Modified mean shift algorithm

The mean shift (MS) algorithm is an iterative method introduced for locating modes of a probability density function. Although the MS algorithm has been widely used in many applications, the convergence of the algorithm has not yet been proven. In this study, the authors modify the MS algorithm in o...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 12; no. 12; pp. 2172 - 2177
Main Authors Aliyari Ghassabeh, Youness, Rudzicz, Frank
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.12.2018
Subjects
Online AccessGet full text
ISSN1751-9659
1751-9667
DOI10.1049/iet-ipr.2018.5600

Cover

Abstract The mean shift (MS) algorithm is an iterative method introduced for locating modes of a probability density function. Although the MS algorithm has been widely used in many applications, the convergence of the algorithm has not yet been proven. In this study, the authors modify the MS algorithm in order to guarantee its convergence. The authors prove that the generated sequence using the proposed modified algorithm is a convergent sequence and the density estimate values along the generated sequence are monotonically increasing and convergent. In contrast to the MS algorithm, the proposed modified version does not require setting a stopping criterion a priori; instead, it guarantees the convergence after a finite number of iterations. The proposed modified version defines an upper bound for the number of iterations which is missing in the MS algorithm. The authors also present the matrix form of the proposed algorithm and show that, in contrast to the MS algorithm, the weight matrix is required to be computed once in the first iteration. The performance of the proposed modified version is compared with the MS algorithm and it was shown through the simulations that the proposed version can be used successfully to estimate cluster centres.
AbstractList The mean shift (MS) algorithm is an iterative method introduced for locating modes of a probability density function. Although the MS algorithm has been widely used in many applications, the convergence of the algorithm has not yet been proven. In this study, the authors modify the MS algorithm in order to guarantee its convergence. The authors prove that the generated sequence using the proposed modified algorithm is a convergent sequence and the density estimate values along the generated sequence are monotonically increasing and convergent. In contrast to the MS algorithm, the proposed modified version does not require setting a stopping criterion a priori; instead, it guarantees the convergence after a finite number of iterations. The proposed modified version defines an upper bound for the number of iterations which is missing in the MS algorithm. The authors also present the matrix form of the proposed algorithm and show that, in contrast to the MS algorithm, the weight matrix is required to be computed once in the first iteration. The performance of the proposed modified version is compared with the MS algorithm and it was shown through the simulations that the proposed version can be used successfully to estimate cluster centres.
Author Aliyari Ghassabeh, Youness
Rudzicz, Frank
Author_xml – sequence: 1
  givenname: Youness
  surname: Aliyari Ghassabeh
  fullname: Aliyari Ghassabeh, Youness
  email: aliyari@cs.toronto.edu
  organization: 2Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
– sequence: 2
  givenname: Frank
  surname: Rudzicz
  fullname: Rudzicz, Frank
  organization: 2Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
BookMark eNqFkEFOwzAQRS1UJNrCAVgg5QIpM04c2-ygolCpCIRgbTmOQ10lceUEod6eREEsWJTV_MW8-XozI5PGN5aQS4QFQiqvne1itw8LCigWLAM4IVPkDGOZZXzym5k8I7O23QEwCYJNydWTL1zpbBHVVjdRu3VlF-nqwwfXbetzclrqqrUXP3NO3lf3b8vHePP8sF7ebmKTAmBM04wbLbGgOUOdUyMlL6Wk3IJOij6A0GiNNYaVPE1FAkIURrDcMmtykMmc4HjXBN-2wZZqH1ytw0EhqMFP9X6q91ODnxr8eob_YYzrdOd80wXtqqPkzUh-ucoe_q9S65dXercCzAT2cDzCw9rOf4amf8yRsm8TvHly
CitedBy_id crossref_primary_10_1155_2021_8839595
crossref_primary_10_1007_s00357_019_09353_1
crossref_primary_10_3390_math10142408
crossref_primary_10_1007_s12559_020_09727_3
crossref_primary_10_1587_transinf_2021EDP7218
crossref_primary_10_1109_JSEN_2021_3072624
Cites_doi 10.1109/CVPR.2000.854761
10.1109/TC.1976.1674719
10.1111/j.2517-6161.1983.tb01229.x
10.1016/j.jmva.2014.11.009
10.1109/34.1000236
10.1007/s10994-014-5435-2
10.1145/1143844.1143864
10.1016/j.patcog.2005.09.012
10.1109/TPAMI.2005.59
10.1109/TIT.1975.1055330
10.1109/ICCV.2007.4408978
10.1109/TPAMI.2007.1057
10.1016/j.ipl.2012.10.002
10.1109/TKDE.2010.232
10.1016/j.ins.2016.02.020
10.1214/aos/1176346060
10.1016/S0747-7171(08)80013-2
10.1109/34.400568
10.1016/j.patcog.2006.10.016
10.1007/978-1-4899-3324-9
10.1016/j.patrec.2013.05.004
10.1109/TSMCB.2007.902249
10.1007/978-3-540-24671-8_19
10.1109/TPAMI.2002.1033218
10.1007/978-3-540-88693-8_52
10.1016/j.patcog.2013.04.014
10.1049/iet-spr.2014.0347
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-ipr.2018.5600
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2177
ExternalDocumentID 10_1049_iet_ipr_2018_5600
IPR2BF01681
Genre article
GroupedDBID 0R
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
DU5
EBS
EJD
ESX
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
M43
M7S
MS
O9-
OCL
P2P
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
UNR
ZL0
.DC
0R~
1OC
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
ROL
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4001-2467ca91d2b51ab2c997f9927e0a3d99208a1ececc5f74483088dc85be5ecb093
IEDL.DBID IDLOA
ISSN 1751-9659
IngestDate Wed Oct 29 21:20:49 EDT 2025
Thu Apr 24 22:54:21 EDT 2025
Wed Jan 22 16:32:07 EST 2025
Tue Jan 05 21:51:38 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords iterative methods
nonparametric iterative method
probability
mean shift algorithm
kernel density estimate
upper bound
convergence of numerical methods
weight matrix
machine learning
matrix algebra
generated sequence
modified MS algorithm
convergent sequence
density estimate values
original MS algorithm
probability density function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4001-2467ca91d2b51ab2c997f9927e0a3d99208a1ececc5f74483088dc85be5ecb093
PageCount 6
ParticipantIDs wiley_primary_10_1049_iet_ipr_2018_5600_IPR2BF01681
crossref_primary_10_1049_iet_ipr_2018_5600
iet_journals_10_1049_iet_ipr_2018_5600
crossref_citationtrail_10_1049_iet_ipr_2018_5600
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20181200
December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181200
PublicationDecade 2010
PublicationTitle IET image processing
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Coppersmith, D.; Winograd, S. (C27) 1990; 9
Aliyari Ghassabeh, Y.; Rudzica, F. (C16) 2016; 348
Fashing, M.; Tomasi, C. (C10) 2005; 27
Carreira-Perpiñán, M.A. (C11) 2007; 29
Aliyari Ghassabeh, Y.; Rudzicz, F. (C4) 2015; 9
Cheng, Y (C8) 1995; 17
Fränti, P.; Virmajoki, O. (C32) 2006; 39
Aliyari Ghassabeh, Y. (C15) 2015; 98
Arias-Castro, E.; Mason, D.; Pelletier, B. (C17) 2016; 17
Aliyari Ghassabeh, Y. (C21) 2015; 135
Yuan, X.T.; Hu, B.G.; He, R. (C1) 2012; 24
Tao, W.; Jin, H.; Zhang, Y. (C2) 2007; 37
Boyles, R.A. (C13) 1983; 45
Aliyari Ghassabeh, Y.; Linder, T.; Takahara, G. (C19) 2013; 46
Comaniciu, D.; Meer, P. (C9) 2002; 24
Arias-Castro, E.; Mason, D.; Pelletier, B. (C18) 2016; 17
Liu, Y.; Li, S.Z.; Wu, W. (C26) 2013; 113
Koontz, W.L.G.; Narendra, P.; Fukunaga, K. (C30) 1976; c-25
Veenman, C.J.; Reinders, M.J.T.; Backer, E. (C33) 2002; 2
Wu, C.F.J. (C12) 1983; 11
Li, X.; Hu, Z.; Wu, F. (C14) 2007; 40
Fukunaga, K.; Hostetler, L.D. (C7) 1975; 2
Aliyari Ghassabeh, Y. (C20) 2013; 34
1995; 17
2013; 46
2006; 39
1976; c‐25
2015; 98
2008
2002; 2
2007
2006
2016; 348
2004
2015; 9
2005; 27
2016; 17
2007; 37
1983; 11
2007; 29
2001
2000
2015; 135
2013; 34
2002; 24
1986
1975; 2
2013; 113
2017
2007; 40
2012; 24
1990; 9
1983; 45
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Tsybakov A.B. (e_1_2_6_23_1) 2008
Arias‐Castro E. (e_1_2_6_19_1) 2016; 17
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_15_1
Arias‐Castro E. (e_1_2_6_18_1) 2016; 17
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
Boyles R.A. (e_1_2_6_14_1) 1983; 45
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 40
  start-page: 1756
  year: 2007
  end-page: 1762
  ident: C14
  article-title: A note on the convergence of the mean shift
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 761
  year: 2006
  end-page: 765
  ident: C32
  article-title: Iterative shrinking method for clustering problems
  publication-title: Pattern Recognit.
– volume: 46
  start-page: 3140
  year: 2013
  end-page: 3147
  ident: C19
  article-title: On some convergence properties of the subspace constrained mean shift
  publication-title: Pattern Recognit.
– volume: c-25
  start-page: 936
  year: 1976
  end-page: 944
  ident: C30
  article-title: A graph-theoretic approach to nonparametric cluster analysis
  publication-title: IEEE Trans. Comput.
– volume: 27
  start-page: 471
  year: 2005
  end-page: 474
  ident: C10
  article-title: Mean shift is a bound optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 348
  start-page: 198
  year: 2016
  end-page: 208
  ident: C16
  article-title: The mean shift algorithm and its relation to kernel regression
  publication-title: Inf. Sci.
– volume: 37
  start-page: 1382
  year: 2007
  end-page: 1389
  ident: C2
  article-title: Color image segmentation based on mean shift and normalized cuts
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 2
  start-page: 32
  year: 1975
  end-page: 40
  ident: C7
  article-title: Estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inform. Theory
– volume: 45
  start-page: 47
  year: 1983
  end-page: 50
  ident: C13
  article-title: On the convergence of the EM algorithm
  publication-title: J. Royal Stat. Soc. B
– volume: 2
  start-page: 1273
  year: 2002
  end-page: 1280
  ident: C33
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 29
  start-page: 767
  year: 2007
  end-page: 776
  ident: C11
  article-title: Gaussian mean shift is an EM algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 24
  start-page: 209
  year: 2012
  end-page: 219
  ident: C1
  article-title: Agglomerative mean-shift clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  start-page: 521
  year: 2015
  end-page: 552
  ident: C4
  article-title: Incremental algorithm for finding principal curves
  publication-title: IET Signal Process.
– volume: 34
  start-page: 1423
  year: 2013
  end-page: 1427
  ident: C20
  article-title: On the convergence of the mean shift algorithm in the one-dimensional space
  publication-title: Pattern Recognit. Lett.
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: C9
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  ident: C12
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– volume: 98
  start-page: 359
  year: 2015
  end-page: 368
  ident: C15
  article-title: Asymptotic stability of equilibrium points of mean shift algorithm
  publication-title: Mach. Learn.
– volume: 9
  start-page: 251
  year: 1990
  end-page: 280
  ident: C27
  article-title: Matrix multiplication via arithmetic progressions
  publication-title: J. Symb. Comput.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 4
  ident: C18
  article-title: ERRATA: on the estimation of the gradient lines of a density and the consistency of the mean-shift algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 28
  ident: C17
  article-title: On the estimation of the gradient lines of a density and the consistency of the mean-shift algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 135
  start-page: 1
  year: 2015
  end-page: 10
  ident: C21
  article-title: A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel
  publication-title: J. Multivariate Anal.
– volume: 113
  start-page: 8
  year: 2013
  end-page: 16
  ident: C26
  article-title: Dynamics of a mean-shift-like algorithms and its applications on clustering
  publication-title: Inf. Process. Lett.
– volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  ident: C8
  article-title: Mean shift, mode seeking and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 761
  year: 2006
  end-page: 765
  article-title: Iterative shrinking method for clustering problems
  publication-title: Pattern Recognit.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 28
  article-title: On the estimation of the gradient lines of a density and the consistency of the mean‐shift algorithm
  publication-title: J. Mach. Learn. Res.
– start-page: 705
  year: 2008
  end-page: 718
– start-page: 142
  year: 2000
  end-page: 149
– volume: 348
  start-page: 198
  year: 2016
  end-page: 208
  article-title: The mean shift algorithm and its relation to kernel regression
  publication-title: Inf. Sci.
– start-page: 1
  year: 2007
  end-page: 8
– volume: 24
  start-page: 209
  year: 2012
  end-page: 219
  article-title: Agglomerative mean‐shift clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 18
  year: 2007
  end-page: 23
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– volume: 27
  start-page: 471
  year: 2005
  end-page: 474
  article-title: Mean shift is a bound optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 98
  start-page: 359
  year: 2015
  end-page: 368
  article-title: Asymptotic stability of equilibrium points of mean shift algorithm
  publication-title: Mach. Learn.
– volume: 9
  start-page: 521
  year: 2015
  end-page: 552
  article-title: Incremental algorithm for finding principal curves
  publication-title: IET Signal Process.
– start-page: 238
  year: 2004
  end-page: 250
– volume: 40
  start-page: 1756
  year: 2007
  end-page: 1762
  article-title: A note on the convergence of the mean shift
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 1423
  year: 2013
  end-page: 1427
  article-title: On the convergence of the mean shift algorithm in the one‐dimensional space
  publication-title: Pattern Recognit. Lett.
– volume: 2
  start-page: 1273
  year: 2002
  end-page: 1280
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 135
  start-page: 1
  year: 2015
  end-page: 10
  article-title: A sufficient condition for the convergence of the mean shift algorithm with Gaussian kernel
  publication-title: J. Multivariate Anal.
– start-page: 153
  year: 2006
  end-page: 160
– year: 1986
– start-page: 438
  year: 2001
  end-page: 445
– volume: 46
  start-page: 3140
  year: 2013
  end-page: 3147
  article-title: On some convergence properties of the subspace constrained mean shift
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 1382
  year: 2007
  end-page: 1389
  article-title: Color image segmentation based on mean shift and normalized cuts
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2008
– volume: c‐25
  start-page: 936
  year: 1976
  end-page: 944
  article-title: A graph‐theoretic approach to nonparametric cluster analysis
  publication-title: IEEE Trans. Comput.
– volume: 2
  start-page: 32
  year: 1975
  end-page: 40
  article-title: Estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inform. Theory
– start-page: 46
  year: 2017
  end-page: 55
– volume: 45
  start-page: 47
  year: 1983
  end-page: 50
  article-title: On the convergence of the EM algorithm
  publication-title: J. Royal Stat. Soc. B
– volume: 17
  start-page: 1
  year: 2016
  end-page: 4
  article-title: ERRATA: on the estimation of the gradient lines of a density and the consistency of the mean‐shift algorithm
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  article-title: Mean shift, mode seeking and clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 113
  start-page: 8
  year: 2013
  end-page: 16
  article-title: Dynamics of a mean‐shift‐like algorithms and its applications on clustering
  publication-title: Inf. Process. Lett.
– volume: 9
  start-page: 251
  year: 1990
  end-page: 280
  article-title: Matrix multiplication via arithmetic progressions
  publication-title: J. Symb. Comput.
– volume: 29
  start-page: 767
  year: 2007
  end-page: 776
  article-title: Gaussian mean shift is an EM algorithm
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_6_7_1
  doi: 10.1109/CVPR.2000.854761
– ident: e_1_2_6_31_1
  doi: 10.1109/TC.1976.1674719
– volume: 45
  start-page: 47
  year: 1983
  ident: e_1_2_6_14_1
  article-title: On the convergence of the EM algorithm
  publication-title: J. Royal Stat. Soc. B
  doi: 10.1111/j.2517-6161.1983.tb01229.x
– ident: e_1_2_6_22_1
  doi: 10.1016/j.jmva.2014.11.009
– ident: e_1_2_6_10_1
  doi: 10.1109/34.1000236
– ident: e_1_2_6_16_1
  doi: 10.1007/s10994-014-5435-2
– volume-title: Introduction to nonparametric estimation
  year: 2008
  ident: e_1_2_6_23_1
– ident: e_1_2_6_26_1
  doi: 10.1145/1143844.1143864
– ident: e_1_2_6_33_1
  doi: 10.1016/j.patcog.2005.09.012
– ident: e_1_2_6_11_1
  doi: 10.1109/TPAMI.2005.59
– ident: e_1_2_6_25_1
– volume: 17
  start-page: 1
  year: 2016
  ident: e_1_2_6_19_1
  article-title: ERRATA: on the estimation of the gradient lines of a density and the consistency of the mean‐shift algorithm
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_6_8_1
  doi: 10.1109/TIT.1975.1055330
– ident: e_1_2_6_29_1
  doi: 10.1109/ICCV.2007.4408978
– ident: e_1_2_6_12_1
  doi: 10.1109/TPAMI.2007.1057
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ipl.2012.10.002
– ident: e_1_2_6_2_1
  doi: 10.1109/TKDE.2010.232
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ins.2016.02.020
– ident: e_1_2_6_13_1
  doi: 10.1214/aos/1176346060
– ident: e_1_2_6_28_1
  doi: 10.1016/S0747-7171(08)80013-2
– ident: e_1_2_6_9_1
  doi: 10.1109/34.400568
– ident: e_1_2_6_15_1
  doi: 10.1016/j.patcog.2006.10.016
– ident: e_1_2_6_24_1
  doi: 10.1007/978-1-4899-3324-9
– ident: e_1_2_6_32_1
– ident: e_1_2_6_21_1
  doi: 10.1016/j.patrec.2013.05.004
– ident: e_1_2_6_3_1
  doi: 10.1109/TSMCB.2007.902249
– ident: e_1_2_6_6_1
– ident: e_1_2_6_4_1
  doi: 10.1007/978-3-540-24671-8_19
– ident: e_1_2_6_34_1
  doi: 10.1109/TPAMI.2002.1033218
– ident: e_1_2_6_30_1
  doi: 10.1007/978-3-540-88693-8_52
– volume: 17
  start-page: 1
  year: 2016
  ident: e_1_2_6_18_1
  article-title: On the estimation of the gradient lines of a density and the consistency of the mean‐shift algorithm
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_6_20_1
  doi: 10.1016/j.patcog.2013.04.014
– ident: e_1_2_6_5_1
  doi: 10.1049/iet-spr.2014.0347
SSID ssj0059085
Score 2.185982
Snippet The mean shift (MS) algorithm is an iterative method introduced for locating modes of a probability density function. Although the MS algorithm has been widely...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 2172
SubjectTerms convergence of numerical methods
convergent sequence
density estimate values
generated sequence
iterative methods
kernel density estimate
machine learning
matrix algebra
mean shift algorithm
modified MS algorithm
nonparametric iterative method
original MS algorithm
probability
probability density function
Research Article
upper bound
weight matrix
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_bfPHFb3HqpA_ig1BtkqbtPepwTGEyxMHeSpKmrrB1Y6v_v5e2Gwxhgm_l8gH9JXf3y9cdIbeUYknKhctNoFwfDHfBhNTlOkV3YoRkiX3vPHgP-iP_bSzGDdJdv4Wp4kNsNtysZpT22iq4VFUWEiS1OIiZKdxsYUN60ujB-u0m2aPIZ-w0Z_5wbY5tTm9Rvoq0-eQDAZujTXj81cWWc2pi8TZlLX1O74gc1GTReapG95g0TH5CDmvi6NRquTolncE8yVIrmxmZO6tJlhaOnH7NceU_mZ2RUe_ls9t367wHrvbtDSeGxktLoAlTgkrFNECYArDQeJIn-OFFkhqN4Is0xOUVR0uR6EgoI4xWHvBz0srnubkgDoTgmYBBCor6NNKSSxZIoSFUkTKJaBNv_cOxroOC29wU07g8nPYhRhBixCi2GMUWoza53zRZVBExdlW-s7JaL1a7KvIS6L-7jF-HH-y5h1Q1opf_anVF9q28upRyTVrF8tt0kFoU6qacOj9UXcV2
  priority: 102
  providerName: Wiley-Blackwell
Title Modified mean shift algorithm
URI http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5600
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2018.5600
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_c9uKL3-LUjT6ID0K1SZq2eZwfYxMnQ6wMX0qSplthX2z1_zdpu8lApm8huR70d-3dJbkPgCuE9EpCqE2UJ2yXKWIz5SObyESbE0U5jk2-c-_V64Tu84AOftKj43RoemXYqxM3c1quiswDE7qt9fBdiXHRkET7t3eawE7nprYnCm6NAa9ADevdOa5Crfv4YrZYhWY27b1pniBpWst7lK1vOX9hsmGnKnp503vNzU_7APZKv9FqFYI-hB01PYL90oe0yj90eQyN3ixOEzM3UXxqLUdpkll8PJwt0mw0OYGw_fT-0LHLFgi2dE2wE9Z6THKGYiwo4gJLxvyEMewrh5NYD5yAIyW1HGji650W0UojlgEViiopHEZOoTqdTdUZWMxnjvIwS5hALgokJxx7nErmi0ComNbBWb1wJMv64KZNxTjK76ldFmkQIo1RZDCKDEZ1uFk_Mi-KY2wjvjZzK_FtIyQ50H-zjLr9N3zf1l5rgM7_y_4Cds24CEm5hGq2-FIN7VhkogkV7PabUGt9hJ9hs_x6vgEJecnr
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_bPOjFb3HqtAfxIFSbpGmbo19j020M2WC3kKSpK-wLV_9_89puMAQFbyF5CeTXvq8k7z2ErjG2IwllLjWBcn1uqMtNiF2qE6tODJMkhnjnbi9oDf3XERtV0PMqFqbID7E-cAPOyOU1MDgcSBcOpw9JMlOTuekCcnri6A4UdxVt-QEOwAUjfn8lj6GoN8vDIqGgfMD4-m6T3_9YYkM7Ve3wps2aK53mPtotrUXnofi8B6hiZodor7QcnZIvl0eo0Z3HaQJ9UyNnznKcJpkjJx9z6_qPp8do2HwZPLXcsvCBq3144kSs9NKS45gohqUimvMw4ZyExpM0tg0vkthoiz5LQutfUSsqYh0xZZjRyuP0BNVm85k5RQ4PuWcCwhOusI8jLakkgWSahypSJmZ15K02LHSZFRyKU0xEfjvtc2FBEBYjARgJwKiObtdTFkVKjN-Ib6CvZIzlb4Q0B_rvJUW7_04em9ZWjfDZv2Zdoe3WoNsRnXbv7RztAE3xQuUC1bLPL9OwdkamLvPf6BsS5cji
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_sA8SL3-LUaQ_iQag2TdM2x-kcm7oxxMrwUpI0dYWtG67-_yZtNxjCBG8heQnk176vJO89gCuE1EiMiYmly02HSmxS6SETi1ipE0mYHel45_7A7QbO04iMKtBexsIU-SFWB26aM3J5rRlczqO4cDgdnSQzkZmZzHVOT-TfasVdhbrS55ZTg3rrPfgIlhJZl_UmeWCkLinvErq63aR3vxZZ009VNbxuteZqp7MHO6W9aLSKD7wPFZkewG5pOxolZy4OodmfRUms-6aSpcZinMSZwSafM-X8j6dHEHQe3x66Zln6wBSOfuRkK_klGEWRzQli3BaUejGlticthiPVsHyGpFD4k9hTHhZWwiISPuGSSMEtio-hls5SeQIG9aglXZvGlCMH-YJhZruMCOpxn8uINMBabjgUZV5wXZ5iEub30w4NFQihwijUGIUaowbcrKbMi6QYm4ivdV_JGotNhDgH-u8lw97w1b7vKGvVR6f_mnUJW8N2J3zpDZ7PYFuTFE9UzqGWfX3LpjI0Mn5R_kc_6jDKNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+mean+shift+algorithm&rft.jtitle=IET+image+processing&rft.au=Aliyari+Ghassabeh%2C+Youness&rft.au=Rudzicz%2C+Frank&rft.date=2018-12-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=12&rft.issue=12&rft.spage=2172&rft.epage=2177&rft_id=info:doi/10.1049%2Fiet-ipr.2018.5600&rft.externalDocID=10_1049_iet_ipr_2018_5600
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon