Initial-Productivity Prediction Method of Oil Wells for Low-Permeability Reservoirs Based on PSO-ELM Algorithm
Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more...
Saved in:
| Published in | Energies (Basel) Vol. 16; no. 11; p. 4489 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1996-1073 1996-1073 |
| DOI | 10.3390/en16114489 |
Cover
| Abstract | Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more ideal. A productivity prediction method based on machine learning algorithms is established to improve the lack of application performance and incomplete coverage of traditional mathematical modelling for productivity prediction. A comprehensive analysis was conducted on the JY extra-low-permeability oilfield, considering its geological structure and various factors that may impact its extraction and production. The study collected 13 factors that influence the initial productivity of 181 wells. The Spearman correlation coefficient, ReliefF feature selection algorithm, and random forest selection algorithm were used in combination to rank the importance of these factors. The screening of seven main controlling factors was completed. The particle swarm optimization–extreme learning machine algorithm was adopted to construct the initial-productivity model. The primary control factors and the known initial productivity of 127 wells were used to train the model, which was then used to verify the initial productivity of the remaining 54 wells. In the particle swarm optimization–extreme learning machine (PSO-ELM) algorithm model, the root-mean-square error (RMSE) is 0.035 and the correlation factor (R2) is 0.905. Therefore, the PSO-ELM algorithm has a high accuracy and a fast computing speed in predicting the initial productivity. This approach will provide new insights into the development of initial-productivity predictions and contribute to the efficient production of low-permeability reservoirs. |
|---|---|
| AbstractList | Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more ideal. A productivity prediction method based on machine learning algorithms is established to improve the lack of application performance and incomplete coverage of traditional mathematical modelling for productivity prediction. A comprehensive analysis was conducted on the JY extra-low-permeability oilfield, considering its geological structure and various factors that may impact its extraction and production. The study collected 13 factors that influence the initial productivity of 181 wells. The Spearman correlation coefficient, ReliefF feature selection algorithm, and random forest selection algorithm were used in combination to rank the importance of these factors. The screening of seven main controlling factors was completed. The particle swarm optimization–extreme learning machine algorithm was adopted to construct the initial-productivity model. The primary control factors and the known initial productivity of 127 wells were used to train the model, which was then used to verify the initial productivity of the remaining 54 wells. In the particle swarm optimization–extreme learning machine (PSO-ELM) algorithm model, the root-mean-square error (RMSE) is 0.035 and the correlation factor (R2) is 0.905. Therefore, the PSO-ELM algorithm has a high accuracy and a fast computing speed in predicting the initial productivity. This approach will provide new insights into the development of initial-productivity predictions and contribute to the efficient production of low-permeability reservoirs. Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more ideal. A productivity prediction method based on machine learning algorithms is established to improve the lack of application performance and incomplete coverage of traditional mathematical modelling for productivity prediction. A comprehensive analysis was conducted on the JY extra-low-permeability oilfield, considering its geological structure and various factors that may impact its extraction and production. The study collected 13 factors that influence the initial productivity of 181 wells. The Spearman correlation coefficient, ReliefF feature selection algorithm, and random forest selection algorithm were used in combination to rank the importance of these factors. The screening of seven main controlling factors was completed. The particle swarm optimization-extreme learning machine algorithm was adopted to construct the initial-productivity model. The primary control factors and the known initial productivity of 127 wells were used to train the model, which was then used to verify the initial productivity of the remaining 54 wells. In the particle swarm optimization-extreme learning machine (PSO-ELM) algorithm model, the root-mean-square error (RMSE) is 0.035 and the correlation factor (R[sup.2]) is 0.905. Therefore, the PSO-ELM algorithm has a high accuracy and a fast computing speed in predicting the initial productivity. This approach will provide new insights into the development of initial-productivity predictions and contribute to the efficient production of low-permeability reservoirs. |
| Audience | Academic |
| Author | Wang, Chaoxiang Zhao, Beichen Ju, Binshan |
| Author_xml | – sequence: 1 givenname: Beichen orcidid: 0009-0005-5562-2047 surname: Zhao fullname: Zhao, Beichen – sequence: 2 givenname: Binshan surname: Ju fullname: Ju, Binshan – sequence: 3 givenname: Chaoxiang surname: Wang fullname: Wang, Chaoxiang |
| BookMark | eNp9UctuEzEUHaEiUUo3fIEldqApfs1kvAxVC5FSJeIhliM_rlNHjh1sp1X-HodBgBDCXtg-Ouf43nOfN2chBmialwRfMSbwWwikJ4TzQTxpzokQfUvwjJ39cX_WXOa8xXUxRhhj501YBFec9O06RXPQxT24ckTrBMbVRwzoDsp9NChatHIefQXvM7IxoWV8bNeQdiCV8yfNR8iQHqJLGb2TGaokoPWnVXuzvENzv4nJlfvdi-aplT7D5c_zovlye_P5-kO7XL1fXM-XreYYl5ZwRbphkBiUmXWUdcT2XHWgJIe-t71VAyOEDKxig9HAKabAucZUGFETYBfNYvI1UW7HfXI7mY5jlG78AcS0GWUqTnsYO2GoMspawyXnHUhqNBecKoEJMKGq15vJ6xD28vgovf9lSPB4Sn78nXxlv5rY-xS_HSCXcRsPKdRmRzpQJgSdUVpZVxNrI2sJLthYktR1G9g5XcdqXcXntXc-42IYquD1JNAp5pzA_r8G_BdZuyJP46y_OP8vyXeCbLEo |
| CitedBy_id | crossref_primary_10_1016_j_ptlrs_2024_04_002 crossref_primary_10_3390_pr12010189 crossref_primary_10_3390_pr12071479 |
| Cites_doi | 10.2118/205520-PA 10.1016/j.gsf.2020.09.004 10.1142/S0219622012500095 10.1016/j.fuel.2020.120048 10.1016/j.petrol.2022.110176 10.3390/en16041639 10.1093/bib/bbx124 10.1109/JAS.2021.1004129 10.2118/197095-MS 10.1016/j.clay.2022.106751 10.1016/j.petlm.2015.12.005 10.1155/2021/6515846 10.1016/j.energy.2022.124552 10.1080/01621459.2020.1762613 10.1007/s13202-022-01583-1 10.1007/s10462-013-9405-z 10.1109/ElConRus54750.2022.9755601 10.1016/j.petrol.2020.107150 10.1016/j.energy.2018.01.169 10.1007/s11222-016-9646-1 10.2118/194785-MS 10.3389/fonc.2016.00071 10.3390/w15040770 10.1016/j.petrol.2022.110654 10.1016/j.jclepro.2022.130414 10.1016/j.petrol.2021.109800 10.1016/j.jbi.2018.07.014 10.1016/S1876-3804(15)30046-X 10.3390/en16031027 10.1093/bioinformatics/btz734 10.1002/ese3.1297 10.1037/a0028087 10.1016/j.neucom.2012.08.010 10.1109/TCYB.2020.3029748 10.1007/s42835-022-01172-6 10.1163/156939306779322747 10.3390/en16031392 10.1007/s11356-021-17976-4 10.1016/j.petrol.2018.12.076 10.1016/j.eswa.2020.113389 10.1016/j.enggeo.2022.106544 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/en16114489 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Geology |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_59d2bdbffd4a445ea2dc4942b901e39b 10.3390/en16114489 A752474988 10_3390_en16114489 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c400t-14b1588a0ebd752351f64b5eba4e66f6fb8311183b5e8dce4202e44c029d91443 |
| IEDL.DBID | DOA |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 19:06:49 EDT 2025 Sun Oct 26 04:07:39 EDT 2025 Mon Jun 30 11:17:28 EDT 2025 Mon Oct 20 16:20:08 EDT 2025 Thu Oct 16 04:36:39 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-14b1588a0ebd752351f64b5eba4e66f6fb8311183b5e8dce4202e44c029d91443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0005-5562-2047 |
| OpenAccessLink | https://doaj.org/article/59d2bdbffd4a445ea2dc4942b901e39b |
| PQID | 2823992722 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_59d2bdbffd4a445ea2dc4942b901e39b unpaywall_primary_10_3390_en16114489 proquest_journals_2823992722 gale_infotracacademiconefile_A752474988 crossref_primary_10_3390_en16114489 crossref_citationtrail_10_3390_en16114489 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Dong (ref_20) 2022; 29 ref_14 Chen (ref_18) 2021; 290 Chen (ref_13) 2022; 34 Zhu (ref_38) 2022; 2022 Lin (ref_53) 2023; 18 Ji (ref_1) 2019; 31 Hu (ref_22) 2022; 7 Cheng (ref_5) 2022; 215 Dhargupta (ref_29) 2020; 151 Ma (ref_12) 2018; 13 Shariati (ref_40) 2019; 31 Artun (ref_4) 2019; 176 Zeng (ref_45) 2022; 52 ref_25 Niu (ref_47) 2022; 208 ref_27 ref_26 Ding (ref_39) 2015; 44 Ma (ref_3) 2022; 41 Wang (ref_15) 2022; 10 Attanasi (ref_10) 2020; 191 Ali (ref_31) 2021; 12 Yu (ref_34) 2020; 36 Ding (ref_52) 2018; 149 Liu (ref_23) 2021; 24 Wu (ref_16) 2019; 39 Tian (ref_21) 2016; 11 Lee (ref_42) 2006; 20 Kou (ref_30) 2012; 11 Zong (ref_43) 2013; 101 Gao (ref_9) 2016; 2 Khormali (ref_11) 2022; 13 Bishara (ref_28) 2012; 17 Efron (ref_36) 2020; 115 Dong (ref_7) 2022; 211 Song (ref_24) 2020; 32 Huang (ref_17) 2021; 2021 Li (ref_8) 2023; 231 ref_46 Huang (ref_2) 2015; 42 Wu (ref_33) 2016; 6 Chai (ref_50) 2022; 29 Sun (ref_51) 2022; 338 Urbanowicz (ref_32) 2018; 85 ref_41 Gregorutti (ref_37) 2017; 27 Degenhardt (ref_35) 2019; 20 ref_49 ref_48 Yang (ref_19) 2020; 10 ref_6 Tang (ref_44) 2021; 8 |
| References_xml | – volume: 24 start-page: 847 year: 2021 ident: ref_23 article-title: Incorporation of Physics into Machine Learning for Production Prediction from Unconventional Reservoirs: A Brief Review of the Gray-Box Approach publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/205520-PA – volume: 7 start-page: 394 year: 2022 ident: ref_22 article-title: Shale gas well productivity prediction model with fitted function-neural network cooperation publication-title: Pet. Sci. Bull. – volume: 12 start-page: 857 year: 2021 ident: ref_31 article-title: GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.09.004 – volume: 11 start-page: 197 year: 2012 ident: ref_30 article-title: Evaluation of Classification Algorithms Using MCDM and Rank Correlation publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622012500095 – volume: 290 start-page: 120048 year: 2021 ident: ref_18 article-title: A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach publication-title: Fuel doi: 10.1016/j.fuel.2020.120048 – volume: 211 start-page: 110176 year: 2022 ident: ref_7 article-title: A data-driven model for predicting initial productivity of offshore directional well based on the physical constrained eXtreme gradient boosting (XGBoost) trees publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110176 – ident: ref_27 doi: 10.3390/en16041639 – volume: 20 start-page: 492 year: 2019 ident: ref_35 article-title: Evaluation of variable selection methods for random forests and omics data sets publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx124 – volume: 8 start-page: 1627 year: 2021 ident: ref_44 article-title: A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends publication-title: IEEE-CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004129 – ident: ref_14 doi: 10.2118/197095-MS – volume: 231 start-page: 106751 year: 2023 ident: ref_8 article-title: Biocomposites based on bentonite and lecithin: An experimental approach supported by molecular dynamics publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2022.106751 – volume: 2 start-page: 49 year: 2016 ident: ref_9 article-title: Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network publication-title: Petroleum doi: 10.1016/j.petlm.2015.12.005 – volume: 2021 start-page: 6515846 year: 2021 ident: ref_17 article-title: Quantitative Analysis of the Main Controlling Factors of Oil Saturation Variation publication-title: Geofluids doi: 10.1155/2021/6515846 – ident: ref_41 doi: 10.1016/j.energy.2022.124552 – volume: 115 start-page: 636 year: 2020 ident: ref_36 article-title: Prediction, Estimation, and Attribution publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2020.1762613 – volume: 29 start-page: 137 year: 2022 ident: ref_20 article-title: Initial productivity prediction method for offshore oil wells based on data mining algorithm with physical constraints publication-title: Pet. Geol. Recovery Effic. – volume: 32 start-page: 134 year: 2020 ident: ref_24 article-title: Productivity forecast based on support vector machine optimized by grey wolf optimizer publication-title: Lithol. Reserv. – volume: 31 start-page: 427 year: 2019 ident: ref_40 article-title: Moment-rotation estimation of steel rack connection using extreme learning machine publication-title: Steel Compos. Struct. – volume: 13 start-page: 903 year: 2022 ident: ref_11 article-title: Experimental study of the low salinity water injection process in the presence of scale inhibitor and various nanoparticles publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-022-01583-1 – volume: 44 start-page: 103 year: 2015 ident: ref_39 article-title: Extreme learning machine: Algorithm, theory and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9405-z – ident: ref_49 doi: 10.1109/ElConRus54750.2022.9755601 – volume: 191 start-page: 107150 year: 2020 ident: ref_10 article-title: Well predictive performance of play-wide and Subarea Random Forest models for Bakken productivity publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107150 – volume: 149 start-page: 314 year: 2018 ident: ref_52 article-title: Forecasting China’s electricity consumption using a new grey prediction model publication-title: Energy doi: 10.1016/j.energy.2018.01.169 – volume: 27 start-page: 659 year: 2017 ident: ref_37 article-title: Correlation and variable importance in random forests publication-title: Stat. Comput. doi: 10.1007/s11222-016-9646-1 – ident: ref_6 doi: 10.2118/194785-MS – volume: 6 start-page: 71 year: 2016 ident: ref_33 article-title: Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00071 – ident: ref_48 doi: 10.3390/w15040770 – volume: 215 start-page: 110654 year: 2022 ident: ref_5 article-title: Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2022.110654 – volume: 338 start-page: 130414 year: 2022 ident: ref_51 article-title: Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.130414 – volume: 208 start-page: 109800 year: 2022 ident: ref_47 article-title: An improved empirical model for rapid and accurate production prediction of shale gas wells publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109800 – volume: 85 start-page: 189 year: 2018 ident: ref_32 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – volume: 42 start-page: 488 year: 2015 ident: ref_2 article-title: Quantitative characterization of interlayer interference and productivity prediction of directional wells in the multilayer commingled production of ordinary offshore heavy oil reservoirs publication-title: Pet. Explor. Dev. doi: 10.1016/S1876-3804(15)30046-X – ident: ref_26 doi: 10.3390/en16031027 – volume: 36 start-page: 1074 year: 2020 ident: ref_34 article-title: SubMito-XGBoost: Predicting protein submitochondrial localization by fusing multiple feature information and extreme gradient boosting publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz734 – volume: 41 start-page: 168 year: 2022 ident: ref_3 article-title: Productivity prediction model for fractured horizontal well in heterogeneous tight oil reservoirs publication-title: Pet. Geol. Oilfield Dev. Daqing – volume: 10 start-page: 4674 year: 2022 ident: ref_15 article-title: Production prediction and main controlling factors in a highly heterogeneous sandstone reservoir: Analysis on the basis of machine learning publication-title: Energy Sci. Eng. doi: 10.1002/ese3.1297 – volume: 17 start-page: 399 year: 2012 ident: ref_28 article-title: Testing the Significance of a Correlation With Nonnormal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches publication-title: Psychol. Methods doi: 10.1037/a0028087 – volume: 101 start-page: 229 year: 2013 ident: ref_43 article-title: Weighted extreme learning machine for imbalance learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.010 – volume: 52 start-page: 9290 year: 2022 ident: ref_45 article-title: A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3029748 – volume: 18 start-page: 99 year: 2023 ident: ref_53 article-title: Residential Electricity Load Scenario Prediction Based on Transferable Flow Generation Model publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-022-01172-6 – volume: 10 start-page: 63 year: 2020 ident: ref_19 article-title: Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis publication-title: Reserv. Eval. Dev. – volume: 39 start-page: 11 year: 2019 ident: ref_16 article-title: Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin publication-title: Nat. Gas Ind. – volume: 20 start-page: 2001 year: 2006 ident: ref_42 article-title: Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays publication-title: J. Electromagn. Waves Appl. doi: 10.1163/156939306779322747 – volume: 34 start-page: 102 year: 2022 ident: ref_13 article-title: Support vector machine-based initial productivity prediction for SRV of horizontal wells in tight oil reservoirs publication-title: China Offshore Oil Gas. – volume: 11 start-page: 1710 year: 2016 ident: ref_21 article-title: A model for predicting shale gas production decline based on the BP neural network improved by the genetic algorithm publication-title: China Sci. Pap. – ident: ref_25 doi: 10.3390/en16031392 – volume: 2022 start-page: 7556229 year: 2022 ident: ref_38 article-title: Fuzzy Decision-Making Analysis of Quantitative Stock Selection in VR Industry Based on Random Forest Model publication-title: J. Funct. Spaces – volume: 31 start-page: 157 year: 2019 ident: ref_1 article-title: Unsteady productivity model of segmented multi -cluster fractured horizontal wells in tight oil reservoir publication-title: Lithol. Reserv. – volume: 29 start-page: 31781 year: 2022 ident: ref_50 article-title: Carbon emissions index decomposition and carbon emissions prediction in Xinjiang from the perspective of population-related factors, based on the combination of STIRPAT model and neural network publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-17976-4 – volume: 176 start-page: 172 year: 2019 ident: ref_4 article-title: Fishbone type horizontal wellbore completion: A study for pressure behavior, flow regimes, and productivity index publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.12.076 – volume: 151 start-page: 113389 year: 2020 ident: ref_29 article-title: Selective Opposition based Grey Wolf Optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113389 – ident: ref_46 doi: 10.1016/j.enggeo.2022.106544 – volume: 13 start-page: 1765 year: 2018 ident: ref_12 article-title: “pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells publication-title: China Sci. Pap. |
| SSID | ssj0000331333 |
| Score | 2.3466403 |
| Snippet | Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4489 |
| SubjectTerms | Accuracy Algorithms Analysis Engineering Feature selection Geology initial-productivity forecast low-permeability reservoir Machine learning Methods Neural networks Numerical analysis Oil recovery Oil wells Optimization Permeability Petroleum mining Productivity PSO-ELM algorithm Simulation methods |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7ULaJ9EK0Wo60MWBAfQnOZZCcPIrtla5XuNqjFvoW5pRZisma3lv33npPLdkHp6zAZJnMuc87Mme8DOMy9XPFY-K7gEXe5SHxXajq30nGio0gKv3m3Np3Fpxf8y2V0uQWz_i0MlVX2PrFx1KbSdEZ-hKkBYagOg-Dj_LdLrFF0u9pTaMiOWsF8aCDGHsB2QMhYA9geT2bp1_WpixeGmJSFLU5piPn-kS0x5sGsgnjeN3amBsD_Xze9A49uyrlc3cqi2NiHTp7Cky6AZKNW4s9gy5a7sLMBK7gLDz81dL2r51B-ptogWbhpC-zaMEWwtKbbGZIImzYE0qzK2fl1wX7YolgwDGPZWXXrpui0bQvjvWJUoVf_qa7rBRvjxoeflCz9du5OzqZsVFzhSi1__noBFyeT78enbsew4Gq03aXrc-VHQkjPKjPElDTy85iryCrJbRznca5EiM5QhNgmjLY88ALLufaCxCS4aOEeDMqqtC-BJSbEkTwKBwymNL4y2CIIP0xEuVXagff96ma6gx8nFowiwzSEJJHdScKBt-u-8xZ047-9xiSkdQ8Cym4aqvoq6-wuixITKKPy3HDJeWRlYDRPeKAwDrJhohx4RyLOyJxxOlp2rxLwpwgYKxvhsvAhT4RwYL_Xgqyz80V2p5UOHK41455Jv7p_lNfwmPjs21q0fRgs6xt7gFHPUr3pVPkvwfj_bQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4A98D0RGMgSkxAPWePEdp0n1KFNA61bJKgYT5E_R0VIqjTdNP56zklayocQEq_W2bJ95_P97PPPCO25yCnKBQkFZTSkIiWh1P7cSvNUMyYFad-tTU758ZS-O2fnG6_4fVolQPFZ66TbDFnAJ8mQ8CEhQ4AS6XBu3OvL_iyJcMG4Z-ga3URbnEE0PkBb09Ns_Km9TO5rd6ykCaD7oS0hwiG-nZ_2oZau_3envI1uLcu5vL6SRbGx6xzdRXLV3y7Z5Mv-slH7-tsvVI7_M6B76E4fkuJxZ0P30Q1bPkDbG0SFD1H51ucYySLMOoLY9scJnNX-lsdrFk_aj6hx5fDZrMAfbVEsMITD-KS6CjNw_rajA7_GPtOvvqxm9QIfwAYKVUqcvT8LD08meFxcVPWs-fz1EZoeHX54cxz2PzWEGnxAExKqCBNCRlaZEUBbRhynilklqeXccadEAk5VJFAmjLY0jmJLqY7i1KSgjmQHDcqqtI8RTk0CLUU-rDAAjYgyUCI8D5lgziodoFcrveW6pzH3v2kUOcAZr-P8h44D9GItO-_IO_4odeDVv5bwhNttQVVf5P36zVlqYmWUc4ZKSpmVsdE0pbGCeMomqQrQS288uXcL0B0t-9cNMChPsJWPYVroiKZCBGh3ZV957y8WOQBfzxA8iuMA7a1t7i-dfvJvYk_RbZjqpMtt20WDpl7aZxBFNep5v1C-Ax0EFEY priority: 102 providerName: Unpaywall |
| Title | Initial-Productivity Prediction Method of Oil Wells for Low-Permeability Reservoirs Based on PSO-ELM Algorithm |
| URI | https://www.proquest.com/docview/2823992722 https://www.mdpi.com/1996-1073/16/11/4489/pdf?version=1685685957 https://doaj.org/article/59d2bdbffd4a445ea2dc4942b901e39b |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ABDBF dateStart: 20100401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: ADMLS dateStart: 20100401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPFU_htkQrUQlxsOrHrrN7TFDSgprUAiLCydqXaSTXrpy0Vf89M7YbLIHgwsWH0doaz87O7GfPfkPIUR7kmiUi9AXjzGdChr4y-N3KJNJwrkTYnFubzZPTBfu05Mteqy-sCWvpgVvDHXNpI211nlumGONORdYwySINiczFUmP0DYTsgakmBscxgK-45SONAdcfuxL2NoAesJ97LwM1RP2_h-Nd8vi6vFJ3t6ooevlm-pTsdRtFOmoVfEYeuPI52e3RB74g5Ues_FGFn7a0rU0fCJrW-O8F7U1nTXtoWuX0fFXQb64o1hQ2qfSsuvVTCMmuJem-o1h_V99Uq3pNx5DW4JaSpl_O_cnZjI6KH1W92lxcviSL6eTrh1O_65_gG1iZGz9kOuRCqMBpOwTAycM8YZo7rZhLkjzJtYgh1IkYZMIax6IgcoyZIJJWgqniV2SnrEr3mlBpY3hSgMneAmAJtQWJQHYwwXOnjUfe39s0Mx25OPa4KDIAGWj_7Jf9PfJ2O_aqpdT446gxTs12BNJgNwJwjqxzjuxfzuGRdzixGS5WUMeo7swBvBTSXmUjMAsbMimERw7v5z7rVvE6AziKvL3DKPLI0dYf_qL0_v9Q-oA8wZ72bT3aIdnZ1NfuDex8NnpAHorpyYA8Gk_m6edB4_JwPVmGIFvM09H3n3_aBNY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DYA4IBojDAEkOIh2hJ7KT2w4Ra6GhZ21Wwib0F3zImhaS0HVX_HL-N4yTtKoH2tlfLsRyf43Oxj78PYD_1U8ViHnicRcxjXASe1O7cSsdCR5HkQflubTCMu2fs83l0vgF_lm9hXFnl0iaWhtoU2p2RH2Bq4DBUm2H4fvzLc6xR7nZ1SaEha2oFc1hCjNUPO47tYo4p3PSw9xHl_SYMjzqnH7pezTLgadTfmRcwFUScS98q08S0LArSmKnIKslsHKdxqjhFg8AptnGjLQv90DKm_VAYgekIxXHvwBajTGDyt9XuDEdfVqc8PqWYBNIKF5VS4R_YHGMs_Mzxyq95wpIw4F-3sAPbV_lYLuYyy9b83tEDuF8HrKRVadhD2LD5LuyswRjuwt1PJT3w4hHkPVeLJDNvVAHJlswUZDRxt0FOA8igJKwmRUpOLjPyzWbZlGDYTPrF3Buhk7AVbPiCuIrAye_icjIlbXS0-ElORl9PvE5_QFrZBUpm9uPnYzi7lbV-Apt5kdunQIShOJLvwg-DKVSgDLZwh1fGo9Qq3YB3y9VNdA137lg3sgTTHieJ5FoSDXi96juuQD7-26vthLTq4YC5y4ZicpHU-zyJhAmVUWlqmGQssjI0mgkWKoy7LBWqAW-diBNnPnA6WtavIPCnHBBX0sJlYU0mOG_A3lILktquTJPrXdCA_ZVm3DDpZzeP8gq2u6eDftLvDY-fwz1cblrVwe3B5mxyZV9gxDVTL2u1JvD9tnfSX18HO1Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRh7QDBACwywxBDiIWoSO6nzgFDH1q2s3SrBxN5C_JExKSSl7aj6r_HXcZekXSXQ3vZqOZbjO9-Hff79AHYzL1Mikr4rRShcIWPfTTWdW-ko1mGYSr96tzY4iY7OxOfz8HwN_izewlBZ5cImVobalJrOyFuYGhCGajsIWllTFjHc734c_XKJQYpuWhd0GrWKHNv5DNO3yYfePsr6bRB0D75-OnIbhgFXo-5OXV8oP5Qy9awybUzJQj-LhAqtSoWNoizKlORoDCTHNmm0FYEXWCG0F8QmxlSE47h34G6bUNzplXr3cHm-43GO6R-vEVE5j72WLTC6wo-IUX7FB1ZUAf86hE3YuCpG6XyW5vmKx-s-godNqMo6tW49hjVbbMHmCoDhFtw7rIiB50-g6FEVUpq7wxpCtuKkYMMx3QOR7NmgoqpmZcZOL3P2zeb5hGHAzPrlzB2ie7A1YPicUS3g-Hd5OZ6wPXSx-EnBhl9O3YP-gHXyC5TD9MfPp3B2Kyv9DNaLsrDbwGLDcSSPAg-DyZOvDLZIQiqTYWaVduD9YnUT3QCdE99GnmDCQ5JIriXhwJtl31EN7_HfXnskpGUPguSuGsrxRdLs8CSMTaCMyjIjUiFCmwZGi1gECiMuy2PlwDsScUKGA6ej0-b9A_4UQXAlHVwW0RaxlA7sLLQgaSzKJLnWfwd2l5pxw6Sf3zzKa7iP-yfp906OX8ADXG1eF8DtwPp0fGVfYqg1Va8qnWbw_bY30V-47zju |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4A98D0RGMgSkxAPWePEdp0n1KFNA61bJKgYT5E_R0VIqjTdNP56zklayocQEq_W2bJ95_P97PPPCO25yCnKBQkFZTSkIiWh1P7cSvNUMyYFad-tTU758ZS-O2fnG6_4fVolQPFZ66TbDFnAJ8mQ8CEhQ4AS6XBu3OvL_iyJcMG4Z-ga3URbnEE0PkBb09Ns_Km9TO5rd6ykCaD7oS0hwiG-nZ_2oZau_3envI1uLcu5vL6SRbGx6xzdRXLV3y7Z5Mv-slH7-tsvVI7_M6B76E4fkuJxZ0P30Q1bPkDbG0SFD1H51ucYySLMOoLY9scJnNX-lsdrFk_aj6hx5fDZrMAfbVEsMITD-KS6CjNw_rajA7_GPtOvvqxm9QIfwAYKVUqcvT8LD08meFxcVPWs-fz1EZoeHX54cxz2PzWEGnxAExKqCBNCRlaZEUBbRhynilklqeXccadEAk5VJFAmjLY0jmJLqY7i1KSgjmQHDcqqtI8RTk0CLUU-rDAAjYgyUCI8D5lgziodoFcrveW6pzH3v2kUOcAZr-P8h44D9GItO-_IO_4odeDVv5bwhNttQVVf5P36zVlqYmWUc4ZKSpmVsdE0pbGCeMomqQrQS288uXcL0B0t-9cNMChPsJWPYVroiKZCBGh3ZV957y8WOQBfzxA8iuMA7a1t7i-dfvJvYk_RbZjqpMtt20WDpl7aZxBFNep5v1C-Ax0EFEY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial-Productivity+Prediction+Method+of+Oil+Wells+for+Low-Permeability+Reservoirs+Based+on+PSO-ELM+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Zhao%2C+Beichen&rft.au=Ju%2C+Binshan&rft.au=Wang%2C+Chaoxiang&rft.date=2023-06-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=11&rft.spage=4489&rft_id=info:doi/10.3390%2Fen16114489&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16114489 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |