Effects of TAMP family on the tight junction strand network and barrier function in epithelial cells

Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)‐associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore,...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1517; no. 1; pp. 234 - 250
Main Authors Saito, Akira C., Endo, Chisato, Fukazawa, Yugo, Higashi, Tomohito, Chiba, Hideki
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text
ISSN0077-8923
1749-6632
1749-6632
DOI10.1111/nyas.14889

Cover

Abstract Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)‐associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy‐terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple‐gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double‐gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy‐terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy‐terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy‐terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement. We have elucidated whether individual TAMP proteins are required for the regulation of tight junction (TJ) strand network complexity, and the necessity of their domains. These results provide a basis for a better understanding of the molecular mechanisms underlying the construction of ultrastructures in TJ.
AbstractList Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)‐associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy‐terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple‐gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double‐gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy‐terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy‐terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy‐terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement. We have elucidated whether individual TAMP proteins are required for the regulation of tight junction (TJ) strand network complexity, and the necessity of their domains. These results provide a basis for a better understanding of the molecular mechanisms underlying the construction of ultrastructures in TJ.
Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)‐associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy‐terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple‐gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double‐gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy‐terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy‐terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy‐terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement.
Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)-associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy-terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple-gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double-gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy-terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy-terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy-terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement.Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)-associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy-terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin/occludin/marveld3 triple-gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin/occludin double-gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy-terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy-terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy-terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement.
Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)‐associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ strand branching point formation and epithelial barrier maintenance. However, whether marvelD3 has the same function remains unclear. Furthermore, the roles of the carboxy‐terminal cytoplasmic tail, which is conserved in occludin and tricellulin, on the regulation of TJ strand morphology have not yet been explored in epithelial cells. We established tricellulin / occludin / marveld3 triple‐gene knockout (tKO) MDCK II cells and evaluated the roles of marvelD3 in the TJ strand structure and barrier function using MDCK II cells and a mathematical model. The complexity of TJ strand networks and paracellular barrier did not change in tKO cells compared to that in tricellulin / occludin double‐gene knockout (dKO) cells. Exogenous marvelD3 expression in dKO cells did not increase the complexity of TJ strand networks and epithelial barrier tightness. The expression of the carboxy‐terminal truncation mutant of tricellulin restored the barrier function in the dKO cells, whereas occludin lacking the carboxy‐terminal cytoplasmic tail was not expressed on the plasma membrane. These data suggest that marvelD3 does not affect the morphology of TJ strands and barrier function in MDCK II cells and that the carboxy‐terminal cytoplasmic tail of tricellulin is dispensable for barrier improvement.
Author Saito, Akira C.
Fukazawa, Yugo
Chiba, Hideki
Endo, Chisato
Higashi, Tomohito
Author_xml – sequence: 1
  givenname: Akira C.
  surname: Saito
  fullname: Saito, Akira C.
  organization: Fukushima Medical University
– sequence: 2
  givenname: Chisato
  surname: Endo
  fullname: Endo, Chisato
  organization: Fukushima Medical University
– sequence: 3
  givenname: Yugo
  surname: Fukazawa
  fullname: Fukazawa, Yugo
  organization: University of Fukui
– sequence: 4
  givenname: Tomohito
  orcidid: 0000-0001-5616-1477
  surname: Higashi
  fullname: Higashi, Tomohito
  email: tohigash@fmu.ac.jp
  organization: Fukushima Medical University
– sequence: 5
  givenname: Hideki
  surname: Chiba
  fullname: Chiba, Hideki
  organization: Fukushima Medical University
BookMark eNp90E1LwzAYB_AgE9ymFz9BwIsInUmbtulxjPkC8wWcB0_lWZq4zC6dScbYtze1ehliLgnh9w9P_gPUM42RCJ1TMqJhXZs9uBFlnBdHqE9zVkRZlsQ91CckzyNexMkJGji3IoTGnOV9VE2VksI73Cg8Hz88YwVrXe9xY7BfSuz1-9Lj1dYIr8OV8xZMhY30u8Z-4Pa8AGu1tFj9Gm2w3OgQrjXUWMi6dqfoWEHt5NnPPkSvN9P55C6aPd3eT8azSDBCiiivKsoKWjGqSAwgMkJSzgQpchCLDEilKi4XacWzDGLI0qCSggipCkgoo5AM0WX37sY2n1vpfLnWrp0AjGy2roxzShOS8ZQHenFAV83WmjBdUElwMU9YUKRTwjbOWalKoT203wxF6LqkpGxrL9vay-_aQ-TqILKxeg12_zemHd7pWu7_keXj2_ily3wBXhWVyw
CitedBy_id crossref_primary_10_1016_j_ejcb_2024_151410
crossref_primary_10_1093_jmicro_dfad008
crossref_primary_10_1016_j_xpro_2024_103179
crossref_primary_10_1083_jcb_202204079
Cites_doi 10.1083/jcb.47.1.49
10.1021/pr7007913
10.1074/jbc.M109.016766
10.1091/mbc.11.12.4131
10.1152/ajpcell.2001.281.2.C388
10.1089/ars.2014.6162
10.1242/jcs.065581
10.1172/JCI69651
10.1083/jcb.201812157
10.1083/jcb.202005062
10.1371/journal.pone.0214876
10.1007/BF01870332
10.1085/jgp.200810154
10.1523/JNEUROSCI.6160-08.2009
10.1083/jcb.17.2.375
10.1091/mbc.E20-07-0464
10.1016/j.bbamem.2020.183279
10.1247/csf.20.151
10.1083/jcb.60.1.168
10.1038/s41598-021-93654-2
10.1186/1471-2121-10-95
10.1016/j.semcdb.2014.08.011
10.1007/s00018-010-0313-y
10.1091/mbc.e12-09-0688
10.1083/jcb.101.6.2124
10.1016/j.bbamem.2020.183339
10.1016/j.jmb.2005.07.017
10.1128/MCB.21.16.5678-5687.2001
10.1083/jcb.141.7.1539
10.1016/j.bbamem.2019.183143
10.1152/ajpcell.00581.2004
10.1083/jcb.123.6.1777
10.1083/jcb.200510043
10.1091/mbc.e10-12-1003
10.1083/jcb.141.2.397
10.1016/j.bbamem.2007.08.017
10.1038/srep18402
10.1242/jcs.072058
10.1074/jbc.273.45.29745
10.1038/35067088
10.1091/mbc.e08-05-0530
10.1083/jcb.137.6.1393
10.1083/jcb.127.6.1617
10.1016/j.semcdb.2014.09.022
10.1073/pnas.0802741106
10.1016/j.devcel.2019.01.016
10.1083/jcb.153.2.263
10.1242/jcs.114306
10.1016/j.cell.2013.08.021
10.1083/jcb.58.2.390
10.1016/0378-1119(91)90434-D
10.1152/ajpcell.00558.2003
10.1091/mbc.e09-08-0734
10.1074/jbc.M804783200
10.1083/jcb.134.4.1031
10.1371/journal.pone.0119869
10.1083/jcb.202009037
10.1111/j.1749-6632.2012.06555.x
10.1083/jcb.201010065
10.1242/jcs.138271
10.1083/jcb.147.4.891
10.1086/510022
10.1172/JCI69031
ContentType Journal Article
Copyright 2022 New York Academy of Sciences.
2022 The New York Academy of Sciences.
Copyright_xml – notice: 2022 New York Academy of Sciences.
– notice: 2022 The New York Academy of Sciences.
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
DOI 10.1111/nyas.14889
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 250
ExternalDocumentID 10_1111_nyas_14889
NYAS14889
Genre article
GrantInformation_xml – fundername: The Nakatomi Foundation
  funderid: Research Grant
– fundername: Kazato Research Foundation
  funderid: Kazato Research Encourage Prize 2021
– fundername: Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering
– fundername: Japan Society for the Promotion of Science
  funderid: 16H06280; 18K15085; 18K06223; 21K06156
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMDK
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ADXHL
AEYWJ
AGHNM
AGQPQ
AGYGG
AHDLI
CITATION
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c4009-7dd1491d41f02aac600584c097acb6a0dfd8eb5d866a2a65f02390cef9a3141a3
IEDL.DBID DR2
ISSN 0077-8923
1749-6632
IngestDate Fri Jul 11 01:37:19 EDT 2025
Sun Jul 13 05:32:06 EDT 2025
Tue Jul 01 04:00:56 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Wed Jan 22 16:26:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4009-7dd1491d41f02aac600584c097acb6a0dfd8eb5d866a2a65f02390cef9a3141a3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5616-1477
PQID 2737112834
PQPubID 946344
PageCount 17
ParticipantIDs proquest_miscellaneous_2711306858
proquest_journals_2737112834
crossref_citationtrail_10_1111_nyas_14889
crossref_primary_10_1111_nyas_14889
wiley_primary_10_1111_nyas_14889_NYAS14889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 286
2005; 171
2006; 79
2013; 24
2013; 126
1973; 58
2019; 14
2013; 123
1978; 39
2011; 193
1993; 123
1998; 273
1995; 20
2010; 67
2012; 1257
2010; 21
2011; 124
2021; 32
2009; 10
2000; 11
2011; 22
2009; 284
2013; 154
1996; 134
2020; 1862
1991; 108
1997; 137
2015; 5
2005; 352
2001; 281
2008; 19
2010; 123
2015; 10
1985; 101
2009; 133
1999; 147
2021; 220
2008; 1778
2009; 29
2001; 21
2022; 221
2015; 23
1994; 127
1997; 73
2001; 153
2021; 11
2005; 288
1974; 60
2019; 48
2014; 36
2009; 8
2019; 218
2001; 2
1963; 17
1970; 47
1998; 141
2009; 106
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Saitou M. (e_1_2_9_52_1) 1997; 73
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 106
  start-page: 61
  year: 2009
  end-page: 66
  article-title: PKC regulates occludin phosphorylation and epithelial tight junction integrity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 147
  start-page: 891
  year: 1999
  end-page: 903
  article-title: Manner of interaction of heterogeneous claudin species within and between tight junction strands
  publication-title: Journal of Cell Biology
– volume: 24
  start-page: 3056
  year: 2013
  end-page: 3068
  article-title: Occludin OCEL–domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux
  publication-title: Molecular Biology of the Cell
– volume: 273
  start-page: 29745
  year: 1998
  end-page: 29753
  article-title: The tight junction protein ZO‐1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton
  publication-title: Journal of Biological Chemistry
– volume: 137
  start-page: 1393
  year: 1997
  end-page: 1401
  article-title: Possible involvement of phosphorylation of occludin in tight junction formation
  publication-title: Journal of Cell Biology
– volume: 2
  start-page: 285
  year: 2001
  end-page: 293
  article-title: Multifunctional strands in tight junctions
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 284
  start-page: 1559
  year: 2009
  end-page: 1569
  article-title: Phosphorylation of Tyr‐398 and Tyr‐402 in occludin prevents its interaction with ZO‐1 and destabilizes its assembly at the tight junctions
  publication-title: Journal of Biological Chemistry
– volume: 47
  start-page: 49
  year: 1970
  end-page: 60
  article-title: An interpretation of liver cell membrane and junction structure based on observation of freeze‐fracture replicas of both sides of the fracture
  publication-title: Journal of Cell Biology
– volume: 101
  start-page: 2124
  year: 1985
  end-page: 2133
  article-title: Occluding junction structure–function relationships in a cultured epithelial monolayer
  publication-title: Journal of Cell Biology
– volume: 220
  year: 2021
  article-title: Angulin‐1 seals tricellular contacts independently of tricellulin and claudins
  publication-title: Journal of Cell Biology
– volume: 286
  start-page: C1213
  year: 2004
  end-page: C1228
  article-title: The tight junction: A multifunctional complex
  publication-title: American Journal of Physiology‐Cell Physiology
– volume: 221
  year: 2022
  article-title: Tricellulin secures the epithelial barrier at tricellular junctions by interacting with actomyosin
  publication-title: Journal of Cell Biology
– volume: 1257
  start-page: 20
  year: 2012
  end-page: 28
  article-title: Charge‐selective claudin channels
  publication-title: Annals of the New York Academy of Sciences
– volume: 133
  start-page: 111
  year: 2009
  end-page: 127
  article-title: Molecular basis for cation selectivity in claudin‐2–based paracellular pores: Identification of an electrostatic interaction site
  publication-title: Journal of General Physiology
– volume: 123
  start-page: 1777
  year: 1993
  end-page: 1788
  article-title: Occludin: A novel integral membrane protein localizing at tight junctions
  publication-title: Journal of Cell Biology
– volume: 11
  year: 2021
  article-title: Spatio‐temporal expression pattern and role of the tight junction protein MarvelD3 in pancreas development and function
  publication-title: Science Reports
– volume: 14
  year: 2019
  article-title: Structural dynamics of tight junctions modulate the properties of the epithelial barrier
  publication-title: PLoS One
– volume: 193
  start-page: 565
  year: 2011
  end-page: 582
  article-title: Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function
  publication-title: Journal of Cell Biology
– volume: 60
  start-page: 168
  year: 1974
  end-page: 180
  article-title: The structure of the zonula occludens
  publication-title: Journal of Cell Biology
– volume: 67
  start-page: 2057
  year: 2010
  end-page: 2068
  article-title: Tricellulin forms homomeric and heteromeric tight junctional complexes
  publication-title: Cellular and Molecular Life Sciences
– volume: 154
  start-page: 1380
  year: 2013
  end-page: 1389
  article-title: Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
– volume: 218
  start-page: 3372
  year: 2019
  end-page: 3396
  article-title: Claudins and JAM‐A coordinately regulate tight junction formation and epithelial polarity
  publication-title: Journal of Cell Biology
– volume: 29
  start-page: 12896
  year: 2009
  end-page: 12908
  article-title: Input‐specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses
  publication-title: Journal of Neuroscience
– volume: 10
  start-page: 95
  year: 2009
  article-title: Identification of MarvelD3 as a tight junction‐associated transmembrane protein of the occludin family
  publication-title: BMC Cell Biology [Electronic Resource]
– volume: 124
  start-page: 548
  year: 2011
  end-page: 555
  article-title: LSR defines cell corners for tricellular tight junction formation in epithelial cells
  publication-title: Journal of Cell Science
– volume: 284
  start-page: 21036
  year: 2009
  end-page: 21046
  article-title: Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor‐induced permeability
  publication-title: Journal of Biological Chemistry
– volume: 19
  start-page: 4687
  year: 2008
  end-page: 4693
  article-title: Loss of occludin affects tricellular localization of tricellulin
  publication-title: Molecular Biology of the Cell
– volume: 127
  start-page: 1617
  year: 1994
  end-page: 1626
  article-title: Direct association of occludin with ZO‐1 and its possible involvement in the localization of occludin at tight junctions
  publication-title: Journal of Cell Biology
– volume: 39
  start-page: 219
  year: 1978
  end-page: 232
  article-title: Morphological factors influencing transepithelial permeability: A model for the resistance of the zonula occludens
  publication-title: Journal of Membrane Biology
– volume: 171
  start-page: 939
  year: 2005
  end-page: 945
  article-title: Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells
  publication-title: Journal of Cell Biology
– volume: 10
  year: 2015
  article-title: Claudin‐2 knockout by TALEN‐mediated gene targeting in MDCK cells: Claudin‐2 independently determines the leaky property of tight junctions in MDCK cells
  publication-title: PLoS One
– volume: 141
  start-page: 1539
  year: 1998
  end-page: 1550
  article-title: Claudin‐1 and ‐2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin
  publication-title: Journal of Cell Biology
– volume: 21
  start-page: 1200
  year: 2010
  end-page: 1213
  article-title: Tight junction–associated MARVEL proteins MarvelD3, tricellulin, and occludin have distinct but overlapping functions
  publication-title: Molecular Biology of the Cell
– volume: 123
  start-page: 4036
  year: 2013
  end-page: 4049
  article-title: Tricellulin deficiency affects tight junction architecture and cochlear hair cells
  publication-title: Journal of Clinical Investigation
– volume: 48
  start-page: 445
  year: 2019
  end-page: 459.e5
  article-title: Rho flares repair local tight junction leaks
  publication-title: Developmental Cell
– volume: 153
  start-page: 263
  year: 2001
  end-page: 272
  article-title: Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin‐2 into Madin–Darby canine kidney I cells
  publication-title: Journal of Cell Biology
– volume: 141
  start-page: 397
  year: 1998
  end-page: 408
  article-title: Occludin‐deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions
  publication-title: Journal of Cell Biology
– volume: 79
  start-page: 1040
  year: 2006
  end-page: 1051
  article-title: Tricellulin is a tight‐junction protein necessary for hearing
  publication-title: American Journal of Human Genetics
– volume: 126
  start-page: 554
  year: 2013
  end-page: 564
  article-title: In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization
  publication-title: Journal of Cell Science
– volume: 1862
  year: 2020
  article-title: Molecular organization, regulation and function of tricellular junctions
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ Biomembranes
– volume: 1862
  year: 2020
  article-title: Ruffles and spikes: Control of tight junction morphology and permeability by claudins
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ Biomembranes
– volume: 36
  start-page: 157
  year: 2014
  end-page: 165
  article-title: Architecture of tight junctions and principles of molecular composition
  publication-title: Seminars in Cell & Developmental Biology
– volume: 58
  start-page: 390
  year: 1973
  end-page: 400
  article-title: Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia
  publication-title: Journal of Cell Biology
– volume: 17
  start-page: 375
  year: 1963
  end-page: 412
  article-title: Junctional complexes in various epithelia
  publication-title: Journal of Cell Biology
– volume: 22
  start-page: 1495
  year: 2011
  end-page: 1504
  article-title: Role of claudin species–specific dynamics in reconstitution and remodeling of the zonula occludens
  publication-title: Molecular Biology of the Cell
– volume: 8
  start-page: 808
  year: 2009
  end-page: 817
  article-title: Identification and analysis of occludin phosphosites: A combined mass spectrometry and bioinformatics approach
  publication-title: Journal of Proteome Research
– volume: 108
  start-page: 193
  year: 1991
  end-page: 199
  article-title: Efficient selection for high‐expression transfectants with a novel eukaryotic vector
  publication-title: Gene
– volume: 134
  start-page: 1031
  year: 1996
  end-page: 1049
  article-title: Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical‐basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein
  publication-title: Journal of Cell Biology
– volume: 20
  start-page: 151
  year: 1995
  end-page: 156
  article-title: A novel method of preparing rat‐monoclonal antibody‐producing hybridomas by using rat medial iliac lymph node cells
  publication-title: Cell Structure and Function
– volume: 11
  start-page: 4131
  year: 2000
  end-page: 4142
  article-title: Complex phenotype of mice lacking occludin, a component of tight junction strands
  publication-title: Molecular Biology of the Cell
– volume: 352
  start-page: 151
  year: 2005
  end-page: 164
  article-title: Structure of the conserved cytoplasmic C‐terminal domain of occludin: Identification of the ZO‐1 binding surface
  publication-title: Journal of Molecular Biology
– volume: 5
  year: 2015
  article-title: Deletion of tricellulin causes progressive hearing loss associated with degeneration of cochlear hair cells
  publication-title: Science Reports
– volume: 36
  start-page: 204
  year: 2014
  end-page: 212
  article-title: The role of molecular remodeling in differential regulation of tight junction permeability
  publication-title: Seminars in Cell & Developmental Biology
– volume: 123
  start-page: 3712
  year: 2013
  end-page: 3715
  article-title: A “Tric” to tighten cell–cell junctions in the cochlea for hearing
  publication-title: Journal of Clinical Investigation
– volume: 288
  start-page: C1231
  year: 2005
  end-page: C1241
  article-title: Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells
  publication-title: American Journal of Physiology‐Cell Physiology
– volume: 123
  start-page: 2844
  year: 2010
  end-page: 2852
  article-title: Occludin is required for cytokine‐induced regulation of tight junction barriers
  publication-title: Journal of Cell Science
– volume: 1778
  start-page: 588
  year: 2008
  end-page: 600
  article-title: Transmembrane proteins of tight junctions
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ Biomembranes
– volume: 32
  start-page: 722
  year: 2021
  end-page: 738
  article-title: Occludin and tricellulin facilitate formation of anastomosing tight‐junction strand network to improve barrier function
  publication-title: Molecular Biology of the Cell
– volume: 73
  start-page: 222
  year: 1997
  end-page: 231
  article-title: Mammalian occludin in epithelial cells: Its expression and subcellular distribution
  publication-title: European Journal of Cell Biology
– volume: 1862
  year: 2020
  article-title: Molecular architecture and assembly of the tight junction backbone
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ Biomembranes
– volume: 23
  start-page: 1035
  year: 2015
  end-page: 1049
  article-title: Redox regulation of cell contacts by tricellulin and occludin: Redox‐sensitive cysteine sites in tricellulin regulate both tri‐ and bicellular junctions in tissue barriers as shown in hypoxia and ischemia
  publication-title: Antioxidants & Redox Signaling
– volume: 21
  start-page: 5678
  year: 2001
  end-page: 5687
  article-title: The elongation domain of ELL is dispensable but its ELL‐associated factor 1 interaction domain is essential for MLL‐ELL‐induced leukemogenesis
  publication-title: Molecular and Cellular Biology
– volume: 126
  start-page: 966
  year: 2013
  end-page: 977
  article-title: Analysis of the ‘angulin' proteins LSR, ILDR1 and ILDR2 ‐ tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis
  publication-title: Journal of Cell Science
– volume: 281
  start-page: C388
  year: 2001
  end-page: C397
  article-title: Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers
  publication-title: American Journal of Physiology‐Cell Physiology
– ident: e_1_2_9_8_1
  doi: 10.1083/jcb.47.1.49
– ident: e_1_2_9_38_1
  doi: 10.1021/pr7007913
– ident: e_1_2_9_39_1
  doi: 10.1074/jbc.M109.016766
– ident: e_1_2_9_25_1
  doi: 10.1091/mbc.11.12.4131
– ident: e_1_2_9_57_1
  doi: 10.1152/ajpcell.2001.281.2.C388
– ident: e_1_2_9_62_1
  doi: 10.1089/ars.2014.6162
– ident: e_1_2_9_27_1
  doi: 10.1242/jcs.065581
– ident: e_1_2_9_65_1
  doi: 10.1172/JCI69651
– ident: e_1_2_9_13_1
  doi: 10.1083/jcb.201812157
– ident: e_1_2_9_28_1
  doi: 10.1083/jcb.202005062
– ident: e_1_2_9_58_1
  doi: 10.1371/journal.pone.0214876
– ident: e_1_2_9_47_1
  doi: 10.1007/BF01870332
– ident: e_1_2_9_16_1
  doi: 10.1085/jgp.200810154
– ident: e_1_2_9_56_1
  doi: 10.1523/JNEUROSCI.6160-08.2009
– ident: e_1_2_9_2_1
  doi: 10.1083/jcb.17.2.375
– ident: e_1_2_9_19_1
  doi: 10.1091/mbc.E20-07-0464
– ident: e_1_2_9_7_1
  doi: 10.1016/j.bbamem.2020.183279
– ident: e_1_2_9_53_1
  doi: 10.1247/csf.20.151
– ident: e_1_2_9_9_1
  doi: 10.1083/jcb.60.1.168
– ident: e_1_2_9_29_1
  doi: 10.1038/s41598-021-93654-2
– ident: e_1_2_9_22_1
  doi: 10.1186/1471-2121-10-95
– ident: e_1_2_9_5_1
  doi: 10.1016/j.semcdb.2014.08.011
– ident: e_1_2_9_60_1
  doi: 10.1007/s00018-010-0313-y
– ident: e_1_2_9_61_1
  doi: 10.1091/mbc.e12-09-0688
– ident: e_1_2_9_48_1
  doi: 10.1083/jcb.101.6.2124
– ident: e_1_2_9_50_1
  doi: 10.1016/j.bbamem.2020.183339
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jmb.2005.07.017
– ident: e_1_2_9_30_1
  doi: 10.1128/MCB.21.16.5678-5687.2001
– ident: e_1_2_9_12_1
  doi: 10.1083/jcb.141.7.1539
– ident: e_1_2_9_11_1
  doi: 10.1016/j.bbamem.2019.183143
– ident: e_1_2_9_26_1
  doi: 10.1152/ajpcell.00581.2004
– volume: 73
  start-page: 222
  year: 1997
  ident: e_1_2_9_52_1
  article-title: Mammalian occludin in epithelial cells: Its expression and subcellular distribution
  publication-title: European Journal of Cell Biology
– ident: e_1_2_9_20_1
  doi: 10.1083/jcb.123.6.1777
– ident: e_1_2_9_21_1
  doi: 10.1083/jcb.200510043
– ident: e_1_2_9_63_1
  doi: 10.1091/mbc.e10-12-1003
– ident: e_1_2_9_24_1
  doi: 10.1083/jcb.141.2.397
– ident: e_1_2_9_10_1
  doi: 10.1016/j.bbamem.2007.08.017
– ident: e_1_2_9_44_1
  doi: 10.1038/srep18402
– ident: e_1_2_9_42_1
  doi: 10.1242/jcs.072058
– ident: e_1_2_9_34_1
  doi: 10.1074/jbc.273.45.29745
– ident: e_1_2_9_4_1
  doi: 10.1038/35067088
– ident: e_1_2_9_64_1
  doi: 10.1091/mbc.e08-05-0530
– ident: e_1_2_9_35_1
  doi: 10.1083/jcb.137.6.1393
– ident: e_1_2_9_33_1
  doi: 10.1083/jcb.127.6.1617
– ident: e_1_2_9_3_1
  doi: 10.1016/j.semcdb.2014.09.022
– ident: e_1_2_9_36_1
  doi: 10.1073/pnas.0802741106
– ident: e_1_2_9_49_1
  doi: 10.1016/j.devcel.2019.01.016
– ident: e_1_2_9_15_1
  doi: 10.1083/jcb.153.2.263
– ident: e_1_2_9_51_1
  doi: 10.1242/jcs.114306
– ident: e_1_2_9_54_1
  doi: 10.1016/j.cell.2013.08.021
– ident: e_1_2_9_46_1
  doi: 10.1083/jcb.58.2.390
– ident: e_1_2_9_55_1
  doi: 10.1016/0378-1119(91)90434-D
– ident: e_1_2_9_6_1
  doi: 10.1152/ajpcell.00558.2003
– ident: e_1_2_9_23_1
  doi: 10.1091/mbc.e09-08-0734
– ident: e_1_2_9_37_1
  doi: 10.1074/jbc.M804783200
– ident: e_1_2_9_59_1
  doi: 10.1083/jcb.134.4.1031
– ident: e_1_2_9_18_1
  doi: 10.1371/journal.pone.0119869
– ident: e_1_2_9_41_1
  doi: 10.1083/jcb.202009037
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1749-6632.2012.06555.x
– ident: e_1_2_9_32_1
  doi: 10.1083/jcb.201010065
– ident: e_1_2_9_43_1
  doi: 10.1242/jcs.138271
– ident: e_1_2_9_14_1
  doi: 10.1083/jcb.147.4.891
– ident: e_1_2_9_40_1
  doi: 10.1086/510022
– ident: e_1_2_9_45_1
  doi: 10.1172/JCI69031
SSID ssj0012847
Score 2.4440324
Snippet Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)‐associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ...
Occludin, tricellulin, and marvelD3 belong to the tight junction (TJ)-associated MARVEL protein family. Occludin and tricellulin jointly contribute to TJ...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Complexity
Cytology
Epithelial cells
Epithelium
marvelD3
Mathematical models
Morphology
occludin
Structure-function relationships
TAMP
tight junctions
Tightness
TJ strand
tricellulin
Title Effects of TAMP family on the tight junction strand network and barrier function in epithelial cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnyas.14889
https://www.proquest.com/docview/2737112834
https://www.proquest.com/docview/2711306858
Volume 1517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1749-6632
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0012847
  issn: 0077-8923
  databaseCode: ABDBF
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0077-8923
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1749-6632
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012847
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD6IIPSl1a3SrVpG6oMKkcxmZpJAX5aiSGGX4gX0oYS5glZmxew-6K93ziTZtSKCfQvkhCRz5pvzzeV8B2CXC4Y6dyzJRYmi2jpNVIj7ScYttZLLkjtMFB6NxckF-3XJL5fgR5cL0-hDzBfcEBlxvEaAS1U_A7l_kHXAeVFg9h7NeNyjPZ1rR8VxNw7DeRiGA41ptUnxGM_i0X-j0YJiPieqMdIcf4I_3Tc2B0z-Hs6m6lA_vpBv_N-fWIWPLQUlw6bPrMGS9T1YaYpSPvRgrYV7TfZaTer9z2AaleOaTBw5H45-k2ZhhEw8CQySTHGKT25CjEQ_E1w-8Yb45og5wWsl77E2HnGdzbUn9g4TQm4DAgjuH9TrcHF8dP7zJGkLNCSa4aZKbkyYYFHDqEsHUmqBRQqZTstcaiVkapwprOKmEEIOpOAOM2lTbV0pM8qozDZg2U-8_QIkp05mXBcpM4K5TJXcWMpMnlpZloqKPux3jqp0q16ORTRuq24Wg01Zxabsw_e57V2j2fGq1Vbn76rFbV0FMpcHBlpkrA8789sBcdgM0tvJDG1oCPyo29-Hg-jcN95Sja-GZ_Hq63uMN-HDAPMsYtLjFixP72d2O7CfqfoWe_kTXhsAtw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB5xCNGXcrQVWy4jeCiVguKN7SSPKw4tx64QLBJ9ihwfUinyIrL7QH99PU52gaqqBG-WMlEUj7-ZsT3zDcAeFwx57liUihxJtVUcld7vRwk31Eguc26xULjXF90bdnbLb5vcHKyFqfkhpgduiIxgrxHgeCD9AuXuSVYe6FmWz8I8XtAhLo-upuxRwfIGQ5x6Q-wDmYadFBN5nt997Y-eg8yXoWrwNSdLdUPVKlAUYorJr4PxqDxQv_8icHz3byzDxyYKJZ162azAjHGrsFD3pXxahZUG8RX51tBS738CXRMdV2RoyaDTuyT12QgZOuKDSDLCXT65824SVU3wBMVp4uosc4LjUj5iezxiJzI_HTEPWBNy70FA8Aqh-gw3J8eDw27U9GiIFMN7lVRrv8eimlEbt6VUAvsUMhXnqVSlkLG2OjMl15kQsi0Ft1hMGytjc5lQRmXyBebc0Jk1ICm1MuEqi5kWzCZlzrWhTKexkXleUtGC_YmmCtUQmGMfjftispHBqSzCVLZgdyr7UNN2_FNqY6LwooFuVfh4LvVBaJawFuxMH3vQ4TRIZ4ZjlKHe9yN1fwu-B-3-5ytF_0fnOoy-vkV4Gxa7g95FcXHaP1-HD20suwg1kBswN3ocm00fDI3KrbDk_wBfTQTT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xpk17YaMwrQw2T9sDIAXFje0kEi_Vtop9tEIbSPCAIscf0qByq6Z9YH_9fE5SGEJI21ukXJTE57v7ne37HcAHLhjy3LEoFTmSaqs4Kn3cjxJuqJFc5txiofBwJI5O2dczfrYCh20tTM0PsVxwQ8sI_hoNfKrtLSN317Lydp5l-SN4zIRPrxAS_ViSRwXHG_xw6v2wxzENOSme47l59u9wdIMxbyPVEGoGz-Gi_cj6hMnVwWJeHqjfd_gb__cvXsBag0FJv54067BiXAee1F0przuw3th7RXYbUuq9DdA1zXFFJpac9IfHpF4ZIRNHPIQkc8zxyaUPkqhogusnThNXnzEneF3KGTbHI7aV-eWImWJFyNibAMENhGoTTgefTz4eRU2Hhkgx3FVJtfYZFtWM2rgnpRLYpZCpOE-lKoWMtdWZKbnOhJA9KbjFUtpYGZvLhDIqk5ew6ibOvAKSUisTrrKYacFsUuZcG8p0GhuZ5yUVXdhrFVWohr4cu2iMizaNwaEswlB24f1SdlqTdtwrtd3qu2gMtyo8mks9BM0S1oV3y9ve5HAYpDOTBcpQH_mRuL8L-0G5D7ylGJ33f4arrX8RfgtPjz8Niu9fRt9ew7Me1lyEAshtWJ3PFmbHI6F5-SZM-D9TjwOC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+TAMP+family+on+the+tight+junction+strand+network+and+barrier+function+in+epithelial+cells&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Saito%2C+Akira+C.&rft.au=Endo%2C+Chisato&rft.au=Fukazawa%2C+Yugo&rft.au=Higashi%2C+Tomohito&rft.date=2022-11-01&rft.issn=0077-8923&rft.eissn=1749-6632&rft.volume=1517&rft.issue=1&rft.spage=234&rft.epage=250&rft_id=info:doi/10.1111%2Fnyas.14889&rft.externalDBID=10.1111%252Fnyas.14889&rft.externalDocID=NYAS14889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon