Shrinkage priors for isotonic probability vectors and binary data modeling, with applications to dose–response modeling

Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical statistics : the journal of the pharmaceutical industry Vol. 23; no. 4; pp. 540 - 556
Main Authors Boonstra, Philip S., Owen, Daniel R., Kang, Jian
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.07.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1539-1604
1539-1612
1539-1612
DOI10.1002/pst.2372

Cover

Abstract Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non‐decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma‐distributed random variables, is a natural choice of prior, but using mathematical and simulation‐based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe‐type shrinkage that is numerically more stable. We show that this horseshoe‐based prior is not subject to the numerical instability seen in the Dirichlet/gamma‐based prior and that the horseshoe‐based posterior can estimate the underlying true curve more efficiently than the Dirichlet‐based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation‐induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose‐finding studies or other dose–response modeling contexts.
AbstractList Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non‐decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma‐distributed random variables, is a natural choice of prior, but using mathematical and simulation‐based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe‐type shrinkage that is numerically more stable. We show that this horseshoe‐based prior is not subject to the numerical instability seen in the Dirichlet/gamma‐based prior and that the horseshoe‐based posterior can estimate the underlying true curve more efficiently than the Dirichlet‐based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation‐induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose‐finding studies or other dose–response modeling contexts.
Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non‐decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma‐distributed random variables, is a natural choice of prior, but using mathematical and simulation‐based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe‐type shrinkage that is numerically more stable. We show that this horseshoe‐based prior is not subject to the numerical instability seen in the Dirichlet/gamma‐based prior and that the horseshoe‐based posterior can estimate the underlying true curve more efficiently than the Dirichlet‐based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation‐induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose‐finding studies or other dose–response modeling contexts.
Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non-decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma-distributed random variables, is a natural choice of prior, but using mathematical and simulation-based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe-type shrinkage that is numerically more stable. We show that this horseshoe-based prior is not subject to the numerical instability seen in the Dirichlet/gamma-based prior and that the horseshoe-based posterior can estimate the underlying true curve more efficiently than the Dirichlet-based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation-induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose-finding studies or other dose-response modeling contexts.Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non-decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma-distributed random variables, is a natural choice of prior, but using mathematical and simulation-based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe-type shrinkage that is numerically more stable. We show that this horseshoe-based prior is not subject to the numerical instability seen in the Dirichlet/gamma-based prior and that the horseshoe-based posterior can estimate the underlying true curve more efficiently than the Dirichlet-based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation-induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose-finding studies or other dose-response modeling contexts.
Author Owen, Daniel R.
Boonstra, Philip S.
Kang, Jian
AuthorAffiliation 1 Department of Biostatistics University of Michigan Ann Arbor Michigan USA
2 Department of Radiation Oncology University of Michigan Ann Arbor Michigan USA
AuthorAffiliation_xml – name: 2 Department of Radiation Oncology University of Michigan Ann Arbor Michigan USA
– name: 1 Department of Biostatistics University of Michigan Ann Arbor Michigan USA
Author_xml – sequence: 1
  givenname: Philip S.
  orcidid: 0000-0001-8545-9133
  surname: Boonstra
  fullname: Boonstra, Philip S.
  email: philb@umich.edu
  organization: University of Michigan
– sequence: 2
  givenname: Daniel R.
  surname: Owen
  fullname: Owen, Daniel R.
  organization: University of Michigan
– sequence: 3
  givenname: Jian
  surname: Kang
  fullname: Kang, Jian
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38400582$$D View this record in MEDLINE/PubMed
BookMark eNp9kd9qFDEUxoO02D8KPoEEvFFwapLJTCZXRYr_oFCh9TpkkjO7qbPJmMx0mTvfwTf0Scy67bYKepXDOT--fOc7R2jPBw8IPaPkhBLC3gxpPGGlYI_QIa1KWdCasr1dTfgBOkrpmhAqGlk9RgdlwwmpGnaI5stldP6rXgAeogsx4S5E7FIYg3cm90KrW9e7ccY3YMYNoL3FrfM6ztjqUeNVsNA7v3iN125cYj0MvTN6dMEnPAZsQ4Kf339ESEPuwA5_gvY73Sd4evseoy_v312dfSzOLz58Ont7XpjskRVVJ2TJOOta3pRAwTRQcWIbQ7WFqgVDrZSUG6JrC5y3rJJSdk0rSOZFJctj9GqrO_lBz2vd9ypvusr2FSVqE5_K8alNfJk93bLD1K7AGvBj1Pd80E79OfFuqRbhRlEqSlFTmhVe3irE8G2CLLxyyUDfaw9hSqokvCSiZpJk9MVf6HWYos9ZZEo0Tc1ryjP1_KGlnZe7E97_aGJIKUL3v_WKLbp2Pcz_5NTny6vf_C9pNb1-
Cites_doi 10.1016/j.jspi.2011.03.015
10.2307/2531693
10.1007/978-0-387-98141-3
10.1111/j.1467-9868.2008.00677.x
10.2307/2528767
10.18637/jss.v100.i05
10.1198/016214501753382273
10.1002/sim.3329
10.1371/journal.pone.0287511
10.1111/j.0006-341X.2004.00184.x
10.1111/bmsp.12195
10.1214/17-EJS1337SI
10.1007/BF00050775
10.1111/j.1541-0420.2008.01060.x
10.1080/10543406.2014.919931
10.1093/biomet/asq017
10.1016/j.ijrobp.2018.05.049
10.1177/1740774510382799
10.1007/s00180-016-0692-0
10.1177/1740774520981939
10.1016/j.adro.2021.100666
10.1093/biomet/78.3.657
10.1200/JCO.2012.45.7903
10.1093/biomet/asaa030
10.1093/biomet/ast063
10.1214/ss/1177011136
10.1158/1078-0432.CCR-16-0592
10.2307/2531628
10.1080/10543406.2016.1265535
10.1093/biomet/80.3.489
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd.
2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd.
– notice: 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/pst.2372
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Boonstra et al
EISSN 1539-1612
EndPage 556
ExternalDocumentID 10.1002/pst.2372
PMC11737611
38400582
10_1002_pst_2372
PST2372
Genre article
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P30 CA046592; R01 CA129102
– fundername: NIH HHS
  grantid: P30 CA046592
– fundername: NCI NIH HHS
  grantid: P30 CA046592
– fundername: NCI NIH HHS
  grantid: R01 CA129102
– fundername: NIH HHS
  grantid: R01 CA129102
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4002-5f793242fb483e1ec8e540d8c1ade5bec1d9914c0a6de44b25999f8b704837593
IEDL.DBID 24P
ISSN 1539-1604
1539-1612
IngestDate Sun Oct 26 04:05:14 EDT 2025
Tue Sep 30 17:06:21 EDT 2025
Thu Jul 10 20:44:05 EDT 2025
Tue Oct 07 06:16:56 EDT 2025
Thu Apr 03 07:02:48 EDT 2025
Wed Oct 01 03:33:51 EDT 2025
Wed Jan 22 17:17:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords horseshoe distribution
underflow
monotonic relationship
gamma distribution
Dirichlet distribution
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4002-5f793242fb483e1ec8e540d8c1ade5bec1d9914c0a6de44b25999f8b704837593
Notes Daniel R. Owen: Home department when relevant work was conducted.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8545-9133
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2372
PMID 38400582
PQID 3078864614
PQPubID 1036354
PageCount 17
ParticipantIDs unpaywall_primary_10_1002_pst_2372
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11737611
proquest_miscellaneous_3043076290
proquest_journals_3078864614
pubmed_primary_38400582
crossref_primary_10_1002_pst_2372
wiley_primary_10_1002_pst_2372_PST2372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July/August 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July/August 2024
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Macclesfield
PublicationTitle Pharmaceutical statistics : the journal of the pharmaceutical industry
PublicationTitleAlternate Pharm Stat
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2021; 6
2010; 97
2009; 65
2004; 60
1991; 78
2023; 18
2017; 27
2018; 102
2009
2020; 107
1972
2021; 100
1972; 28
1992; 7
1990; 42
2015; 25
1990
2020; 73
2021
2009; 71
2020
2021; 18
2017; 11
2017; 32
2008; 27
2013; 31
2017
1993; 80
2016
2015
2011; 141
2010; 7
2001; 96
2014; 101
1989
2016; 22
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
Piironen J (e_1_2_9_27_1) 2017
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
Carvalho CM (e_1_2_9_24_1) 2009
Barlow RE (e_1_2_9_2_1) 1972
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Bioche C (e_1_2_9_33_1) 2016; 22
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – volume: 71
  start-page: 159
  issue: 1
  year: 2009
  end-page: 175
  article-title: A Bayesian approach to non‐parametric monotone function estimation
  publication-title: J R Stat Soc Ser B
– volume: 96
  start-page: 1348
  issue: 456
  year: 2001
  end-page: 1360
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: J Am Stat Assoc
– year: 2009
– volume: 65
  start-page: 198
  issue: 1
  year: 2009
  end-page: 205
  article-title: Bayesian nonparametric estimation of continuous monotone functions with applications to dose‐response analysis
  publication-title: Biometrics
– volume: 25
  start-page: 137
  issue: 1
  year: 2015
  end-page: 156
  article-title: A flexible Bayesian approach for modeling monotonic dose‐response relationships in drug development trials
  publication-title: J Biopharm Stat
– start-page: 905
  year: 2017
  end-page: 913
– volume: 27
  start-page: 824
  issue: 5
  year: 2017
  end-page: 833
  article-title: Bayesian isotonic regression dose‐response model
  publication-title: J Biopharm Stat
– year: 2021
– volume: 78
  start-page: 657
  issue: 3
  year: 1991
  end-page: 666
  article-title: Nonparametric Bayesian bioassay including ordered polytomous response
  publication-title: Biometrika
– volume: 6
  year: 2021
  article-title: Investigating the SPECT dose‐function metrics associated with radiation‐induced lung toxicity risk in patients with non‐small cell lung cancer undergoing radiation therapy
  publication-title: Adv Radiat Oncol
– volume: 102
  start-page: 1265
  issue: 4
  year: 2018
  end-page: 1275
  article-title: Modeling patient‐specific dose‐function response for enhanced characterization of personalized functional damage
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 22
  start-page: 1709
  issue: 3
  year: 2016
  end-page: 1728
  article-title: Approximation of improper priors
  publication-title: Ther Ber
– volume: 60
  start-page: 398
  issue: 2
  year: 2004
  end-page: 406
  article-title: Bayesian isotonic regression and trend analysis
  publication-title: Biometrics
– year: 2016
– volume: 80
  start-page: 489
  issue: 3
  year: 1993
  end-page: 498
  article-title: Nonparametric Bayesian bioassay with prior constraints on the shape of the potency curve
  publication-title: Biometrika
– volume: 107
  start-page: 891
  issue: 4
  year: 2020
  end-page: 906
  article-title: The pitman–yor multinomial process for mixture modelling
  publication-title: Biometrika
– volume: 7
  start-page: 653
  issue: 6
  year: 2010
  end-page: 663
  article-title: A modified toxicity probability interval method for dose‐finding trials
  publication-title: Clin Trials
– volume: 18
  start-page: 303
  issue: 3
  year: 2021
  end-page: 313
  article-title: A modular framework for early‐phase seamless oncology trials
  publication-title: Clin Trials
– volume: 73
  start-page: 420
  issue: 3
  year: 2020
  end-page: 451
  article-title: Modelling monotonic effects of ordinal predictors in Bayesian regression models
  publication-title: Br J Math Stat Psychol
– volume: 42
  start-page: 1
  issue: 1
  year: 1990
  end-page: 19
  article-title: A Bayesian approach for quantile and response probability estimation with applications to reliability
  publication-title: Ann Inst Stat Math
– volume: 18
  issue: 10
  year: 2023
  article-title: Targeted randomization dose optimization trials enable fractional dosing of scarce drugs
  publication-title: PloS One
– volume: 141
  start-page: 2987
  issue: 9
  year: 2011
  end-page: 3004
  article-title: On a class of distributions on the simplex
  publication-title: J Stat Plan Inference
– volume: 22
  start-page: 4291
  issue: 17
  year: 2016
  end-page: 4301
  article-title: Bayesian optimal interval design: a simple and well‐performing design for phase I oncology trials
  publication-title: Clin Cancer Res
– volume: 28
  start-page: 841
  issue: 3
  year: 1972
  end-page: 858
  article-title: A Bayesian approach to bioassay
  publication-title: Biometrics
– start-page: 925
  year: 1989
  end-page: 937
  article-title: Design and analysis of phase I clinical trials
  publication-title: Biometrics
– year: 2020
– year: 1972
– volume: 100
  start-page: 1
  issue: 5
  year: 2021
  end-page: 54
  article-title: Bayesian item response modeling in R with brms and Stan
  publication-title: J Stat Softw
– start-page: 73
  year: 2009
  end-page: 80
– volume: 11
  start-page: 5018
  issue: 2
  year: 2017
  end-page: 5051
  article-title: Sparsity information and regularization in the horseshoe and other shrinkage priors
  publication-title: Electron J Stat
– start-page: 33
  year: 1990
  end-page: 48
  article-title: Continual reassessment method: a practical design for phase I clinical trials in cancer
  publication-title: Biometrics.
– volume: 97
  start-page: 465
  issue: 2
  year: 2010
  end-page: 480
  article-title: The horseshoe estimator for sparse signals
  publication-title: Biometrika
– year: 2017
– volume: 101
  start-page: 303
  issue: 2
  year: 2014
  end-page: 317
  article-title: Bayesian monotone regression using gaussian process projection
  publication-title: Biometrika
– volume: 27
  start-page: 4895
  issue: 24
  year: 2008
  end-page: 4913
  article-title: Dose–schedule finding in phase I/II clinical trials using a Bayesian isotonic transformation
  publication-title: Stat Med
– volume: 32
  start-page: 1767
  year: 2017
  end-page: 1775
  article-title: Efficient simulation from a gamma distribution with small shape parameter
  publication-title: Comput Stat
– year: 2015
– volume: 31
  start-page: 1785
  issue: 14
  year: 2013
  end-page: 1791
  article-title: Modified toxicity probability interval design: a safer and more reliable method than the 3+ 3 design for practical phase I trials
  publication-title: J Clin Oncol
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jspi.2011.03.015
– ident: e_1_2_9_30_1
  doi: 10.2307/2531693
– ident: e_1_2_9_38_1
  doi: 10.1007/978-0-387-98141-3
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1467-9868.2008.00677.x
– ident: e_1_2_9_31_1
– volume-title: Statistical Inference under Order Restrictions: the Theory and Application of Isotonic Regression
  year: 1972
  ident: e_1_2_9_2_1
– start-page: 73
  volume-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics. 5 of Proceedings of Machine Learning Research
  year: 2009
  ident: e_1_2_9_24_1
– ident: e_1_2_9_17_1
  doi: 10.2307/2528767
– ident: e_1_2_9_37_1
  doi: 10.18637/jss.v100.i05
– ident: e_1_2_9_29_1
  doi: 10.1198/016214501753382273
– ident: e_1_2_9_4_1
  doi: 10.1002/sim.3329
– ident: e_1_2_9_8_1
  doi: 10.1371/journal.pone.0287511
– start-page: 905
  volume-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 54 of Proceedings of Machine Learning Research
  year: 2017
  ident: e_1_2_9_27_1
– ident: e_1_2_9_36_1
– ident: e_1_2_9_11_1
  doi: 10.1111/j.0006-341X.2004.00184.x
– ident: e_1_2_9_39_1
– ident: e_1_2_9_14_1
  doi: 10.1111/bmsp.12195
– ident: e_1_2_9_28_1
  doi: 10.1214/17-EJS1337SI
– volume: 22
  start-page: 1709
  issue: 3
  year: 2016
  ident: e_1_2_9_33_1
  article-title: Approximation of improper priors
  publication-title: Ther Ber
– ident: e_1_2_9_18_1
  doi: 10.1007/BF00050775
– ident: e_1_2_9_32_1
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1541-0420.2008.01060.x
– ident: e_1_2_9_15_1
  doi: 10.1080/10543406.2014.919931
– ident: e_1_2_9_25_1
  doi: 10.1093/biomet/asq017
– ident: e_1_2_9_10_1
  doi: 10.1016/j.ijrobp.2018.05.049
– ident: e_1_2_9_40_1
  doi: 10.1177/1740774510382799
– ident: e_1_2_9_23_1
  doi: 10.1007/s00180-016-0692-0
– ident: e_1_2_9_7_1
  doi: 10.1177/1740774520981939
– ident: e_1_2_9_9_1
  doi: 10.1016/j.adro.2021.100666
– ident: e_1_2_9_19_1
  doi: 10.1093/biomet/78.3.657
– ident: e_1_2_9_5_1
  doi: 10.1200/JCO.2012.45.7903
– ident: e_1_2_9_22_1
  doi: 10.1093/biomet/asaa030
– ident: e_1_2_9_13_1
  doi: 10.1093/biomet/ast063
– ident: e_1_2_9_35_1
  doi: 10.1214/ss/1177011136
– ident: e_1_2_9_41_1
  doi: 10.1158/1078-0432.CCR-16-0592
– ident: e_1_2_9_3_1
  doi: 10.2307/2531628
– ident: e_1_2_9_6_1
  doi: 10.1080/10543406.2016.1265535
– ident: e_1_2_9_26_1
– ident: e_1_2_9_20_1
  doi: 10.1093/biomet/80.3.489
– ident: e_1_2_9_34_1
SSID ssj0017895
Score 2.3238666
Snippet Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic...
Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 540
SubjectTerms Bayes Theorem
Clinical Trials as Topic - methods
Computer Simulation
Dirichlet distribution
Dose-Response Relationship, Drug
gamma distribution
horseshoe distribution
Humans
Lung cancer
Lung Neoplasms - drug therapy
Main Paper
Models, Statistical
monotonic relationship
Probability
Random variables
Regression Analysis
Toxicity
underflow
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZQ9wAv3C8dAxmE-tSU2HFS53FCTBMSU6W10niK7NjWqk1JlKSg7In_wD_kl3Bsp9nKBEI8JVJO7Ng5l8_28WeE3jHKBI1NGFDBWcDSSAYwbE4DIlIIdyJNKLH7nT-fJMcr9uksPusn3OxeGM8PMUy4Wctw_toaeKWM9_P96j59XzXtjEZzcMF7SQxYfIT2VieLwy-eJBVqTNz5gf09oVv22Ruv7sajWyDzdq7k3U1Rie6buLzcxbMuIB09QNm2KT4P5WK2aeUsv_qN5fH_2_oQ3e-xKj70yvUI3dHFYzRZeLLrboqX13u3mime4MU1DXb3BHWn5zUMdMFf4apel3WDAR_jdVO2lo0X25NsPEd4h7-6pYMGi0Jh6TYIY5u5it0xPRBbp9hOF-Obi-24LbEqG_3z-4_ap_nqQfwpWh19XH44DvqDHoKcWY8cG_ASgBWMZDzSROdcA5BUPCdC6Ri0jCiAsSwPRaI0YxKGbGlquJw7Pvw4jZ6hUVEW-gXCEvyL5oRorQ2TJhQR4FclY2OUSVJBx-jN9ndnlefzyDxzM82ghzPbw2N0sNWDrLfoJgNfyHnCAM1AEcNjsEW7wCIKXW6sDAOxhKbhGD33ajNUEsFIOow5FM53FGoQsDzfu0-K9bnj-yZkDmGAkDF6O-jeXz5-4jTpjwLZ4nRpr_v_UtpLdI8CivP5yQdo1NYb_QpQWCtf96b2C790NpA
  priority: 102
  providerName: Unpaywall
Title Shrinkage priors for isotonic probability vectors and binary data modeling, with applications to dose–response modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2372
https://www.ncbi.nlm.nih.gov/pubmed/38400582
https://www.proquest.com/docview/3078864614
https://www.proquest.com/docview/3043076290
https://pubmed.ncbi.nlm.nih.gov/PMC11737611
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pst.2372
UnpaywallVersion publishedVersion
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1539-1612
  databaseCode: DR2
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  eissn: 1539-1612
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017895
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELbQ7gEuiH8Ky2pAqKeGjR0ntY8rYLVCYhWxrbScIruxtZVWSZWkoNx4B96QJ2FstynVCsQlOXhiRxrPzGd75jMhbznjiqU2jpgSPOIy0REum2VElcRwp2TGqKt3_nyRnc_5p6v0apNV6WphAj_EsOHmLMP7a2fgSrcnO9LQVdu9Y8kU3e8hRRjjZjfj-XCCMBX-xhU0aBw4i_mWeDZmJ9sv90PRLXx5O03y7rpaqf67urnZh7I-Fp09IPc3IBJOg9YfkjumekTGeWCh7icw2xVVtRMYQ77jp-4fk_7yusEVKDoSWDXLumkBgSss27pzNLngrpgJ5N09fPN7-i2oqgTtK3fBpZSCvz8Hg94E3D4u_HkKDl0NZd2aXz9-NiH_1gziT8j87OPs_Xm0uYEhWnDnKlOL5otB3GouEkPNQhhEeKVYUFWaFNVPS8SXfBGrrDSca1xLSWmFnnqi-lQmT8lBVVfmOQGNhm8EpcYYy7WNVYLAstSptaXNpGIj8nqrjGIViDaKQKnMClRY4RQ2IkdbLRUbU2sLdFJCZBxhBnYxNKORuJMPVZl67WQ4imVMxiPyLCh1GCTBJW6cCuxc7Kl7EHAE3Pst1fLaE3FTOkX_TOmIvBlmxj9-fuynzF8Fivxy5t4v_lfwJbnHEGKF5OEjctA1a_MKIVKnj70t4PPDF3ZMDucX-enX3-o_FLo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELaqcigXBOVvSykGoT1taOw4XlucqopqgbZaqVupt8je2OpKVbJKsqDceAfekCdhbG-yrCoQpxw8cSKNZ-abseczQu8ZZYqmNo6oEixiMtERpM0yIkpCuFOSU-L6nS8u-eSafblJb3bQx64XJvBD9AU3ZxneXzsDdwXp4w1r6LJuPtBkDP73AeOEu8yLsmm_hTAW_soVsGj4Mo9Zxzwb0-Puze1YdA9g3j8nubcqlqr9ru7utrGsD0Znj9GjNYrEJ0HtT9COKfbRcBpoqNsRnm26quoRHuLphqC6fYraq9sKUlDwJHhZLcqqxoBc8aIuG8eTi90dM4G9u8XffFG_xqrIsfatu9idKcX-Ah2IeiPsCrn4z21w3JQ4L2vz68fPKhzANb34M3R99ml2OonWVzBEc-Z8ZWrBfiGKW81EYoiZCwMQLxdzonKTgv5JDgCTzWPFc8OYhmRKSiv02DPVpzJ5jnaLsjAvEdZg-UYQYoyxTNtYJYAsc51am1suFR2gt50ysmVg2sgCpzLNQGGZU9gAHXZayta2VmfgpYTgsAQYTNEPg5W4rQ9VmHLlZBiIcSrjAXoRlNp_JIEcN04FTC621N0LOAbu7ZFiceuZuAkZg4MmZIDe9SvjHz8_9EvmrwLZ9Grmngf_K_gG7U1mF-fZ-efLr6_QQwp4K5wkPkS7TbUyrwEvNfrI28Vvl2IVjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqVgIulN-yUMAgtKfNNnacrC1OiLIqf9WKbqUekCI7sdUVVRIlWVA48Q68IU_C2NlkWSoQ4pSDJ3bszIy_scefEXrGKJM0NL5HJWceE4HyIGwWHpECpjspIkrseef3x9HRKXtzFp5toefdWZiWH6JfcLOW4fy1NXBdpOZgzRpaVPWYBhPwvzssFNzm8x1-6LmjyIS7K1fAoqHlyGcd86xPD7o3N-eiSwDzcp7k1WVWyOaLvLjYxLJuMpruoo9dN9oclE_jZa3GydffGB7_s5830PUVSMUvWq26ibZ0dgsNZy3LdTPC8_WhrWqEh3i25r9ubqPm5LyECBccFS7KRV5WGIAxXlR5bWl4sb3CpiUHb_Bnt2dQYZmlWLmTwdimrGJ3Pw9MqiNs14nxr7vsuM5xmlf6x7fvZZvfq3vxO-h0-mr-8shb3fDgJcy64tCAewCQYBTjgSY64RoQZMoTIlMdgnqRFPArS3wZpZoxBbGaEIariSPCD0VwF21neabvIazAsWhOiNbaMGV8GQBwTVVoTGoiIekAPen-dVy0RB5xS9lMYxjh2I7wAO13ShCvTLmKwQlyHjGAMVBFXwxGaHdWZKbzpZVhIBZR4Q_QXqszfSMBhNB-yKFyvqFNvYAl-N4syRbnjuibkAn4f0IG6GmveH_5-KFToz8KxLOTuX3e_1fBx-jK7HAav3t9_PYBukYBzbV5yvtouy6X-iGgsVo9clb3EyRUNak
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZQ9wAv3C8dAxmE-tSU2HFS53FCTBMSU6W10niK7NjWqk1JlKSg7In_wD_kl3Bsp9nKBEI8JVJO7Ng5l8_28WeE3jHKBI1NGFDBWcDSSAYwbE4DIlIIdyJNKLH7nT-fJMcr9uksPusn3OxeGM8PMUy4Wctw_toaeKWM9_P96j59XzXtjEZzcMF7SQxYfIT2VieLwy-eJBVqTNz5gf09oVv22Ruv7sajWyDzdq7k3U1Rie6buLzcxbMuIB09QNm2KT4P5WK2aeUsv_qN5fH_2_oQ3e-xKj70yvUI3dHFYzRZeLLrboqX13u3mime4MU1DXb3BHWn5zUMdMFf4apel3WDAR_jdVO2lo0X25NsPEd4h7-6pYMGi0Jh6TYIY5u5it0xPRBbp9hOF-Obi-24LbEqG_3z-4_ap_nqQfwpWh19XH44DvqDHoKcWY8cG_ASgBWMZDzSROdcA5BUPCdC6Ri0jCiAsSwPRaI0YxKGbGlquJw7Pvw4jZ6hUVEW-gXCEvyL5oRorQ2TJhQR4FclY2OUSVJBx-jN9ndnlefzyDxzM82ghzPbw2N0sNWDrLfoJgNfyHnCAM1AEcNjsEW7wCIKXW6sDAOxhKbhGD33ajNUEsFIOow5FM53FGoQsDzfu0-K9bnj-yZkDmGAkDF6O-jeXz5-4jTpjwLZ4nRpr_v_UtpLdI8CivP5yQdo1NYb_QpQWCtf96b2C790NpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrinkage+priors+for+isotonic+probability+vectors+and+binary+data+modeling%2C+with+applications+to+dose-response+modeling&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Boonstra%2C+Philip+S&rft.au=Owen%2C+Daniel+R&rft.au=Kang%2C+Jian&rft.date=2024-07-01&rft.issn=1539-1612&rft.eissn=1539-1612&rft.volume=23&rft.issue=4&rft.spage=540&rft_id=info:doi/10.1002%2Fpst.2372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon