Evaluating multiple classifiers for stock price direction prediction

•We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation and AUC as a performance measure.•Random Forest is the top algorithm.•This study is the first to make such an extensive benchmark in this domai...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 42; no. 20; pp. 7046 - 7056
Main Authors Ballings, Michel, Van den Poel, Dirk, Hespeels, Nathalie, Gryp, Ruben
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2015
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2015.05.013

Cover

Abstract •We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation and AUC as a performance measure.•Random Forest is the top algorithm.•This study is the first to make such an extensive benchmark in this domain. Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case.
AbstractList Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case.
•We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation and AUC as a performance measure.•Random Forest is the top algorithm.•This study is the first to make such an extensive benchmark in this domain. Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case.
Author Van den Poel, Dirk
Hespeels, Nathalie
Ballings, Michel
Gryp, Ruben
Author_xml – sequence: 1
  givenname: Michel
  surname: Ballings
  fullname: Ballings, Michel
  email: Michel.Ballings@utk.edu
  organization: The University of Tennessee, Department of Business Analytics and Statistics, 249 Stokely Management Center, 37996 Knoxville, TN, USA
– sequence: 2
  givenname: Dirk
  surname: Van den Poel
  fullname: Van den Poel, Dirk
  email: Dirk.VandenPoel@UGent.be
  organization: Ghent University, Department of Marketing, Tweekerkenstraat 2, 9000 Ghent, Belgium
– sequence: 3
  givenname: Nathalie
  surname: Hespeels
  fullname: Hespeels, Nathalie
  email: Nathalie.Hespeels@UGent.be
  organization: Ghent University, Department of Marketing, Tweekerkenstraat 2, 9000 Ghent, Belgium
– sequence: 4
  givenname: Ruben
  surname: Gryp
  fullname: Gryp, Ruben
  email: Ruben.Gryp@UGent.be
  organization: Ghent University, Department of Marketing, Tweekerkenstraat 2, 9000 Ghent, Belgium
BookMark eNp9kE1LxDAQhoOs4Lr6Bzz16KVr0jRNCl5kXT9gwYuewzSdStZsuybtiv_e1HrysDAwE5hnyPuck1nbtUjIFaNLRllxs11i-IJlRplY0liMn5A5U5KnhSz5jMxpKWSaM5mfkfMQtpQySamck_v1AdwAvW3fk93gert3mBgHIdjGog9J0_kk9J35SPbeGkxq69H0tmvjG2v7O16Q0wZcwMu_viBvD-vX1VO6eXl8Xt1tUsPLsk9No4BlIrZCmYYpACVUhrxgQPPagEDOK1WhzBiUGRUgFZSiliKjdVXFMAtyPd3d--5zwNDrnQ0GnYMWuyFopjKRF7xQKq5m06rxXQgeGx2_vwP_rRnVozK91aMyPSrTNBbjEVL_IGN7GBP2Hqw7jt5OKMb8h2hOB2OxNTj50nVnj-E_urKKhQ
CitedBy_id crossref_primary_10_1016_j_accinf_2022_100576
crossref_primary_10_1007_s11042_023_14587_8
crossref_primary_10_1109_ACCESS_2019_2946223
crossref_primary_10_1108_EMJB_05_2022_0104
crossref_primary_10_1177_02663821211058666
crossref_primary_10_1007_s00500_022_07714_4
crossref_primary_10_1016_j_asoc_2019_105590
crossref_primary_10_1016_j_eswa_2015_08_034
crossref_primary_10_3389_frai_2023_1283741
crossref_primary_10_1016_j_eswa_2016_02_006
crossref_primary_10_1080_0013791X_2023_2205841
crossref_primary_10_1109_TNNLS_2020_2997523
crossref_primary_10_1016_j_eswa_2021_115022
crossref_primary_10_1016_j_ssaho_2024_100864
crossref_primary_10_17153_oguiibf_1400125
crossref_primary_10_1016_j_eswa_2019_112828
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_1016_j_engappai_2024_108155
crossref_primary_10_3390_s21248282
crossref_primary_10_1007_s11042_023_17062_6
crossref_primary_10_1016_j_cie_2023_109450
crossref_primary_10_1186_s40537_020_00400_y
crossref_primary_10_1007_s11063_017_9587_5
crossref_primary_10_1002_for_3071
crossref_primary_10_1016_j_asoc_2020_106205
crossref_primary_10_1016_j_asoc_2020_106567
crossref_primary_10_2139_ssrn_4861007
crossref_primary_10_1016_j_frl_2022_102809
crossref_primary_10_1016_j_eswa_2024_123966
crossref_primary_10_1016_j_jmsy_2020_07_020
crossref_primary_10_1287_deca_2017_0354
crossref_primary_10_1007_s10614_020_10013_5
crossref_primary_10_1016_j_asoc_2018_04_024
crossref_primary_10_1016_j_eswa_2021_115497
crossref_primary_10_1080_14697688_2022_2041208
crossref_primary_10_1016_j_asoc_2018_11_008
crossref_primary_10_1007_s10614_025_10879_3
crossref_primary_10_1016_j_asoc_2023_110566
crossref_primary_10_1016_j_eswa_2022_118934
crossref_primary_10_2139_ssrn_3403009
crossref_primary_10_1016_j_eswa_2020_113704
crossref_primary_10_32604_iasc_2023_035906
crossref_primary_10_3233_IDA_173670
crossref_primary_10_3390_info12100388
crossref_primary_10_1016_j_procs_2022_12_028
crossref_primary_10_1016_j_jfds_2016_03_002
crossref_primary_10_1007_s42952_023_00245_0
crossref_primary_10_1111_1467_8551_12340
crossref_primary_10_1142_S2282717X19500014
crossref_primary_10_2139_ssrn_3350272
crossref_primary_10_1080_03610918_2022_2116050
crossref_primary_10_1016_j_engappai_2019_103340
crossref_primary_10_1016_j_trpro_2022_02_047
crossref_primary_10_1016_j_dsef_2024_100029
crossref_primary_10_1016_j_eswa_2023_120840
crossref_primary_10_1186_s40854_020_00220_2
crossref_primary_10_48175_IJARSCT_9599
crossref_primary_10_1016_j_array_2025_100374
crossref_primary_10_1016_j_jestch_2021_01_007
crossref_primary_10_1016_j_eswa_2017_12_026
crossref_primary_10_1016_j_asoc_2020_106422
crossref_primary_10_1155_2021_2803147
crossref_primary_10_1155_2020_8285149
crossref_primary_10_1016_j_irfa_2024_103711
crossref_primary_10_1007_s42979_021_00524_9
crossref_primary_10_1016_j_trc_2022_103721
crossref_primary_10_1016_j_engappai_2019_03_019
crossref_primary_10_1016_j_eswa_2022_118472
crossref_primary_10_1016_j_jfds_2019_01_002
crossref_primary_10_1080_19427867_2020_1861504
crossref_primary_10_3390_math11132950
crossref_primary_10_1016_j_eswa_2022_116970
crossref_primary_10_2139_ssrn_4781472
crossref_primary_10_1016_j_neucom_2024_128975
crossref_primary_10_1007_s12530_018_9221_4
crossref_primary_10_1016_j_jfds_2018_04_003
crossref_primary_10_1186_s40537_020_00299_5
crossref_primary_10_1016_j_eswa_2025_127287
crossref_primary_10_1088_1755_1315_924_1_012059
crossref_primary_10_20473_vol11iss20241pp86_104
crossref_primary_10_1109_ACCESS_2020_3015966
crossref_primary_10_1049_cit2_12067
crossref_primary_10_3389_frai_2024_1371502
crossref_primary_10_1016_j_dss_2016_06_013
crossref_primary_10_3390_e24060808
crossref_primary_10_1007_s00521_020_05469_3
crossref_primary_10_1016_j_ecosta_2021_11_001
crossref_primary_10_1371_journal_pone_0230124
crossref_primary_10_1002_for_2848
crossref_primary_10_1016_j_array_2020_100017
crossref_primary_10_1109_ACCESS_2022_3232281
crossref_primary_10_3233_JIFS_189485
crossref_primary_10_4018_JITR_298616
crossref_primary_10_3233_JIFS_189488
crossref_primary_10_1016_j_eswa_2019_01_012
crossref_primary_10_1007_s44196_023_00276_9
crossref_primary_10_35551_PFQ_2023_2_7
crossref_primary_10_3390_e21010025
crossref_primary_10_1016_j_scitotenv_2021_147145
crossref_primary_10_1109_ACCESS_2019_2953807
crossref_primary_10_3390_e22111239
crossref_primary_10_1111_jbfa_12552
crossref_primary_10_1080_2573234X_2018_1507604
crossref_primary_10_1142_S2010495222500038
crossref_primary_10_1142_S2424786321500274
crossref_primary_10_3390_a17060234
crossref_primary_10_3390_electronics10212717
crossref_primary_10_1002_for_2616
crossref_primary_10_2139_ssrn_3974770
crossref_primary_10_1108_JFRA_11_2021_0413
crossref_primary_10_3390_info11060332
crossref_primary_10_1080_01605682_2022_2128908
crossref_primary_10_1080_00949655_2019_1612395
crossref_primary_10_1016_j_eswa_2016_12_034
crossref_primary_10_1371_journal_pone_0290126
crossref_primary_10_1016_j_eswa_2020_114553
crossref_primary_10_1007_s11356_022_19713_x
crossref_primary_10_1016_j_bir_2023_08_005
crossref_primary_10_1051_shsconf_202419401003
crossref_primary_10_2139_ssrn_4511658
crossref_primary_10_2139_ssrn_3144622
crossref_primary_10_1016_j_najef_2021_101421
crossref_primary_10_1016_j_eswa_2016_05_033
crossref_primary_10_1016_j_eswa_2022_117637
crossref_primary_10_1155_2022_7588303
crossref_primary_10_3390_healthcare8040562
crossref_primary_10_1007_s10479_020_03539_2
crossref_primary_10_1016_j_najef_2022_101705
crossref_primary_10_2139_ssrn_4775572
crossref_primary_10_1016_j_neucom_2023_127033
crossref_primary_10_1016_j_bir_2024_01_011
crossref_primary_10_1016_j_asoc_2021_107734
crossref_primary_10_1109_ACCESS_2020_2990611
crossref_primary_10_1016_j_eswa_2021_115716
crossref_primary_10_4018_JITR_2020010109
crossref_primary_10_1007_s12065_020_00528_z
crossref_primary_10_1016_j_eswa_2020_114206
crossref_primary_10_1093_comjnl_bxab038
crossref_primary_10_1109_ACCESS_2020_3002174
crossref_primary_10_1371_journal_pone_0212487
crossref_primary_10_1016_j_eswa_2018_08_003
crossref_primary_10_1007_s10614_019_09922_x
crossref_primary_10_1080_0952813X_2019_1620870
crossref_primary_10_1155_2022_9916310
crossref_primary_10_1002_for_2632
crossref_primary_10_1007_s11063_022_10767_z
crossref_primary_10_3390_jrfm14020048
crossref_primary_10_1016_j_resourpol_2023_104248
crossref_primary_10_1002_fut_22453
crossref_primary_10_32604_cmes_2023_031388
crossref_primary_10_1007_s00354_020_00104_0
crossref_primary_10_3390_math9212646
crossref_primary_10_1177_09721509241234033
crossref_primary_10_1016_j_dss_2015_11_003
crossref_primary_10_1016_j_procs_2021_10_071
crossref_primary_10_1007_s10614_024_10670_w
crossref_primary_10_1016_j_physa_2021_126008
crossref_primary_10_3390_ijfs7020026
crossref_primary_10_1016_j_eswa_2015_07_063
crossref_primary_10_1109_ACCESS_2020_2969293
crossref_primary_10_3390_electronics12183960
crossref_primary_10_1016_j_mlwa_2022_100355
crossref_primary_10_1016_j_iswa_2024_200449
crossref_primary_10_1016_j_eswa_2017_03_045
crossref_primary_10_3390_admsci10030052
crossref_primary_10_1016_j_eswa_2022_119184
crossref_primary_10_1016_j_eswa_2021_115537
crossref_primary_10_1155_2024_8515203
crossref_primary_10_1186_s40854_021_00243_3
crossref_primary_10_1007_s10614_021_10228_0
crossref_primary_10_1016_j_eswa_2022_119186
crossref_primary_10_1002_for_2933
crossref_primary_10_1088_1742_6596_2033_1_012003
crossref_primary_10_1016_j_physa_2021_126810
crossref_primary_10_1016_j_econlet_2021_109917
crossref_primary_10_1016_j_asoc_2021_107320
crossref_primary_10_1016_j_gfj_2023_100904
crossref_primary_10_1016_j_physa_2019_122272
crossref_primary_10_1080_08839514_2022_2151159
crossref_primary_10_1016_j_eswa_2015_09_016
crossref_primary_10_1016_j_eswa_2024_123476
crossref_primary_10_2139_ssrn_3866415
crossref_primary_10_3390_jrfm17070293
crossref_primary_10_1016_j_eswa_2020_113668
crossref_primary_10_2139_ssrn_3809308
crossref_primary_10_1155_2019_4132485
crossref_primary_10_1177_00368504241236557
crossref_primary_10_2139_ssrn_4128509
crossref_primary_10_2139_ssrn_4546402
crossref_primary_10_3390_su11164355
crossref_primary_10_1007_s10479_022_04892_0
crossref_primary_10_3390_econometrics12020016
crossref_primary_10_1016_j_physa_2020_124444
crossref_primary_10_31590_ejosat_820940
crossref_primary_10_1007_s00521_020_05131_y
crossref_primary_10_1016_j_physa_2019_121073
crossref_primary_10_3390_risks11020027
crossref_primary_10_1088_1755_1315_704_1_012014
crossref_primary_10_29029_busbed_1391790
crossref_primary_10_3390_fi14060180
crossref_primary_10_1108_CFRI_12_2022_0250
crossref_primary_10_1016_j_trc_2023_104318
crossref_primary_10_1007_s10614_020_10016_2
crossref_primary_10_1016_j_eswa_2023_119585
crossref_primary_10_2139_ssrn_3318051
crossref_primary_10_24017_science_2020_1_3
crossref_primary_10_1016_j_neucom_2022_09_003
crossref_primary_10_26468_trakyasobed_1514346
crossref_primary_10_1016_j_jksuci_2023_101737
crossref_primary_10_1155_2022_3745377
crossref_primary_10_1142_S0219091524500280
crossref_primary_10_1016_j_physa_2018_07_017
crossref_primary_10_1016_j_patcog_2023_109759
crossref_primary_10_1007_s41060_023_00435_3
crossref_primary_10_3390_su15010105
crossref_primary_10_1016_j_frl_2022_102859
crossref_primary_10_29121_shodhkosh_v5_i6_2024_3945
crossref_primary_10_37648_ijtbm_v13i01_010
crossref_primary_10_1016_j_eswa_2018_11_012
crossref_primary_10_1007_s42979_024_02715_6
crossref_primary_10_3390_ijfs11010031
crossref_primary_10_1371_journal_pone_0253121
crossref_primary_10_3846_mla_2017_1023
crossref_primary_10_1007_s10258_023_00246_1
crossref_primary_10_1007_s12530_023_09500_5
crossref_primary_10_1007_s10462_019_09754_z
crossref_primary_10_1155_2022_5974842
crossref_primary_10_2139_ssrn_3306250
crossref_primary_10_1016_j_asoc_2021_107112
crossref_primary_10_1016_j_eswa_2022_118908
crossref_primary_10_1080_23080477_2019_1605474
crossref_primary_10_1142_S0219622022500468
crossref_primary_10_32604_csse_2022_017685
crossref_primary_10_1080_1206212X_2019_1593614
crossref_primary_10_1016_j_knosys_2017_09_023
crossref_primary_10_1016_j_eswa_2020_113973
crossref_primary_10_1016_j_eswa_2020_113730
crossref_primary_10_2139_ssrn_3862428
crossref_primary_10_1007_s11227_023_05562_z
crossref_primary_10_1109_ACCESS_2019_2945907
crossref_primary_10_1007_s43546_023_00497_2
crossref_primary_10_33818_ier_805042
crossref_primary_10_1155_2022_4964394
crossref_primary_10_3390_healthcare10061087
crossref_primary_10_1007_s00521_020_04877_9
crossref_primary_10_1016_j_eswa_2024_125457
crossref_primary_10_1016_j_ins_2022_05_078
crossref_primary_10_1016_j_jclimf_2022_100002
crossref_primary_10_1002_cpe_6076
crossref_primary_10_1016_j_eswa_2017_11_029
crossref_primary_10_1007_s11227_017_2228_y
crossref_primary_10_1016_j_eswa_2022_116941
crossref_primary_10_1016_j_eswa_2022_118324
crossref_primary_10_4018_IJCAC_305858
crossref_primary_10_3390_sym12081272
crossref_primary_10_32604_cmc_2023_036553
crossref_primary_10_1016_j_eswa_2019_03_029
crossref_primary_10_11159_jmids_2023_002
crossref_primary_10_1080_2573234X_2023_2263522
crossref_primary_10_1016_j_sciaf_2024_e02161
crossref_primary_10_2139_ssrn_4074883
crossref_primary_10_3390_e22080840
crossref_primary_10_1016_j_eswa_2018_06_016
crossref_primary_10_3390_w11020228
crossref_primary_10_1108_AJEB_11_2021_0131
crossref_primary_10_4018_IJKBO_307147
crossref_primary_10_1109_ACCESS_2023_3303283
crossref_primary_10_1016_j_eswa_2021_115796
crossref_primary_10_3390_ijfs11030094
crossref_primary_10_3390_risks10120225
crossref_primary_10_1016_j_eswa_2017_04_003
crossref_primary_10_1016_j_jclimf_2024_100058
crossref_primary_10_32604_iasc_2023_034582
crossref_primary_10_3390_jrfm14050198
crossref_primary_10_1016_j_ress_2016_12_012
crossref_primary_10_22495_cocv20i1art10
crossref_primary_10_1016_j_cie_2023_109023
crossref_primary_10_1088_1742_6596_892_1_012018
Cites_doi 10.1111/j.1540-6261.1995.tb04055.x
10.1016/S0957-4174(01)00058-6
10.1016/j.eswa.2008.05.027
10.1016/S0957-4174(00)00027-0
10.1016/j.eswa.2007.05.035
10.1016/j.eswa.2014.06.036
10.1016/j.eswa.2012.07.006
10.1007/s00521-013-1461-4
10.1016/S0165-0114(98)00399-6
10.1016/j.asoc.2014.12.028
10.1016/j.eswa.2014.07.040
10.1016/j.cor.2004.03.016
10.1016/S0925-2312(03)00372-2
10.1016/S0167-9473(01)00065-2
10.1111/j.1540-6261.1970.tb00518.x
10.1016/j.asoc.2014.01.039
10.1016/j.eswa.2013.12.009
10.1016/S0169-2070(99)00048-5
10.1016/j.physa.2013.08.003
10.1023/A:1008768404046
10.1023/A:1010933404324
10.1145/361002.361007
10.1111/0022-1082.00265
10.1016/j.eswa.2012.12.007
10.1080/01621459.1937.10503522
10.1016/0925-2312(95)00052-6
10.1016/j.eswa.2014.04.028
10.1016/j.jimonfin.2005.08.002
10.1016/j.intfin.2013.11.002
10.1007/s10489-006-0001-7
10.1016/S0304-3800(02)00204-1
10.1257/089533003321164958
10.1016/j.ejor.2015.01.001
10.1007/3-540-45014-9_1
10.5539/mas.v3n12p28
10.1214/09-SS054
10.1214/aos/1016218223
10.1016/j.eswa.2014.10.001
10.1109/TNN.2005.849817
10.1016/S0169-2070(98)00003-X
10.1186/1471-2105-7-3
10.1016/j.eswa.2014.09.026
10.18637/jss.v017.i02
10.1016/S0957-4174(01)00047-1
10.1016/j.eswa.2008.02.025
10.1016/j.ejor.2009.03.008
10.1016/j.eswa.2005.09.026
10.1016/j.eswa.2010.10.027
10.1214/aoms/1177731944
10.1016/S1532-0464(03)00034-0
10.1016/j.eswa.2009.02.038
10.1016/j.eswa.2013.06.071
10.1198/016214502753479248
10.18637/jss.v033.i01
10.1007/s00521-004-0428-x
10.1109/72.935086
10.1109/72.728395
10.1016/0925-2312(90)90013-H
10.3923/jai.2008.70.77
10.1016/j.eswa.2015.01.060
10.1145/240455.240464
10.1111/j.2517-6161.1996.tb02080.x
10.1214/aos/1013203451
10.1016/j.omega.2004.07.024
10.1109/IJCNN.2013.6706743
10.1016/j.eswa.2006.05.002
10.1016/0927-538X(95)00002-3
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.05.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 7056
ExternalDocumentID 10_1016_j_eswa_2015_05_013
S0957417415003334
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-cf8a125cf868cf18aa8582e361a04dca5e33b8be721a9205a78a95d7520dbb873
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Sep 28 11:00:32 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Wed Oct 01 03:51:45 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Stock price direction prediction
Benchmark
Ensemble methods
Single classifiers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-cf8a125cf868cf18aa8582e361a04dca5e33b8be721a9205a78a95d7520dbb873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825463688
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1825463688
crossref_primary_10_1016_j_eswa_2015_05_013
crossref_citationtrail_10_1016_j_eswa_2015_05_013
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_05_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-15
PublicationDateYYYYMMDD 2015-11-15
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Culp, M., Johnson, K., & Michailidis, G. (2012). R package ada: An R package for stochastic boosting. Available at
Dreiseitl, Ohno-Machado (b0130) 2002; 35
Chen, Chen, Fan, Huang (b0095) 2013; 23
Kim, Han (b0265) 2000; 19
Arlot, Celisse (b0010) 2010; 4
Lunga, Marwala (b0315) 2006; Vol. 4234
Brownstone (b0085) 1996; 10
Dietterich, T.G. (2000). Ensemble methods in machine learning. In: Kittler, J., Roli, F. (Eds.), Multiple classifier systems (pp. 1–15).
Venables, Ripley (b0460) 2002
Booth, Gerding, McGroarty (b0065) 2014; 41
Breiman, Friedman, Stone, Olshen (b0075) 1984
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2010).
Lo, Mamaysky, Wang (b0310) 2000; 55
Friedman, Hastie, Tibshirani (b0195) 2010; 33
Dudoit, Fridlyand, Speed (b0135) 2002; 97
Oh, Kim (b0345) 2002; 22
Kim, Chun (b0260) 1998; 14
Lai, Fan, Chang (b0285) 2009; 36
De Oliveira, Nobre, Zárate (b0110) 2013; 40
Friedman, J., Hastie, T., & Tibshirani, R. (2013). R package glmnet: Lasso and elastic-net regularized generalized linear models. Available at
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). R package e1071: Misc functions of the department of statistics (e1071). Available at
Fayyad, Piatetsky-Shapiro, Smyth (b0140) 1996; 39
Bisoi, Dash (b0060) 2014; 19
(pp. 285–289).
Tan, Chen, Zhou, Zhang (b0445) 2005; 16
Hellström, T., Holmströmm, K. (1998). Predictable Patterns in Stock Returns.
Liaw, Wiener (b0300) 2002; 2
Kara, Boyacioglu, Baykan (b0250) 2011; 38
.
Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.
(August 2013).
Ben-Hur, Weston (b0040) 2010
Barak, Modarres (b0035) 2015; 42
Ou, Wang (b0350) 2009; 3
Spackman, K. A, (1991). Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression. In
Pesaran, Timmermann (b0370) 1995; 50
Ballings, Van den Poel (b0030) 2015; 244
Zhou (b0495) 2012
Wu, Lin, Lin (b0485) 2006; 31
Paleologo, Elisseeff, Antonini (b0360) 2010; 201
Ballings, Van den Poel (b0025) 2013; 40
Friedman, Hastie, Tibshirani (b0185) 2000; 28
Rechenthin, Street (b0390) 2013; 392
Huang, Yang, Chuang (b0235) 2008; 34
Friedman (b0175) 2002; 38
SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, January 24, 2006.
Leung, Daouk, Chen (b0295) 2000; 16
Provost, Fawcett, Kohavi (b0375) 1997
Gençay, Qi (b0200) 2001; 12
Qian, Rasheed (b0380) 2007; 26
Rechenthin, M., Street, W. N., & Srinivasan, P. (2013). Stock chatter: using stock sentiment to predict price direction (SSRN Scholarly Paper No. ID 2380419). Social Science Research Network, Rochester, NY.
Bentley (b0045) 1975; 18
Sarle, W. S. (1997). Should I standardize the input variables (column vectors)?, periodic posting to the Usenet newsgroup comp.ai.neural-nets, Neural Network FAQ, part 2 of 7. URL
Ji, Che, Zong (b0240) 2014
Kim, Lee (b0270) 2004; 13
Brody, Navigli, Lapata (b0080) 2006
Guisan, Edwards, Hastie (b0205) 2002; 157
Burez, Van den Poel (b0090) 2009; 36
Huang, Nakamori, Wang (b0230) 2005; 32
Patel, Shah, Thakkar, Kotecha (b0365) 2015; 42
Wang (b0465) January 2002; 22
Freund, Schapire (b0150) 1995; Vol. 904
Tsinaslanidis, Kugiumtzis (b0455) 2014; 41
Ripley, B. (2013). R package nnet: Feed-forward neural networks and multinomial log-linear models. Available at
Lee (b0290) 2009; 36
Friedman, Hastie, Tibshirani (b0190) 2010; 33
Senol, Ozturan (b0430) 2008; 1
Ballings, M., & Van den Poel, D. (2013b). R package kernelFactory: An ensemble of kernel machines. Available at
Friedman (b0170) 2002; 38
Bessembinder, Chan (b0050) July 1995; 3
Friedman (b0160) 1940; 11
Pai, Lin (b0355) 2005; 33
Saad, Prokhorov, Wunsch (b0410) 1996; 4
Kim (b0255) 2003; 55
Demšar (b0115) December 2006; 7
Kuo, Chen, Hwang (b0280) 2001; 118
Saad, Prokhorov, Wunsch (b0415) 1998; 9
Breiman (b0070) 2001; 45
Tibshirani (b0450) 1996; 58
Widom (b0480) 1995
Friedman (b0155) 1937; 32
(PhD thesis), Princeton University.
Malkiel (b0320) 2003; 17
Al-Hmouz, Pedrycz, Balamash (b0005) 2015; 42
Lin, Y., Guo, H., & Hu, J., (2013). An SVM-based Approach for Stock Market Trend Prediction. Neural Networks (IJCNN)
Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In
Subha, Nambi (b0440) 2012; 9
Wang, Chan (b0470) 2007; 33
Diaz-Uriarte, de Andres (b0120) 2006; 7
Kumar, M., & Thenmozhi, M. (2006).
Yeh, Hsu (b0490) 2014; 41
Ballings, Van den Poel (b0015) 2012; 39
Manahov, Hudson, Gebka (b0330) January 2014; 28
Schöneburg (b0425) June 1990; 2
Hafezi, Shahrabi, Hadavandi (b0210) 2015; 29
Kaboudan (b0245) 2000; 16
(pp. 148–156). Bari, Italy.
Nemenyi. P. B. (1963).
Wei, Cheng (b0475) 2011; 8
(August 9, 1998).
Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., & Shengqiao, L. (2013). R package: FNN, fast nearest neighbor search algorithms and applications. Available at
Ripley (b0395) 1996
Rodriguez, Rodriguez (b0405) 2004
Cheung, Chinn, Pascual (b0100) 2005; 24
Friedman (b0165) Oct. 2001; 29
Hand, Mannila, Smyth (b0215) 2001
Zikowski (b0500) 2015; 42
Malkiel, Fama (b0325) 1970; 25
10.1016/j.eswa.2015.05.013_b0055
10.1016/j.eswa.2015.05.013_b0335
Widom (10.1016/j.eswa.2015.05.013_b0480) 1995
Wang (10.1016/j.eswa.2015.05.013_b0470) 2007; 33
Wu (10.1016/j.eswa.2015.05.013_b0485) 2006; 31
Huang (10.1016/j.eswa.2015.05.013_b0235) 2008; 34
Ben-Hur (10.1016/j.eswa.2015.05.013_b0040) 2010
10.1016/j.eswa.2015.05.013_b0180
Hafezi (10.1016/j.eswa.2015.05.013_b0210) 2015; 29
Tibshirani (10.1016/j.eswa.2015.05.013_b0450) 1996; 58
Malkiel (10.1016/j.eswa.2015.05.013_b0325) 1970; 25
Ballings (10.1016/j.eswa.2015.05.013_b0025) 2013; 40
Paleologo (10.1016/j.eswa.2015.05.013_b0360) 2010; 201
Fayyad (10.1016/j.eswa.2015.05.013_b0140) 1996; 39
Brody (10.1016/j.eswa.2015.05.013_b0080) 2006
Liaw (10.1016/j.eswa.2015.05.013_b0300) 2002; 2
Senol (10.1016/j.eswa.2015.05.013_b0430) 2008; 1
Kim (10.1016/j.eswa.2015.05.013_b0255) 2003; 55
Kim (10.1016/j.eswa.2015.05.013_b0270) 2004; 13
Lee (10.1016/j.eswa.2015.05.013_b0290) 2009; 36
10.1016/j.eswa.2015.05.013_b0275
Oh (10.1016/j.eswa.2015.05.013_b0345) 2002; 22
10.1016/j.eswa.2015.05.013_b0435
Kaboudan (10.1016/j.eswa.2015.05.013_b0245) 2000; 16
Pai (10.1016/j.eswa.2015.05.013_b0355) 2005; 33
Brownstone (10.1016/j.eswa.2015.05.013_b0085) 1996; 10
Tsinaslanidis (10.1016/j.eswa.2015.05.013_b0455) 2014; 41
Saad (10.1016/j.eswa.2015.05.013_b0415) 1998; 9
Breiman (10.1016/j.eswa.2015.05.013_b0070) 2001; 45
10.1016/j.eswa.2015.05.013_b0020
Schöneburg (10.1016/j.eswa.2015.05.013_b0425) 1990; 2
10.1016/j.eswa.2015.05.013_b0385
Ballings (10.1016/j.eswa.2015.05.013_b0015) 2012; 39
10.1016/j.eswa.2015.05.013_b0145
10.1016/j.eswa.2015.05.013_b0420
Cheung (10.1016/j.eswa.2015.05.013_b0100) 2005; 24
Saad (10.1016/j.eswa.2015.05.013_b0410) 1996; 4
10.1016/j.eswa.2015.05.013_b0305
Zikowski (10.1016/j.eswa.2015.05.013_b0500) 2015; 42
Friedman (10.1016/j.eswa.2015.05.013_b0195) 2010; 33
Burez (10.1016/j.eswa.2015.05.013_b0090) 2009; 36
Friedman (10.1016/j.eswa.2015.05.013_b0160) 1940; 11
Hand (10.1016/j.eswa.2015.05.013_b0215) 2001
Friedman (10.1016/j.eswa.2015.05.013_b0165) 2001; 29
Friedman (10.1016/j.eswa.2015.05.013_b0155) 1937; 32
Ji (10.1016/j.eswa.2015.05.013_b0240) 2014
Bentley (10.1016/j.eswa.2015.05.013_b0045) 1975; 18
Lai (10.1016/j.eswa.2015.05.013_b0285) 2009; 36
Qian (10.1016/j.eswa.2015.05.013_b0380) 2007; 26
Bessembinder (10.1016/j.eswa.2015.05.013_b0050) 1995; 3
Breiman (10.1016/j.eswa.2015.05.013_b0075) 1984
Malkiel (10.1016/j.eswa.2015.05.013_b0320) 2003; 17
10.1016/j.eswa.2015.05.013_b0125
10.1016/j.eswa.2015.05.013_b0400
Yeh (10.1016/j.eswa.2015.05.013_b0490) 2014; 41
Dudoit (10.1016/j.eswa.2015.05.013_b0135) 2002; 97
Kuo (10.1016/j.eswa.2015.05.013_b0280) 2001; 118
Wei (10.1016/j.eswa.2015.05.013_b0475) 2011; 8
Lunga (10.1016/j.eswa.2015.05.013_b0315) 2006; Vol. 4234
Leung (10.1016/j.eswa.2015.05.013_b0295) 2000; 16
Friedman (10.1016/j.eswa.2015.05.013_b0190) 2010; 33
Gençay (10.1016/j.eswa.2015.05.013_b0200) 2001; 12
Zhou (10.1016/j.eswa.2015.05.013_b0495) 2012
Subha (10.1016/j.eswa.2015.05.013_b0440) 2012; 9
Pesaran (10.1016/j.eswa.2015.05.013_b0370) 1995; 50
Provost (10.1016/j.eswa.2015.05.013_b0375) 1997
Friedman (10.1016/j.eswa.2015.05.013_b0175) 2002; 38
Rodriguez (10.1016/j.eswa.2015.05.013_b0405) 2004
Patel (10.1016/j.eswa.2015.05.013_b0365) 2015; 42
Friedman (10.1016/j.eswa.2015.05.013_b0185) 2000; 28
Ballings (10.1016/j.eswa.2015.05.013_b0030) 2015; 244
Demšar (10.1016/j.eswa.2015.05.013_b0115) 2006; 7
Booth (10.1016/j.eswa.2015.05.013_b0065) 2014; 41
Guisan (10.1016/j.eswa.2015.05.013_b0205) 2002; 157
Ou (10.1016/j.eswa.2015.05.013_b0350) 2009; 3
Kim (10.1016/j.eswa.2015.05.013_b0265) 2000; 19
Wang (10.1016/j.eswa.2015.05.013_b0465) 2002; 22
Diaz-Uriarte (10.1016/j.eswa.2015.05.013_b0120) 2006; 7
Ripley (10.1016/j.eswa.2015.05.013_b0395) 1996
De Oliveira (10.1016/j.eswa.2015.05.013_b0110) 2013; 40
Arlot (10.1016/j.eswa.2015.05.013_b0010) 2010; 4
Rechenthin (10.1016/j.eswa.2015.05.013_b0390) 2013; 392
Chen (10.1016/j.eswa.2015.05.013_b0095) 2013; 23
Tan (10.1016/j.eswa.2015.05.013_b0445) 2005; 16
Venables (10.1016/j.eswa.2015.05.013_b0460) 2002
Manahov (10.1016/j.eswa.2015.05.013_b0330) 2014; 28
10.1016/j.eswa.2015.05.013_b0340
10.1016/j.eswa.2015.05.013_b0220
Huang (10.1016/j.eswa.2015.05.013_b0230) 2005; 32
10.1016/j.eswa.2015.05.013_b0225
10.1016/j.eswa.2015.05.013_b0105
Freund (10.1016/j.eswa.2015.05.013_b0150) 1995; Vol. 904
Barak (10.1016/j.eswa.2015.05.013_b0035) 2015; 42
Bisoi (10.1016/j.eswa.2015.05.013_b0060) 2014; 19
Al-Hmouz (10.1016/j.eswa.2015.05.013_b0005) 2015; 42
Dreiseitl (10.1016/j.eswa.2015.05.013_b0130) 2002; 35
Friedman (10.1016/j.eswa.2015.05.013_b0170) 2002; 38
Kim (10.1016/j.eswa.2015.05.013_b0260) 1998; 14
Kara (10.1016/j.eswa.2015.05.013_b0250) 2011; 38
Lo (10.1016/j.eswa.2015.05.013_b0310) 2000; 55
References_xml – reference: Sarle, W. S. (1997). Should I standardize the input variables (column vectors)?, periodic posting to the Usenet newsgroup comp.ai.neural-nets, Neural Network FAQ, part 2 of 7. URL <
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: b0155
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 323
  year: 1998
  end-page: 337
  ident: b0260
  article-title: Graded forecasting using an array of bipolar predictions: Application of probabilistic neural networks to a stock market index
  publication-title: International Journal of Forecasting
– volume: 11
  start-page: 86
  year: 1940
  end-page: 92
  ident: b0160
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
– volume: 31
  start-page: 270
  year: 2006
  end-page: 274
  ident: b0485
  article-title: An effective application of decision tree to stock trading
  publication-title: Expert Systems with Applications
– volume: Vol. 4234
  start-page: 440
  year: 2006
  end-page: 449
  ident: b0315
  article-title: Online forecasting of stock market movement direction using the improved incremental algorithm
  publication-title: Neural Information Processing
– reference: Ballings, M., & Van den Poel, D. (2013b). R package kernelFactory: An ensemble of kernel machines. Available at:
– volume: 201
  start-page: 490
  year: 2010
  end-page: 499
  ident: b0360
  article-title: Subagging for credit scoring models
  publication-title: European Journal of Operational Research
– volume: 19
  start-page: 41
  year: 2014
  end-page: 56
  ident: b0060
  article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter
  publication-title: Applied Soft Computing
– volume: 39
  start-page: 13517
  year: 2012
  end-page: 13522
  ident: b0015
  article-title: Customer event history for churn prediction: How long is long enough?
  publication-title: Expert Systems with Applications
– year: 2012
  ident: b0495
  article-title: Ensemble methods: Foundations and algorithms, machine learning & pattern recognition series
– start-page: 97
  year: 2006
  end-page: 104
  ident: b0080
  article-title: Ensemble methods for unsupervised WSD
  publication-title: Proceedings of the 21st international conference on computational linguistics and the 44th annual meeting of the association for computational linguistics
– volume: 39
  start-page: 27
  year: 1996
  end-page: 34
  ident: b0140
  article-title: The KDD process for extracting useful knowledge from volumes of data
  publication-title: Communications ACM
– volume: 40
  start-page: 2904
  year: 2013
  end-page: 2913
  ident: b0025
  article-title: Kernel factory: An ensemble of kernel machines
  publication-title: Expert Systems with Applications
– reference: Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In
– reference: Lin, Y., Guo, H., & Hu, J., (2013). An SVM-based Approach for Stock Market Trend Prediction. Neural Networks (IJCNN),
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: b0010
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Statistics Surveys
– volume: 16
  start-page: 875
  year: 2005
  end-page: 886
  ident: b0445
  article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and Soft k-NN ensemble
  publication-title: IEEE Transactions on Neural Networks
– volume: 22
  start-page: 249
  year: 2002
  end-page: 255
  ident: b0345
  article-title: Analyzing stock market tick data using piecewise nonlinear model
  publication-title: Expert Systems with Applications
– reference: Culp, M., Johnson, K., & Michailidis, G. (2012). R package ada: An R package for stochastic boosting. Available at:
– volume: 38
  start-page: 5311
  year: 2011
  end-page: 5319
  ident: b0250
  article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange
  publication-title: Expert Systems with Applications
– reference: (pp. 148–156). Bari, Italy.
– reference: Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). R package e1071: Misc functions of the department of statistics (e1071). Available at:
– volume: 42
  start-page: 1797
  year: 2015
  end-page: 1805
  ident: b0500
  article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy
  publication-title: Expert Systems with Applications
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: b0190
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
– reference: Hellström, T., Holmströmm, K. (1998). Predictable Patterns in Stock Returns.
– volume: 50
  start-page: 1201
  year: 1995
  end-page: 1228
  ident: b0370
  article-title: Predictability of stock returns: Robustness and economic significance
  publication-title: The Journal of Finance
– volume: 24
  start-page: 1150
  year: 2005
  end-page: 1175
  ident: b0100
  article-title: Empirical exchange rate models of the nineties: Are any fit to survive?
  publication-title: Journal of International Money and Finance
– volume: 22
  start-page: 33
  year: January 2002
  end-page: 38
  ident: b0465
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Systems with Applications
– year: 1984
  ident: b0075
  publication-title: Classification and regression trees
– volume: 34
  start-page: 2870
  year: 2008
  end-page: 2878
  ident: b0235
  article-title: Application of wrapper approach and composite classifier to the stock trend prediction
  publication-title: Expert Systems with Applications
– reference: (pp. 285–289).
– reference: Spackman, K. A, (1991). Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression. In
– volume: 16
  start-page: 173
  year: 2000
  end-page: 190
  ident: b0295
  article-title: Forecasting stock indices: A comparison of classification and level estimation models
  publication-title: International Journal of Forecasting
– start-page: 955
  year: 2014
  end-page: 962
  ident: b0240
  article-title: Stock market forecast based on RBF neural network
  publication-title: Practical Applications of Intelligent Systems, Iske 2013
– volume: 17
  start-page: 59
  year: 2003
  end-page: 82
  ident: b0320
  article-title: The efficient market hypothesis and its critics
  publication-title: The Journal of Economic Perspectives
– volume: 36
  start-page: 4626
  year: 2009
  end-page: 4636
  ident: b0090
  article-title: Handling class imbalance in customer churn prediction
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 3
  year: 2006
  ident: b0120
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics 2006
– volume: 9
  start-page: 261
  year: 2012
  end-page: 270
  ident: b0440
  article-title: Classification of Stock Index movement using K-nearest neighbours (k-NN) algorithm
  publication-title: WSEAS Transactions on Information Science & Applications
– volume: 33
  start-page: 304
  year: 2007
  end-page: 315
  ident: b0470
  article-title: Stock market trading rule discovery using pattern recognition and technical analysis
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 255
  year: 2004
  end-page: 260
  ident: b0270
  article-title: Stock market prediction using artificial neural networks with optimal feature transformation
  publication-title: Neural Computing & Applications
– reference: Kumar, M., & Thenmozhi, M. (2006).
– volume: 392
  start-page: 6169
  year: 2013
  end-page: 6188
  ident: b0390
  article-title: Using conditional probability to identify trends in intra-day high-frequency equity pricing
  publication-title: Physica A
– reference: (PhD thesis), Princeton University.
– year: 2001
  ident: b0215
  article-title: Principles of data mining
– reference: Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., & Shengqiao, L. (2013). R package: FNN, fast nearest neighbor search algorithms and applications. Available at:
– volume: 2
  start-page: 17
  year: June 1990
  end-page: 27
  ident: b0425
  article-title: Stock price prediction using neural networks: A project report
  publication-title: Neurocomputing
– volume: 26
  start-page: 25
  year: 2007
  end-page: 33
  ident: b0380
  article-title: Stock market prediction with multiple classifiers
  publication-title: Applied Intelligence
– volume: 25
  start-page: 383
  year: 1970
  end-page: 417
  ident: b0325
  article-title: Efficient capital markets: A review of theory and empirical work∗
  publication-title: The Journal of Finance
– start-page: 25
  year: 1995
  end-page: 30
  ident: b0480
  article-title: Research problems in data warehousing
  publication-title: Proceedings of the fourth international conference on information and knowledge management, CIKM ’95
– start-page: 45
  year: 1997
  end-page: 453
  ident: b0375
  article-title: The case against accuracy estimation for comparing induction algorithms
  publication-title: Proceedings of the fifteenth international conference on machine learning
– volume: 42
  start-page: 4830
  year: 2015
  end-page: 4839
  ident: b0005
  article-title: Description and prediction of time series: A general framework of granular computing
  publication-title: Expert Systems with Applications
– volume: 97
  start-page: 77
  year: 2002
  end-page: 87
  ident: b0135
  article-title: Comparison of discrimination methods for the classification of tumors using gene expression data
  publication-title: Journal of the American Statistical Association
– volume: 3
  start-page: P28
  year: 2009
  ident: b0350
  article-title: Prediction of stock market index movement by ten data mining techniques
  publication-title: Modern Applied Science
– volume: 1
  start-page: 70
  year: 2008
  end-page: 77
  ident: b0430
  article-title: Stock price direction prediction using artificial neural network approach: The case of turkey
  publication-title: Journal of Artificial Intelligence
– volume: 3
  start-page: 257
  year: July 1995
  end-page: 284
  ident: b0050
  article-title: The profitability of technical trading rules in the asian stock markets
  publication-title: Pacific-Basin Finance Journal
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: b0195
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
– volume: 36
  start-page: 10896
  year: 2009
  end-page: 10904
  ident: b0290
  article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction
  publication-title: Expert Systems with Applications
– year: 2002
  ident: b0460
  article-title: Modern Applied Statistics with S
– year: 1996
  ident: b0395
  article-title: Pattern recognition and neural networks
– reference: Rechenthin, M., Street, W. N., & Srinivasan, P. (2013). Stock chatter: using stock sentiment to predict price direction (SSRN Scholarly Paper No. ID 2380419). Social Science Research Network, Rochester, NY.
– volume: 9
  start-page: 1456
  year: 1998
  end-page: 1470
  ident: b0415
  article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
  publication-title: IEEE Transactions on Neural Networks
– volume: 42
  start-page: 259
  year: 2015
  end-page: 268
  ident: b0365
  article-title: Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques
  publication-title: Expert Systems with Applications
– reference: Nemenyi. P. B. (1963).
– volume: 55
  start-page: 1705
  year: 2000
  end-page: 1770
  ident: b0310
  article-title: Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation
  publication-title: The Journal of Finance
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: b0130
  article-title: Logistic regression and artificial neural network classification models: A methodology review
  publication-title: Journal of Biomedical Informatics
– volume: 42
  start-page: 1325
  year: 2015
  end-page: 1339
  ident: b0035
  article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods
  publication-title: Expert Systems with Applications.
– volume: 23
  start-page: S369
  year: 2013
  end-page: S378
  ident: b0095
  article-title: International transmission of stock market movements: An adaptive neuro-fuzzy inference system for analysis of TAIEX forecasting
  publication-title: Neural Computing and Applications
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: b0170
  article-title: Stochastic gradient boosting
  publication-title: Computational Statistics & Data Analysis
– reference: (August 2013).
– year: 2004
  ident: b0405
  article-title: Predicting stock market indices movements
  publication-title: Computational Finance and its Applications
– reference: Ripley, B. (2013). R package nnet: Feed-forward neural networks and multinomial log-linear models. Available at:
– reference: Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2010).
– volume: 33
  start-page: 497
  year: 2005
  end-page: 505
  ident: b0355
  article-title: A hybrid ARIMA and support vector machines model in stock price forecasting
  publication-title: Omega
– start-page: 223
  year: 2010
  end-page: 239
  ident: b0040
  publication-title: A user’s guide to support vector machines
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0300
  article-title: Classification and regression by random Forest
  publication-title: R News
– volume: 28
  start-page: 131
  year: January 2014
  end-page: 157
  ident: b0330
  article-title: Does high frequency trading affect technical analysis and market efficiency? and if so, How?
  publication-title: Journal of International Financial Markets, Institutions and Money
– volume: 118
  start-page: 21
  year: 2001
  end-page: 45
  ident: b0280
  article-title: An Intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network
  publication-title: Fuzzy Sets and Systems
– volume: 244
  start-page: 248
  year: 2015
  end-page: 260
  ident: b0030
  article-title: CRM in social media: Predicting increases in facebook usage frequency
  publication-title: European Journal of Operational Research
– volume: 29
  start-page: 1189
  year: Oct. 2001
  end-page: 1232
  ident: b0165
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
– reference: . SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, January 24, 2006. <
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0450
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: Journal of the Royal Statistical Society: Series B Methodology
– volume: 18
  start-page: 509
  year: 1975
  end-page: 517
  ident: b0045
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
– reference: Dietterich, T.G. (2000). Ensemble methods in machine learning. In: Kittler, J., Roli, F. (Eds.), Multiple classifier systems (pp. 1–15).
– volume: Vol. 904
  start-page: 23
  year: 1995
  end-page: 37
  ident: b0150
  article-title: A Desicion-theoretic generalization of on-line learning and an application to boosting
  publication-title: Computational Learning Theory
– volume: 7
  start-page: 1
  year: December 2006
  end-page: 30
  ident: b0115
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 40
  start-page: 7596
  year: 2013
  end-page: 7606
  ident: b0110
  article-title: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index – Case study of PETR4, Petrobras, Brazil
  publication-title: Expert Systems with Applications
– reference: . Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.
– volume: 28
  start-page: 337
  year: 2000
  end-page: 374
  ident: b0185
  article-title: Additive logistic regression: A statistical view of boosting
  publication-title: Annals of Statistics
– volume: 41
  start-page: 7730
  year: 2014
  end-page: 7743
  ident: b0490
  article-title: Exploring the dynamic model of the returns from value stocks and growth stocks using time series mining
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 2513
  year: 2005
  end-page: 2522
  ident: b0230
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Computers & Operations Research
– volume: 55
  start-page: 307
  year: 2003
  end-page: 319
  ident: b0255
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
– volume: 157
  start-page: 89
  year: 2002
  end-page: 100
  ident: b0205
  article-title: Generalized linear and generalized additive models in studies of species distributions: Setting the scene
  publication-title: Ecological Modelling
– volume: 8
  start-page: 5559
  year: 2011
  end-page: 5571
  ident: b0475
  article-title: A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan stock market
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 12
  start-page: 726
  year: 2001
  end-page: 734
  ident: b0200
  article-title: Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging
  publication-title: IEEE Transactions on Neural Networks
– volume: 41
  start-page: 3651
  year: 2014
  end-page: 3661
  ident: b0065
  article-title: Automated trading with performance weighted random forests and seasonality
  publication-title: Expert Systems with Applications
– volume: 16
  start-page: 207
  year: 2000
  end-page: 236
  ident: b0245
  article-title: Genetic programming prediction of stock prices
  publication-title: Computational Economics
– volume: 36
  start-page: 3761
  year: 2009
  end-page: 3773
  ident: b0285
  article-title: Evolving and clustering fuzzy decision tree for financial time series data forecasting
  publication-title: Expert Systems with Applications Part
– reference: (August 9, 1998).
– volume: 29
  start-page: 196
  year: 2015
  end-page: 210
  ident: b0210
  article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
  publication-title: Applied Soft Computing
– volume: 41
  start-page: 6848
  year: 2014
  end-page: 6860
  ident: b0455
  article-title: A prediction scheme using perceptually important points and dynamic time warping
  publication-title: Expert Systems with Applications
– reference: Friedman, J., Hastie, T., & Tibshirani, R. (2013). R package glmnet: Lasso and elastic-net regularized generalized linear models. Available at:
– volume: 4
  start-page: 2021
  year: 1996
  end-page: 2026
  ident: b0410
  article-title: Advanced neural network training methods for low false alarm stock trend prediction
  publication-title: IEEE International Conference on Neural Networks
– volume: 19
  start-page: 125
  year: 2000
  end-page: 132
  ident: b0265
  article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
  publication-title: Expert Systems with Applications
– reference: >.
– reference: .
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: b0175
  article-title: Stochastic gradient boosting
  publication-title: Computational Statistics & Data Analysis
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0070
  article-title: Random Forests
  publication-title: Machine Learning
– volume: 10
  start-page: 237
  year: 1996
  end-page: 250
  ident: b0085
  article-title: Using percentage accuracy to measure neural network predictions in stock market movements
  publication-title: Neurocomputing
– volume: 50
  start-page: 1201
  issue: 4
  year: 1995
  ident: 10.1016/j.eswa.2015.05.013_b0370
  article-title: Predictability of stock returns: Robustness and economic significance
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1995.tb04055.x
– year: 1984
  ident: 10.1016/j.eswa.2015.05.013_b0075
– start-page: 223
  year: 2010
  ident: 10.1016/j.eswa.2015.05.013_b0040
– volume: 22
  start-page: 249
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0345
  article-title: Analyzing stock market tick data using piecewise nonlinear model
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(01)00058-6
– volume: 36
  start-page: 4626
  year: 2009
  ident: 10.1016/j.eswa.2015.05.013_b0090
  article-title: Handling class imbalance in customer churn prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.05.027
– volume: 19
  start-page: 125
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2015.05.013_b0265
  article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(00)00027-0
– volume: 34
  start-page: 2870
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2015.05.013_b0235
  article-title: Application of wrapper approach and composite classifier to the stock trend prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.05.035
– volume: 8
  start-page: 5559
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2015.05.013_b0475
  article-title: A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan stock market
  publication-title: International Journal of Innovative Computing, Information and Control
– volume: 41
  start-page: 7730
  year: 2014
  ident: 10.1016/j.eswa.2015.05.013_b0490
  article-title: Exploring the dynamic model of the returns from value stocks and growth stocks using time series mining
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.06.036
– volume: 39
  start-page: 13517
  year: 2012
  ident: 10.1016/j.eswa.2015.05.013_b0015
  article-title: Customer event history for churn prediction: How long is long enough?
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.07.006
– volume: 23
  start-page: S369
  year: 2013
  ident: 10.1016/j.eswa.2015.05.013_b0095
  article-title: International transmission of stock market movements: An adaptive neuro-fuzzy inference system for analysis of TAIEX forecasting
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1461-4
– volume: 118
  start-page: 21
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2015.05.013_b0280
  article-title: An Intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(98)00399-6
– volume: 29
  start-page: 196
  year: 2015
  ident: 10.1016/j.eswa.2015.05.013_b0210
  article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.12.028
– volume: 42
  start-page: 259
  year: 2015
  ident: 10.1016/j.eswa.2015.05.013_b0365
  article-title: Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.07.040
– start-page: 97
  year: 2006
  ident: 10.1016/j.eswa.2015.05.013_b0080
  article-title: Ensemble methods for unsupervised WSD
– volume: 32
  start-page: 2513
  issue: 10
  year: 2005
  ident: 10.1016/j.eswa.2015.05.013_b0230
  article-title: Forecasting stock market movement direction with support vector machine
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2004.03.016
– volume: 55
  start-page: 307
  issue: 1–2
  year: 2003
  ident: 10.1016/j.eswa.2015.05.013_b0255
  article-title: Financial time series forecasting using support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00372-2
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0175
  article-title: Stochastic gradient boosting
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 25
  start-page: 383
  issue: 2
  year: 1970
  ident: 10.1016/j.eswa.2015.05.013_b0325
  article-title: Efficient capital markets: A review of theory and empirical work∗
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1970.tb00518.x
– volume: 19
  start-page: 41
  year: 2014
  ident: 10.1016/j.eswa.2015.05.013_b0060
  article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.01.039
– volume: 41
  start-page: 3651
  year: 2014
  ident: 10.1016/j.eswa.2015.05.013_b0065
  article-title: Automated trading with performance weighted random forests and seasonality
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.12.009
– volume: 16
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2015.05.013_b0295
  article-title: Forecasting stock indices: A comparison of classification and level estimation models
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(99)00048-5
– volume: 392
  start-page: 6169
  year: 2013
  ident: 10.1016/j.eswa.2015.05.013_b0390
  article-title: Using conditional probability to identify trends in intra-day high-frequency equity pricing
  publication-title: Physica A
  doi: 10.1016/j.physa.2013.08.003
– start-page: 955
  year: 2014
  ident: 10.1016/j.eswa.2015.05.013_b0240
  article-title: Stock market forecast based on RBF neural network
– volume: 16
  start-page: 207
  issue: 3
  year: 2000
  ident: 10.1016/j.eswa.2015.05.013_b0245
  article-title: Genetic programming prediction of stock prices
  publication-title: Computational Economics
  doi: 10.1023/A:1008768404046
– year: 2012
  ident: 10.1016/j.eswa.2015.05.013_b0495
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2015.05.013_b0070
  article-title: Random Forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  ident: 10.1016/j.eswa.2015.05.013_b0045
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
  doi: 10.1145/361002.361007
– volume: 55
  start-page: 1705
  issue: 4
  year: 2000
  ident: 10.1016/j.eswa.2015.05.013_b0310
  article-title: Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation
  publication-title: The Journal of Finance
  doi: 10.1111/0022-1082.00265
– ident: 10.1016/j.eswa.2015.05.013_b0020
  doi: 10.1016/j.eswa.2012.12.007
– volume: 32
  start-page: 675
  year: 1937
  ident: 10.1016/j.eswa.2015.05.013_b0155
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1937.10503522
– volume: 9
  start-page: 261
  issue: 9
  year: 2012
  ident: 10.1016/j.eswa.2015.05.013_b0440
  article-title: Classification of Stock Index movement using K-nearest neighbours (k-NN) algorithm
  publication-title: WSEAS Transactions on Information Science & Applications
– volume: 10
  start-page: 237
  issue: 3
  year: 1996
  ident: 10.1016/j.eswa.2015.05.013_b0085
  article-title: Using percentage accuracy to measure neural network predictions in stock market movements
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(95)00052-6
– volume: Vol. 4234
  start-page: 440
  year: 2006
  ident: 10.1016/j.eswa.2015.05.013_b0315
  article-title: Online forecasting of stock market movement direction using the improved incremental algorithm
– volume: 41
  start-page: 6848
  year: 2014
  ident: 10.1016/j.eswa.2015.05.013_b0455
  article-title: A prediction scheme using perceptually important points and dynamic time warping
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.04.028
– volume: 24
  start-page: 1150
  issue: 7
  year: 2005
  ident: 10.1016/j.eswa.2015.05.013_b0100
  article-title: Empirical exchange rate models of the nineties: Are any fit to survive?
  publication-title: Journal of International Money and Finance
  doi: 10.1016/j.jimonfin.2005.08.002
– volume: 28
  start-page: 131
  year: 2014
  ident: 10.1016/j.eswa.2015.05.013_b0330
  article-title: Does high frequency trading affect technical analysis and market efficiency? and if so, How?
  publication-title: Journal of International Financial Markets, Institutions and Money
  doi: 10.1016/j.intfin.2013.11.002
– volume: 26
  start-page: 25
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.05.013_b0380
  article-title: Stock market prediction with multiple classifiers
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-006-0001-7
– volume: 157
  start-page: 89
  issue: 2–3
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0205
  article-title: Generalized linear and generalized additive models in studies of species distributions: Setting the scene
  publication-title: Ecological Modelling
  doi: 10.1016/S0304-3800(02)00204-1
– volume: 17
  start-page: 59
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2015.05.013_b0320
  article-title: The efficient market hypothesis and its critics
  publication-title: The Journal of Economic Perspectives
  doi: 10.1257/089533003321164958
– volume: 244
  start-page: 248
  year: 2015
  ident: 10.1016/j.eswa.2015.05.013_b0030
  article-title: CRM in social media: Predicting increases in facebook usage frequency
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.01.001
– start-page: 25
  year: 1995
  ident: 10.1016/j.eswa.2015.05.013_b0480
  article-title: Research problems in data warehousing
– ident: 10.1016/j.eswa.2015.05.013_b0225
– ident: 10.1016/j.eswa.2015.05.013_b0125
  doi: 10.1007/3-540-45014-9_1
– volume: 3
  start-page: P28
  issue: 12
  year: 2009
  ident: 10.1016/j.eswa.2015.05.013_b0350
  article-title: Prediction of stock market index movement by ten data mining techniques
  publication-title: Modern Applied Science
  doi: 10.5539/mas.v3n12p28
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.eswa.2015.05.013_b0010
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Statistics Surveys
  doi: 10.1214/09-SS054
– volume: 28
  start-page: 337
  year: 2000
  ident: 10.1016/j.eswa.2015.05.013_b0185
  article-title: Additive logistic regression: A statistical view of boosting
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1016218223
– volume: 42
  start-page: 1797
  year: 2015
  ident: 10.1016/j.eswa.2015.05.013_b0500
  article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.10.001
– volume: 16
  start-page: 875
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2015.05.013_b0445
  article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and Soft k-NN ensemble
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2005.849817
– volume: 14
  start-page: 323
  issue: 3
  year: 1998
  ident: 10.1016/j.eswa.2015.05.013_b0260
  article-title: Graded forecasting using an array of bipolar predictions: Application of probabilistic neural networks to a stock market index
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(98)00003-X
– ident: 10.1016/j.eswa.2015.05.013_b0055
– volume: 7
  start-page: 3
  year: 2006
  ident: 10.1016/j.eswa.2015.05.013_b0120
  article-title: Gene selection and classification of microarray data using random forest
  publication-title: BMC Bioinformatics 2006
  doi: 10.1186/1471-2105-7-3
– ident: 10.1016/j.eswa.2015.05.013_b0180
– volume: 42
  start-page: 1325
  year: 2015
  ident: 10.1016/j.eswa.2015.05.013_b0035
  article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods
  publication-title: Expert Systems with Applications.
  doi: 10.1016/j.eswa.2014.09.026
– ident: 10.1016/j.eswa.2015.05.013_b0105
  doi: 10.18637/jss.v017.i02
– volume: 22
  start-page: 33
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0465
  article-title: Predicting stock price using fuzzy grey prediction system
  publication-title: Expert Systems with Applications
  doi: 10.1016/S0957-4174(01)00047-1
– volume: 36
  start-page: 3761
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2015.05.013_b0285
  article-title: Evolving and clustering fuzzy decision tree for financial time series data forecasting
  publication-title: Expert Systems with Applications Part
  doi: 10.1016/j.eswa.2008.02.025
– start-page: 45
  year: 1997
  ident: 10.1016/j.eswa.2015.05.013_b0375
  article-title: The case against accuracy estimation for comparing induction algorithms
– ident: 10.1016/j.eswa.2015.05.013_b0220
– volume: 201
  start-page: 490
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2015.05.013_b0360
  article-title: Subagging for credit scoring models
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.03.008
– volume: 31
  start-page: 270
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2015.05.013_b0485
  article-title: An effective application of decision tree to stock trading
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.026
– ident: 10.1016/j.eswa.2015.05.013_b0435
– volume: Vol. 904
  start-page: 23
  year: 1995
  ident: 10.1016/j.eswa.2015.05.013_b0150
  article-title: A Desicion-theoretic generalization of on-line learning and an application to boosting
– year: 2001
  ident: 10.1016/j.eswa.2015.05.013_b0215
– volume: 38
  start-page: 5311
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2015.05.013_b0250
  article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.10.027
– ident: 10.1016/j.eswa.2015.05.013_b0275
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0300
  article-title: Classification and regression by random Forest
  publication-title: R News
– volume: 11
  start-page: 86
  year: 1940
  ident: 10.1016/j.eswa.2015.05.013_b0160
  article-title: A comparison of alternative tests of significance for the problem of m rankings
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177731944
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0130
  article-title: Logistic regression and artificial neural network classification models: A methodology review
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2015.05.013_b0115
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– year: 1996
  ident: 10.1016/j.eswa.2015.05.013_b0395
– volume: 36
  start-page: 10896
  issue: 8
  year: 2009
  ident: 10.1016/j.eswa.2015.05.013_b0290
  article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.038
– volume: 40
  start-page: 7596
  year: 2013
  ident: 10.1016/j.eswa.2015.05.013_b0110
  article-title: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index – Case study of PETR4, Petrobras, Brazil
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.06.071
– volume: 97
  start-page: 77
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0135
  article-title: Comparison of discrimination methods for the classification of tumors using gene expression data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502753479248
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2015.05.013_b0195
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v033.i01
– ident: 10.1016/j.eswa.2015.05.013_b0335
– volume: 13
  start-page: 255
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2015.05.013_b0270
  article-title: Stock market prediction using artificial neural networks with optimal feature transformation
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-004-0428-x
– volume: 12
  start-page: 726
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2015.05.013_b0200
  article-title: Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.935086
– volume: 9
  start-page: 1456
  issue: 6
  year: 1998
  ident: 10.1016/j.eswa.2015.05.013_b0415
  article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.728395
– volume: 2
  start-page: 17
  issue: 1
  year: 1990
  ident: 10.1016/j.eswa.2015.05.013_b0425
  article-title: Stock price prediction using neural networks: A project report
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(90)90013-H
– volume: 1
  start-page: 70
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2015.05.013_b0430
  article-title: Stock price direction prediction using artificial neural network approach: The case of turkey
  publication-title: Journal of Artificial Intelligence
  doi: 10.3923/jai.2008.70.77
– volume: 4
  start-page: 2021
  year: 1996
  ident: 10.1016/j.eswa.2015.05.013_b0410
  article-title: Advanced neural network training methods for low false alarm stock trend prediction
  publication-title: IEEE International Conference on Neural Networks
– volume: 42
  start-page: 4830
  year: 2015
  ident: 10.1016/j.eswa.2015.05.013_b0005
  article-title: Description and prediction of time series: A general framework of granular computing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.01.060
– volume: 39
  start-page: 27
  issue: 11
  year: 1996
  ident: 10.1016/j.eswa.2015.05.013_b0140
  article-title: The KDD process for extracting useful knowledge from volumes of data
  publication-title: Communications ACM
  doi: 10.1145/240455.240464
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.eswa.2015.05.013_b0450
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: Journal of the Royal Statistical Society: Series B Methodology
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.eswa.2015.05.013_b0165
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 33
  start-page: 497
  issue: 6
  year: 2005
  ident: 10.1016/j.eswa.2015.05.013_b0355
  article-title: A hybrid ARIMA and support vector machines model in stock price forecasting
  publication-title: Omega
  doi: 10.1016/j.omega.2004.07.024
– year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0460
– ident: 10.1016/j.eswa.2015.05.013_b0305
  doi: 10.1109/IJCNN.2013.6706743
– volume: 33
  start-page: 304
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2015.05.013_b0470
  article-title: Stock market trading rule discovery using pattern recognition and technical analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.05.002
– ident: 10.1016/j.eswa.2015.05.013_b0145
– ident: 10.1016/j.eswa.2015.05.013_b0420
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2015.05.013_b0190
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v033.i01
– volume: 3
  start-page: 257
  issue: 2–3
  year: 1995
  ident: 10.1016/j.eswa.2015.05.013_b0050
  article-title: The profitability of technical trading rules in the asian stock markets
  publication-title: Pacific-Basin Finance Journal
  doi: 10.1016/0927-538X(95)00002-3
– volume: 38
  start-page: 367
  year: 2002
  ident: 10.1016/j.eswa.2015.05.013_b0170
  article-title: Stochastic gradient boosting
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 40
  start-page: 2904
  issue: 8
  year: 2013
  ident: 10.1016/j.eswa.2015.05.013_b0025
  article-title: Kernel factory: An ensemble of kernel machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.12.007
– ident: 10.1016/j.eswa.2015.05.013_b0340
– ident: 10.1016/j.eswa.2015.05.013_b0385
– ident: 10.1016/j.eswa.2015.05.013_b0400
– year: 2004
  ident: 10.1016/j.eswa.2015.05.013_b0405
  article-title: Predicting stock market indices movements
SSID ssj0017007
Score 2.627793
Snippet •We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation...
Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7046
SubjectTerms Benchmark
Benchmarking
Ensemble methods
Industrial plants
Kernels
Logistics
Mathematical models
Neural networks
Raw materials
Regression
Single classifiers
Stock price direction prediction
Title Evaluating multiple classifiers for stock price direction prediction
URI https://dx.doi.org/10.1016/j.eswa.2015.05.013
https://www.proquest.com/docview/1825463688
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PEcGb1DVN02THMTem4i462C2kSSpT6Ybb8Obfbt6SDhTcQSi0KUloX5L3fm3e-z2ErlibWkOVirTJTJRyTiJliyIyJrZ5ATOigP8dj8NsMErvx2xcQ90qFgbcKoPu9zp9pa3DnVaQZms2mbSeHDhw5hAsIiQko8AJmqYcshjcfK3dPIB-jnu-PR5B7RA443287PwTuIcI8-yd9C_j9EtNr2xPfw_tBNCIO_659lHNlgdot0rIgMP6PES3vcDdXb7gylMQa8DHkwJSXmOHULFDe_oNz4BMCPuXd0PjyrBjA5dHaNTvPXcHUUiTEGmHLhaRLoRyMMWdMqELIpQSTCSWZkTFqdGKWUpzkVv3rafaScwUF6rNDGdJbPJccHqM6uW0tCcIC4cHBdDBUJukggpFk1iTgrRtnjmswBuIVPKROnCIQyqLd1k5i71KkKkEmcrYHYQ20PW6zcwzaGyszSqxyx_zQDoVv7HdZTVG0i0Q2PVQpZ0u55J4yv9MiNN_9n2GtqEEEYiEnaP64mNpLxwUWeTN1Vxroq3O3cNg-A3ZEN4s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3rx24ifNfFmJuu6ruVoEIIKXISEW9N1nUHNIALx5t9uH-1INNGDyZJ9tcv22r736_re7yF0xRrUZFSpQGdJFsSck0CZPA-yLDRpDj0ih_8dvX7SGcYPIzaqoGYZCwNulV73O52-1Nb-St1Lsz4dj-tPFhxYcwgWERKS0XgNrccs4jADu_lc-XkA_xx3hHs8gOI-csY5eZnZB5APEeboO-lv1umHnl4an_YO2vKoEd-6F9tFFVPsoe0yIwP2A3Qf3bU8eXfxjEtXQawBII9zyHmNLUTFFu7pVzwFNiHsvt62jT2HJRs4PEDDdmvQ7AQ-T0KgLbyYBzoXyuIUu0uEzolQSjARGZoQFcaZVsxQmorU2MmeakQhU1yoBss4i8IsTQWnh6haTApzhLCwgFAAHww1USyoUDQKNclJw6SJBQu8hkgpH6k9iTjksniTpbfYiwSZSpCpDO1GaA1dr-pMHYXGn6VZKXb5rSNIq-P_rHdZtpG0IwSWPVRhJouZJI7zPxHi-J_PvkAbnUGvK7v3_ccTtAl3IByRsFNUnb8vzJnFJfP0fNnvvgAaod_B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+multiple+classifiers+for+stock+price+direction+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Ballings%2C+Michel&rft.au=Van+den+Poel%2C+Dirk&rft.au=Hespeels%2C+Nathalie&rft.au=Gryp%2C+Ruben&rft.date=2015-11-15&rft.issn=0957-4174&rft.volume=42&rft.issue=20&rft.spage=7046&rft.epage=7056&rft_id=info:doi/10.1016%2Fj.eswa.2015.05.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_05_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon