Performance of an automated deep learning algorithm to identify hepatic steatosis within noncontrast computed tomography scans among people with and without HIV

Purpose Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have n...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 32; no. 10; pp. 1121 - 1130
Main Authors Torgersen, Jessie, Akers, Scott, Huo, Yuankai, Terry, James G., Carr, J. Jeffrey, Ruutiainen, Alexander T., Skanderson, Melissa, Levin, Woody, Lim, Joseph K., Taddei, Tamar H., So‐Armah, Kaku, Bhattacharya, Debika, Rentsch, Christopher T., Shen, Li, Carr, Rotonya, Shinohara, Russell T., McClain, Michele, Freiberg, Matthew, Justice, Amy C., Lo Re, Vincent
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.10.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-8569
1099-1557
1099-1557
DOI10.1002/pds.5648

Cover

Abstract Purpose Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have not been developed. We determined the accuracy of a deep learning algorithm (automatic liver attenuation region‐of‐interest‐based measurement [ALARM]) to identify steatosis within clinically obtained noncontrast abdominal CT images compared to manual radiologist review and evaluated its performance by HIV status. Methods We performed a cross‐sectional study to evaluate the performance of ALARM within noncontrast abdominal CT images from a sample of patients with and without HIV in the US Veterans Health Administration. We evaluated the ability of ALARM to identify moderate‐to‐severe hepatic steatosis, defined by mean absolute liver attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment. Results Among 120 patients (51 PWH) who underwent noncontrast abdominal CT, moderate‐to‐severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM and 12 (10%) by radiologist assessment. Percent agreement between ALARM and radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, specificity, positive predictive value, and negative predictive value of ALARM were 91.7% (95%CI, 51.5%–99.8%), 96.3% (95%CI, 90.8%–99.0%), 73.3% (95%CI, 44.9%–92.2%), and 99.0% (95%CI, 94.8%–100%), respectively. No differences in performance were observed by HIV status. Conclusions ALARM demonstrated excellent accuracy for moderate‐to‐severe hepatic steatosis regardless of HIV status. Application of ALARM to radiographic repositories could facilitate real‐world studies to evaluate medications associated with steatosis and assess differences by HIV status.
AbstractList PurposeHepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have not been developed. We determined the accuracy of a deep learning algorithm (automatic liver attenuation region‐of‐interest‐based measurement [ALARM]) to identify steatosis within clinically obtained noncontrast abdominal CT images compared to manual radiologist review and evaluated its performance by HIV status.MethodsWe performed a cross‐sectional study to evaluate the performance of ALARM within noncontrast abdominal CT images from a sample of patients with and without HIV in the US Veterans Health Administration. We evaluated the ability of ALARM to identify moderate‐to‐severe hepatic steatosis, defined by mean absolute liver attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment.ResultsAmong 120 patients (51 PWH) who underwent noncontrast abdominal CT, moderate‐to‐severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM and 12 (10%) by radiologist assessment. Percent agreement between ALARM and radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, specificity, positive predictive value, and negative predictive value of ALARM were 91.7% (95%CI, 51.5%–99.8%), 96.3% (95%CI, 90.8%–99.0%), 73.3% (95%CI, 44.9%–92.2%), and 99.0% (95%CI, 94.8%–100%), respectively. No differences in performance were observed by HIV status.ConclusionsALARM demonstrated excellent accuracy for moderate‐to‐severe hepatic steatosis regardless of HIV status. Application of ALARM to radiographic repositories could facilitate real‐world studies to evaluate medications associated with steatosis and assess differences by HIV status.
Hepatic steatosis (fatty liver disease) is very common, particularly in people living with HIV. Yet studies evaluating medications associated with developing hepatic steatosis are limited due to lack of tools to identify hepatic steatosis within clinical images. We compared the performance of the Automatic Liver Attenuation Region-of-Interest-based Measurement (ALARM) program to identify hepatic steatosis within computed tomography images to manual radiologist review. ALARM demonstrated excellent accuracy for identifying moderate-to-severe hepatic steatosis among people with and without HIV. By validating ALARM’s ability to accurately identify hepatic steatosis, this tool can be applied to clinical images within electronic medical record databases, allowing for large studies to identify medications and other factors associated with hepatic steatosis and assess differences by HIV status.
Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have not been developed. We determined the accuracy of a deep learning algorithm (automatic liver attenuation region-of-interest-based measurement [ALARM]) to identify steatosis within clinically obtained noncontrast abdominal CT images compared to manual radiologist review and evaluated its performance by HIV status.PURPOSEHepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have not been developed. We determined the accuracy of a deep learning algorithm (automatic liver attenuation region-of-interest-based measurement [ALARM]) to identify steatosis within clinically obtained noncontrast abdominal CT images compared to manual radiologist review and evaluated its performance by HIV status.We performed a cross-sectional study to evaluate the performance of ALARM within noncontrast abdominal CT images from a sample of patients with and without HIV in the US Veterans Health Administration. We evaluated the ability of ALARM to identify moderate-to-severe hepatic steatosis, defined by mean absolute liver attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment.METHODSWe performed a cross-sectional study to evaluate the performance of ALARM within noncontrast abdominal CT images from a sample of patients with and without HIV in the US Veterans Health Administration. We evaluated the ability of ALARM to identify moderate-to-severe hepatic steatosis, defined by mean absolute liver attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment.Among 120 patients (51 PWH) who underwent noncontrast abdominal CT, moderate-to-severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM and 12 (10%) by radiologist assessment. Percent agreement between ALARM and radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, specificity, positive predictive value, and negative predictive value of ALARM were 91.7% (95%CI, 51.5%-99.8%), 96.3% (95%CI, 90.8%-99.0%), 73.3% (95%CI, 44.9%-92.2%), and 99.0% (95%CI, 94.8%-100%), respectively. No differences in performance were observed by HIV status.RESULTSAmong 120 patients (51 PWH) who underwent noncontrast abdominal CT, moderate-to-severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM and 12 (10%) by radiologist assessment. Percent agreement between ALARM and radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, specificity, positive predictive value, and negative predictive value of ALARM were 91.7% (95%CI, 51.5%-99.8%), 96.3% (95%CI, 90.8%-99.0%), 73.3% (95%CI, 44.9%-92.2%), and 99.0% (95%CI, 94.8%-100%), respectively. No differences in performance were observed by HIV status.ALARM demonstrated excellent accuracy for moderate-to-severe hepatic steatosis regardless of HIV status. Application of ALARM to radiographic repositories could facilitate real-world studies to evaluate medications associated with steatosis and assess differences by HIV status.CONCLUSIONSALARM demonstrated excellent accuracy for moderate-to-severe hepatic steatosis regardless of HIV status. Application of ALARM to radiographic repositories could facilitate real-world studies to evaluate medications associated with steatosis and assess differences by HIV status.
Purpose Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have not been developed. We determined the accuracy of a deep learning algorithm (automatic liver attenuation region‐of‐interest‐based measurement [ALARM]) to identify steatosis within clinically obtained noncontrast abdominal CT images compared to manual radiologist review and evaluated its performance by HIV status. Methods We performed a cross‐sectional study to evaluate the performance of ALARM within noncontrast abdominal CT images from a sample of patients with and without HIV in the US Veterans Health Administration. We evaluated the ability of ALARM to identify moderate‐to‐severe hepatic steatosis, defined by mean absolute liver attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment. Results Among 120 patients (51 PWH) who underwent noncontrast abdominal CT, moderate‐to‐severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM and 12 (10%) by radiologist assessment. Percent agreement between ALARM and radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, specificity, positive predictive value, and negative predictive value of ALARM were 91.7% (95%CI, 51.5%–99.8%), 96.3% (95%CI, 90.8%–99.0%), 73.3% (95%CI, 44.9%–92.2%), and 99.0% (95%CI, 94.8%–100%), respectively. No differences in performance were observed by HIV status. Conclusions ALARM demonstrated excellent accuracy for moderate‐to‐severe hepatic steatosis regardless of HIV status. Application of ALARM to radiographic repositories could facilitate real‐world studies to evaluate medications associated with steatosis and assess differences by HIV status.
Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify medications associated with steatosis have not been conducted because methods to evaluate liver fat within digitized images have not been developed. We determined the accuracy of a deep learning algorithm (automatic liver attenuation region-of-interest-based measurement [ALARM]) to identify steatosis within clinically obtained noncontrast abdominal CT images compared to manual radiologist review and evaluated its performance by HIV status. We performed a cross-sectional study to evaluate the performance of ALARM within noncontrast abdominal CT images from a sample of patients with and without HIV in the US Veterans Health Administration. We evaluated the ability of ALARM to identify moderate-to-severe hepatic steatosis, defined by mean absolute liver attenuation <40 Hounsfield units (HU), compared to manual radiologist assessment. Among 120 patients (51 PWH) who underwent noncontrast abdominal CT, moderate-to-severe hepatic steatosis was identified in 15 (12.5%) persons via ALARM and 12 (10%) by radiologist assessment. Percent agreement between ALARM and radiologist assessment of absolute liver attenuation <40 HU was 95.8%. Sensitivity, specificity, positive predictive value, and negative predictive value of ALARM were 91.7% (95%CI, 51.5%-99.8%), 96.3% (95%CI, 90.8%-99.0%), 73.3% (95%CI, 44.9%-92.2%), and 99.0% (95%CI, 94.8%-100%), respectively. No differences in performance were observed by HIV status. ALARM demonstrated excellent accuracy for moderate-to-severe hepatic steatosis regardless of HIV status. Application of ALARM to radiographic repositories could facilitate real-world studies to evaluate medications associated with steatosis and assess differences by HIV status.
Author Carr, Rotonya
Rentsch, Christopher T.
Justice, Amy C.
Skanderson, Melissa
Ruutiainen, Alexander T.
Shen, Li
Huo, Yuankai
Carr, J. Jeffrey
Terry, James G.
Bhattacharya, Debika
Lim, Joseph K.
Freiberg, Matthew
Shinohara, Russell T.
McClain, Michele
Torgersen, Jessie
Akers, Scott
Taddei, Tamar H.
Levin, Woody
So‐Armah, Kaku
Lo Re, Vincent
AuthorAffiliation 7 VA Connecticut Healthcare System, West Haven, CT, USA
12 Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
2 Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
15 Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
3 Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
8 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
5 Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
4 Department of Computer Science, Vanderbilt University, Nashville, TN, USA
16 Division of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
1 Department of Medicine, Penn C
AuthorAffiliation_xml – name: 12 Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104
– name: 16 Division of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
– name: 2 Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Center for Real World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– name: 5 Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
– name: 7 VA Connecticut Healthcare System, West Haven, CT, USA
– name: 8 Department of Medicine, Boston University School of Medicine, Boston, MA, USA
– name: 9 VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
– name: 14 VA Office of Information and Technology, Frederick, MD, USA
– name: 3 Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
– name: 13 Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, 19104
– name: 10 Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
– name: 11 Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA, USA
– name: 15 Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
– name: 4 Department of Computer Science, Vanderbilt University, Nashville, TN, USA
– name: 6 Department of Medicine, Yale School of Medicine, New Haven, CT, USA
– name: 1 Department of Medicine, Penn Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Author_xml – sequence: 1
  givenname: Jessie
  orcidid: 0000-0002-7861-1421
  surname: Torgersen
  fullname: Torgersen, Jessie
  email: jessie.torgersen@pennmedicine.upenn.edu
  organization: Corporal Michael J. Crescenz VA Medical Center
– sequence: 2
  givenname: Scott
  surname: Akers
  fullname: Akers, Scott
  organization: Corporal Michael J. Crescenz VA Medical Center
– sequence: 3
  givenname: Yuankai
  surname: Huo
  fullname: Huo, Yuankai
  organization: Vanderbilt University
– sequence: 4
  givenname: James G.
  surname: Terry
  fullname: Terry, James G.
  organization: Vanderbilt University School of Medicine
– sequence: 5
  givenname: J. Jeffrey
  surname: Carr
  fullname: Carr, J. Jeffrey
  organization: Vanderbilt University School of Medicine
– sequence: 6
  givenname: Alexander T.
  surname: Ruutiainen
  fullname: Ruutiainen, Alexander T.
  organization: Corporal Michael J. Crescenz VA Medical Center
– sequence: 7
  givenname: Melissa
  surname: Skanderson
  fullname: Skanderson, Melissa
  organization: VA Connecticut Healthcare System
– sequence: 8
  givenname: Woody
  surname: Levin
  fullname: Levin, Woody
  organization: VA Connecticut Healthcare System
– sequence: 9
  givenname: Joseph K.
  surname: Lim
  fullname: Lim, Joseph K.
  organization: VA Connecticut Healthcare System
– sequence: 10
  givenname: Tamar H.
  surname: Taddei
  fullname: Taddei, Tamar H.
  organization: VA Connecticut Healthcare System
– sequence: 11
  givenname: Kaku
  surname: So‐Armah
  fullname: So‐Armah, Kaku
  organization: Boston University School of Medicine
– sequence: 12
  givenname: Debika
  surname: Bhattacharya
  fullname: Bhattacharya, Debika
  organization: VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA
– sequence: 13
  givenname: Christopher T.
  orcidid: 0000-0002-1408-7907
  surname: Rentsch
  fullname: Rentsch, Christopher T.
  organization: Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine
– sequence: 14
  givenname: Li
  surname: Shen
  fullname: Shen, Li
  organization: Center for Clinical Epidemiology and Biostatistics, Center for Real World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania
– sequence: 15
  givenname: Rotonya
  surname: Carr
  fullname: Carr, Rotonya
  organization: University of Washington
– sequence: 16
  givenname: Russell T.
  surname: Shinohara
  fullname: Shinohara, Russell T.
  organization: Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania
– sequence: 17
  givenname: Michele
  surname: McClain
  fullname: McClain, Michele
  organization: VA Office of Information and Technology
– sequence: 18
  givenname: Matthew
  surname: Freiberg
  fullname: Freiberg, Matthew
  organization: Vanderbilt University School of Medicine
– sequence: 19
  givenname: Amy C.
  surname: Justice
  fullname: Justice, Amy C.
  organization: Yale School of Public Health
– sequence: 20
  givenname: Vincent
  orcidid: 0000-0001-7955-0600
  surname: Lo Re
  fullname: Lo Re, Vincent
  organization: Center for Clinical Epidemiology and Biostatistics, Center for Real World Effectiveness and Safety of Therapeutics, Perelman School of Medicine, University of Pennsylvania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37276449$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtu1DAQhiNURA8g8QTIEjf0IsVxnNMVqkqhlSpRicOtNWtPdl0ltrEdVnkbHhVnt1BAght7pPn8zz-_j7MDYw1m2fOCnhWUstdOhbOq5u2j7KigXZcXVdUcLHVV5m1Vd4fZcQh3lKZex59kh2XDmprz7ij7fou-t34EI5HYnoAhMEU7QkRFFKIjA4I32qwJDGvrddyMJFqiFZqo-5ls0EHUkoSIEG3QgWwTow1JFqU10UOIRNrRTYtiUrZrD24zkyDBBAKjTdIOrRtw9zI5ULvCTpFcXX95mj3uYQj47P4-yT6_u_x0cZXffHh_fXF-k0tOaZu3nPddyVvEnlbQqBqZTKdiVCpO2aqqm1KuSgW9olw2jawbiZ3CVY0tZ6wuT7LTve5kHMxbGAbhvB7Bz6KgYklZpJTFknJi3-xZN61GVBKXNR94C1r82TF6I9b2W5KpWEN5lxRe3St4-3XCEMWog8RhAIN2CoK1rKSclu1i7OVf6J2dvElZJKqmvGw5XagXv1v65eXnTz9MlN6G4LH_33r5Ht3qAed_cuL27ccd_wNefMv7
Cites_doi 10.1038/s41598-017-08925-8
10.1038/s41598-017-13835-w
10.1148/radiol.2019190512
10.1093/cid/ciz999
10.1111/j.1440-1746.2008.05420.x
10.1016/j.jhep.2018.05.036
10.1002/mp.14706
10.1097/QAD.0b013e32832bd7af
10.2214/AJR.06.0992
10.1136/bmj.m689
10.1007/s00330-010-1905-5
10.1002/mp.13675
10.1001/archinte.158.16.1789
10.1002/hep.28719
10.1016/S1072-7515(00)00261-1
10.1097/QAI.0000000000001936
10.1016/j.cgh.2020.10.018
10.1002/hep.28431
10.1136/bmjgast-2017-000166
10.1016/S1091-255X(98)80025-5
10.1002/hep.21178
10.1155/2013/493413
10.1007/s00330-011-2349-2
10.1038/modpathol.3800680
10.1097/01.mlr.0000223670.00890.74
10.1016/j.jhep.2009.05.023
10.1097/01.mlr.0000223741.02074.66
10.1016/j.cgh.2009.05.033
10.1007/s10620-017-4684-x
10.1016/j.acra.2012.02.022
10.1016/j.gassur.2003.09.012
10.1093/cid/cit652
10.1038/ajg.2014.32
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/pds.5648
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1557
EndPage 1130
ExternalDocumentID oai:pubmedcentral.nih.gov:10527049
PMC10527049
37276449
10_1002_pds_5648
PDS5648
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: K08DK132977
– fundername: National Institutes on Alcohol Abuse and Alcoholism
  funderid: R01AA026302; U01AA013566; U24AA020794; U01AA020790
– fundername: National Cancer Institute
  funderid: R01CA206465
– fundername: Penn Center for AIDS Research
  funderid: P30AI045008
– fundername: NIAAA NIH HHS
  grantid: U24 AA020794
– fundername: NIAAA NIH HHS
  grantid: R01 AA026302
– fundername: NIAAA NIH HHS
  grantid: U01 AA013566
– fundername: NIAID NIH HHS
  grantid: P30 AI045008
– fundername: NCI NIH HHS
  grantid: R01 CA206465
– fundername: NIAAA NIH HHS
  grantid: U01 AA020790
– fundername: NIDDK NIH HHS
  grantid: K08 DK132977
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NCATS NIH HHS
  grantid: UL1 TR000445
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4008-844f9348eef05a7d6e2c7d6d20cd402b5673cb3dafd04c77c67ce9deb6e842263
IEDL.DBID DR2
ISSN 1053-8569
1099-1557
IngestDate Sun Oct 26 03:51:56 EDT 2025
Tue Sep 30 17:07:13 EDT 2025
Thu Oct 02 06:00:29 EDT 2025
Tue Oct 07 05:59:59 EDT 2025
Mon Jul 21 05:48:06 EDT 2025
Wed Oct 01 05:03:32 EDT 2025
Wed Jan 22 16:20:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords machine learning
validation
fatty liver disease
hepatic steatosis
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4008-844f9348eef05a7d6e2c7d6d20cd402b5673cb3dafd04c77c67ce9deb6e842263
Notes Part of this work has been accepted for presentation as an abstract at The 30th Conference on Retroviruses and Opportunistic Infections, February 19–22, 2023.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7955-0600
0000-0002-7861-1421
0000-0002-1408-7907
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10527049/pdf/nihms-1906383.pdf
PMID 37276449
PQID 2860438406
PQPubID 105383
PageCount 10
ParticipantIDs unpaywall_primary_10_1002_pds_5648
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10527049
proquest_miscellaneous_2823040386
proquest_journals_2860438406
pubmed_primary_37276449
crossref_primary_10_1002_pds_5648
wiley_primary_10_1002_pds_5648_PDS5648
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bethesda
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 62
2009; 23
2017; 7
2021; 48
2017; 4
2007; 188
1998
2020; 368
2012; 19
1998; 158
2022; 20
2000; 191
2018; 69
2019; 80
2009; 51
2014; 109
2013; 2013
2006; 43
2006; 44
2019; 46
2020; 71
2003; 7
2016; 64
2014; 58
2008; 23
2011; 21
2009; 7
1998; 2
2007; 20
2012; 22
2019; 293
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_3_1
e_1_2_11_2_1
Rothman KJGS (e_1_2_11_26_1) 1998
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 80
  start-page: e86
  issue: 4
  year: 2019
  end-page: e94
  article-title: Diagnostic accuracy of noninvasive markers of steatosis, NASH, and liver fibrosis in HIV‐monoinfected individuals at risk of nonalcoholic fatty liver disease (NAFLD): results from the ECHAM study
  publication-title: J Acquir Immune Defic Syndr
– volume: 188
  start-page: 1307
  issue: 5
  year: 2007
  end-page: 1312
  article-title: Comparison of CT methods for determining the fat content of the liver
  publication-title: AJR Am J Roentgenol
– volume: 20
  year: 2022
  article-title: Expert panel review on non‐alcoholic fatty liver disease in persons with HIV
  publication-title: Clin Gastroenterol Hepatol
– volume: 109
  start-page: 695
  issue: 5
  year: 2014
  end-page: 704
  article-title: Risk factors for fatty liver in the multicenter AIDS cohort study
  publication-title: Am J Gastroenterol
– volume: 64
  start-page: 954
  issue: 3
  year: 2016
  article-title: Nonalcoholic fatty liver disease: epidemiology, natural history, and diagnostic challenges
  publication-title: Hepatology (Baltimore, Md)
– volume: 368
  year: 2020
  article-title: Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies
  publication-title: BMJ (Clinical Research ed)
– volume: 2013
  year: 2013
  article-title: Role of mitochondria in HIV infection and associated metabolic disorders: focus on nonalcoholic fatty liver disease and lipodystrophy syndrome
  publication-title: Oxid Med Cell Longev
– volume: 19
  start-page: 811
  issue: 7
  year: 2012
  end-page: 818
  article-title: Computed tomography scans in the evaluation of fatty liver disease in a population based study: the multi‐ethnic study of atherosclerosis
  publication-title: Acad Radiol
– volume: 71
  start-page: 1379
  issue: 6
  year: 2020
  end-page: 1389
  article-title: Weight gain following initiation of antiretroviral therapy: risk factors in randomized comparative clinical trials
  publication-title: Clin Infect Dis
– volume: 43
  start-page: 1317
  issue: 6
  year: 2006
  end-page: 1325
  article-title: Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection
  publication-title: Hepatology (Baltimore, Md).
– volume: 7
  issue: 1
  year: 2017
  article-title: Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large‐scale studies
  publication-title: Sci Rep
– volume: 69
  start-page: 896
  issue: 4
  year: 2018
  end-page: 904
  article-title: Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016‐2030
  publication-title: J Hepatol
– volume: 51
  start-page: 433
  issue: 3
  year: 2009
  end-page: 445
  article-title: Non‐invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance
  publication-title: J Hepatol
– volume: 7
  issue: 1
  year: 2017
  article-title: HIV‐1 viral protein R (Vpr) induces fatty liver in mice via LXRα and PPARα dysregulation: implications for HIV‐specific pathogenesis of NAFLD
  publication-title: Sci Rep
– volume: 23
  start-page: 1227
  issue: 10
  year: 2009
  end-page: 1234
  article-title: HIV infection and the risk of diabetes mellitus
  publication-title: AIDS (London, England)
– volume: 48
  start-page: 1276
  issue: 3
  year: 2021
  end-page: 1285
  article-title: Phase identification for dynamic CT enhancements with generative adversarial network
  publication-title: Med Phys
– volume: 44
  start-page: S25
  issue: 8 Suppl 2
  year: 2006
  end-page: S30
  article-title: Development and verification of a “virtual” cohort using the National VA Health Information System
  publication-title: Med Care
– volume: 23
  start-page: 894
  issue: 6
  year: 2008
  end-page: 899
  article-title: Liver fat is reproducibly measured using computed tomography in the Framingham Heart Study
  publication-title: J Gastroenterol Hepatol
– year: 1998
– volume: 7
  start-page: 1104
  issue: 10
  year: 2009
  end-page: 1112
  article-title: Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease
  publication-title: Clin Gastroenterol Hepatol
– volume: 44
  start-page: S13
  issue: 8 Suppl 2
  year: 2006
  end-page: S24
  article-title: Veterans Aging Cohort Study (VACS): overview and description
  publication-title: Med Care
– volume: 46
  start-page: 3508
  issue: 8
  year: 2019
  end-page: 3519
  article-title: Fully automatic liver attenuation estimation combing CNN segmentation and morphological operations
  publication-title: Med Phys
– volume: 4
  issue: 1
  year: 2017
  article-title: Mechanisms of liver disease in patients infected with HIV
  publication-title: BMJ Open Gastroenterol
– volume: 7
  start-page: 1034
  issue: 8
  year: 2003
  end-page: 1044
  article-title: Impact of steatosis on perioperative outcome following hepatic resection
  publication-title: J Gastrointest Surg
– volume: 2
  start-page: 292
  issue: 3
  year: 1998
  end-page: 298
  article-title: Hepatic steatosis as a potential risk factor for major hepatic resection
  publication-title: J Gastrointest Surg
– volume: 22
  start-page: 1075
  issue: 5
  year: 2012
  end-page: 1082
  article-title: Specificity of unenhanced CT for non‐invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis
  publication-title: Eur Radiol
– volume: 293
  start-page: 334
  issue: 2
  year: 2019
  end-page: 342
  article-title: Automated liver fat quantification at nonenhanced abdominal CT for population‐based steatosis assessment
  publication-title: Radiology
– volume: 64
  start-page: 73
  issue: 1
  year: 2016
  end-page: 84
  article-title: Global epidemiology of nonalcoholic fatty liver disease‐meta‐analytic assessment of prevalence, incidence, and outcomes
  publication-title: Hepatology (Baltimore, Md).
– volume: 158
  start-page: 1789
  issue: 16
  year: 1998
  end-page: 1795
  article-title: The AUDIT alcohol consumption questions (AUDIT‐C): an effective brief screening test for problem drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test
  publication-title: Arch Intern Med
– volume: 62
  start-page: 2915
  issue: 10
  year: 2017
  end-page: 2922
  article-title: Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes
  publication-title: Dig Dis Sci
– volume: 21
  start-page: 87
  issue: 1
  year: 2011
  end-page: 97
  article-title: The diagnostic accuracy of US, CT, MRI and 1H‐MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta‐analysis
  publication-title: Eur Radiol
– volume: 58
  start-page: 121
  issue: 1
  year: 2014
  end-page: 129
  article-title: Prehypertension, hypertension, and the risk of acute myocardial infarction in HIV‐infected and ‐uninfected veterans
  publication-title: Clin Infect Dis
– volume: 20
  start-page: S40
  issue: Suppl 1
  year: 2007
  end-page: S48
  article-title: Pathology of fatty liver disease
  publication-title: Mod Pathol
– volume: 191
  start-page: 38
  issue: 1
  year: 2000
  end-page: 46
  article-title: Seven hundred forty‐seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection
  publication-title: J Am Coll Surg
– ident: e_1_2_11_34_1
  doi: 10.1038/s41598-017-08925-8
– ident: e_1_2_11_5_1
  doi: 10.1038/s41598-017-13835-w
– ident: e_1_2_11_30_1
  doi: 10.1148/radiol.2019190512
– volume-title: Modern Epidemiology
  year: 1998
  ident: e_1_2_11_26_1
– ident: e_1_2_11_22_1
  doi: 10.1093/cid/ciz999
– ident: e_1_2_11_28_1
  doi: 10.1111/j.1440-1746.2008.05420.x
– ident: e_1_2_11_33_1
  doi: 10.1016/j.jhep.2018.05.036
– ident: e_1_2_11_17_1
  doi: 10.1002/mp.14706
– ident: e_1_2_11_19_1
  doi: 10.1097/QAD.0b013e32832bd7af
– ident: e_1_2_11_10_1
  doi: 10.2214/AJR.06.0992
– ident: e_1_2_11_29_1
  doi: 10.1136/bmj.m689
– ident: e_1_2_11_12_1
  doi: 10.1007/s00330-010-1905-5
– ident: e_1_2_11_16_1
  doi: 10.1002/mp.13675
– ident: e_1_2_11_21_1
  doi: 10.1001/archinte.158.16.1789
– ident: e_1_2_11_8_1
  doi: 10.1002/hep.28719
– ident: e_1_2_11_15_1
  doi: 10.1016/S1072-7515(00)00261-1
– ident: e_1_2_11_24_1
  doi: 10.1097/QAI.0000000000001936
– ident: e_1_2_11_32_1
  doi: 10.1016/j.cgh.2020.10.018
– ident: e_1_2_11_3_1
  doi: 10.1002/hep.28431
– ident: e_1_2_11_7_1
  doi: 10.1136/bmjgast-2017-000166
– ident: e_1_2_11_13_1
  doi: 10.1016/S1091-255X(98)80025-5
– ident: e_1_2_11_23_1
  doi: 10.1002/hep.21178
– ident: e_1_2_11_6_1
  doi: 10.1155/2013/493413
– ident: e_1_2_11_27_1
  doi: 10.1007/s00330-011-2349-2
– ident: e_1_2_11_2_1
  doi: 10.1038/modpathol.3800680
– ident: e_1_2_11_18_1
  doi: 10.1097/01.mlr.0000223670.00890.74
– ident: e_1_2_11_35_1
  doi: 10.1016/j.jhep.2009.05.023
– ident: e_1_2_11_9_1
  doi: 10.1097/01.mlr.0000223741.02074.66
– ident: e_1_2_11_25_1
  doi: 10.1016/j.cgh.2009.05.033
– ident: e_1_2_11_4_1
  doi: 10.1007/s10620-017-4684-x
– ident: e_1_2_11_11_1
  doi: 10.1016/j.acra.2012.02.022
– ident: e_1_2_11_14_1
  doi: 10.1016/j.gassur.2003.09.012
– ident: e_1_2_11_20_1
  doi: 10.1093/cid/cit652
– ident: e_1_2_11_31_1
  doi: 10.1038/ajg.2014.32
SSID ssj0009994
Score 2.378693
Snippet Purpose Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to...
Hepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to identify...
PurposeHepatic steatosis (fatty liver disease) affects 25% of the world's population, particularly people with HIV (PWH). Pharmacoepidemiologic studies to...
Hepatic steatosis (fatty liver disease) is very common, particularly in people living with HIV. Yet studies evaluating medications associated with developing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1121
SubjectTerms Abdomen
Algorithms
Computed tomography
Cross-Sectional Studies
Deep Learning
Fatty liver
Fatty Liver - diagnostic imaging
Fatty Liver - epidemiology
fatty liver disease
hepatic steatosis
HIV
HIV Infections - complications
HIV Infections - diagnostic imaging
Human immunodeficiency virus
Humans
Liver
Liver diseases
machine learning
Performance evaluation
Retrospective Studies
Steatosis
Tomography, X-Ray Computed - methods
validation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2VdAEbyrMECroglFWduB4_l1WhBKRWlmhQWVnjmXFjET9U26rC1_Cp3Bk_QqhALNgkkXxnMpaOfY89555LyFub2Zg3jrhyPpaG7TBuxDEzDWmaPDCpJ6j2KTg7d-cL-9Olc7lDPvS1MGWGs_A4nearbJqnS62t7DVis_DsBPmA5SGtnZUimWFAVhmY0xBF-Ewokjtk13WQlI_I7uI8PP6q9zodaviObm6ntoEMzKBeb0NrWjhPNXVc1f_n18R0i23eFk3ebfKSrW_YarVNbHVmOt0jy-GctCDl27Sp4yn__pvd43846Qfkfsde4bgd9JDsyPwRmYSt_fX6EC421VzVIUwg3Bhjrx-TH-GmSgGKBFgOrKkL5MxSgJCyhK6HxRWw1VVxndbLDOoCUl1MnKxhKZX-m4NCZl1UaQXqNXKaQ17kWnPPqhp426dC4Mis8-OGCgFUgW6sBK1mXo_EFQj9o2hqmH_88oQsTt9fnMyNrkOEwW2l2_BtOwmo7UuZmA7zhCstjp_CMrnAB-PYcT3KYypYIkybex53PS4DIWNX-qqEmD4lI1yhfEbAZR61MFEnsZIuOkFgexzvZgL5b2KyIzomr3t4RGVrBBK1ls9WhBCKFITG5KDHTdTdCqrI8l2124rECacYDuNFrHZmWC6LRsWod_Mm9TFmv4XZ8CcUGSaS1mBM_C0ADgHKIHz7CCJEG4X3sBmTNwNW_7L4iQbxHwOi8N1n9f38X2Z7Qe5ZSAdb2eMBGdXXjXyJ9K2OX3WX5k-SskgT
  priority: 102
  providerName: Unpaywall
Title Performance of an automated deep learning algorithm to identify hepatic steatosis within noncontrast computed tomography scans among people with and without HIV
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.5648
https://www.ncbi.nlm.nih.gov/pubmed/37276449
https://www.proquest.com/docview/2860438406
https://www.proquest.com/docview/2823040386
https://pubmed.ncbi.nlm.nih.gov/PMC10527049
https://pmc.ncbi.nlm.nih.gov/articles/PMC10527049/pdf/nihms-1906383.pdf
UnpaywallVersion submittedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-8569
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009994
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXQ9gAvMD5XGNMFoT4tnRsnTvI4AVNBYopgRUM8RI7trBFdUi2JUPk1_FSunTRRmUCIl7ZSrhtHOTc-sc89JuSVJzwcN6bSOB9rx_OFdNJUUEdTKiPKAsWsT8GHMz6be-8v_ItOVWlqYVp_iH7CzWSGfV6bBBdpdTyYhq5UNfG5Z-p8p4zbt6mPg3MU8h67oIwYc0KfRxvfWeoebxpuj0Q36OVNleTtpliJ9XexXG4zWTsUnd4jXzcX0SpQvk2aOp3IH7_5O_7fVe6Rux1DhZMWUvfJLV08IOO4tbheH8H5ULFVHcEY4sH8ev2Q_IyHSgQoMxAFiKYukRdrBUrrFXT7VFyCWF6W13m9uIK6hNwWDGdrWGij8ZZg0FeXVV6BmSrOCyjKwurqRVWDbPeiUNjyqvPchgpBUoHdPAlaXbxtiT1Q9kfZ1DB79_kRmZ--PX89c7pdIBzpGW1G6HlZxLxQ64z6IlBcuxI_lUulwpff1OcBkylTIlPUk0EgeSB1pHTKdWjKhNljsoM91PsEuAiYi4Nxlhp5oo8QCSQ-sRRy3IyKKRuRFxtEJKvW7CNpbZ3dBG9EYm7EiBxsoJJ06V4lbsjNiiqSI_yL_jAmqll9EYUuGxNj5t8pCzHmSYus_iQMWSQS02hEwi3M9QHGBHz7SJEvrBk4ItwNqGn6sofnXzo_tmD7Y0ASv_lkvp_-a-AzcsdF2tfKGw_ITn3d6OdI0-r00CbkIdmdn8UnX34B90FBiA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQL78eWAgNCe2q2buy8xAkB1RbaagVb1ANS5NhON-o2WTWJ0PJr-KmMncdqqUCISxIp48SWv4m_2DOfCXnNBcdxY18a5WPtcE9IJ0kEdTSlMqIsUMzqFByf-ONT_vHMO9sgb7pcmEYfop9wM55hv9fGwc2E9N5KNXShypHn8_AGucl9_E0xjOjzSjsKmY9dUkaUOaHnR53yLHX3upLrY9E1gnk9TnKrzhdi-V3M5-tc1g5GB3fIt64ZTQzKxaiukpH88ZvC43-28y653ZJUeNug6h7Z0Pl9Mpw0KtfLXZiukrbKXRjCZKV_vXxAfk5WyQhQpCByEHVVIDXWCpTWC2i3qjgHMT8vrrJqdglVAZnNGU6XMNMmzFuCAWBVlFkJZrY4yyEvchtaL8oKZLMdhcKSl63sNpSIkxLs_knQhMbbklgDZS-KuoLx4deH5PTgw_Td2Gk3gnAkN-EZIedpxHiodUo9EShfuxKPyqVS4f9v4vkBkwlTIlWUyyCQfiB1pHTi69BkCrNHZBNrqJ8Q8EXAXByP08REKHqIkUDiR0shzU2p2GcD8rKDRLxo9D7iRtnZjbEjYtMRA7LTYSVuPb6M3dA3i6rIj_AR_W30VbMAI3Jd1MbGTMFTFqLN4wZa_UsYEknkptGAhGug6w2MDvj6nTybWT1whLgbUFP0VY_Pv1R-aNH2R4N48v6LOW__q-ELsjWeHh_FR4cnn56SWy6ywCbacYdsVle1foasrUqeW-_8BcFfQ_k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkIAX7pfCgANCfVo6L3Fu4glRqo7LVMGG9jApcmxnjeiSaEmEyq_hp3Ls3FQmEOKlqZTj1FG-E3-1v_OZkFeMMxw39oV2PlYWc7mw4phTS1EqQur40jE-BZ8Ovfkxe3_inmyR110tTOMP0U-46cww72ud4KqQyd7gGlrIcuJ6LLhCrjI3DLSeb_p58I5C5mOWlBFlVuB6Yec8S-29ruXmWHSJYF7WSV6vs4Kvv_PVapPLmsFodoucdrfRaFC-Teoqnogfvzk8_ud93iY3W5IKbxpU3SFbKrtLxovG5Xq9C0dD0Va5C2NYDP7X63vk52IoRoA8AZ4Br6scqbGSIJUqoN2q4gz46iy_SKvlOVQ5pKZmOFnDUmmZtwANwCov0xL0bHGaQZZnRlrPywpEsx2FxJbnre02lIiTEsz-SdBI401L7IE0X_K6gvnB1_vkePbu6O3cajeCsATT8oyAsSR0WKBUQl3uS0_ZAj-lTYXE_7-x6_mOiB3JE0mZ8H3h-UKFUsWeCnSlsPOAbGMP1SMCHvcdG8fjJNYKRRcx4gt8aUmkuQnl-86IvOggERWN30fUODvbET6ISD-IEdnpsBK1GV9GduDpRVXkR3iJ_jTmql6A4ZnKax2jp-CpE2DMwwZa_Y84SCSRm4YjEmyArg_QPuCbZ7J0afzAEeK2T3XTlz0-_9L5sUHbHwOixfSLPj7-18Dn5NpiOos-Hhx-eEJu2EgCG7HjDtmuLmr1FElbFT8zyfkLER1DfQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2VdAEbyrMECroglFWduB4_l1WhBKRWlmhQWVnjmXFjET9U26rC1_Cp3Bk_QqhALNgkkXxnMpaOfY89555LyFub2Zg3jrhyPpaG7TBuxDEzDWmaPDCpJ6j2KTg7d-cL-9Olc7lDPvS1MGWGs_A4nearbJqnS62t7DVis_DsBPmA5SGtnZUimWFAVhmY0xBF-Ewokjtk13WQlI_I7uI8PP6q9zodaviObm6ntoEMzKBeb0NrWjhPNXVc1f_n18R0i23eFk3ebfKSrW_YarVNbHVmOt0jy-GctCDl27Sp4yn__pvd43846Qfkfsde4bgd9JDsyPwRmYSt_fX6EC421VzVIUwg3Bhjrx-TH-GmSgGKBFgOrKkL5MxSgJCyhK6HxRWw1VVxndbLDOoCUl1MnKxhKZX-m4NCZl1UaQXqNXKaQ17kWnPPqhp426dC4Mis8-OGCgFUgW6sBK1mXo_EFQj9o2hqmH_88oQsTt9fnMyNrkOEwW2l2_BtOwmo7UuZmA7zhCstjp_CMrnAB-PYcT3KYypYIkybex53PS4DIWNX-qqEmD4lI1yhfEbAZR61MFEnsZIuOkFgexzvZgL5b2KyIzomr3t4RGVrBBK1ls9WhBCKFITG5KDHTdTdCqrI8l2124rECacYDuNFrHZmWC6LRsWod_Mm9TFmv4XZ8CcUGSaS1mBM_C0ADgHKIHz7CCJEG4X3sBmTNwNW_7L4iQbxHwOi8N1n9f38X2Z7Qe5ZSAdb2eMBGdXXjXyJ9K2OX3WX5k-SskgT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+an+automated+deep+learning+algorithm+to+identify+hepatic+steatosis+within+noncontrast+computed+tomography+scans+among+people+with+and+without+HIV&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Torgersen%2C+Jessie&rft.au=Akers%2C+Scott&rft.au=Huo%2C+Yuankai&rft.au=Terry%2C+James+G.&rft.date=2023-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=32&rft.issue=10&rft.spage=1121&rft.epage=1130&rft_id=info:doi/10.1002%2Fpds.5648&rft.externalDBID=10.1002%252Fpds.5648&rft.externalDocID=PDS5648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon