Evaluating multiple classifiers for stock price direction prediction
•We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation and AUC as a performance measure.•Random Forest is the top algorithm.•This study is the first to make such an extensive benchmark in this domai...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 42; no. 20; pp. 7046 - 7056 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.11.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2015.05.013 | 
Cover
| Abstract | •We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation and AUC as a performance measure.•Random Forest is the top algorithm.•This study is the first to make such an extensive benchmark in this domain.
Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case. | 
    
|---|---|
| AbstractList | Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case. •We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation and AUC as a performance measure.•Random Forest is the top algorithm.•This study is the first to make such an extensive benchmark in this domain. Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The purpose of this paper is to benchmark ensemble methods (Random Forest, AdaBoost and Kernel Factory) against single classifier models (Neural Networks, Logistic Regression, Support Vector Machines and K-Nearest Neighbor). We gathered data from 5767 publicly listed European companies and used the area under the receiver operating characteristic curve (AUC) as a performance measure. Our predictions are one year ahead. The results indicate that Random Forest is the top algorithm followed by Support Vector Machines, Kernel Factory, AdaBoost, Neural Networks, K-Nearest Neighbors and Logistic Regression. This study contributes to literature in that it is, to the best of our knowledge, the first to make such an extensive benchmark. The results clearly suggest that novel studies in the domain of stock price direction prediction should include ensembles in their sets of algorithms. Our extensive literature review evidently indicates that this is currently not the case.  | 
    
| Author | Van den Poel, Dirk Hespeels, Nathalie Ballings, Michel Gryp, Ruben  | 
    
| Author_xml | – sequence: 1 givenname: Michel surname: Ballings fullname: Ballings, Michel email: Michel.Ballings@utk.edu organization: The University of Tennessee, Department of Business Analytics and Statistics, 249 Stokely Management Center, 37996 Knoxville, TN, USA – sequence: 2 givenname: Dirk surname: Van den Poel fullname: Van den Poel, Dirk email: Dirk.VandenPoel@UGent.be organization: Ghent University, Department of Marketing, Tweekerkenstraat 2, 9000 Ghent, Belgium – sequence: 3 givenname: Nathalie surname: Hespeels fullname: Hespeels, Nathalie email: Nathalie.Hespeels@UGent.be organization: Ghent University, Department of Marketing, Tweekerkenstraat 2, 9000 Ghent, Belgium – sequence: 4 givenname: Ruben surname: Gryp fullname: Gryp, Ruben email: Ruben.Gryp@UGent.be organization: Ghent University, Department of Marketing, Tweekerkenstraat 2, 9000 Ghent, Belgium  | 
    
| BookMark | eNp9kE1LxDAQhoOs4Lr6Bzz16KVr0jRNCl5kXT9gwYuewzSdStZsuybtiv_e1HrysDAwE5hnyPuck1nbtUjIFaNLRllxs11i-IJlRplY0liMn5A5U5KnhSz5jMxpKWSaM5mfkfMQtpQySamck_v1AdwAvW3fk93gert3mBgHIdjGog9J0_kk9J35SPbeGkxq69H0tmvjG2v7O16Q0wZcwMu_viBvD-vX1VO6eXl8Xt1tUsPLsk9No4BlIrZCmYYpACVUhrxgQPPagEDOK1WhzBiUGRUgFZSiliKjdVXFMAtyPd3d--5zwNDrnQ0GnYMWuyFopjKRF7xQKq5m06rxXQgeGx2_vwP_rRnVozK91aMyPSrTNBbjEVL_IGN7GBP2Hqw7jt5OKMb8h2hOB2OxNTj50nVnj-E_urKKhQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_accinf_2022_100576 crossref_primary_10_1007_s11042_023_14587_8 crossref_primary_10_1109_ACCESS_2019_2946223 crossref_primary_10_1108_EMJB_05_2022_0104 crossref_primary_10_1177_02663821211058666 crossref_primary_10_1007_s00500_022_07714_4 crossref_primary_10_1016_j_asoc_2019_105590 crossref_primary_10_1016_j_eswa_2015_08_034 crossref_primary_10_3389_frai_2023_1283741 crossref_primary_10_1016_j_eswa_2016_02_006 crossref_primary_10_1080_0013791X_2023_2205841 crossref_primary_10_1109_TNNLS_2020_2997523 crossref_primary_10_1016_j_eswa_2021_115022 crossref_primary_10_1016_j_ssaho_2024_100864 crossref_primary_10_17153_oguiibf_1400125 crossref_primary_10_1016_j_eswa_2019_112828 crossref_primary_10_1016_j_asoc_2025_112978 crossref_primary_10_1016_j_engappai_2024_108155 crossref_primary_10_3390_s21248282 crossref_primary_10_1007_s11042_023_17062_6 crossref_primary_10_1016_j_cie_2023_109450 crossref_primary_10_1186_s40537_020_00400_y crossref_primary_10_1007_s11063_017_9587_5 crossref_primary_10_1002_for_3071 crossref_primary_10_1016_j_asoc_2020_106205 crossref_primary_10_1016_j_asoc_2020_106567 crossref_primary_10_2139_ssrn_4861007 crossref_primary_10_1016_j_frl_2022_102809 crossref_primary_10_1016_j_eswa_2024_123966 crossref_primary_10_1016_j_jmsy_2020_07_020 crossref_primary_10_1287_deca_2017_0354 crossref_primary_10_1007_s10614_020_10013_5 crossref_primary_10_1016_j_asoc_2018_04_024 crossref_primary_10_1016_j_eswa_2021_115497 crossref_primary_10_1080_14697688_2022_2041208 crossref_primary_10_1016_j_asoc_2018_11_008 crossref_primary_10_1007_s10614_025_10879_3 crossref_primary_10_1016_j_asoc_2023_110566 crossref_primary_10_1016_j_eswa_2022_118934 crossref_primary_10_2139_ssrn_3403009 crossref_primary_10_1016_j_eswa_2020_113704 crossref_primary_10_32604_iasc_2023_035906 crossref_primary_10_3233_IDA_173670 crossref_primary_10_3390_info12100388 crossref_primary_10_1016_j_procs_2022_12_028 crossref_primary_10_1016_j_jfds_2016_03_002 crossref_primary_10_1007_s42952_023_00245_0 crossref_primary_10_1111_1467_8551_12340 crossref_primary_10_1142_S2282717X19500014 crossref_primary_10_2139_ssrn_3350272 crossref_primary_10_1080_03610918_2022_2116050 crossref_primary_10_1016_j_engappai_2019_103340 crossref_primary_10_1016_j_trpro_2022_02_047 crossref_primary_10_1016_j_dsef_2024_100029 crossref_primary_10_1016_j_eswa_2023_120840 crossref_primary_10_1186_s40854_020_00220_2 crossref_primary_10_48175_IJARSCT_9599 crossref_primary_10_1016_j_array_2025_100374 crossref_primary_10_1016_j_jestch_2021_01_007 crossref_primary_10_1016_j_eswa_2017_12_026 crossref_primary_10_1016_j_asoc_2020_106422 crossref_primary_10_1155_2021_2803147 crossref_primary_10_1155_2020_8285149 crossref_primary_10_1016_j_irfa_2024_103711 crossref_primary_10_1007_s42979_021_00524_9 crossref_primary_10_1016_j_trc_2022_103721 crossref_primary_10_1016_j_engappai_2019_03_019 crossref_primary_10_1016_j_eswa_2022_118472 crossref_primary_10_1016_j_jfds_2019_01_002 crossref_primary_10_1080_19427867_2020_1861504 crossref_primary_10_3390_math11132950 crossref_primary_10_1016_j_eswa_2022_116970 crossref_primary_10_2139_ssrn_4781472 crossref_primary_10_1016_j_neucom_2024_128975 crossref_primary_10_1007_s12530_018_9221_4 crossref_primary_10_1016_j_jfds_2018_04_003 crossref_primary_10_1186_s40537_020_00299_5 crossref_primary_10_1016_j_eswa_2025_127287 crossref_primary_10_1088_1755_1315_924_1_012059 crossref_primary_10_20473_vol11iss20241pp86_104 crossref_primary_10_1109_ACCESS_2020_3015966 crossref_primary_10_1049_cit2_12067 crossref_primary_10_3389_frai_2024_1371502 crossref_primary_10_1016_j_dss_2016_06_013 crossref_primary_10_3390_e24060808 crossref_primary_10_1007_s00521_020_05469_3 crossref_primary_10_1016_j_ecosta_2021_11_001 crossref_primary_10_1371_journal_pone_0230124 crossref_primary_10_1002_for_2848 crossref_primary_10_1016_j_array_2020_100017 crossref_primary_10_1109_ACCESS_2022_3232281 crossref_primary_10_3233_JIFS_189485 crossref_primary_10_4018_JITR_298616 crossref_primary_10_3233_JIFS_189488 crossref_primary_10_1016_j_eswa_2019_01_012 crossref_primary_10_1007_s44196_023_00276_9 crossref_primary_10_35551_PFQ_2023_2_7 crossref_primary_10_3390_e21010025 crossref_primary_10_1016_j_scitotenv_2021_147145 crossref_primary_10_1109_ACCESS_2019_2953807 crossref_primary_10_3390_e22111239 crossref_primary_10_1111_jbfa_12552 crossref_primary_10_1080_2573234X_2018_1507604 crossref_primary_10_1142_S2010495222500038 crossref_primary_10_1142_S2424786321500274 crossref_primary_10_3390_a17060234 crossref_primary_10_3390_electronics10212717 crossref_primary_10_1002_for_2616 crossref_primary_10_2139_ssrn_3974770 crossref_primary_10_1108_JFRA_11_2021_0413 crossref_primary_10_3390_info11060332 crossref_primary_10_1080_01605682_2022_2128908 crossref_primary_10_1080_00949655_2019_1612395 crossref_primary_10_1016_j_eswa_2016_12_034 crossref_primary_10_1371_journal_pone_0290126 crossref_primary_10_1016_j_eswa_2020_114553 crossref_primary_10_1007_s11356_022_19713_x crossref_primary_10_1016_j_bir_2023_08_005 crossref_primary_10_1051_shsconf_202419401003 crossref_primary_10_2139_ssrn_4511658 crossref_primary_10_2139_ssrn_3144622 crossref_primary_10_1016_j_najef_2021_101421 crossref_primary_10_1016_j_eswa_2016_05_033 crossref_primary_10_1016_j_eswa_2022_117637 crossref_primary_10_1155_2022_7588303 crossref_primary_10_3390_healthcare8040562 crossref_primary_10_1007_s10479_020_03539_2 crossref_primary_10_1016_j_najef_2022_101705 crossref_primary_10_2139_ssrn_4775572 crossref_primary_10_1016_j_neucom_2023_127033 crossref_primary_10_1016_j_bir_2024_01_011 crossref_primary_10_1016_j_asoc_2021_107734 crossref_primary_10_1109_ACCESS_2020_2990611 crossref_primary_10_1016_j_eswa_2021_115716 crossref_primary_10_4018_JITR_2020010109 crossref_primary_10_1007_s12065_020_00528_z crossref_primary_10_1016_j_eswa_2020_114206 crossref_primary_10_1093_comjnl_bxab038 crossref_primary_10_1109_ACCESS_2020_3002174 crossref_primary_10_1371_journal_pone_0212487 crossref_primary_10_1016_j_eswa_2018_08_003 crossref_primary_10_1007_s10614_019_09922_x crossref_primary_10_1080_0952813X_2019_1620870 crossref_primary_10_1155_2022_9916310 crossref_primary_10_1002_for_2632 crossref_primary_10_1007_s11063_022_10767_z crossref_primary_10_3390_jrfm14020048 crossref_primary_10_1016_j_resourpol_2023_104248 crossref_primary_10_1002_fut_22453 crossref_primary_10_32604_cmes_2023_031388 crossref_primary_10_1007_s00354_020_00104_0 crossref_primary_10_3390_math9212646 crossref_primary_10_1177_09721509241234033 crossref_primary_10_1016_j_dss_2015_11_003 crossref_primary_10_1016_j_procs_2021_10_071 crossref_primary_10_1007_s10614_024_10670_w crossref_primary_10_1016_j_physa_2021_126008 crossref_primary_10_3390_ijfs7020026 crossref_primary_10_1016_j_eswa_2015_07_063 crossref_primary_10_1109_ACCESS_2020_2969293 crossref_primary_10_3390_electronics12183960 crossref_primary_10_1016_j_mlwa_2022_100355 crossref_primary_10_1016_j_iswa_2024_200449 crossref_primary_10_1016_j_eswa_2017_03_045 crossref_primary_10_3390_admsci10030052 crossref_primary_10_1016_j_eswa_2022_119184 crossref_primary_10_1016_j_eswa_2021_115537 crossref_primary_10_1155_2024_8515203 crossref_primary_10_1186_s40854_021_00243_3 crossref_primary_10_1007_s10614_021_10228_0 crossref_primary_10_1016_j_eswa_2022_119186 crossref_primary_10_1002_for_2933 crossref_primary_10_1088_1742_6596_2033_1_012003 crossref_primary_10_1016_j_physa_2021_126810 crossref_primary_10_1016_j_econlet_2021_109917 crossref_primary_10_1016_j_asoc_2021_107320 crossref_primary_10_1016_j_gfj_2023_100904 crossref_primary_10_1016_j_physa_2019_122272 crossref_primary_10_1080_08839514_2022_2151159 crossref_primary_10_1016_j_eswa_2015_09_016 crossref_primary_10_1016_j_eswa_2024_123476 crossref_primary_10_2139_ssrn_3866415 crossref_primary_10_3390_jrfm17070293 crossref_primary_10_1016_j_eswa_2020_113668 crossref_primary_10_2139_ssrn_3809308 crossref_primary_10_1155_2019_4132485 crossref_primary_10_1177_00368504241236557 crossref_primary_10_2139_ssrn_4128509 crossref_primary_10_2139_ssrn_4546402 crossref_primary_10_3390_su11164355 crossref_primary_10_1007_s10479_022_04892_0 crossref_primary_10_3390_econometrics12020016 crossref_primary_10_1016_j_physa_2020_124444 crossref_primary_10_31590_ejosat_820940 crossref_primary_10_1007_s00521_020_05131_y crossref_primary_10_1016_j_physa_2019_121073 crossref_primary_10_3390_risks11020027 crossref_primary_10_1088_1755_1315_704_1_012014 crossref_primary_10_29029_busbed_1391790 crossref_primary_10_3390_fi14060180 crossref_primary_10_1108_CFRI_12_2022_0250 crossref_primary_10_1016_j_trc_2023_104318 crossref_primary_10_1007_s10614_020_10016_2 crossref_primary_10_1016_j_eswa_2023_119585 crossref_primary_10_2139_ssrn_3318051 crossref_primary_10_24017_science_2020_1_3 crossref_primary_10_1016_j_neucom_2022_09_003 crossref_primary_10_26468_trakyasobed_1514346 crossref_primary_10_1016_j_jksuci_2023_101737 crossref_primary_10_1155_2022_3745377 crossref_primary_10_1142_S0219091524500280 crossref_primary_10_1016_j_physa_2018_07_017 crossref_primary_10_1016_j_patcog_2023_109759 crossref_primary_10_1007_s41060_023_00435_3 crossref_primary_10_3390_su15010105 crossref_primary_10_1016_j_frl_2022_102859 crossref_primary_10_29121_shodhkosh_v5_i6_2024_3945 crossref_primary_10_37648_ijtbm_v13i01_010 crossref_primary_10_1016_j_eswa_2018_11_012 crossref_primary_10_1007_s42979_024_02715_6 crossref_primary_10_3390_ijfs11010031 crossref_primary_10_1371_journal_pone_0253121 crossref_primary_10_3846_mla_2017_1023 crossref_primary_10_1007_s10258_023_00246_1 crossref_primary_10_1007_s12530_023_09500_5 crossref_primary_10_1007_s10462_019_09754_z crossref_primary_10_1155_2022_5974842 crossref_primary_10_2139_ssrn_3306250 crossref_primary_10_1016_j_asoc_2021_107112 crossref_primary_10_1016_j_eswa_2022_118908 crossref_primary_10_1080_23080477_2019_1605474 crossref_primary_10_1142_S0219622022500468 crossref_primary_10_32604_csse_2022_017685 crossref_primary_10_1080_1206212X_2019_1593614 crossref_primary_10_1016_j_knosys_2017_09_023 crossref_primary_10_1016_j_eswa_2020_113973 crossref_primary_10_1016_j_eswa_2020_113730 crossref_primary_10_2139_ssrn_3862428 crossref_primary_10_1007_s11227_023_05562_z crossref_primary_10_1109_ACCESS_2019_2945907 crossref_primary_10_1007_s43546_023_00497_2 crossref_primary_10_33818_ier_805042 crossref_primary_10_1155_2022_4964394 crossref_primary_10_3390_healthcare10061087 crossref_primary_10_1007_s00521_020_04877_9 crossref_primary_10_1016_j_eswa_2024_125457 crossref_primary_10_1016_j_ins_2022_05_078 crossref_primary_10_1016_j_jclimf_2022_100002 crossref_primary_10_1002_cpe_6076 crossref_primary_10_1016_j_eswa_2017_11_029 crossref_primary_10_1007_s11227_017_2228_y crossref_primary_10_1016_j_eswa_2022_116941 crossref_primary_10_1016_j_eswa_2022_118324 crossref_primary_10_4018_IJCAC_305858 crossref_primary_10_3390_sym12081272 crossref_primary_10_32604_cmc_2023_036553 crossref_primary_10_1016_j_eswa_2019_03_029 crossref_primary_10_11159_jmids_2023_002 crossref_primary_10_1080_2573234X_2023_2263522 crossref_primary_10_1016_j_sciaf_2024_e02161 crossref_primary_10_2139_ssrn_4074883 crossref_primary_10_3390_e22080840 crossref_primary_10_1016_j_eswa_2018_06_016 crossref_primary_10_3390_w11020228 crossref_primary_10_1108_AJEB_11_2021_0131 crossref_primary_10_4018_IJKBO_307147 crossref_primary_10_1109_ACCESS_2023_3303283 crossref_primary_10_1016_j_eswa_2021_115796 crossref_primary_10_3390_ijfs11030094 crossref_primary_10_3390_risks10120225 crossref_primary_10_1016_j_eswa_2017_04_003 crossref_primary_10_1016_j_jclimf_2024_100058 crossref_primary_10_32604_iasc_2023_034582 crossref_primary_10_3390_jrfm14050198 crossref_primary_10_1016_j_ress_2016_12_012 crossref_primary_10_22495_cocv20i1art10 crossref_primary_10_1016_j_cie_2023_109023 crossref_primary_10_1088_1742_6596_892_1_012018  | 
    
| Cites_doi | 10.1111/j.1540-6261.1995.tb04055.x 10.1016/S0957-4174(01)00058-6 10.1016/j.eswa.2008.05.027 10.1016/S0957-4174(00)00027-0 10.1016/j.eswa.2007.05.035 10.1016/j.eswa.2014.06.036 10.1016/j.eswa.2012.07.006 10.1007/s00521-013-1461-4 10.1016/S0165-0114(98)00399-6 10.1016/j.asoc.2014.12.028 10.1016/j.eswa.2014.07.040 10.1016/j.cor.2004.03.016 10.1016/S0925-2312(03)00372-2 10.1016/S0167-9473(01)00065-2 10.1111/j.1540-6261.1970.tb00518.x 10.1016/j.asoc.2014.01.039 10.1016/j.eswa.2013.12.009 10.1016/S0169-2070(99)00048-5 10.1016/j.physa.2013.08.003 10.1023/A:1008768404046 10.1023/A:1010933404324 10.1145/361002.361007 10.1111/0022-1082.00265 10.1016/j.eswa.2012.12.007 10.1080/01621459.1937.10503522 10.1016/0925-2312(95)00052-6 10.1016/j.eswa.2014.04.028 10.1016/j.jimonfin.2005.08.002 10.1016/j.intfin.2013.11.002 10.1007/s10489-006-0001-7 10.1016/S0304-3800(02)00204-1 10.1257/089533003321164958 10.1016/j.ejor.2015.01.001 10.1007/3-540-45014-9_1 10.5539/mas.v3n12p28 10.1214/09-SS054 10.1214/aos/1016218223 10.1016/j.eswa.2014.10.001 10.1109/TNN.2005.849817 10.1016/S0169-2070(98)00003-X 10.1186/1471-2105-7-3 10.1016/j.eswa.2014.09.026 10.18637/jss.v017.i02 10.1016/S0957-4174(01)00047-1 10.1016/j.eswa.2008.02.025 10.1016/j.ejor.2009.03.008 10.1016/j.eswa.2005.09.026 10.1016/j.eswa.2010.10.027 10.1214/aoms/1177731944 10.1016/S1532-0464(03)00034-0 10.1016/j.eswa.2009.02.038 10.1016/j.eswa.2013.06.071 10.1198/016214502753479248 10.18637/jss.v033.i01 10.1007/s00521-004-0428-x 10.1109/72.935086 10.1109/72.728395 10.1016/0925-2312(90)90013-H 10.3923/jai.2008.70.77 10.1016/j.eswa.2015.01.060 10.1145/240455.240464 10.1111/j.2517-6161.1996.tb02080.x 10.1214/aos/1013203451 10.1016/j.omega.2004.07.024 10.1109/IJCNN.2013.6706743 10.1016/j.eswa.2006.05.002 10.1016/0927-538X(95)00002-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2015 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2015.05.013 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 7056 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2015_05_013 S0957417415003334  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c399t-cf8a125cf868cf18aa8582e361a04dca5e33b8be721a9205a78a95d7520dbb873 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Sun Sep 28 11:00:32 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Wed Oct 01 03:51:45 EDT 2025 Fri Feb 23 02:29:06 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 20 | 
    
| Keywords | Stock price direction prediction Benchmark Ensemble methods Single classifiers  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c399t-cf8a125cf868cf18aa8582e361a04dca5e33b8be721a9205a78a95d7520dbb873 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1825463688 | 
    
| PQPubID | 23500 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_1825463688 crossref_primary_10_1016_j_eswa_2015_05_013 crossref_citationtrail_10_1016_j_eswa_2015_05_013 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_05_013  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-11-15 | 
    
| PublicationDateYYYYMMDD | 2015-11-15 | 
    
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2015 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Culp, M., Johnson, K., & Michailidis, G. (2012). R package ada: An R package for stochastic boosting. Available at Dreiseitl, Ohno-Machado (b0130) 2002; 35 Chen, Chen, Fan, Huang (b0095) 2013; 23 Kim, Han (b0265) 2000; 19 Arlot, Celisse (b0010) 2010; 4 Lunga, Marwala (b0315) 2006; Vol. 4234 Brownstone (b0085) 1996; 10 Dietterich, T.G. (2000). Ensemble methods in machine learning. In: Kittler, J., Roli, F. (Eds.), Multiple classifier systems (pp. 1–15). Venables, Ripley (b0460) 2002 Booth, Gerding, McGroarty (b0065) 2014; 41 Breiman, Friedman, Stone, Olshen (b0075) 1984 Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2010). Lo, Mamaysky, Wang (b0310) 2000; 55 Friedman, Hastie, Tibshirani (b0195) 2010; 33 Dudoit, Fridlyand, Speed (b0135) 2002; 97 Oh, Kim (b0345) 2002; 22 Kim, Chun (b0260) 1998; 14 Lai, Fan, Chang (b0285) 2009; 36 De Oliveira, Nobre, Zárate (b0110) 2013; 40 Friedman, J., Hastie, T., & Tibshirani, R. (2013). R package glmnet: Lasso and elastic-net regularized generalized linear models. Available at Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). R package e1071: Misc functions of the department of statistics (e1071). Available at Fayyad, Piatetsky-Shapiro, Smyth (b0140) 1996; 39 Bisoi, Dash (b0060) 2014; 19 (pp. 285–289). Tan, Chen, Zhou, Zhang (b0445) 2005; 16 Hellström, T., Holmströmm, K. (1998). Predictable Patterns in Stock Returns. Liaw, Wiener (b0300) 2002; 2 Kara, Boyacioglu, Baykan (b0250) 2011; 38 . Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan. (August 2013). Ben-Hur, Weston (b0040) 2010 Barak, Modarres (b0035) 2015; 42 Ou, Wang (b0350) 2009; 3 Spackman, K. A, (1991). Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression. In Pesaran, Timmermann (b0370) 1995; 50 Ballings, Van den Poel (b0030) 2015; 244 Zhou (b0495) 2012 Wu, Lin, Lin (b0485) 2006; 31 Paleologo, Elisseeff, Antonini (b0360) 2010; 201 Ballings, Van den Poel (b0025) 2013; 40 Friedman, Hastie, Tibshirani (b0185) 2000; 28 Rechenthin, Street (b0390) 2013; 392 Huang, Yang, Chuang (b0235) 2008; 34 Friedman (b0175) 2002; 38 SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, January 24, 2006. Leung, Daouk, Chen (b0295) 2000; 16 Provost, Fawcett, Kohavi (b0375) 1997 Gençay, Qi (b0200) 2001; 12 Qian, Rasheed (b0380) 2007; 26 Rechenthin, M., Street, W. N., & Srinivasan, P. (2013). Stock chatter: using stock sentiment to predict price direction (SSRN Scholarly Paper No. ID 2380419). Social Science Research Network, Rochester, NY. Bentley (b0045) 1975; 18 Sarle, W. S. (1997). Should I standardize the input variables (column vectors)?, periodic posting to the Usenet newsgroup comp.ai.neural-nets, Neural Network FAQ, part 2 of 7. URL Ji, Che, Zong (b0240) 2014 Kim, Lee (b0270) 2004; 13 Brody, Navigli, Lapata (b0080) 2006 Guisan, Edwards, Hastie (b0205) 2002; 157 Burez, Van den Poel (b0090) 2009; 36 Huang, Nakamori, Wang (b0230) 2005; 32 Patel, Shah, Thakkar, Kotecha (b0365) 2015; 42 Wang (b0465) January 2002; 22 Freund, Schapire (b0150) 1995; Vol. 904 Tsinaslanidis, Kugiumtzis (b0455) 2014; 41 Ripley, B. (2013). R package nnet: Feed-forward neural networks and multinomial log-linear models. Available at Lee (b0290) 2009; 36 Friedman, Hastie, Tibshirani (b0190) 2010; 33 Senol, Ozturan (b0430) 2008; 1 Ballings, M., & Van den Poel, D. (2013b). R package kernelFactory: An ensemble of kernel machines. Available at Friedman (b0170) 2002; 38 Bessembinder, Chan (b0050) July 1995; 3 Friedman (b0160) 1940; 11 Pai, Lin (b0355) 2005; 33 Saad, Prokhorov, Wunsch (b0410) 1996; 4 Kim (b0255) 2003; 55 Demšar (b0115) December 2006; 7 Kuo, Chen, Hwang (b0280) 2001; 118 Saad, Prokhorov, Wunsch (b0415) 1998; 9 Breiman (b0070) 2001; 45 Tibshirani (b0450) 1996; 58 Widom (b0480) 1995 Friedman (b0155) 1937; 32 (PhD thesis), Princeton University. Malkiel (b0320) 2003; 17 Al-Hmouz, Pedrycz, Balamash (b0005) 2015; 42 Lin, Y., Guo, H., & Hu, J., (2013). An SVM-based Approach for Stock Market Trend Prediction. Neural Networks (IJCNN) Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In Subha, Nambi (b0440) 2012; 9 Wang, Chan (b0470) 2007; 33 Diaz-Uriarte, de Andres (b0120) 2006; 7 Kumar, M., & Thenmozhi, M. (2006). Yeh, Hsu (b0490) 2014; 41 Ballings, Van den Poel (b0015) 2012; 39 Manahov, Hudson, Gebka (b0330) January 2014; 28 Schöneburg (b0425) June 1990; 2 Hafezi, Shahrabi, Hadavandi (b0210) 2015; 29 Kaboudan (b0245) 2000; 16 (pp. 148–156). Bari, Italy. Nemenyi. P. B. (1963). Wei, Cheng (b0475) 2011; 8 (August 9, 1998). Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., & Shengqiao, L. (2013). R package: FNN, fast nearest neighbor search algorithms and applications. Available at Ripley (b0395) 1996 Rodriguez, Rodriguez (b0405) 2004 Cheung, Chinn, Pascual (b0100) 2005; 24 Friedman (b0165) Oct. 2001; 29 Hand, Mannila, Smyth (b0215) 2001 Zikowski (b0500) 2015; 42 Malkiel, Fama (b0325) 1970; 25 10.1016/j.eswa.2015.05.013_b0055 10.1016/j.eswa.2015.05.013_b0335 Widom (10.1016/j.eswa.2015.05.013_b0480) 1995 Wang (10.1016/j.eswa.2015.05.013_b0470) 2007; 33 Wu (10.1016/j.eswa.2015.05.013_b0485) 2006; 31 Huang (10.1016/j.eswa.2015.05.013_b0235) 2008; 34 Ben-Hur (10.1016/j.eswa.2015.05.013_b0040) 2010 10.1016/j.eswa.2015.05.013_b0180 Hafezi (10.1016/j.eswa.2015.05.013_b0210) 2015; 29 Tibshirani (10.1016/j.eswa.2015.05.013_b0450) 1996; 58 Malkiel (10.1016/j.eswa.2015.05.013_b0325) 1970; 25 Ballings (10.1016/j.eswa.2015.05.013_b0025) 2013; 40 Paleologo (10.1016/j.eswa.2015.05.013_b0360) 2010; 201 Fayyad (10.1016/j.eswa.2015.05.013_b0140) 1996; 39 Brody (10.1016/j.eswa.2015.05.013_b0080) 2006 Liaw (10.1016/j.eswa.2015.05.013_b0300) 2002; 2 Senol (10.1016/j.eswa.2015.05.013_b0430) 2008; 1 Kim (10.1016/j.eswa.2015.05.013_b0255) 2003; 55 Kim (10.1016/j.eswa.2015.05.013_b0270) 2004; 13 Lee (10.1016/j.eswa.2015.05.013_b0290) 2009; 36 10.1016/j.eswa.2015.05.013_b0275 Oh (10.1016/j.eswa.2015.05.013_b0345) 2002; 22 10.1016/j.eswa.2015.05.013_b0435 Kaboudan (10.1016/j.eswa.2015.05.013_b0245) 2000; 16 Pai (10.1016/j.eswa.2015.05.013_b0355) 2005; 33 Brownstone (10.1016/j.eswa.2015.05.013_b0085) 1996; 10 Tsinaslanidis (10.1016/j.eswa.2015.05.013_b0455) 2014; 41 Saad (10.1016/j.eswa.2015.05.013_b0415) 1998; 9 Breiman (10.1016/j.eswa.2015.05.013_b0070) 2001; 45 10.1016/j.eswa.2015.05.013_b0020 Schöneburg (10.1016/j.eswa.2015.05.013_b0425) 1990; 2 10.1016/j.eswa.2015.05.013_b0385 Ballings (10.1016/j.eswa.2015.05.013_b0015) 2012; 39 10.1016/j.eswa.2015.05.013_b0145 10.1016/j.eswa.2015.05.013_b0420 Cheung (10.1016/j.eswa.2015.05.013_b0100) 2005; 24 Saad (10.1016/j.eswa.2015.05.013_b0410) 1996; 4 10.1016/j.eswa.2015.05.013_b0305 Zikowski (10.1016/j.eswa.2015.05.013_b0500) 2015; 42 Friedman (10.1016/j.eswa.2015.05.013_b0195) 2010; 33 Burez (10.1016/j.eswa.2015.05.013_b0090) 2009; 36 Friedman (10.1016/j.eswa.2015.05.013_b0160) 1940; 11 Hand (10.1016/j.eswa.2015.05.013_b0215) 2001 Friedman (10.1016/j.eswa.2015.05.013_b0165) 2001; 29 Friedman (10.1016/j.eswa.2015.05.013_b0155) 1937; 32 Ji (10.1016/j.eswa.2015.05.013_b0240) 2014 Bentley (10.1016/j.eswa.2015.05.013_b0045) 1975; 18 Lai (10.1016/j.eswa.2015.05.013_b0285) 2009; 36 Qian (10.1016/j.eswa.2015.05.013_b0380) 2007; 26 Bessembinder (10.1016/j.eswa.2015.05.013_b0050) 1995; 3 Breiman (10.1016/j.eswa.2015.05.013_b0075) 1984 Malkiel (10.1016/j.eswa.2015.05.013_b0320) 2003; 17 10.1016/j.eswa.2015.05.013_b0125 10.1016/j.eswa.2015.05.013_b0400 Yeh (10.1016/j.eswa.2015.05.013_b0490) 2014; 41 Dudoit (10.1016/j.eswa.2015.05.013_b0135) 2002; 97 Kuo (10.1016/j.eswa.2015.05.013_b0280) 2001; 118 Wei (10.1016/j.eswa.2015.05.013_b0475) 2011; 8 Lunga (10.1016/j.eswa.2015.05.013_b0315) 2006; Vol. 4234 Leung (10.1016/j.eswa.2015.05.013_b0295) 2000; 16 Friedman (10.1016/j.eswa.2015.05.013_b0190) 2010; 33 Gençay (10.1016/j.eswa.2015.05.013_b0200) 2001; 12 Zhou (10.1016/j.eswa.2015.05.013_b0495) 2012 Subha (10.1016/j.eswa.2015.05.013_b0440) 2012; 9 Pesaran (10.1016/j.eswa.2015.05.013_b0370) 1995; 50 Provost (10.1016/j.eswa.2015.05.013_b0375) 1997 Friedman (10.1016/j.eswa.2015.05.013_b0175) 2002; 38 Rodriguez (10.1016/j.eswa.2015.05.013_b0405) 2004 Patel (10.1016/j.eswa.2015.05.013_b0365) 2015; 42 Friedman (10.1016/j.eswa.2015.05.013_b0185) 2000; 28 Ballings (10.1016/j.eswa.2015.05.013_b0030) 2015; 244 Demšar (10.1016/j.eswa.2015.05.013_b0115) 2006; 7 Booth (10.1016/j.eswa.2015.05.013_b0065) 2014; 41 Guisan (10.1016/j.eswa.2015.05.013_b0205) 2002; 157 Ou (10.1016/j.eswa.2015.05.013_b0350) 2009; 3 Kim (10.1016/j.eswa.2015.05.013_b0265) 2000; 19 Wang (10.1016/j.eswa.2015.05.013_b0465) 2002; 22 Diaz-Uriarte (10.1016/j.eswa.2015.05.013_b0120) 2006; 7 Ripley (10.1016/j.eswa.2015.05.013_b0395) 1996 De Oliveira (10.1016/j.eswa.2015.05.013_b0110) 2013; 40 Arlot (10.1016/j.eswa.2015.05.013_b0010) 2010; 4 Rechenthin (10.1016/j.eswa.2015.05.013_b0390) 2013; 392 Chen (10.1016/j.eswa.2015.05.013_b0095) 2013; 23 Tan (10.1016/j.eswa.2015.05.013_b0445) 2005; 16 Venables (10.1016/j.eswa.2015.05.013_b0460) 2002 Manahov (10.1016/j.eswa.2015.05.013_b0330) 2014; 28 10.1016/j.eswa.2015.05.013_b0340 10.1016/j.eswa.2015.05.013_b0220 Huang (10.1016/j.eswa.2015.05.013_b0230) 2005; 32 10.1016/j.eswa.2015.05.013_b0225 10.1016/j.eswa.2015.05.013_b0105 Freund (10.1016/j.eswa.2015.05.013_b0150) 1995; Vol. 904 Barak (10.1016/j.eswa.2015.05.013_b0035) 2015; 42 Bisoi (10.1016/j.eswa.2015.05.013_b0060) 2014; 19 Al-Hmouz (10.1016/j.eswa.2015.05.013_b0005) 2015; 42 Dreiseitl (10.1016/j.eswa.2015.05.013_b0130) 2002; 35 Friedman (10.1016/j.eswa.2015.05.013_b0170) 2002; 38 Kim (10.1016/j.eswa.2015.05.013_b0260) 1998; 14 Kara (10.1016/j.eswa.2015.05.013_b0250) 2011; 38 Lo (10.1016/j.eswa.2015.05.013_b0310) 2000; 55  | 
    
| References_xml | – reference: Sarle, W. S. (1997). Should I standardize the input variables (column vectors)?, periodic posting to the Usenet newsgroup comp.ai.neural-nets, Neural Network FAQ, part 2 of 7. URL < – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b0155 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – volume: 14 start-page: 323 year: 1998 end-page: 337 ident: b0260 article-title: Graded forecasting using an array of bipolar predictions: Application of probabilistic neural networks to a stock market index publication-title: International Journal of Forecasting – volume: 11 start-page: 86 year: 1940 end-page: 92 ident: b0160 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: The Annals of Mathematical Statistics – volume: 31 start-page: 270 year: 2006 end-page: 274 ident: b0485 article-title: An effective application of decision tree to stock trading publication-title: Expert Systems with Applications – volume: Vol. 4234 start-page: 440 year: 2006 end-page: 449 ident: b0315 article-title: Online forecasting of stock market movement direction using the improved incremental algorithm publication-title: Neural Information Processing – reference: Ballings, M., & Van den Poel, D. (2013b). R package kernelFactory: An ensemble of kernel machines. Available at: – volume: 201 start-page: 490 year: 2010 end-page: 499 ident: b0360 article-title: Subagging for credit scoring models publication-title: European Journal of Operational Research – volume: 19 start-page: 41 year: 2014 end-page: 56 ident: b0060 article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter publication-title: Applied Soft Computing – volume: 39 start-page: 13517 year: 2012 end-page: 13522 ident: b0015 article-title: Customer event history for churn prediction: How long is long enough? publication-title: Expert Systems with Applications – year: 2012 ident: b0495 article-title: Ensemble methods: Foundations and algorithms, machine learning & pattern recognition series – start-page: 97 year: 2006 end-page: 104 ident: b0080 article-title: Ensemble methods for unsupervised WSD publication-title: Proceedings of the 21st international conference on computational linguistics and the 44th annual meeting of the association for computational linguistics – volume: 39 start-page: 27 year: 1996 end-page: 34 ident: b0140 article-title: The KDD process for extracting useful knowledge from volumes of data publication-title: Communications ACM – volume: 40 start-page: 2904 year: 2013 end-page: 2913 ident: b0025 article-title: Kernel factory: An ensemble of kernel machines publication-title: Expert Systems with Applications – reference: Freund, Y., & Schapire, R. (1996). Experiments with a new boosting algorithm. In – reference: Lin, Y., Guo, H., & Hu, J., (2013). An SVM-based Approach for Stock Market Trend Prediction. Neural Networks (IJCNN), – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: b0010 article-title: A survey of cross-validation procedures for model selection publication-title: Statistics Surveys – volume: 16 start-page: 875 year: 2005 end-page: 886 ident: b0445 article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and Soft k-NN ensemble publication-title: IEEE Transactions on Neural Networks – volume: 22 start-page: 249 year: 2002 end-page: 255 ident: b0345 article-title: Analyzing stock market tick data using piecewise nonlinear model publication-title: Expert Systems with Applications – reference: Culp, M., Johnson, K., & Michailidis, G. (2012). R package ada: An R package for stochastic boosting. Available at: – volume: 38 start-page: 5311 year: 2011 end-page: 5319 ident: b0250 article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange publication-title: Expert Systems with Applications – reference: (pp. 148–156). Bari, Italy. – reference: Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2012). R package e1071: Misc functions of the department of statistics (e1071). Available at: – volume: 42 start-page: 1797 year: 2015 end-page: 1805 ident: b0500 article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy publication-title: Expert Systems with Applications – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: b0190 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software – reference: Hellström, T., Holmströmm, K. (1998). Predictable Patterns in Stock Returns. – volume: 50 start-page: 1201 year: 1995 end-page: 1228 ident: b0370 article-title: Predictability of stock returns: Robustness and economic significance publication-title: The Journal of Finance – volume: 24 start-page: 1150 year: 2005 end-page: 1175 ident: b0100 article-title: Empirical exchange rate models of the nineties: Are any fit to survive? publication-title: Journal of International Money and Finance – volume: 22 start-page: 33 year: January 2002 end-page: 38 ident: b0465 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Systems with Applications – year: 1984 ident: b0075 publication-title: Classification and regression trees – volume: 34 start-page: 2870 year: 2008 end-page: 2878 ident: b0235 article-title: Application of wrapper approach and composite classifier to the stock trend prediction publication-title: Expert Systems with Applications – reference: (pp. 285–289). – reference: Spackman, K. A, (1991). Maximum likelihood training of connectionist models: Comparison with least squares back-propagation and logistic regression. In – volume: 16 start-page: 173 year: 2000 end-page: 190 ident: b0295 article-title: Forecasting stock indices: A comparison of classification and level estimation models publication-title: International Journal of Forecasting – start-page: 955 year: 2014 end-page: 962 ident: b0240 article-title: Stock market forecast based on RBF neural network publication-title: Practical Applications of Intelligent Systems, Iske 2013 – volume: 17 start-page: 59 year: 2003 end-page: 82 ident: b0320 article-title: The efficient market hypothesis and its critics publication-title: The Journal of Economic Perspectives – volume: 36 start-page: 4626 year: 2009 end-page: 4636 ident: b0090 article-title: Handling class imbalance in customer churn prediction publication-title: Expert Systems with Applications – volume: 7 start-page: 3 year: 2006 ident: b0120 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics 2006 – volume: 9 start-page: 261 year: 2012 end-page: 270 ident: b0440 article-title: Classification of Stock Index movement using K-nearest neighbours (k-NN) algorithm publication-title: WSEAS Transactions on Information Science & Applications – volume: 33 start-page: 304 year: 2007 end-page: 315 ident: b0470 article-title: Stock market trading rule discovery using pattern recognition and technical analysis publication-title: Expert Systems with Applications – volume: 13 start-page: 255 year: 2004 end-page: 260 ident: b0270 article-title: Stock market prediction using artificial neural networks with optimal feature transformation publication-title: Neural Computing & Applications – reference: Kumar, M., & Thenmozhi, M. (2006). – volume: 392 start-page: 6169 year: 2013 end-page: 6188 ident: b0390 article-title: Using conditional probability to identify trends in intra-day high-frequency equity pricing publication-title: Physica A – reference: (PhD thesis), Princeton University. – year: 2001 ident: b0215 article-title: Principles of data mining – reference: Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., & Shengqiao, L. (2013). R package: FNN, fast nearest neighbor search algorithms and applications. Available at: – volume: 2 start-page: 17 year: June 1990 end-page: 27 ident: b0425 article-title: Stock price prediction using neural networks: A project report publication-title: Neurocomputing – volume: 26 start-page: 25 year: 2007 end-page: 33 ident: b0380 article-title: Stock market prediction with multiple classifiers publication-title: Applied Intelligence – volume: 25 start-page: 383 year: 1970 end-page: 417 ident: b0325 article-title: Efficient capital markets: A review of theory and empirical work∗ publication-title: The Journal of Finance – start-page: 25 year: 1995 end-page: 30 ident: b0480 article-title: Research problems in data warehousing publication-title: Proceedings of the fourth international conference on information and knowledge management, CIKM ’95 – start-page: 45 year: 1997 end-page: 453 ident: b0375 article-title: The case against accuracy estimation for comparing induction algorithms publication-title: Proceedings of the fifteenth international conference on machine learning – volume: 42 start-page: 4830 year: 2015 end-page: 4839 ident: b0005 article-title: Description and prediction of time series: A general framework of granular computing publication-title: Expert Systems with Applications – volume: 97 start-page: 77 year: 2002 end-page: 87 ident: b0135 article-title: Comparison of discrimination methods for the classification of tumors using gene expression data publication-title: Journal of the American Statistical Association – volume: 3 start-page: P28 year: 2009 ident: b0350 article-title: Prediction of stock market index movement by ten data mining techniques publication-title: Modern Applied Science – volume: 1 start-page: 70 year: 2008 end-page: 77 ident: b0430 article-title: Stock price direction prediction using artificial neural network approach: The case of turkey publication-title: Journal of Artificial Intelligence – volume: 3 start-page: 257 year: July 1995 end-page: 284 ident: b0050 article-title: The profitability of technical trading rules in the asian stock markets publication-title: Pacific-Basin Finance Journal – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: b0195 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software – volume: 36 start-page: 10896 year: 2009 end-page: 10904 ident: b0290 article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction publication-title: Expert Systems with Applications – year: 2002 ident: b0460 article-title: Modern Applied Statistics with S – year: 1996 ident: b0395 article-title: Pattern recognition and neural networks – reference: Rechenthin, M., Street, W. N., & Srinivasan, P. (2013). Stock chatter: using stock sentiment to predict price direction (SSRN Scholarly Paper No. ID 2380419). Social Science Research Network, Rochester, NY. – volume: 9 start-page: 1456 year: 1998 end-page: 1470 ident: b0415 article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks publication-title: IEEE Transactions on Neural Networks – volume: 42 start-page: 259 year: 2015 end-page: 268 ident: b0365 article-title: Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques publication-title: Expert Systems with Applications – reference: Nemenyi. P. B. (1963). – volume: 55 start-page: 1705 year: 2000 end-page: 1770 ident: b0310 article-title: Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation publication-title: The Journal of Finance – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: b0130 article-title: Logistic regression and artificial neural network classification models: A methodology review publication-title: Journal of Biomedical Informatics – volume: 42 start-page: 1325 year: 2015 end-page: 1339 ident: b0035 article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods publication-title: Expert Systems with Applications. – volume: 23 start-page: S369 year: 2013 end-page: S378 ident: b0095 article-title: International transmission of stock market movements: An adaptive neuro-fuzzy inference system for analysis of TAIEX forecasting publication-title: Neural Computing and Applications – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: b0170 article-title: Stochastic gradient boosting publication-title: Computational Statistics & Data Analysis – reference: (August 2013). – year: 2004 ident: b0405 article-title: Predicting stock market indices movements publication-title: Computational Finance and its Applications – reference: Ripley, B. (2013). R package nnet: Feed-forward neural networks and multinomial log-linear models. Available at: – reference: Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2010). – volume: 33 start-page: 497 year: 2005 end-page: 505 ident: b0355 article-title: A hybrid ARIMA and support vector machines model in stock price forecasting publication-title: Omega – start-page: 223 year: 2010 end-page: 239 ident: b0040 publication-title: A user’s guide to support vector machines – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0300 article-title: Classification and regression by random Forest publication-title: R News – volume: 28 start-page: 131 year: January 2014 end-page: 157 ident: b0330 article-title: Does high frequency trading affect technical analysis and market efficiency? and if so, How? publication-title: Journal of International Financial Markets, Institutions and Money – volume: 118 start-page: 21 year: 2001 end-page: 45 ident: b0280 article-title: An Intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network publication-title: Fuzzy Sets and Systems – volume: 244 start-page: 248 year: 2015 end-page: 260 ident: b0030 article-title: CRM in social media: Predicting increases in facebook usage frequency publication-title: European Journal of Operational Research – volume: 29 start-page: 1189 year: Oct. 2001 end-page: 1232 ident: b0165 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics – reference: . SSRN Scholarly Paper. Rochester, NY: Social Science Research Network, January 24, 2006. < – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0450 article-title: Regression shrinkage and selection via the Lasso publication-title: Journal of the Royal Statistical Society: Series B Methodology – volume: 18 start-page: 509 year: 1975 end-page: 517 ident: b0045 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM – reference: Dietterich, T.G. (2000). Ensemble methods in machine learning. In: Kittler, J., Roli, F. (Eds.), Multiple classifier systems (pp. 1–15). – volume: Vol. 904 start-page: 23 year: 1995 end-page: 37 ident: b0150 article-title: A Desicion-theoretic generalization of on-line learning and an application to boosting publication-title: Computational Learning Theory – volume: 7 start-page: 1 year: December 2006 end-page: 30 ident: b0115 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 40 start-page: 7596 year: 2013 end-page: 7606 ident: b0110 article-title: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index – Case study of PETR4, Petrobras, Brazil publication-title: Expert Systems with Applications – reference: . Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan. – volume: 28 start-page: 337 year: 2000 end-page: 374 ident: b0185 article-title: Additive logistic regression: A statistical view of boosting publication-title: Annals of Statistics – volume: 41 start-page: 7730 year: 2014 end-page: 7743 ident: b0490 article-title: Exploring the dynamic model of the returns from value stocks and growth stocks using time series mining publication-title: Expert Systems with Applications – volume: 32 start-page: 2513 year: 2005 end-page: 2522 ident: b0230 article-title: Forecasting stock market movement direction with support vector machine publication-title: Computers & Operations Research – volume: 55 start-page: 307 year: 2003 end-page: 319 ident: b0255 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing – volume: 157 start-page: 89 year: 2002 end-page: 100 ident: b0205 article-title: Generalized linear and generalized additive models in studies of species distributions: Setting the scene publication-title: Ecological Modelling – volume: 8 start-page: 5559 year: 2011 end-page: 5571 ident: b0475 article-title: A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan stock market publication-title: International Journal of Innovative Computing, Information and Control – volume: 12 start-page: 726 year: 2001 end-page: 734 ident: b0200 article-title: Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging publication-title: IEEE Transactions on Neural Networks – volume: 41 start-page: 3651 year: 2014 end-page: 3661 ident: b0065 article-title: Automated trading with performance weighted random forests and seasonality publication-title: Expert Systems with Applications – volume: 16 start-page: 207 year: 2000 end-page: 236 ident: b0245 article-title: Genetic programming prediction of stock prices publication-title: Computational Economics – volume: 36 start-page: 3761 year: 2009 end-page: 3773 ident: b0285 article-title: Evolving and clustering fuzzy decision tree for financial time series data forecasting publication-title: Expert Systems with Applications Part – reference: (August 9, 1998). – volume: 29 start-page: 196 year: 2015 end-page: 210 ident: b0210 article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price publication-title: Applied Soft Computing – volume: 41 start-page: 6848 year: 2014 end-page: 6860 ident: b0455 article-title: A prediction scheme using perceptually important points and dynamic time warping publication-title: Expert Systems with Applications – reference: Friedman, J., Hastie, T., & Tibshirani, R. (2013). R package glmnet: Lasso and elastic-net regularized generalized linear models. Available at: – volume: 4 start-page: 2021 year: 1996 end-page: 2026 ident: b0410 article-title: Advanced neural network training methods for low false alarm stock trend prediction publication-title: IEEE International Conference on Neural Networks – volume: 19 start-page: 125 year: 2000 end-page: 132 ident: b0265 article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index publication-title: Expert Systems with Applications – reference: >. – reference: . – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: b0175 article-title: Stochastic gradient boosting publication-title: Computational Statistics & Data Analysis – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0070 article-title: Random Forests publication-title: Machine Learning – volume: 10 start-page: 237 year: 1996 end-page: 250 ident: b0085 article-title: Using percentage accuracy to measure neural network predictions in stock market movements publication-title: Neurocomputing – volume: 50 start-page: 1201 issue: 4 year: 1995 ident: 10.1016/j.eswa.2015.05.013_b0370 article-title: Predictability of stock returns: Robustness and economic significance publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1995.tb04055.x – year: 1984 ident: 10.1016/j.eswa.2015.05.013_b0075 – start-page: 223 year: 2010 ident: 10.1016/j.eswa.2015.05.013_b0040 – volume: 22 start-page: 249 issue: 3 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0345 article-title: Analyzing stock market tick data using piecewise nonlinear model publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(01)00058-6 – volume: 36 start-page: 4626 year: 2009 ident: 10.1016/j.eswa.2015.05.013_b0090 article-title: Handling class imbalance in customer churn prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.05.027 – volume: 19 start-page: 125 issue: 2 year: 2000 ident: 10.1016/j.eswa.2015.05.013_b0265 article-title: Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(00)00027-0 – volume: 34 start-page: 2870 issue: 4 year: 2008 ident: 10.1016/j.eswa.2015.05.013_b0235 article-title: Application of wrapper approach and composite classifier to the stock trend prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.05.035 – volume: 8 start-page: 5559 issue: 8 year: 2011 ident: 10.1016/j.eswa.2015.05.013_b0475 article-title: A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan stock market publication-title: International Journal of Innovative Computing, Information and Control – volume: 41 start-page: 7730 year: 2014 ident: 10.1016/j.eswa.2015.05.013_b0490 article-title: Exploring the dynamic model of the returns from value stocks and growth stocks using time series mining publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.06.036 – volume: 39 start-page: 13517 year: 2012 ident: 10.1016/j.eswa.2015.05.013_b0015 article-title: Customer event history for churn prediction: How long is long enough? publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.07.006 – volume: 23 start-page: S369 year: 2013 ident: 10.1016/j.eswa.2015.05.013_b0095 article-title: International transmission of stock market movements: An adaptive neuro-fuzzy inference system for analysis of TAIEX forecasting publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1461-4 – volume: 118 start-page: 21 issue: 1 year: 2001 ident: 10.1016/j.eswa.2015.05.013_b0280 article-title: An Intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(98)00399-6 – volume: 29 start-page: 196 year: 2015 ident: 10.1016/j.eswa.2015.05.013_b0210 article-title: A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.12.028 – volume: 42 start-page: 259 year: 2015 ident: 10.1016/j.eswa.2015.05.013_b0365 article-title: Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.07.040 – start-page: 97 year: 2006 ident: 10.1016/j.eswa.2015.05.013_b0080 article-title: Ensemble methods for unsupervised WSD – volume: 32 start-page: 2513 issue: 10 year: 2005 ident: 10.1016/j.eswa.2015.05.013_b0230 article-title: Forecasting stock market movement direction with support vector machine publication-title: Computers & Operations Research doi: 10.1016/j.cor.2004.03.016 – volume: 55 start-page: 307 issue: 1–2 year: 2003 ident: 10.1016/j.eswa.2015.05.013_b0255 article-title: Financial time series forecasting using support vector machines publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00372-2 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0175 article-title: Stochastic gradient boosting publication-title: Computational Statistics & Data Analysis doi: 10.1016/S0167-9473(01)00065-2 – volume: 25 start-page: 383 issue: 2 year: 1970 ident: 10.1016/j.eswa.2015.05.013_b0325 article-title: Efficient capital markets: A review of theory and empirical work∗ publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1970.tb00518.x – volume: 19 start-page: 41 year: 2014 ident: 10.1016/j.eswa.2015.05.013_b0060 article-title: A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.01.039 – volume: 41 start-page: 3651 year: 2014 ident: 10.1016/j.eswa.2015.05.013_b0065 article-title: Automated trading with performance weighted random forests and seasonality publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.12.009 – volume: 16 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.eswa.2015.05.013_b0295 article-title: Forecasting stock indices: A comparison of classification and level estimation models publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(99)00048-5 – volume: 392 start-page: 6169 year: 2013 ident: 10.1016/j.eswa.2015.05.013_b0390 article-title: Using conditional probability to identify trends in intra-day high-frequency equity pricing publication-title: Physica A doi: 10.1016/j.physa.2013.08.003 – start-page: 955 year: 2014 ident: 10.1016/j.eswa.2015.05.013_b0240 article-title: Stock market forecast based on RBF neural network – volume: 16 start-page: 207 issue: 3 year: 2000 ident: 10.1016/j.eswa.2015.05.013_b0245 article-title: Genetic programming prediction of stock prices publication-title: Computational Economics doi: 10.1023/A:1008768404046 – year: 2012 ident: 10.1016/j.eswa.2015.05.013_b0495 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eswa.2015.05.013_b0070 article-title: Random Forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 18 start-page: 509 issue: 9 year: 1975 ident: 10.1016/j.eswa.2015.05.013_b0045 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM doi: 10.1145/361002.361007 – volume: 55 start-page: 1705 issue: 4 year: 2000 ident: 10.1016/j.eswa.2015.05.013_b0310 article-title: Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation publication-title: The Journal of Finance doi: 10.1111/0022-1082.00265 – ident: 10.1016/j.eswa.2015.05.013_b0020 doi: 10.1016/j.eswa.2012.12.007 – volume: 32 start-page: 675 year: 1937 ident: 10.1016/j.eswa.2015.05.013_b0155 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1937.10503522 – volume: 9 start-page: 261 issue: 9 year: 2012 ident: 10.1016/j.eswa.2015.05.013_b0440 article-title: Classification of Stock Index movement using K-nearest neighbours (k-NN) algorithm publication-title: WSEAS Transactions on Information Science & Applications – volume: 10 start-page: 237 issue: 3 year: 1996 ident: 10.1016/j.eswa.2015.05.013_b0085 article-title: Using percentage accuracy to measure neural network predictions in stock market movements publication-title: Neurocomputing doi: 10.1016/0925-2312(95)00052-6 – volume: Vol. 4234 start-page: 440 year: 2006 ident: 10.1016/j.eswa.2015.05.013_b0315 article-title: Online forecasting of stock market movement direction using the improved incremental algorithm – volume: 41 start-page: 6848 year: 2014 ident: 10.1016/j.eswa.2015.05.013_b0455 article-title: A prediction scheme using perceptually important points and dynamic time warping publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.04.028 – volume: 24 start-page: 1150 issue: 7 year: 2005 ident: 10.1016/j.eswa.2015.05.013_b0100 article-title: Empirical exchange rate models of the nineties: Are any fit to survive? publication-title: Journal of International Money and Finance doi: 10.1016/j.jimonfin.2005.08.002 – volume: 28 start-page: 131 year: 2014 ident: 10.1016/j.eswa.2015.05.013_b0330 article-title: Does high frequency trading affect technical analysis and market efficiency? and if so, How? publication-title: Journal of International Financial Markets, Institutions and Money doi: 10.1016/j.intfin.2013.11.002 – volume: 26 start-page: 25 issue: 1 year: 2007 ident: 10.1016/j.eswa.2015.05.013_b0380 article-title: Stock market prediction with multiple classifiers publication-title: Applied Intelligence doi: 10.1007/s10489-006-0001-7 – volume: 157 start-page: 89 issue: 2–3 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0205 article-title: Generalized linear and generalized additive models in studies of species distributions: Setting the scene publication-title: Ecological Modelling doi: 10.1016/S0304-3800(02)00204-1 – volume: 17 start-page: 59 issue: 1 year: 2003 ident: 10.1016/j.eswa.2015.05.013_b0320 article-title: The efficient market hypothesis and its critics publication-title: The Journal of Economic Perspectives doi: 10.1257/089533003321164958 – volume: 244 start-page: 248 year: 2015 ident: 10.1016/j.eswa.2015.05.013_b0030 article-title: CRM in social media: Predicting increases in facebook usage frequency publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.01.001 – start-page: 25 year: 1995 ident: 10.1016/j.eswa.2015.05.013_b0480 article-title: Research problems in data warehousing – ident: 10.1016/j.eswa.2015.05.013_b0225 – ident: 10.1016/j.eswa.2015.05.013_b0125 doi: 10.1007/3-540-45014-9_1 – volume: 3 start-page: P28 issue: 12 year: 2009 ident: 10.1016/j.eswa.2015.05.013_b0350 article-title: Prediction of stock market index movement by ten data mining techniques publication-title: Modern Applied Science doi: 10.5539/mas.v3n12p28 – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.eswa.2015.05.013_b0010 article-title: A survey of cross-validation procedures for model selection publication-title: Statistics Surveys doi: 10.1214/09-SS054 – volume: 28 start-page: 337 year: 2000 ident: 10.1016/j.eswa.2015.05.013_b0185 article-title: Additive logistic regression: A statistical view of boosting publication-title: Annals of Statistics doi: 10.1214/aos/1016218223 – volume: 42 start-page: 1797 year: 2015 ident: 10.1016/j.eswa.2015.05.013_b0500 article-title: Using volume weighted support vector machines with walk forward testing and feature selection for the purpose of creating stock trading strategy publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.10.001 – volume: 16 start-page: 875 issue: 4 year: 2005 ident: 10.1016/j.eswa.2015.05.013_b0445 article-title: Recognizing partially occluded, expression variant faces from single training image per person with SOM and Soft k-NN ensemble publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2005.849817 – volume: 14 start-page: 323 issue: 3 year: 1998 ident: 10.1016/j.eswa.2015.05.013_b0260 article-title: Graded forecasting using an array of bipolar predictions: Application of probabilistic neural networks to a stock market index publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(98)00003-X – ident: 10.1016/j.eswa.2015.05.013_b0055 – volume: 7 start-page: 3 year: 2006 ident: 10.1016/j.eswa.2015.05.013_b0120 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics 2006 doi: 10.1186/1471-2105-7-3 – ident: 10.1016/j.eswa.2015.05.013_b0180 – volume: 42 start-page: 1325 year: 2015 ident: 10.1016/j.eswa.2015.05.013_b0035 article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods publication-title: Expert Systems with Applications. doi: 10.1016/j.eswa.2014.09.026 – ident: 10.1016/j.eswa.2015.05.013_b0105 doi: 10.18637/jss.v017.i02 – volume: 22 start-page: 33 issue: 1 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0465 article-title: Predicting stock price using fuzzy grey prediction system publication-title: Expert Systems with Applications doi: 10.1016/S0957-4174(01)00047-1 – volume: 36 start-page: 3761 issue: 2 year: 2009 ident: 10.1016/j.eswa.2015.05.013_b0285 article-title: Evolving and clustering fuzzy decision tree for financial time series data forecasting publication-title: Expert Systems with Applications Part doi: 10.1016/j.eswa.2008.02.025 – start-page: 45 year: 1997 ident: 10.1016/j.eswa.2015.05.013_b0375 article-title: The case against accuracy estimation for comparing induction algorithms – ident: 10.1016/j.eswa.2015.05.013_b0220 – volume: 201 start-page: 490 issue: 2 year: 2010 ident: 10.1016/j.eswa.2015.05.013_b0360 article-title: Subagging for credit scoring models publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2009.03.008 – volume: 31 start-page: 270 issue: 2 year: 2006 ident: 10.1016/j.eswa.2015.05.013_b0485 article-title: An effective application of decision tree to stock trading publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.026 – ident: 10.1016/j.eswa.2015.05.013_b0435 – volume: Vol. 904 start-page: 23 year: 1995 ident: 10.1016/j.eswa.2015.05.013_b0150 article-title: A Desicion-theoretic generalization of on-line learning and an application to boosting – year: 2001 ident: 10.1016/j.eswa.2015.05.013_b0215 – volume: 38 start-page: 5311 issue: 5 year: 2011 ident: 10.1016/j.eswa.2015.05.013_b0250 article-title: Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul stock exchange publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.10.027 – ident: 10.1016/j.eswa.2015.05.013_b0275 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0300 article-title: Classification and regression by random Forest publication-title: R News – volume: 11 start-page: 86 year: 1940 ident: 10.1016/j.eswa.2015.05.013_b0160 article-title: A comparison of alternative tests of significance for the problem of m rankings publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177731944 – volume: 35 start-page: 352 issue: 5–6 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0130 article-title: Logistic regression and artificial neural network classification models: A methodology review publication-title: Journal of Biomedical Informatics doi: 10.1016/S1532-0464(03)00034-0 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2015.05.013_b0115 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – year: 1996 ident: 10.1016/j.eswa.2015.05.013_b0395 – volume: 36 start-page: 10896 issue: 8 year: 2009 ident: 10.1016/j.eswa.2015.05.013_b0290 article-title: Using support vector machine with a hybrid feature selection method to the stock trend prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.02.038 – volume: 40 start-page: 7596 year: 2013 ident: 10.1016/j.eswa.2015.05.013_b0110 article-title: Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index – Case study of PETR4, Petrobras, Brazil publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.06.071 – volume: 97 start-page: 77 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0135 article-title: Comparison of discrimination methods for the classification of tumors using gene expression data publication-title: Journal of the American Statistical Association doi: 10.1198/016214502753479248 – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.eswa.2015.05.013_b0195 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software doi: 10.18637/jss.v033.i01 – ident: 10.1016/j.eswa.2015.05.013_b0335 – volume: 13 start-page: 255 issue: 3 year: 2004 ident: 10.1016/j.eswa.2015.05.013_b0270 article-title: Stock market prediction using artificial neural networks with optimal feature transformation publication-title: Neural Computing & Applications doi: 10.1007/s00521-004-0428-x – volume: 12 start-page: 726 issue: 4 year: 2001 ident: 10.1016/j.eswa.2015.05.013_b0200 article-title: Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.935086 – volume: 9 start-page: 1456 issue: 6 year: 1998 ident: 10.1016/j.eswa.2015.05.013_b0415 article-title: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.728395 – volume: 2 start-page: 17 issue: 1 year: 1990 ident: 10.1016/j.eswa.2015.05.013_b0425 article-title: Stock price prediction using neural networks: A project report publication-title: Neurocomputing doi: 10.1016/0925-2312(90)90013-H – volume: 1 start-page: 70 issue: 2 year: 2008 ident: 10.1016/j.eswa.2015.05.013_b0430 article-title: Stock price direction prediction using artificial neural network approach: The case of turkey publication-title: Journal of Artificial Intelligence doi: 10.3923/jai.2008.70.77 – volume: 4 start-page: 2021 year: 1996 ident: 10.1016/j.eswa.2015.05.013_b0410 article-title: Advanced neural network training methods for low false alarm stock trend prediction publication-title: IEEE International Conference on Neural Networks – volume: 42 start-page: 4830 year: 2015 ident: 10.1016/j.eswa.2015.05.013_b0005 article-title: Description and prediction of time series: A general framework of granular computing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.01.060 – volume: 39 start-page: 27 issue: 11 year: 1996 ident: 10.1016/j.eswa.2015.05.013_b0140 article-title: The KDD process for extracting useful knowledge from volumes of data publication-title: Communications ACM doi: 10.1145/240455.240464 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.eswa.2015.05.013_b0450 article-title: Regression shrinkage and selection via the Lasso publication-title: Journal of the Royal Statistical Society: Series B Methodology doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.eswa.2015.05.013_b0165 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics doi: 10.1214/aos/1013203451 – volume: 33 start-page: 497 issue: 6 year: 2005 ident: 10.1016/j.eswa.2015.05.013_b0355 article-title: A hybrid ARIMA and support vector machines model in stock price forecasting publication-title: Omega doi: 10.1016/j.omega.2004.07.024 – year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0460 – ident: 10.1016/j.eswa.2015.05.013_b0305 doi: 10.1109/IJCNN.2013.6706743 – volume: 33 start-page: 304 issue: 2 year: 2007 ident: 10.1016/j.eswa.2015.05.013_b0470 article-title: Stock market trading rule discovery using pattern recognition and technical analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.05.002 – ident: 10.1016/j.eswa.2015.05.013_b0145 – ident: 10.1016/j.eswa.2015.05.013_b0420 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.eswa.2015.05.013_b0190 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software doi: 10.18637/jss.v033.i01 – volume: 3 start-page: 257 issue: 2–3 year: 1995 ident: 10.1016/j.eswa.2015.05.013_b0050 article-title: The profitability of technical trading rules in the asian stock markets publication-title: Pacific-Basin Finance Journal doi: 10.1016/0927-538X(95)00002-3 – volume: 38 start-page: 367 year: 2002 ident: 10.1016/j.eswa.2015.05.013_b0170 article-title: Stochastic gradient boosting publication-title: Computational Statistics & Data Analysis doi: 10.1016/S0167-9473(01)00065-2 – volume: 40 start-page: 2904 issue: 8 year: 2013 ident: 10.1016/j.eswa.2015.05.013_b0025 article-title: Kernel factory: An ensemble of kernel machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.12.007 – ident: 10.1016/j.eswa.2015.05.013_b0340 – ident: 10.1016/j.eswa.2015.05.013_b0385 – ident: 10.1016/j.eswa.2015.05.013_b0400 – year: 2004 ident: 10.1016/j.eswa.2015.05.013_b0405 article-title: Predicting stock market indices movements  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.627793 | 
    
| Snippet | •We predict long term stock price direction.•We benchmark three ensemble methods against four single classifiers.•We use five times twofold cross-validation... Stock price direction prediction is an important issue in the financial world. Even small improvements in predictive performance can be very profitable. The...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 7046 | 
    
| SubjectTerms | Benchmark Benchmarking Ensemble methods Industrial plants Kernels Logistics Mathematical models Neural networks Raw materials Regression Single classifiers Stock price direction prediction  | 
    
| Title | Evaluating multiple classifiers for stock price direction prediction | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2015.05.013 https://www.proquest.com/docview/1825463688  | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PEcGb1DVN02THMTem4i462C2kSSpT6Ybb8Obfbt6SDhTcQSi0KUloX5L3fm3e-z2ErlibWkOVirTJTJRyTiJliyIyJrZ5ATOigP8dj8NsMErvx2xcQ90qFgbcKoPu9zp9pa3DnVaQZms2mbSeHDhw5hAsIiQko8AJmqYcshjcfK3dPIB-jnu-PR5B7RA443287PwTuIcI8-yd9C_j9EtNr2xPfw_tBNCIO_659lHNlgdot0rIgMP6PES3vcDdXb7gylMQa8DHkwJSXmOHULFDe_oNz4BMCPuXd0PjyrBjA5dHaNTvPXcHUUiTEGmHLhaRLoRyMMWdMqELIpQSTCSWZkTFqdGKWUpzkVv3rafaScwUF6rNDGdJbPJccHqM6uW0tCcIC4cHBdDBUJukggpFk1iTgrRtnjmswBuIVPKROnCIQyqLd1k5i71KkKkEmcrYHYQ20PW6zcwzaGyszSqxyx_zQDoVv7HdZTVG0i0Q2PVQpZ0u55J4yv9MiNN_9n2GtqEEEYiEnaP64mNpLxwUWeTN1Vxroq3O3cNg-A3ZEN4s | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD3rx24ifNfFmJuu6ruVoEIIKXISEW9N1nUHNIALx5t9uH-1INNGDyZJ9tcv22r736_re7yF0xRrUZFSpQGdJFsSck0CZPA-yLDRpDj0ih_8dvX7SGcYPIzaqoGYZCwNulV73O52-1Nb-St1Lsz4dj-tPFhxYcwgWERKS0XgNrccs4jADu_lc-XkA_xx3hHs8gOI-csY5eZnZB5APEeboO-lv1umHnl4an_YO2vKoEd-6F9tFFVPsoe0yIwP2A3Qf3bU8eXfxjEtXQawBII9zyHmNLUTFFu7pVzwFNiHsvt62jT2HJRs4PEDDdmvQ7AQ-T0KgLbyYBzoXyuIUu0uEzolQSjARGZoQFcaZVsxQmorU2MmeakQhU1yoBss4i8IsTQWnh6haTApzhLCwgFAAHww1USyoUDQKNclJw6SJBQu8hkgpH6k9iTjksniTpbfYiwSZSpCpDO1GaA1dr-pMHYXGn6VZKXb5rSNIq-P_rHdZtpG0IwSWPVRhJouZJI7zPxHi-J_PvkAbnUGvK7v3_ccTtAl3IByRsFNUnb8vzJnFJfP0fNnvvgAaod_B | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+multiple+classifiers+for+stock+price+direction+prediction&rft.jtitle=Expert+systems+with+applications&rft.au=Ballings%2C+Michel&rft.au=Van+den+Poel%2C+Dirk&rft.au=Hespeels%2C+Nathalie&rft.au=Gryp%2C+Ruben&rft.date=2015-11-15&rft.issn=0957-4174&rft.volume=42&rft.issue=20&rft.spage=7046&rft.epage=7056&rft_id=info:doi/10.1016%2Fj.eswa.2015.05.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_05_013 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |