Shrinkage priors for isotonic probability vectors and binary data modeling, with applications to dose–response modeling
Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non...
        Saved in:
      
    
          | Published in | Pharmaceutical statistics : the journal of the pharmaceutical industry Vol. 23; no. 4; pp. 540 - 556 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Inc
    
        01.07.2024
     Wiley Subscription Services, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1539-1604 1539-1612 1539-1612  | 
| DOI | 10.1002/pst.2372 | 
Cover
| Abstract | Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non‐decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma‐distributed random variables, is a natural choice of prior, but using mathematical and simulation‐based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe‐type shrinkage that is numerically more stable. We show that this horseshoe‐based prior is not subject to the numerical instability seen in the Dirichlet/gamma‐based prior and that the horseshoe‐based posterior can estimate the underlying true curve more efficiently than the Dirichlet‐based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation‐induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose‐finding studies or other dose–response modeling contexts. | 
    
|---|---|
| AbstractList | Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non‐decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma‐distributed random variables, is a natural choice of prior, but using mathematical and simulation‐based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe‐type shrinkage that is numerically more stable. We show that this horseshoe‐based prior is not subject to the numerical instability seen in the Dirichlet/gamma‐based prior and that the horseshoe‐based posterior can estimate the underlying true curve more efficiently than the Dirichlet‐based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation‐induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose‐finding studies or other dose–response modeling contexts. Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non‐decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma‐distributed random variables, is a natural choice of prior, but using mathematical and simulation‐based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe‐type shrinkage that is numerically more stable. We show that this horseshoe‐based prior is not subject to the numerical instability seen in the Dirichlet/gamma‐based prior and that the horseshoe‐based posterior can estimate the underlying true curve more efficiently than the Dirichlet‐based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation‐induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose‐finding studies or other dose–response modeling contexts. Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non-decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma-distributed random variables, is a natural choice of prior, but using mathematical and simulation-based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe-type shrinkage that is numerically more stable. We show that this horseshoe-based prior is not subject to the numerical instability seen in the Dirichlet/gamma-based prior and that the horseshoe-based posterior can estimate the underlying true curve more efficiently than the Dirichlet-based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation-induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose-finding studies or other dose-response modeling contexts.Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic regression modeling a binary outcome against an ordered categorical predictor, where the probability of the outcome is assumed to be monotonically non-decreasing with the predictor. The set of differences between outcome probabilities in consecutive categories of the predictor is equipped with a multivariate prior having support over simplex. The Dirichlet distribution, which can be derived from a normalized sum of independent gamma-distributed random variables, is a natural choice of prior, but using mathematical and simulation-based arguments, we show that the resulting posterior is prone to underflow and other numerical instabilities, even under simple data configurations. We propose an alternative prior based on horseshoe-type shrinkage that is numerically more stable. We show that this horseshoe-based prior is not subject to the numerical instability seen in the Dirichlet/gamma-based prior and that the horseshoe-based posterior can estimate the underlying true curve more efficiently than the Dirichlet-based one. We demonstrate the use of this prior in a model predicting the occurrence of radiation-induced lung toxicity in lung cancer patients as a function of dose delivered to normal lung tissue. Our methodology is implemented in the R package isotonicBayes and therefore suitable for use in the design of dose-finding studies or other dose-response modeling contexts.  | 
    
| Author | Owen, Daniel R. Boonstra, Philip S. Kang, Jian  | 
    
| AuthorAffiliation | 1 Department of Biostatistics University of Michigan Ann Arbor Michigan USA 2 Department of Radiation Oncology University of Michigan Ann Arbor Michigan USA  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Radiation Oncology University of Michigan Ann Arbor Michigan USA – name: 1 Department of Biostatistics University of Michigan Ann Arbor Michigan USA  | 
    
| Author_xml | – sequence: 1 givenname: Philip S. orcidid: 0000-0001-8545-9133 surname: Boonstra fullname: Boonstra, Philip S. email: philb@umich.edu organization: University of Michigan – sequence: 2 givenname: Daniel R. surname: Owen fullname: Owen, Daniel R. organization: University of Michigan – sequence: 3 givenname: Jian surname: Kang fullname: Kang, Jian organization: University of Michigan  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38400582$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kd9qFDEUxoO02D8KPoEEvFFwapLJTCZXRYr_oFCh9TpkkjO7qbPJmMx0mTvfwTf0Scy67bYKepXDOT--fOc7R2jPBw8IPaPkhBLC3gxpPGGlYI_QIa1KWdCasr1dTfgBOkrpmhAqGlk9RgdlwwmpGnaI5stldP6rXgAeogsx4S5E7FIYg3cm90KrW9e7ccY3YMYNoL3FrfM6ztjqUeNVsNA7v3iN125cYj0MvTN6dMEnPAZsQ4Kf339ESEPuwA5_gvY73Sd4evseoy_v312dfSzOLz58Ont7XpjskRVVJ2TJOOta3pRAwTRQcWIbQ7WFqgVDrZSUG6JrC5y3rJJSdk0rSOZFJctj9GqrO_lBz2vd9ypvusr2FSVqE5_K8alNfJk93bLD1K7AGvBj1Pd80E79OfFuqRbhRlEqSlFTmhVe3irE8G2CLLxyyUDfaw9hSqokvCSiZpJk9MVf6HWYos9ZZEo0Tc1ryjP1_KGlnZe7E97_aGJIKUL3v_WKLbp2Pcz_5NTny6vf_C9pNb1- | 
    
| Cites_doi | 10.1016/j.jspi.2011.03.015 10.2307/2531693 10.1007/978-0-387-98141-3 10.1111/j.1467-9868.2008.00677.x 10.2307/2528767 10.18637/jss.v100.i05 10.1198/016214501753382273 10.1002/sim.3329 10.1371/journal.pone.0287511 10.1111/j.0006-341X.2004.00184.x 10.1111/bmsp.12195 10.1214/17-EJS1337SI 10.1007/BF00050775 10.1111/j.1541-0420.2008.01060.x 10.1080/10543406.2014.919931 10.1093/biomet/asq017 10.1016/j.ijrobp.2018.05.049 10.1177/1740774510382799 10.1007/s00180-016-0692-0 10.1177/1740774520981939 10.1016/j.adro.2021.100666 10.1093/biomet/78.3.657 10.1200/JCO.2012.45.7903 10.1093/biomet/asaa030 10.1093/biomet/ast063 10.1214/ss/1177011136 10.1158/1078-0432.CCR-16-0592 10.2307/2531628 10.1080/10543406.2016.1265535 10.1093/biomet/80.3.489  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd. 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd. – notice: 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/pst.2372 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Pharmacy, Therapeutics, & Pharmacology | 
    
| DocumentTitleAlternate | Boonstra et al | 
    
| EISSN | 1539-1612 | 
    
| EndPage | 556 | 
    
| ExternalDocumentID | 10.1002/pst.2372 PMC11737611 38400582 10_1002_pst_2372 PST2372  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: National Institutes of Health funderid: P30 CA046592; R01 CA129102 – fundername: NIH HHS grantid: P30 CA046592 – fundername: NCI NIH HHS grantid: P30 CA046592 – fundername: NCI NIH HHS grantid: R01 CA129102 – fundername: NIH HHS grantid: R01 CA129102  | 
    
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4002-5f793242fb483e1ec8e540d8c1ade5bec1d9914c0a6de44b25999f8b704837593 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1539-1604 1539-1612  | 
    
| IngestDate | Sun Oct 26 04:05:14 EDT 2025 Tue Sep 30 17:06:21 EDT 2025 Thu Jul 10 20:44:05 EDT 2025 Tue Oct 07 06:16:56 EDT 2025 Thu Apr 03 07:02:48 EDT 2025 Wed Oct 01 03:33:51 EDT 2025 Wed Jan 22 17:17:51 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | horseshoe distribution underflow monotonic relationship gamma distribution Dirichlet distribution  | 
    
| Language | English | 
    
| License | Attribution-NonCommercial-NoDerivs 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4002-5f793242fb483e1ec8e540d8c1ade5bec1d9914c0a6de44b25999f8b704837593 | 
    
| Notes | Daniel R. Owen: Home department when relevant work was conducted. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-8545-9133 | 
    
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2372 | 
    
| PMID | 38400582 | 
    
| PQID | 3078864614 | 
    
| PQPubID | 1036354 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_pst_2372 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11737611 proquest_miscellaneous_3043076290 proquest_journals_3078864614 pubmed_primary_38400582 crossref_primary_10_1002_pst_2372 wiley_primary_10_1002_pst_2372_PST2372  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July/August 2024 | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: July/August 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK – name: England – name: Macclesfield  | 
    
| PublicationTitle | Pharmaceutical statistics : the journal of the pharmaceutical industry | 
    
| PublicationTitleAlternate | Pharm Stat | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc  | 
    
| References | 2021; 6 2010; 97 2009; 65 2004; 60 1991; 78 2023; 18 2017; 27 2018; 102 2009 2020; 107 1972 2021; 100 1972; 28 1992; 7 1990; 42 2015; 25 1990 2020; 73 2021 2009; 71 2020 2021; 18 2017; 11 2017; 32 2008; 27 2013; 31 2017 1993; 80 2016 2015 2011; 141 2010; 7 2001; 96 2014; 101 1989 2016; 22 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 Piironen J (e_1_2_9_27_1) 2017 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 Carvalho CM (e_1_2_9_24_1) 2009 Barlow RE (e_1_2_9_2_1) 1972 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Bioche C (e_1_2_9_33_1) 2016; 22 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_29_1  | 
    
| References_xml | – volume: 71 start-page: 159 issue: 1 year: 2009 end-page: 175 article-title: A Bayesian approach to non‐parametric monotone function estimation publication-title: J R Stat Soc Ser B – volume: 96 start-page: 1348 issue: 456 year: 2001 end-page: 1360 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: J Am Stat Assoc – year: 2009 – volume: 65 start-page: 198 issue: 1 year: 2009 end-page: 205 article-title: Bayesian nonparametric estimation of continuous monotone functions with applications to dose‐response analysis publication-title: Biometrics – volume: 25 start-page: 137 issue: 1 year: 2015 end-page: 156 article-title: A flexible Bayesian approach for modeling monotonic dose‐response relationships in drug development trials publication-title: J Biopharm Stat – start-page: 905 year: 2017 end-page: 913 – volume: 27 start-page: 824 issue: 5 year: 2017 end-page: 833 article-title: Bayesian isotonic regression dose‐response model publication-title: J Biopharm Stat – year: 2021 – volume: 78 start-page: 657 issue: 3 year: 1991 end-page: 666 article-title: Nonparametric Bayesian bioassay including ordered polytomous response publication-title: Biometrika – volume: 6 year: 2021 article-title: Investigating the SPECT dose‐function metrics associated with radiation‐induced lung toxicity risk in patients with non‐small cell lung cancer undergoing radiation therapy publication-title: Adv Radiat Oncol – volume: 102 start-page: 1265 issue: 4 year: 2018 end-page: 1275 article-title: Modeling patient‐specific dose‐function response for enhanced characterization of personalized functional damage publication-title: Int J Radiat Oncol Biol Phys – volume: 22 start-page: 1709 issue: 3 year: 2016 end-page: 1728 article-title: Approximation of improper priors publication-title: Ther Ber – volume: 60 start-page: 398 issue: 2 year: 2004 end-page: 406 article-title: Bayesian isotonic regression and trend analysis publication-title: Biometrics – year: 2016 – volume: 80 start-page: 489 issue: 3 year: 1993 end-page: 498 article-title: Nonparametric Bayesian bioassay with prior constraints on the shape of the potency curve publication-title: Biometrika – volume: 107 start-page: 891 issue: 4 year: 2020 end-page: 906 article-title: The pitman–yor multinomial process for mixture modelling publication-title: Biometrika – volume: 7 start-page: 653 issue: 6 year: 2010 end-page: 663 article-title: A modified toxicity probability interval method for dose‐finding trials publication-title: Clin Trials – volume: 18 start-page: 303 issue: 3 year: 2021 end-page: 313 article-title: A modular framework for early‐phase seamless oncology trials publication-title: Clin Trials – volume: 73 start-page: 420 issue: 3 year: 2020 end-page: 451 article-title: Modelling monotonic effects of ordinal predictors in Bayesian regression models publication-title: Br J Math Stat Psychol – volume: 42 start-page: 1 issue: 1 year: 1990 end-page: 19 article-title: A Bayesian approach for quantile and response probability estimation with applications to reliability publication-title: Ann Inst Stat Math – volume: 18 issue: 10 year: 2023 article-title: Targeted randomization dose optimization trials enable fractional dosing of scarce drugs publication-title: PloS One – volume: 141 start-page: 2987 issue: 9 year: 2011 end-page: 3004 article-title: On a class of distributions on the simplex publication-title: J Stat Plan Inference – volume: 22 start-page: 4291 issue: 17 year: 2016 end-page: 4301 article-title: Bayesian optimal interval design: a simple and well‐performing design for phase I oncology trials publication-title: Clin Cancer Res – volume: 28 start-page: 841 issue: 3 year: 1972 end-page: 858 article-title: A Bayesian approach to bioassay publication-title: Biometrics – start-page: 925 year: 1989 end-page: 937 article-title: Design and analysis of phase I clinical trials publication-title: Biometrics – year: 2020 – year: 1972 – volume: 100 start-page: 1 issue: 5 year: 2021 end-page: 54 article-title: Bayesian item response modeling in R with brms and Stan publication-title: J Stat Softw – start-page: 73 year: 2009 end-page: 80 – volume: 11 start-page: 5018 issue: 2 year: 2017 end-page: 5051 article-title: Sparsity information and regularization in the horseshoe and other shrinkage priors publication-title: Electron J Stat – start-page: 33 year: 1990 end-page: 48 article-title: Continual reassessment method: a practical design for phase I clinical trials in cancer publication-title: Biometrics. – volume: 97 start-page: 465 issue: 2 year: 2010 end-page: 480 article-title: The horseshoe estimator for sparse signals publication-title: Biometrika – year: 2017 – volume: 101 start-page: 303 issue: 2 year: 2014 end-page: 317 article-title: Bayesian monotone regression using gaussian process projection publication-title: Biometrika – volume: 27 start-page: 4895 issue: 24 year: 2008 end-page: 4913 article-title: Dose–schedule finding in phase I/II clinical trials using a Bayesian isotonic transformation publication-title: Stat Med – volume: 32 start-page: 1767 year: 2017 end-page: 1775 article-title: Efficient simulation from a gamma distribution with small shape parameter publication-title: Comput Stat – year: 2015 – volume: 31 start-page: 1785 issue: 14 year: 2013 end-page: 1791 article-title: Modified toxicity probability interval design: a safer and more reliable method than the 3+ 3 design for practical phase I trials publication-title: J Clin Oncol – volume: 7 start-page: 457 year: 1992 end-page: 472 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci – ident: e_1_2_9_21_1 doi: 10.1016/j.jspi.2011.03.015 – ident: e_1_2_9_30_1 doi: 10.2307/2531693 – ident: e_1_2_9_38_1 doi: 10.1007/978-0-387-98141-3 – ident: e_1_2_9_12_1 doi: 10.1111/j.1467-9868.2008.00677.x – ident: e_1_2_9_31_1 – volume-title: Statistical Inference under Order Restrictions: the Theory and Application of Isotonic Regression year: 1972 ident: e_1_2_9_2_1 – start-page: 73 volume-title: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics. 5 of Proceedings of Machine Learning Research year: 2009 ident: e_1_2_9_24_1 – ident: e_1_2_9_17_1 doi: 10.2307/2528767 – ident: e_1_2_9_37_1 doi: 10.18637/jss.v100.i05 – ident: e_1_2_9_29_1 doi: 10.1198/016214501753382273 – ident: e_1_2_9_4_1 doi: 10.1002/sim.3329 – ident: e_1_2_9_8_1 doi: 10.1371/journal.pone.0287511 – start-page: 905 volume-title: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 54 of Proceedings of Machine Learning Research year: 2017 ident: e_1_2_9_27_1 – ident: e_1_2_9_36_1 – ident: e_1_2_9_11_1 doi: 10.1111/j.0006-341X.2004.00184.x – ident: e_1_2_9_39_1 – ident: e_1_2_9_14_1 doi: 10.1111/bmsp.12195 – ident: e_1_2_9_28_1 doi: 10.1214/17-EJS1337SI – volume: 22 start-page: 1709 issue: 3 year: 2016 ident: e_1_2_9_33_1 article-title: Approximation of improper priors publication-title: Ther Ber – ident: e_1_2_9_18_1 doi: 10.1007/BF00050775 – ident: e_1_2_9_32_1 – ident: e_1_2_9_16_1 doi: 10.1111/j.1541-0420.2008.01060.x – ident: e_1_2_9_15_1 doi: 10.1080/10543406.2014.919931 – ident: e_1_2_9_25_1 doi: 10.1093/biomet/asq017 – ident: e_1_2_9_10_1 doi: 10.1016/j.ijrobp.2018.05.049 – ident: e_1_2_9_40_1 doi: 10.1177/1740774510382799 – ident: e_1_2_9_23_1 doi: 10.1007/s00180-016-0692-0 – ident: e_1_2_9_7_1 doi: 10.1177/1740774520981939 – ident: e_1_2_9_9_1 doi: 10.1016/j.adro.2021.100666 – ident: e_1_2_9_19_1 doi: 10.1093/biomet/78.3.657 – ident: e_1_2_9_5_1 doi: 10.1200/JCO.2012.45.7903 – ident: e_1_2_9_22_1 doi: 10.1093/biomet/asaa030 – ident: e_1_2_9_13_1 doi: 10.1093/biomet/ast063 – ident: e_1_2_9_35_1 doi: 10.1214/ss/1177011136 – ident: e_1_2_9_41_1 doi: 10.1158/1078-0432.CCR-16-0592 – ident: e_1_2_9_3_1 doi: 10.2307/2531628 – ident: e_1_2_9_6_1 doi: 10.1080/10543406.2016.1265535 – ident: e_1_2_9_26_1 – ident: e_1_2_9_20_1 doi: 10.1093/biomet/80.3.489 – ident: e_1_2_9_34_1  | 
    
| SSID | ssj0017895 | 
    
| Score | 2.3238666 | 
    
| Snippet | Motivated by the need to model dose–response or dose‐toxicity curves in clinical trials, we develop a new horseshoe‐based prior for Bayesian isotonic... Motivated by the need to model dose-response or dose-toxicity curves in clinical trials, we develop a new horseshoe-based prior for Bayesian isotonic...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 540 | 
    
| SubjectTerms | Bayes Theorem Clinical Trials as Topic - methods Computer Simulation Dirichlet distribution Dose-Response Relationship, Drug gamma distribution horseshoe distribution Humans Lung cancer Lung Neoplasms - drug therapy Main Paper Models, Statistical monotonic relationship Probability Random variables Regression Analysis Toxicity underflow  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZQ9wAv3C8dAxmE-tSU2HFS53FCTBMSU6W10niK7NjWqk1JlKSg7In_wD_kl3Bsp9nKBEI8JVJO7Ng5l8_28WeE3jHKBI1NGFDBWcDSSAYwbE4DIlIIdyJNKLH7nT-fJMcr9uksPusn3OxeGM8PMUy4Wctw_toaeKWM9_P96j59XzXtjEZzcMF7SQxYfIT2VieLwy-eJBVqTNz5gf09oVv22Ruv7sajWyDzdq7k3U1Rie6buLzcxbMuIB09QNm2KT4P5WK2aeUsv_qN5fH_2_oQ3e-xKj70yvUI3dHFYzRZeLLrboqX13u3mime4MU1DXb3BHWn5zUMdMFf4apel3WDAR_jdVO2lo0X25NsPEd4h7-6pYMGi0Jh6TYIY5u5it0xPRBbp9hOF-Obi-24LbEqG_3z-4_ap_nqQfwpWh19XH44DvqDHoKcWY8cG_ASgBWMZDzSROdcA5BUPCdC6Ri0jCiAsSwPRaI0YxKGbGlquJw7Pvw4jZ6hUVEW-gXCEvyL5oRorQ2TJhQR4FclY2OUSVJBx-jN9ndnlefzyDxzM82ghzPbw2N0sNWDrLfoJgNfyHnCAM1AEcNjsEW7wCIKXW6sDAOxhKbhGD33ajNUEsFIOow5FM53FGoQsDzfu0-K9bnj-yZkDmGAkDF6O-jeXz5-4jTpjwLZ4nRpr_v_UtpLdI8CivP5yQdo1NYb_QpQWCtf96b2C790NpA priority: 102 providerName: Unpaywall  | 
    
| Title | Shrinkage priors for isotonic probability vectors and binary data modeling, with applications to dose–response modeling | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpst.2372 https://www.ncbi.nlm.nih.gov/pubmed/38400582 https://www.proquest.com/docview/3078864614 https://www.proquest.com/docview/3043076290 https://pubmed.ncbi.nlm.nih.gov/PMC11737611 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pst.2372  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1539-1612 databaseCode: DR2 dateStart: 20020101 customDbUrl: isFulltext: true eissn: 1539-1612 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017895 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NjtMwELbQ7gEuiH8Ky2pAqKeGjR0ntY8rYLVCYhWxrbScIruxtZVWSZWkoNx4B96QJ2FstynVCsQlOXhiRxrPzGd75jMhbznjiqU2jpgSPOIy0REum2VElcRwp2TGqKt3_nyRnc_5p6v0apNV6WphAj_EsOHmLMP7a2fgSrcnO9LQVdu9Y8kU3e8hRRjjZjfj-XCCMBX-xhU0aBw4i_mWeDZmJ9sv90PRLXx5O03y7rpaqf67urnZh7I-Fp09IPc3IBJOg9YfkjumekTGeWCh7icw2xVVtRMYQ77jp-4fk_7yusEVKDoSWDXLumkBgSss27pzNLngrpgJ5N09fPN7-i2oqgTtK3fBpZSCvz8Hg94E3D4u_HkKDl0NZd2aXz9-NiH_1gziT8j87OPs_Xm0uYEhWnDnKlOL5otB3GouEkPNQhhEeKVYUFWaFNVPS8SXfBGrrDSca1xLSWmFnnqi-lQmT8lBVVfmOQGNhm8EpcYYy7WNVYLAstSptaXNpGIj8nqrjGIViDaKQKnMClRY4RQ2IkdbLRUbU2sLdFJCZBxhBnYxNKORuJMPVZl67WQ4imVMxiPyLCh1GCTBJW6cCuxc7Kl7EHAE3Pst1fLaE3FTOkX_TOmIvBlmxj9-fuynzF8Fivxy5t4v_lfwJbnHEGKF5OEjctA1a_MKIVKnj70t4PPDF3ZMDucX-enX3-o_FLo | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELaqcigXBOVvSykGoT1taOw4XlucqopqgbZaqVupt8je2OpKVbJKsqDceAfekCdhbG-yrCoQpxw8cSKNZ-abseczQu8ZZYqmNo6oEixiMtERpM0yIkpCuFOSU-L6nS8u-eSafblJb3bQx64XJvBD9AU3ZxneXzsDdwXp4w1r6LJuPtBkDP73AeOEu8yLsmm_hTAW_soVsGj4Mo9Zxzwb0-Puze1YdA9g3j8nubcqlqr9ru7utrGsD0Znj9GjNYrEJ0HtT9COKfbRcBpoqNsRnm26quoRHuLphqC6fYraq9sKUlDwJHhZLcqqxoBc8aIuG8eTi90dM4G9u8XffFG_xqrIsfatu9idKcX-Ah2IeiPsCrn4z21w3JQ4L2vz68fPKhzANb34M3R99ml2OonWVzBEc-Z8ZWrBfiGKW81EYoiZCwMQLxdzonKTgv5JDgCTzWPFc8OYhmRKSiv02DPVpzJ5jnaLsjAvEdZg-UYQYoyxTNtYJYAsc51am1suFR2gt50ysmVg2sgCpzLNQGGZU9gAHXZayta2VmfgpYTgsAQYTNEPg5W4rQ9VmHLlZBiIcSrjAXoRlNp_JIEcN04FTC621N0LOAbu7ZFiceuZuAkZg4MmZIDe9SvjHz8_9EvmrwLZ9Grmngf_K_gG7U1mF-fZ-efLr6_QQwp4K5wkPkS7TbUyrwEvNfrI28Vvl2IVjQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqVgIulN-yUMAgtKfNNnacrC1OiLIqf9WKbqUekCI7sdUVVRIlWVA48Q68IU_C2NlkWSoQ4pSDJ3bszIy_scefEXrGKJM0NL5HJWceE4HyIGwWHpECpjspIkrseef3x9HRKXtzFp5toefdWZiWH6JfcLOW4fy1NXBdpOZgzRpaVPWYBhPwvzssFNzm8x1-6LmjyIS7K1fAoqHlyGcd86xPD7o3N-eiSwDzcp7k1WVWyOaLvLjYxLJuMpruoo9dN9oclE_jZa3GydffGB7_s5830PUVSMUvWq26ibZ0dgsNZy3LdTPC8_WhrWqEh3i25r9ubqPm5LyECBccFS7KRV5WGIAxXlR5bWl4sb3CpiUHb_Bnt2dQYZmlWLmTwdimrGJ3Pw9MqiNs14nxr7vsuM5xmlf6x7fvZZvfq3vxO-h0-mr-8shb3fDgJcy64tCAewCQYBTjgSY64RoQZMoTIlMdgnqRFPArS3wZpZoxBbGaEIariSPCD0VwF21neabvIazAsWhOiNbaMGV8GQBwTVVoTGoiIekAPen-dVy0RB5xS9lMYxjh2I7wAO13ShCvTLmKwQlyHjGAMVBFXwxGaHdWZKbzpZVhIBZR4Q_QXqszfSMBhNB-yKFyvqFNvYAl-N4syRbnjuibkAn4f0IG6GmveH_5-KFToz8KxLOTuX3e_1fBx-jK7HAav3t9_PYBukYBzbV5yvtouy6X-iGgsVo9clb3EyRUNak | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZQ9wAv3C8dAxmE-tSU2HFS53FCTBMSU6W10niK7NjWqk1JlKSg7In_wD_kl3Bsp9nKBEI8JVJO7Ng5l8_28WeE3jHKBI1NGFDBWcDSSAYwbE4DIlIIdyJNKLH7nT-fJMcr9uksPusn3OxeGM8PMUy4Wctw_toaeKWM9_P96j59XzXtjEZzcMF7SQxYfIT2VieLwy-eJBVqTNz5gf09oVv22Ruv7sajWyDzdq7k3U1Rie6buLzcxbMuIB09QNm2KT4P5WK2aeUsv_qN5fH_2_oQ3e-xKj70yvUI3dHFYzRZeLLrboqX13u3mime4MU1DXb3BHWn5zUMdMFf4apel3WDAR_jdVO2lo0X25NsPEd4h7-6pYMGi0Jh6TYIY5u5it0xPRBbp9hOF-Obi-24LbEqG_3z-4_ap_nqQfwpWh19XH44DvqDHoKcWY8cG_ASgBWMZDzSROdcA5BUPCdC6Ri0jCiAsSwPRaI0YxKGbGlquJw7Pvw4jZ6hUVEW-gXCEvyL5oRorQ2TJhQR4FclY2OUSVJBx-jN9ndnlefzyDxzM82ghzPbw2N0sNWDrLfoJgNfyHnCAM1AEcNjsEW7wCIKXW6sDAOxhKbhGD33ajNUEsFIOow5FM53FGoQsDzfu0-K9bnj-yZkDmGAkDF6O-jeXz5-4jTpjwLZ4nRpr_v_UtpLdI8CivP5yQdo1NYb_QpQWCtf96b2C790NpA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shrinkage+priors+for+isotonic+probability+vectors+and+binary+data+modeling%2C+with+applications+to+dose-response+modeling&rft.jtitle=Pharmaceutical+statistics+%3A+the+journal+of+the+pharmaceutical+industry&rft.au=Boonstra%2C+Philip+S&rft.au=Owen%2C+Daniel+R&rft.au=Kang%2C+Jian&rft.date=2024-07-01&rft.issn=1539-1612&rft.eissn=1539-1612&rft.volume=23&rft.issue=4&rft.spage=540&rft_id=info:doi/10.1002%2Fpst.2372&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1604&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1604&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1604&client=summon |