2018 ident: 326_CR111 publication-title: J Electrochem – volume: 396 start-page: 242 year: 2021 ident: 326_CR23 publication-title: J Catal doi: 10.1016/j.jcat.2021.02.024 – volume: 453 year: 2020 ident: 326_CR112 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.227846 – volume: 13 start-page: 6160 issue: 23 year: 2020 ident: 326_CR15 publication-title: Chemsuschem doi: 10.1002/cssc.202002054 – volume: 32 start-page: e1906193 issue: 6 year: 2020 ident: 326_CR102 publication-title: Adv Mater doi: 10.1002/adma.201906193 – volume: 51 start-page: 17615 issue: 99 year: 2015 ident: 326_CR20 publication-title: Chem Commun doi: 10.1039/C5CC07079A – volume: 4 start-page: 2058 issue: 7 year: 2014 ident: 326_CR31 publication-title: Catal Sci Technol doi: 10.1039/C4CY00030G – volume: 112 start-page: 12182 issue: 39 year: 2008 ident: 326_CR74 publication-title: J Phys Chem B doi: 10.1021/jp806587y – volume: 7 start-page: 11967 issue: 19 year: 2019 ident: 326_CR101 publication-title: J Mater Chem A doi: 10.1039/C9TA03065D – volume: 140 start-page: 14595 issue: 44 year: 2018 ident: 326_CR186 publication-title: J Am Chem Soc doi: 10.1021/jacs.8b09344 – volume: 3 start-page: 39 year: 2017 ident: 326_CR109 publication-title: Curr Opin Green Sustain Chem doi: 10.1016/j.cogsc.2016.10.004 – volume: 5 start-page: 288 issue: 4 year: 2022 ident: 326_CR179 publication-title: Nat Catal doi: 10.1038/s41929-022-00763-w – volume: 5 start-page: 268 issue: 4 year: 2022 ident: 326_CR184 publication-title: Nat Catal doi: 10.1038/s41929-022-00761-y – volume: 50 start-page: 10764 issue: 19 year: 2021 ident: 326_CR63 publication-title: Chem Soc Rev doi: 10.1039/D1CS00260K – volume: 3 start-page: 570 issue: 2 year: 2019 ident: 326_CR57 publication-title: Joule doi: 10.1016/j.joule.2018.10.027 – volume: 12 start-page: 552 issue: 1 year: 2021 ident: 326_CR113 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c03416 – volume: 285 year: 2021 ident: 326_CR38 publication-title: Fuel doi: 10.1016/j.fuel.2020.119151 – volume: 6 start-page: 1849 issue: 5 year: 2021 ident: 326_CR190 publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.1c00392 – volume: 514 start-page: 51 year: 2016 ident: 326_CR21 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2016.01.006 – volume: 12 start-page: 5665 year: 2021 ident: 326_CR104 publication-title: Nat Commun doi: 10.1038/s41467-021-26001-8 – volume: 142 start-page: 17167 issue: 40 year: 2020 ident: 326_CR68 publication-title: J Am Chem Soc doi: 10.1021/jacs.0c08139 – volume: 7 start-page: 635 issue: 6 year: 2021 ident: 326_CR135 publication-title: ChemNanoMat doi: 10.1002/cnma.202100110 – volume: 333 start-page: 227 year: 2016 ident: 326_CR32 publication-title: J Catal doi: 10.1016/j.jcat.2015.10.025 – volume: 6 start-page: 19743 issue: 40 year: 2018 ident: 326_CR110 publication-title: J Mater Chem A doi: 10.1039/C8TA08613C – volume: 10 start-page: 11510 issue: 19 year: 2020 ident: 326_CR157 publication-title: ACS Catal doi: 10.1021/acscatal.0c03484 – volume: 13 start-page: 6290 issue: 23 year: 2020 ident: 326_CR100 publication-title: ChemSusChem doi: 10.1002/cssc.202001002 – volume: 5 start-page: 317 issue: 4 year: 2020 ident: 326_CR154 publication-title: Nat Energy doi: 10.1038/s41560-020-0594-9 – volume: 252 start-page: 79 year: 2014 ident: 326_CR90 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.11.047 – volume: 41 start-page: 1393 issue: 9 year: 2020 ident: 326_CR146 publication-title: Chin J Catal doi: 10.1016/S1872-2067(20)63577-X – volume: 53 start-page: 1188 issue: 6 year: 2017 ident: 326_CR72 publication-title: Chem Commun doi: 10.1039/C6CC08801E – volume: 433 year: 2022 ident: 326_CR71 publication-title: Chem Eng J doi: 10.1016/j.cej.2022.134621 – volume: 8 start-page: 1510 issue: 2 year: 2018 ident: 326_CR119 publication-title: ACS Catal doi: 10.1021/acscatal.7b03612 – volume: 3 start-page: 140 issue: 2 year: 2018 ident: 326_CR125 publication-title: Nat Energy doi: 10.1038/s41560-017-0078-8 – volume: 5 start-page: 9634 issue: 11 year: 2017 ident: 326_CR82 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b02678 – volume: 7 start-page: 925 issue: 1 year: 2019 ident: 326_CR47 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b04538 – volume: 8 start-page: 2569 issue: 4 year: 2017 ident: 326_CR122 publication-title: Chem Sci doi: 10.1039/C6SC04966D – volume: 394 start-page: 236 year: 2021 ident: 326_CR24 publication-title: J Catal doi: 10.1016/j.jcat.2020.06.018 – volume: 351 start-page: 1065 issue: 6277 year: 2016 ident: 326_CR53 publication-title: Science doi: 10.1126/science.aaf1835 – volume: 9 start-page: 17301 issue: 51 year: 2021 ident: 326_CR69 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.1c06095 – volume: 59 start-page: 19983 issue: 45 year: 2020 ident: 326_CR44 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202003847 – volume: 61 issue: 5 year: 2022 ident: 326_CR155 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202114238 – volume: 21 start-page: 4642 issue: 17 year: 2019 ident: 326_CR76 publication-title: Green Chem doi: 10.1039/C9GC00811J – volume: 54 start-page: 5126 issue: 40 year: 2018 ident: 326_CR9 publication-title: Chem Commun doi: 10.1039/C8CC01873A – year: 2022 ident: 326_CR117 publication-title: Electrochem Energy Rev doi: 10.1007/s41918-022-00140-y – volume: 10 start-page: 2002105 issue: 44 year: 2020 ident: 326_CR191 publication-title: Adv Energy Mater doi: 10.1002/aenm.202002105 – volume: 364 start-page: eaav3506 issue: 6438 year: 2019 ident: 326_CR85 publication-title: Science doi: 10.1126/science.aav3506 – volume: 45 start-page: 74 year: 2014 ident: 326_CR34 publication-title: Catal Commun doi: 10.1016/j.catcom.2013.10.034 – volume: 10 start-page: 14186 issue: 23 year: 2020 ident: 326_CR62 publication-title: ACS Catal doi: 10.1021/acscatal.0c03292 – volume: 373 start-page: 1523 issue: 6562 year: 2021 ident: 326_CR6 publication-title: Science doi: 10.1126/science.abh4049 – volume: 2 start-page: 1925 issue: 10 year: 2018 ident: 326_CR12 publication-title: Joule doi: 10.1016/j.joule.2018.08.016 – volume: 382 start-page: 129 year: 2020 ident: 326_CR19 publication-title: J Catal doi: 10.1016/j.jcat.2019.12.022 – volume: 359 start-page: 8 year: 2018 ident: 326_CR98 publication-title: J Catal doi: 10.1016/j.jcat.2017.12.027 – volume: 21 start-page: 6952 issue: 16 year: 2021 ident: 326_CR105 publication-title: Nano Lett doi: 10.1021/acs.nanolett.1c02227 – volume: 114 start-page: 6685 issue: 26 year: 2017 ident: 326_CR158 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1702405114 – volume: 4 start-page: 13746 issue: 36 year: 2016 ident: 326_CR139 publication-title: J Mater Chem A doi: 10.1039/C6TA06202D – volume: 14 start-page: 1695 issue: 11 year: 1985 ident: 326_CR106 publication-title: Chem Lett doi: 10.1246/cl.1985.1695 – volume: 8 start-page: 15174 year: 2017 ident: 326_CR60 publication-title: Nat Commun doi: 10.1038/ncomms15174 – volume: 5 start-page: 563 issue: 7 year: 2022 ident: 326_CR175 publication-title: Nat Sustain doi: 10.1038/s41893-022-00879-8 – volume: 31 issue: 41 year: 2019 ident: 326_CR126 publication-title: Adv Mater doi: 10.1002/adma.201903470 – volume: 3 start-page: 478 issue: 6 year: 2020 ident: 326_CR151 publication-title: Nat Catal doi: 10.1038/s41929-020-0450-0 – volume: 13 start-page: 29522 issue: 25 year: 2021 ident: 326_CR80 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c04624 – volume: 23 start-page: 694 issue: 6 year: 2014 ident: 326_CR168 publication-title: J Energy Chem doi: 10.1016/S2095-4956(14)60201-1 – volume: 5 start-page: 706 issue: 3 year: 2021 ident: 326_CR185 publication-title: Joule doi: 10.1016/j.joule.2021.01.007 – volume: 36 start-page: 95 year: 2019 ident: 326_CR133 publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.06.013 – volume: 24 start-page: 353 issue: 3 year: 2015 ident: 326_CR75 publication-title: J Energy Chem doi: 10.1016/S2095-4956(15)60322-9 – volume: 12 start-page: 717 issue: 8 year: 2020 ident: 326_CR84 publication-title: Nat Chem doi: 10.1038/s41557-020-0481-9 – volume: 372 start-page: 1074 issue: 6546 year: 2021 ident: 326_CR181 publication-title: Science doi: 10.1126/science.abg6582 – volume: 59 start-page: 4814 issue: 12 year: 2020 ident: 326_CR144 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201916538 – volume: 144 start-page: 7551 issue: 17 year: 2022 ident: 326_CR178 publication-title: J Am Chem Soc doi: 10.1021/jacs.1c13024 – volume: 5 start-page: 1922 issue: 3 year: 2015 ident: 326_CR13 publication-title: ACS Catal doi: 10.1021/acscatal.5b00007 – volume: 7 start-page: 15190 issue: 18 year: 2019 ident: 326_CR141 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.9b01985 – volume: 68 start-page: 67 year: 2016 ident: 326_CR108 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2016.05.003 – volume: 6 start-page: 6814 issue: 10 year: 2016 ident: 326_CR33 publication-title: ACS Catal doi: 10.1021/acscatal.6b02188 – volume: 14 start-page: 4471 issue: 12 year: 2021 ident: 326_CR162 publication-title: Nano Res doi: 10.1007/s12274-021-3448-2 – volume: 118 start-page: 434 issue: 2 year: 2018 ident: 326_CR1 publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00435 – volume: 5 start-page: 251 issue: 4 year: 2022 ident: 326_CR152 publication-title: Nat Catal doi: 10.1038/s41929-022-00757-8 – volume: 5 start-page: 4523 issue: 6 year: 2017 ident: 326_CR77 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.7b00947 – volume: 195 start-page: 7250 issue: 21 year: 2010 ident: 326_CR87 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.05.037 – volume: 139 start-page: 5652 issue: 16 year: 2017 ident: 326_CR123 publication-title: J Am Chem Soc doi: 10.1021/jacs.7b00102 – volume: 11 start-page: 3415 year: 2020 ident: 326_CR142 publication-title: Nat Commun doi: 10.1038/s41467-020-17120-9 – volume: 11 start-page: 8978 issue: 15 year: 2021 ident: 326_CR165 publication-title: ACS Catal doi: 10.1021/acscatal.1c01610 – volume: 15 start-page: 897 issue: 6 year: 1986 ident: 326_CR107 publication-title: Chem Lett doi: 10.1246/cl.1986.897 – volume: 65 start-page: 711 issue: 9 year: 2020 ident: 326_CR145 publication-title: Sci Bull doi: 10.1016/j.scib.2020.01.020 – volume: 43 start-page: 761 issue: 3 year: 2022 ident: 326_CR26 publication-title: Chin J Catal doi: 10.1016/S1872-2067(21)63907-4 – volume: 60 start-page: 26582 issue: 51 year: 2021 ident: 326_CR138 publication-title: Angew Chem Int Ed doi: 10.1002/anie.202113135 – volume: 47 start-page: 18 year: 2020 ident: 326_CR18 publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.11.021 – volume: 59 start-page: 798 issue: 2 year: 2020 ident: 326_CR129 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201911995 – volume: 121 start-page: 6588 issue: 11 year: 2021 ident: 326_CR29 publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c01012 – volume: 48 start-page: 713 issue: 2 year: 2009 ident: 326_CR66 publication-title: Ind Eng Chem Res doi: 10.1021/ie8014582 – volume: 55 start-page: 1 year: 2015 ident: 326_CR136 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2015.03.008 – volume: 76 start-page: 1 year: 2017 ident: 326_CR121 publication-title: Electrochem Commun doi: 10.1016/j.elecom.2017.01.009 – volume: 56 start-page: 7777 issue: 56 year: 2020 ident: 326_CR188 publication-title: Chem Commun doi: 10.1039/D0CC00805B – volume: 8 start-page: 1407 year: 2017 ident: 326_CR27 publication-title: Nat Commun doi: 10.1038/s41467-017-01673-3 – volume: 5 start-page: 693 issue: 3 year: 2019 ident: 326_CR28 publication-title: Chem doi: 10.1016/j.chempr.2018.12.014 – volume: 10 start-page: 2181 issue: 6 year: 2017 ident: 326_CR118 publication-title: Nano Res doi: 10.1007/s12274-017-1514-6 – volume: 298 year: 2021 ident: 326_CR49 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2021.120556 – volume: 35 start-page: 71 year: 2019 ident: 326_CR99 publication-title: J Energy Chem doi: 10.1016/j.jechem.2018.11.002 – volume: 5 start-page: 259 issue: 4 year: 2022 ident: 326_CR159 publication-title: Nat Catal doi: 10.1038/s41929-022-00760-z – volume: 10 start-page: 14694 issue: 24 year: 2020 ident: 326_CR16 publication-title: ACS Catal doi: 10.1021/acscatal.0c04371 – volume: 10 start-page: 12098 issue: 20 year: 2020 ident: 326_CR48 publication-title: ACS Catal doi: 10.1021/acscatal.0c03215 – volume: 9 start-page: 6342 issue: 7 year: 2019 ident: 326_CR37 publication-title: ACS Catal doi: 10.1021/acscatal.9b00401 – volume: 7 start-page: 5249 issue: 5 year: 2019 ident: 326_CR134 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b06160 – volume: 8 start-page: 9958 issue: 11 year: 2018 ident: 326_CR61 publication-title: ACS Catal doi: 10.1021/acscatal.8b02267 |
SSID | ssj0049071 |
Score | 2.5333302 |
SecondaryResourceType | review_article |
Snippet | Catalytic conversion of CO
2
into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis,... Catalytic conversion of CO2 into chemicals and fuels is a viable method to reduce carbon emissions and achieve carbon neutrality. Through thermal catalysis,... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 245 |
SubjectTerms | Acetic acid Alkenes Carbon dioxide Catalytic converters Conversion Density functional theory Engineering Ethanol Fine chemicals Formic acid Humanities and Social Sciences Mechanical Engineering multidisciplinary Review Science Selectivity |
Title | Heterogeneous Catalysis for CO2 Conversion into Chemicals and Fuels |
URI | https://link.springer.com/article/10.1007/s12209-022-00326-x https://www.proquest.com/docview/2707399614 https://d.wanfangdata.com.cn/periodical/tianjdxxb-e202204003 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPSg1gdWa9mDgqIRs9kkzbEEa1HUiwU9hX1FfJCKSaH4651NN00VEXrJIdksybx2ZmfmW4BDxnkn6gjfYVIKh1G8RFRL5yLkLpcy4IKbjO7tXdAfsOtH_9E2heVVtXuVkiwtdd3sRqnZyMfgCSWRBg56jss-Biiojsvdq6eby8oCMwz4ykDLRMss6lDbLPP3LD8XpNrLnCZGy3aeLOXZ88zK01uHQfXNk4KTt_NRIc7l1y84x3l_agPWrCtKuhPZacCCzjZhdQagcBMaVvVzcmzxqU-2IO6bEpohSp4ejnISmw0gg2tC0P8l8T0lsalkL7fhyEtWDEkFSpATninSG-FyvA2D3uVD3HfsWQyORC0vHJenPPUMlI5OketU0yhQjLopR53WVAnJuadlmqpQKl_72vW5xht-iCaCceHtwFI2zPQukEgFEWOqEyl0H5SrDOS-ZkJdBMKT2gub4FYMSaQFKjfnZbwnNcSyoVqCVEtKqiXjJpxO3_mYwHT8O7pV8TmxKpsnNDRJywjdlSacVcyqH_8325GVj3q0sc6vajwWiaamlxlp6O3NN-0-rNBSLkyxYQuWis-RPkAHqBBtK-9tWIyDGK8D2v0G9pf9tg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-pBtCpWq-5BQdGg2WyS5ijBErWtlxa8LfuKKJKKrdCf70y6aaqI4CWHZDOHeezM7Mx8S8gJl7KdtFXoca2Vxxk8Ema1dx1LX2odSSWxotvrR9mQ3z-FTw4mB2dhftTvr8Y-Y3h8DykT6B-LPIgXV7ByiTj5aZRWuy6HJK9MrjBD5kmbuQGZ32l8d0J1ZDkvhpYjPEUui-cFb9PZJBsuTKQ3M7lukSVbNMj6Anhgg2w5sxzTM4cdfb5N0gzbW0agFRZSepri4QxijlCITWn6yGiKXeblERl9KSYjWgEGjKksDO18gqvcIcPO7SDNPHdPgqfBAieeL3OZBwhzY3OQCLMsiQxnfi7B3iwzSksZWJ3nJtYmtKH1Q2nhRRiD-XKpgl2yXIwKu0doYqKEc9NODLh24xuEw7dcmetIBdoGcZP4FeOEdiDieJfFm6jhj5HZApgtSmaLaZNczP95n0Fo_Lm6VclDOHMaCxZjQTGBUKJJLisZ1Z__onbq5Fivxp3z1UynSliGc8bAw2D_f2SPyWo26HVF967_cEDWWKla2BTYIsuTj097CIHKRB2VGvoF6lzdig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_KCaU-tPULz9p2HyxYNKfZbJLLo6SeZ21tHxT0admvlFbJiZeDw7_emdzGXEsRxJc8JJslmZ2Znc_fAmwJpfpZX8eBMEYHguMl484E-6kKlTGJ0ooyut9Pk-G5-HoRX8x18dfV7k1KctbTQChNZbV3Y4u9tvGNcwrqoyOFXMmTAK3IBUFnSHRg4eDo8uSw0cYCnb_a6SLPWWR97htn_j_L35tTa3E-JEnr1p6yUOWvuV1o8AZU8_2z4pOr3qTSPXP3D7Tjc37wLbz2Jio7mPHUErxw5TIszgEXLsOSVwljtu1xqz-vQD6k0poRcqQbTcYsp8AQ4Z0wtItZ_oOznCrc6_Ac-11WI9aAFYyZKi0bTHCbXoXzweFZPgz8GQ2BQemvglAVqogIYscVyA3c8SyxgoeFQll33GqjVORMUdjU2NjFLoyVwxtxiqpDKB2tQacclW4dWGaTTAjbzyyaFTa0BMXvhLb7iY6Mi9IuhM3iSOMBzOkcjWvZQi8T1SRSTdZUk9Mu7Dy8czOD73h09Gaz5tKL8ljylJKZGZoxXdhtFq59_NhsnzyvtKNJa_-x06mWjlOPM9Iw2njatB_h5c8vA_nt-PTkHbziNYtQPeImdKrbiXuPNlKlP3gxuAd98QfL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+Catalysis+for+CO2+Conversion+into+Chemicals+and+Fuels&rft.jtitle=%E5%A4%A9%E6%B4%A5%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Dunfeng+Gao&rft.au=Wanjun+Li&rft.au=Hanyu+Wang&rft.au=Guoxiong+Wang&rft.date=2022-08-01&rft.pub=University+of+Chinese+Academy+of+Sciences%2CBeijing+100049%2CChina&rft.issn=1006-4982&rft.volume=28&rft.issue=4&rft.spage=245&rft.epage=264&rft_id=info:doi/10.1007%2Fs12209-022-00326-x&rft.externalDocID=tianjdxxb_e202204003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg |