Initial-Productivity Prediction Method of Oil Wells for Low-Permeability Reservoirs Based on PSO-ELM Algorithm

Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more...

Full description

Saved in:
Bibliographic Details
Published inEnergies (Basel) Vol. 16; no. 11; p. 4489
Main Authors Zhao, Beichen, Ju, Binshan, Wang, Chaoxiang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text
ISSN1996-1073
1996-1073
DOI10.3390/en16114489

Cover

Abstract Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more ideal. A productivity prediction method based on machine learning algorithms is established to improve the lack of application performance and incomplete coverage of traditional mathematical modelling for productivity prediction. A comprehensive analysis was conducted on the JY extra-low-permeability oilfield, considering its geological structure and various factors that may impact its extraction and production. The study collected 13 factors that influence the initial productivity of 181 wells. The Spearman correlation coefficient, ReliefF feature selection algorithm, and random forest selection algorithm were used in combination to rank the importance of these factors. The screening of seven main controlling factors was completed. The particle swarm optimization–extreme learning machine algorithm was adopted to construct the initial-productivity model. The primary control factors and the known initial productivity of 127 wells were used to train the model, which was then used to verify the initial productivity of the remaining 54 wells. In the particle swarm optimization–extreme learning machine (PSO-ELM) algorithm model, the root-mean-square error (RMSE) is 0.035 and the correlation factor (R2) is 0.905. Therefore, the PSO-ELM algorithm has a high accuracy and a fast computing speed in predicting the initial productivity. This approach will provide new insights into the development of initial-productivity predictions and contribute to the efficient production of low-permeability reservoirs.
AbstractList Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more ideal. A productivity prediction method based on machine learning algorithms is established to improve the lack of application performance and incomplete coverage of traditional mathematical modelling for productivity prediction. A comprehensive analysis was conducted on the JY extra-low-permeability oilfield, considering its geological structure and various factors that may impact its extraction and production. The study collected 13 factors that influence the initial productivity of 181 wells. The Spearman correlation coefficient, ReliefF feature selection algorithm, and random forest selection algorithm were used in combination to rank the importance of these factors. The screening of seven main controlling factors was completed. The particle swarm optimization–extreme learning machine algorithm was adopted to construct the initial-productivity model. The primary control factors and the known initial productivity of 127 wells were used to train the model, which was then used to verify the initial productivity of the remaining 54 wells. In the particle swarm optimization–extreme learning machine (PSO-ELM) algorithm model, the root-mean-square error (RMSE) is 0.035 and the correlation factor (R2) is 0.905. Therefore, the PSO-ELM algorithm has a high accuracy and a fast computing speed in predicting the initial productivity. This approach will provide new insights into the development of initial-productivity predictions and contribute to the efficient production of low-permeability reservoirs.
Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to specific reservoirs and relatively simple scenarios. Moreover, the few influencing factors are less considered and the application model is more ideal. A productivity prediction method based on machine learning algorithms is established to improve the lack of application performance and incomplete coverage of traditional mathematical modelling for productivity prediction. A comprehensive analysis was conducted on the JY extra-low-permeability oilfield, considering its geological structure and various factors that may impact its extraction and production. The study collected 13 factors that influence the initial productivity of 181 wells. The Spearman correlation coefficient, ReliefF feature selection algorithm, and random forest selection algorithm were used in combination to rank the importance of these factors. The screening of seven main controlling factors was completed. The particle swarm optimization-extreme learning machine algorithm was adopted to construct the initial-productivity model. The primary control factors and the known initial productivity of 127 wells were used to train the model, which was then used to verify the initial productivity of the remaining 54 wells. In the particle swarm optimization-extreme learning machine (PSO-ELM) algorithm model, the root-mean-square error (RMSE) is 0.035 and the correlation factor (R[sup.2]) is 0.905. Therefore, the PSO-ELM algorithm has a high accuracy and a fast computing speed in predicting the initial productivity. This approach will provide new insights into the development of initial-productivity predictions and contribute to the efficient production of low-permeability reservoirs.
Audience Academic
Author Wang, Chaoxiang
Zhao, Beichen
Ju, Binshan
Author_xml – sequence: 1
  givenname: Beichen
  orcidid: 0009-0005-5562-2047
  surname: Zhao
  fullname: Zhao, Beichen
– sequence: 2
  givenname: Binshan
  surname: Ju
  fullname: Ju, Binshan
– sequence: 3
  givenname: Chaoxiang
  surname: Wang
  fullname: Wang, Chaoxiang
BookMark eNp9UctuEzEUHaEiUUo3fIEldqApfs1kvAxVC5FSJeIhliM_rlNHjh1sp1X-HodBgBDCXtg-Ouf43nOfN2chBmialwRfMSbwWwikJ4TzQTxpzokQfUvwjJ39cX_WXOa8xXUxRhhj501YBFec9O06RXPQxT24ckTrBMbVRwzoDsp9NChatHIefQXvM7IxoWV8bNeQdiCV8yfNR8iQHqJLGb2TGaokoPWnVXuzvENzv4nJlfvdi-aplT7D5c_zovlye_P5-kO7XL1fXM-XreYYl5ZwRbphkBiUmXWUdcT2XHWgJIe-t71VAyOEDKxig9HAKabAucZUGFETYBfNYvI1UW7HfXI7mY5jlG78AcS0GWUqTnsYO2GoMspawyXnHUhqNBecKoEJMKGq15vJ6xD28vgovf9lSPB4Sn78nXxlv5rY-xS_HSCXcRsPKdRmRzpQJgSdUVpZVxNrI2sJLthYktR1G9g5XcdqXcXntXc-42IYquD1JNAp5pzA_r8G_BdZuyJP46y_OP8vyXeCbLEo
CitedBy_id crossref_primary_10_1016_j_ptlrs_2024_04_002
crossref_primary_10_3390_pr12010189
crossref_primary_10_3390_pr12071479
Cites_doi 10.2118/205520-PA
10.1016/j.gsf.2020.09.004
10.1142/S0219622012500095
10.1016/j.fuel.2020.120048
10.1016/j.petrol.2022.110176
10.3390/en16041639
10.1093/bib/bbx124
10.1109/JAS.2021.1004129
10.2118/197095-MS
10.1016/j.clay.2022.106751
10.1016/j.petlm.2015.12.005
10.1155/2021/6515846
10.1016/j.energy.2022.124552
10.1080/01621459.2020.1762613
10.1007/s13202-022-01583-1
10.1007/s10462-013-9405-z
10.1109/ElConRus54750.2022.9755601
10.1016/j.petrol.2020.107150
10.1016/j.energy.2018.01.169
10.1007/s11222-016-9646-1
10.2118/194785-MS
10.3389/fonc.2016.00071
10.3390/w15040770
10.1016/j.petrol.2022.110654
10.1016/j.jclepro.2022.130414
10.1016/j.petrol.2021.109800
10.1016/j.jbi.2018.07.014
10.1016/S1876-3804(15)30046-X
10.3390/en16031027
10.1093/bioinformatics/btz734
10.1002/ese3.1297
10.1037/a0028087
10.1016/j.neucom.2012.08.010
10.1109/TCYB.2020.3029748
10.1007/s42835-022-01172-6
10.1163/156939306779322747
10.3390/en16031392
10.1007/s11356-021-17976-4
10.1016/j.petrol.2018.12.076
10.1016/j.eswa.2020.113389
10.1016/j.enggeo.2022.106544
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/en16114489
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Geology
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_59d2bdbffd4a445ea2dc4942b901e39b
10.3390/en16114489
A752474988
10_3390_en16114489
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c400t-14b1588a0ebd752351f64b5eba4e66f6fb8311183b5e8dce4202e44c029d91443
IEDL.DBID DOA
ISSN 1996-1073
IngestDate Tue Oct 14 19:06:49 EDT 2025
Sun Oct 26 04:07:39 EDT 2025
Mon Jun 30 11:17:28 EDT 2025
Mon Oct 20 16:20:08 EDT 2025
Thu Oct 16 04:36:39 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-14b1588a0ebd752351f64b5eba4e66f6fb8311183b5e8dce4202e44c029d91443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-5562-2047
OpenAccessLink https://doaj.org/article/59d2bdbffd4a445ea2dc4942b901e39b
PQID 2823992722
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_59d2bdbffd4a445ea2dc4942b901e39b
unpaywall_primary_10_3390_en16114489
proquest_journals_2823992722
gale_infotracacademiconefile_A752474988
crossref_primary_10_3390_en16114489
crossref_citationtrail_10_3390_en16114489
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dong (ref_20) 2022; 29
ref_14
Chen (ref_18) 2021; 290
Chen (ref_13) 2022; 34
Zhu (ref_38) 2022; 2022
Lin (ref_53) 2023; 18
Ji (ref_1) 2019; 31
Hu (ref_22) 2022; 7
Cheng (ref_5) 2022; 215
Dhargupta (ref_29) 2020; 151
Ma (ref_12) 2018; 13
Shariati (ref_40) 2019; 31
Artun (ref_4) 2019; 176
Zeng (ref_45) 2022; 52
ref_25
Niu (ref_47) 2022; 208
ref_27
ref_26
Ding (ref_39) 2015; 44
Ma (ref_3) 2022; 41
Wang (ref_15) 2022; 10
Attanasi (ref_10) 2020; 191
Ali (ref_31) 2021; 12
Yu (ref_34) 2020; 36
Ding (ref_52) 2018; 149
Liu (ref_23) 2021; 24
Wu (ref_16) 2019; 39
Tian (ref_21) 2016; 11
Lee (ref_42) 2006; 20
Kou (ref_30) 2012; 11
Zong (ref_43) 2013; 101
Gao (ref_9) 2016; 2
Khormali (ref_11) 2022; 13
Bishara (ref_28) 2012; 17
Efron (ref_36) 2020; 115
Dong (ref_7) 2022; 211
Song (ref_24) 2020; 32
Huang (ref_17) 2021; 2021
Li (ref_8) 2023; 231
ref_46
Huang (ref_2) 2015; 42
Wu (ref_33) 2016; 6
Chai (ref_50) 2022; 29
Sun (ref_51) 2022; 338
Urbanowicz (ref_32) 2018; 85
ref_41
Gregorutti (ref_37) 2017; 27
Degenhardt (ref_35) 2019; 20
ref_49
ref_48
Yang (ref_19) 2020; 10
ref_6
Tang (ref_44) 2021; 8
References_xml – volume: 24
  start-page: 847
  year: 2021
  ident: ref_23
  article-title: Incorporation of Physics into Machine Learning for Production Prediction from Unconventional Reservoirs: A Brief Review of the Gray-Box Approach
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/205520-PA
– volume: 7
  start-page: 394
  year: 2022
  ident: ref_22
  article-title: Shale gas well productivity prediction model with fitted function-neural network cooperation
  publication-title: Pet. Sci. Bull.
– volume: 12
  start-page: 857
  year: 2021
  ident: ref_31
  article-title: GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.09.004
– volume: 11
  start-page: 197
  year: 2012
  ident: ref_30
  article-title: Evaluation of Classification Algorithms Using MCDM and Rank Correlation
  publication-title: Int. J. Inf. Technol. Decis. Mak.
  doi: 10.1142/S0219622012500095
– volume: 290
  start-page: 120048
  year: 2021
  ident: ref_18
  article-title: A machine learning model for predicting the minimum miscibility pressure of CO2 and crude oil system based on a support vector machine algorithm approach
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120048
– volume: 211
  start-page: 110176
  year: 2022
  ident: ref_7
  article-title: A data-driven model for predicting initial productivity of offshore directional well based on the physical constrained eXtreme gradient boosting (XGBoost) trees
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110176
– ident: ref_27
  doi: 10.3390/en16041639
– volume: 20
  start-page: 492
  year: 2019
  ident: ref_35
  article-title: Evaluation of variable selection methods for random forests and omics data sets
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx124
– volume: 8
  start-page: 1627
  year: 2021
  ident: ref_44
  article-title: A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends
  publication-title: IEEE-CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004129
– ident: ref_14
  doi: 10.2118/197095-MS
– volume: 231
  start-page: 106751
  year: 2023
  ident: ref_8
  article-title: Biocomposites based on bentonite and lecithin: An experimental approach supported by molecular dynamics
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2022.106751
– volume: 2
  start-page: 49
  year: 2016
  ident: ref_9
  article-title: Fluvial facies reservoir productivity prediction method based on principal component analysis and artificial neural network
  publication-title: Petroleum
  doi: 10.1016/j.petlm.2015.12.005
– volume: 2021
  start-page: 6515846
  year: 2021
  ident: ref_17
  article-title: Quantitative Analysis of the Main Controlling Factors of Oil Saturation Variation
  publication-title: Geofluids
  doi: 10.1155/2021/6515846
– ident: ref_41
  doi: 10.1016/j.energy.2022.124552
– volume: 115
  start-page: 636
  year: 2020
  ident: ref_36
  article-title: Prediction, Estimation, and Attribution
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2020.1762613
– volume: 29
  start-page: 137
  year: 2022
  ident: ref_20
  article-title: Initial productivity prediction method for offshore oil wells based on data mining algorithm with physical constraints
  publication-title: Pet. Geol. Recovery Effic.
– volume: 32
  start-page: 134
  year: 2020
  ident: ref_24
  article-title: Productivity forecast based on support vector machine optimized by grey wolf optimizer
  publication-title: Lithol. Reserv.
– volume: 31
  start-page: 427
  year: 2019
  ident: ref_40
  article-title: Moment-rotation estimation of steel rack connection using extreme learning machine
  publication-title: Steel Compos. Struct.
– volume: 13
  start-page: 903
  year: 2022
  ident: ref_11
  article-title: Experimental study of the low salinity water injection process in the presence of scale inhibitor and various nanoparticles
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-022-01583-1
– volume: 44
  start-page: 103
  year: 2015
  ident: ref_39
  article-title: Extreme learning machine: Algorithm, theory and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9405-z
– ident: ref_49
  doi: 10.1109/ElConRus54750.2022.9755601
– volume: 191
  start-page: 107150
  year: 2020
  ident: ref_10
  article-title: Well predictive performance of play-wide and Subarea Random Forest models for Bakken productivity
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107150
– volume: 149
  start-page: 314
  year: 2018
  ident: ref_52
  article-title: Forecasting China’s electricity consumption using a new grey prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.169
– volume: 27
  start-page: 659
  year: 2017
  ident: ref_37
  article-title: Correlation and variable importance in random forests
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9646-1
– ident: ref_6
  doi: 10.2118/194785-MS
– volume: 6
  start-page: 71
  year: 2016
  ident: ref_33
  article-title: Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2016.00071
– ident: ref_48
  doi: 10.3390/w15040770
– volume: 215
  start-page: 110654
  year: 2022
  ident: ref_5
  article-title: Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110654
– volume: 338
  start-page: 130414
  year: 2022
  ident: ref_51
  article-title: Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.130414
– volume: 208
  start-page: 109800
  year: 2022
  ident: ref_47
  article-title: An improved empirical model for rapid and accurate production prediction of shale gas wells
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109800
– volume: 85
  start-page: 189
  year: 2018
  ident: ref_32
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– volume: 42
  start-page: 488
  year: 2015
  ident: ref_2
  article-title: Quantitative characterization of interlayer interference and productivity prediction of directional wells in the multilayer commingled production of ordinary offshore heavy oil reservoirs
  publication-title: Pet. Explor. Dev.
  doi: 10.1016/S1876-3804(15)30046-X
– ident: ref_26
  doi: 10.3390/en16031027
– volume: 36
  start-page: 1074
  year: 2020
  ident: ref_34
  article-title: SubMito-XGBoost: Predicting protein submitochondrial localization by fusing multiple feature information and extreme gradient boosting
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz734
– volume: 41
  start-page: 168
  year: 2022
  ident: ref_3
  article-title: Productivity prediction model for fractured horizontal well in heterogeneous tight oil reservoirs
  publication-title: Pet. Geol. Oilfield Dev. Daqing
– volume: 10
  start-page: 4674
  year: 2022
  ident: ref_15
  article-title: Production prediction and main controlling factors in a highly heterogeneous sandstone reservoir: Analysis on the basis of machine learning
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.1297
– volume: 17
  start-page: 399
  year: 2012
  ident: ref_28
  article-title: Testing the Significance of a Correlation With Nonnormal Data: Comparison of Pearson, Spearman, Transformation, and Resampling Approaches
  publication-title: Psychol. Methods
  doi: 10.1037/a0028087
– volume: 101
  start-page: 229
  year: 2013
  ident: ref_43
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 52
  start-page: 9290
  year: 2022
  ident: ref_45
  article-title: A Dynamic Neighborhood-Based Switching Particle Swarm Optimization Algorithm
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3029748
– volume: 18
  start-page: 99
  year: 2023
  ident: ref_53
  article-title: Residential Electricity Load Scenario Prediction Based on Transferable Flow Generation Model
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-022-01172-6
– volume: 10
  start-page: 63
  year: 2020
  ident: ref_19
  article-title: Identification of main controlling factors on performance of CBM well fracturing based on Apriori association analysis
  publication-title: Reserv. Eval. Dev.
– volume: 39
  start-page: 11
  year: 2019
  ident: ref_16
  article-title: Fine characterization and target window optimization of high-quality shale gas reservoirs in the Weiyuan area, Sichuan Basin
  publication-title: Nat. Gas Ind.
– volume: 20
  start-page: 2001
  year: 2006
  ident: ref_42
  article-title: Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays
  publication-title: J. Electromagn. Waves Appl.
  doi: 10.1163/156939306779322747
– volume: 34
  start-page: 102
  year: 2022
  ident: ref_13
  article-title: Support vector machine-based initial productivity prediction for SRV of horizontal wells in tight oil reservoirs
  publication-title: China Offshore Oil Gas.
– volume: 11
  start-page: 1710
  year: 2016
  ident: ref_21
  article-title: A model for predicting shale gas production decline based on the BP neural network improved by the genetic algorithm
  publication-title: China Sci. Pap.
– ident: ref_25
  doi: 10.3390/en16031392
– volume: 2022
  start-page: 7556229
  year: 2022
  ident: ref_38
  article-title: Fuzzy Decision-Making Analysis of Quantitative Stock Selection in VR Industry Based on Random Forest Model
  publication-title: J. Funct. Spaces
– volume: 31
  start-page: 157
  year: 2019
  ident: ref_1
  article-title: Unsteady productivity model of segmented multi -cluster fractured horizontal wells in tight oil reservoir
  publication-title: Lithol. Reserv.
– volume: 29
  start-page: 31781
  year: 2022
  ident: ref_50
  article-title: Carbon emissions index decomposition and carbon emissions prediction in Xinjiang from the perspective of population-related factors, based on the combination of STIRPAT model and neural network
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-17976-4
– volume: 176
  start-page: 172
  year: 2019
  ident: ref_4
  article-title: Fishbone type horizontal wellbore completion: A study for pressure behavior, flow regimes, and productivity index
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.12.076
– volume: 151
  start-page: 113389
  year: 2020
  ident: ref_29
  article-title: Selective Opposition based Grey Wolf Optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113389
– ident: ref_46
  doi: 10.1016/j.enggeo.2022.106544
– volume: 13
  start-page: 1765
  year: 2018
  ident: ref_12
  article-title: “pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells
  publication-title: China Sci. Pap.
SSID ssj0000331333
Score 2.3466403
Snippet Conventional numerical solutions and empirical formulae for predicting the initial productivity of oil wells in low-permeability reservoirs are limited to...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4489
SubjectTerms Accuracy
Algorithms
Analysis
Engineering
Feature selection
Geology
initial-productivity forecast
low-permeability reservoir
Machine learning
Methods
Neural networks
Numerical analysis
Oil recovery
Oil wells
Optimization
Permeability
Petroleum mining
Productivity
PSO-ELM algorithm
Simulation methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7ULaJ9EK0Wo60MWBAfQnOZZCcPIrtla5XuNqjFvoW5pRZisma3lv33npPLdkHp6zAZJnMuc87Mme8DOMy9XPFY-K7gEXe5SHxXajq30nGio0gKv3m3Np3Fpxf8y2V0uQWz_i0MlVX2PrFx1KbSdEZ-hKkBYagOg-Dj_LdLrFF0u9pTaMiOWsF8aCDGHsB2QMhYA9geT2bp1_WpixeGmJSFLU5piPn-kS0x5sGsgnjeN3amBsD_Xze9A49uyrlc3cqi2NiHTp7Cky6AZKNW4s9gy5a7sLMBK7gLDz81dL2r51B-ptogWbhpC-zaMEWwtKbbGZIImzYE0qzK2fl1wX7YolgwDGPZWXXrpui0bQvjvWJUoVf_qa7rBRvjxoeflCz9du5OzqZsVFzhSi1__noBFyeT78enbsew4Gq03aXrc-VHQkjPKjPElDTy85iryCrJbRznca5EiM5QhNgmjLY88ALLufaCxCS4aOEeDMqqtC-BJSbEkTwKBwymNL4y2CIIP0xEuVXagff96ma6gx8nFowiwzSEJJHdScKBt-u-8xZ047-9xiSkdQ8Cym4aqvoq6-wuixITKKPy3HDJeWRlYDRPeKAwDrJhohx4RyLOyJxxOlp2rxLwpwgYKxvhsvAhT4RwYL_Xgqyz80V2p5UOHK41455Jv7p_lNfwmPjs21q0fRgs6xt7gFHPUr3pVPkvwfj_bQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4A98D0RGMgSkxAPWePEdp0n1KFNA61bJKgYT5E_R0VIqjTdNP56zklayocQEq_W2bJ95_P97PPPCO25yCnKBQkFZTSkIiWh1P7cSvNUMyYFad-tTU758ZS-O2fnG6_4fVolQPFZ66TbDFnAJ8mQ8CEhQ4AS6XBu3OvL_iyJcMG4Z-ga3URbnEE0PkBb09Ns_Km9TO5rd6ykCaD7oS0hwiG-nZ_2oZau_3envI1uLcu5vL6SRbGx6xzdRXLV3y7Z5Mv-slH7-tsvVI7_M6B76E4fkuJxZ0P30Q1bPkDbG0SFD1H51ucYySLMOoLY9scJnNX-lsdrFk_aj6hx5fDZrMAfbVEsMITD-KS6CjNw_rajA7_GPtOvvqxm9QIfwAYKVUqcvT8LD08meFxcVPWs-fz1EZoeHX54cxz2PzWEGnxAExKqCBNCRlaZEUBbRhynilklqeXccadEAk5VJFAmjLY0jmJLqY7i1KSgjmQHDcqqtI8RTk0CLUU-rDAAjYgyUCI8D5lgziodoFcrveW6pzH3v2kUOcAZr-P8h44D9GItO-_IO_4odeDVv5bwhNttQVVf5P36zVlqYmWUc4ZKSpmVsdE0pbGCeMomqQrQS288uXcL0B0t-9cNMChPsJWPYVroiKZCBGh3ZV957y8WOQBfzxA8iuMA7a1t7i-dfvJvYk_RbZjqpMtt20WDpl7aZxBFNep5v1C-Ax0EFEY
  priority: 102
  providerName: Unpaywall
Title Initial-Productivity Prediction Method of Oil Wells for Low-Permeability Reservoirs Based on PSO-ELM Algorithm
URI https://www.proquest.com/docview/2823992722
https://www.mdpi.com/1996-1073/16/11/4489/pdf?version=1685685957
https://doaj.org/article/59d2bdbffd4a445ea2dc4942b901e39b
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ABDBF
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: ADMLS
  dateStart: 20100401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPFU_htkQrUQlxsOrHrrN7TFDSgprUAiLCydqXaSTXrpy0Vf89M7YbLIHgwsWH0doaz87O7GfPfkPIUR7kmiUi9AXjzGdChr4y-N3KJNJwrkTYnFubzZPTBfu05Mteqy-sCWvpgVvDHXNpI211nlumGONORdYwySINiczFUmP0DYTsgakmBscxgK-45SONAdcfuxL2NoAesJ97LwM1RP2_h-Nd8vi6vFJ3t6ooevlm-pTsdRtFOmoVfEYeuPI52e3RB74g5Ues_FGFn7a0rU0fCJrW-O8F7U1nTXtoWuX0fFXQb64o1hQ2qfSsuvVTCMmuJem-o1h_V99Uq3pNx5DW4JaSpl_O_cnZjI6KH1W92lxcviSL6eTrh1O_65_gG1iZGz9kOuRCqMBpOwTAycM8YZo7rZhLkjzJtYgh1IkYZMIax6IgcoyZIJJWgqniV2SnrEr3mlBpY3hSgMneAmAJtQWJQHYwwXOnjUfe39s0Mx25OPa4KDIAGWj_7Jf9PfJ2O_aqpdT446gxTs12BNJgNwJwjqxzjuxfzuGRdzixGS5WUMeo7swBvBTSXmUjMAsbMimERw7v5z7rVvE6AziKvL3DKPLI0dYf_qL0_v9Q-oA8wZ72bT3aIdnZ1NfuDex8NnpAHorpyYA8Gk_m6edB4_JwPVmGIFvM09H3n3_aBNY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DYA4IBojDAEkOIh2hJ7KT2w4Ra6GhZ21Wwib0F3zImhaS0HVX_HL-N4yTtKoH2tlfLsRyf43Oxj78PYD_1U8ViHnicRcxjXASe1O7cSsdCR5HkQflubTCMu2fs83l0vgF_lm9hXFnl0iaWhtoU2p2RH2Bq4DBUm2H4fvzLc6xR7nZ1SaEha2oFc1hCjNUPO47tYo4p3PSw9xHl_SYMjzqnH7pezTLgadTfmRcwFUScS98q08S0LArSmKnIKslsHKdxqjhFg8AptnGjLQv90DKm_VAYgekIxXHvwBajTGDyt9XuDEdfVqc8PqWYBNIKF5VS4R_YHGMs_Mzxyq95wpIw4F-3sAPbV_lYLuYyy9b83tEDuF8HrKRVadhD2LD5LuyswRjuwt1PJT3w4hHkPVeLJDNvVAHJlswUZDRxt0FOA8igJKwmRUpOLjPyzWbZlGDYTPrF3Buhk7AVbPiCuIrAye_icjIlbXS0-ElORl9PvE5_QFrZBUpm9uPnYzi7lbV-Apt5kdunQIShOJLvwg-DKVSgDLZwh1fGo9Qq3YB3y9VNdA137lg3sgTTHieJ5FoSDXi96juuQD7-26vthLTq4YC5y4ZicpHU-zyJhAmVUWlqmGQssjI0mgkWKoy7LBWqAW-diBNnPnA6WtavIPCnHBBX0sJlYU0mOG_A3lILktquTJPrXdCA_ZVm3DDpZzeP8gq2u6eDftLvDY-fwz1cblrVwe3B5mxyZV9gxDVTL2u1JvD9tnfSX18HO1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRh7QDBACwywxBDiIWoSO6nzgFDH1q2s3SrBxN5C_JExKSSl7aj6r_HXcZekXSXQ3vZqOZbjO9-Hff79AHYzL1Mikr4rRShcIWPfTTWdW-ko1mGYSr96tzY4iY7OxOfz8HwN_izewlBZ5cImVobalJrOyFuYGhCGajsIWllTFjHc734c_XKJQYpuWhd0GrWKHNv5DNO3yYfePsr6bRB0D75-OnIbhgFXo-5OXV8oP5Qy9awybUzJQj-LhAqtSoWNoizKlORoDCTHNmm0FYEXWCG0F8QmxlSE47h34G6bUNzplXr3cHm-43GO6R-vEVE5j72WLTC6wo-IUX7FB1ZUAf86hE3YuCpG6XyW5vmKx-s-godNqMo6tW49hjVbbMHmCoDhFtw7rIiB50-g6FEVUpq7wxpCtuKkYMMx3QOR7NmgoqpmZcZOL3P2zeb5hGHAzPrlzB2ie7A1YPicUS3g-Hd5OZ6wPXSx-EnBhl9O3YP-gHXyC5TD9MfPp3B2Kyv9DNaLsrDbwGLDcSSPAg-DyZOvDLZIQiqTYWaVduD9YnUT3QCdE99GnmDCQ5JIriXhwJtl31EN7_HfXnskpGUPguSuGsrxRdLs8CSMTaCMyjIjUiFCmwZGi1gECiMuy2PlwDsScUKGA6ej0-b9A_4UQXAlHVwW0RaxlA7sLLQgaSzKJLnWfwd2l5pxw6Sf3zzKa7iP-yfp906OX8ADXG1eF8DtwPp0fGVfYqg1Va8qnWbw_bY30V-47zju
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4A98D0RGMgSkxAPWePEdp0n1KFNA61bJKgYT5E_R0VIqjTdNP56zklayocQEq_W2bJ95_P97PPPCO25yCnKBQkFZTSkIiWh1P7cSvNUMyYFad-tTU758ZS-O2fnG6_4fVolQPFZ66TbDFnAJ8mQ8CEhQ4AS6XBu3OvL_iyJcMG4Z-ga3URbnEE0PkBb09Ns_Km9TO5rd6ykCaD7oS0hwiG-nZ_2oZau_3envI1uLcu5vL6SRbGx6xzdRXLV3y7Z5Mv-slH7-tsvVI7_M6B76E4fkuJxZ0P30Q1bPkDbG0SFD1H51ucYySLMOoLY9scJnNX-lsdrFk_aj6hx5fDZrMAfbVEsMITD-KS6CjNw_rajA7_GPtOvvqxm9QIfwAYKVUqcvT8LD08meFxcVPWs-fz1EZoeHX54cxz2PzWEGnxAExKqCBNCRlaZEUBbRhynilklqeXccadEAk5VJFAmjLY0jmJLqY7i1KSgjmQHDcqqtI8RTk0CLUU-rDAAjYgyUCI8D5lgziodoFcrveW6pzH3v2kUOcAZr-P8h44D9GItO-_IO_4odeDVv5bwhNttQVVf5P36zVlqYmWUc4ZKSpmVsdE0pbGCeMomqQrQS288uXcL0B0t-9cNMChPsJWPYVroiKZCBGh3ZV957y8WOQBfzxA8iuMA7a1t7i-dfvJvYk_RbZjqpMtt20WDpl7aZxBFNep5v1C-Ax0EFEY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Initial-Productivity+Prediction+Method+of+Oil+Wells+for+Low-Permeability+Reservoirs+Based+on+PSO-ELM+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Zhao%2C+Beichen&rft.au=Ju%2C+Binshan&rft.au=Wang%2C+Chaoxiang&rft.date=2023-06-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=11&rft.spage=4489&rft_id=info:doi/10.3390%2Fen16114489&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16114489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon