Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system

•Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing platform.•The proposed system can be used with any subject instantly without pre-calibration.•Experiments to verify the proposed algorithms have been...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 45; pp. 131 - 141
Main Authors Kim, Hanguen, Lee, Sangwon, Kim, Youngjae, Lee, Serin, Lee, Dongsung, Ju, Jinsun, Myung, Hyun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2016
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2015.09.035

Cover

Abstract •Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing platform.•The proposed system can be used with any subject instantly without pre-calibration.•Experiments to verify the proposed algorithms have been conducted. Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful monitoring systems for dangerous situations irrespective of lighting conditions in buildings or production facilities. To robustly recognize emergency actions or hazardous situations of workers at a production facility, we present human joint estimation and behavior recognition algorithms that solely use depth information in this paper. To estimate human joints on a low cost computing platform, we propose a human joint estimation algorithm that integrates a geodesic graph and a support vector machine (SVM). The human feature points are extracted within a range of geodesic distance from a geodesic graph. The geodesic graph is used for optimizing the estimation result. The SVM-based human joint estimator uses randomly selected human features to reduce computation. Body parts that typically involve many motions are then estimated by the geodesic distance value. The proposed algorithm can work for any human without calibration, and thus the system can be used with any subject immediately even with a low cost computing platform. In the case of the behavior recognition algorithm, the algorithm should have a simple behavior registration process, and it also should be robust to environmental changes. To meet these goals, we propose a template matching-based behavior recognition algorithm. Our method creates a behavior template set that consists of weighted human joint data with scale and rotation invariant properties. A single behavior template consists of the joint information that is estimated per frame. Additionally, we propose adaptive template rejection and a sliding window filter to prevent misrecognition between similar behaviors. The human joint estimation and behavior recognition algorithms are evaluated individually through several experiments and the performance is proven through a comparison with other algorithms. The experimental results show that our method performs well and is applicable in real environments.
AbstractList Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful monitoring systems for dangerous situations irrespective of lighting conditions in buildings or production facilities. To robustly recognize emergency actions or hazardous situations of workers at a production facility, we present human joint estimation and behavior recognition algorithms that solely use depth information in this paper. To estimate human joints on a low cost computing platform, we propose a human joint estimation algorithm that integrates a geodesic graph and a support vector machine (SVM). The human feature points are extracted within a range of geodesic distance from a geodesic graph. The geodesic graph is used for optimizing the estimation result. The SVM-based human joint estimator uses randomly selected human features to reduce computation. Body parts that typically involve many motions are then estimated by the geodesic distance value. The proposed algorithm can work for any human without calibration, and thus the system can be used with any subject immediately even with a low cost computing platform. In the case of the behavior recognition algorithm, the algorithm should have a simple behavior registration process, and it also should be robust to environmental changes. To meet these goals, we propose a template matching-based behavior recognition algorithm. Our method creates a behavior template set that consists of weighted human joint data with scale and rotation invariant properties. A single behavior template consists of the joint information that is estimated per frame. Additionally, we propose adaptive template rejection and a sliding window filter to prevent misrecognition between similar behaviors. The human joint estimation and behavior recognition algorithms are evaluated individually through several experiments and the performance is proven through a comparison with other algorithms. The experimental results show that our method performs well and is applicable in real environments.
•Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing platform.•The proposed system can be used with any subject instantly without pre-calibration.•Experiments to verify the proposed algorithms have been conducted. Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful monitoring systems for dangerous situations irrespective of lighting conditions in buildings or production facilities. To robustly recognize emergency actions or hazardous situations of workers at a production facility, we present human joint estimation and behavior recognition algorithms that solely use depth information in this paper. To estimate human joints on a low cost computing platform, we propose a human joint estimation algorithm that integrates a geodesic graph and a support vector machine (SVM). The human feature points are extracted within a range of geodesic distance from a geodesic graph. The geodesic graph is used for optimizing the estimation result. The SVM-based human joint estimator uses randomly selected human features to reduce computation. Body parts that typically involve many motions are then estimated by the geodesic distance value. The proposed algorithm can work for any human without calibration, and thus the system can be used with any subject immediately even with a low cost computing platform. In the case of the behavior recognition algorithm, the algorithm should have a simple behavior registration process, and it also should be robust to environmental changes. To meet these goals, we propose a template matching-based behavior recognition algorithm. Our method creates a behavior template set that consists of weighted human joint data with scale and rotation invariant properties. A single behavior template consists of the joint information that is estimated per frame. Additionally, we propose adaptive template rejection and a sliding window filter to prevent misrecognition between similar behaviors. The human joint estimation and behavior recognition algorithms are evaluated individually through several experiments and the performance is proven through a comparison with other algorithms. The experimental results show that our method performs well and is applicable in real environments.
Author Lee, Dongsung
Ju, Jinsun
Myung, Hyun
Kim, Hanguen
Kim, Youngjae
Lee, Serin
Lee, Sangwon
Author_xml – sequence: 1
  givenname: Hanguen
  surname: Kim
  fullname: Kim, Hanguen
  email: sskhk05@kaist.ac.kr
  organization: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea
– sequence: 2
  givenname: Sangwon
  surname: Lee
  fullname: Lee, Sangwon
  email: lsw618@gmail.com
  organization: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea
– sequence: 3
  givenname: Youngjae
  surname: Kim
  fullname: Kim, Youngjae
  email: david-kim@kaist.ac.kr
  organization: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea
– sequence: 4
  givenname: Serin
  surname: Lee
  fullname: Lee, Serin
  email: serin.lee@gmail.com
  organization: Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore
– sequence: 5
  givenname: Dongsung
  surname: Lee
  fullname: Lee, Dongsung
  email: dslee.lee@samsung.com
  organization: Image & Video Research Group, Samsung S1 Cooperation, 168 S1 Building, Soonhwa-dong, Joong-gu, Seoul 100-773, Republic of Korea
– sequence: 6
  givenname: Jinsun
  surname: Ju
  fullname: Ju, Jinsun
  email: jinsun.ju@samsung.com
  organization: Image & Video Research Group, Samsung S1 Cooperation, 168 S1 Building, Soonhwa-dong, Joong-gu, Seoul 100-773, Republic of Korea
– sequence: 7
  givenname: Hyun
  orcidid: 0000-0002-5799-2026
  surname: Myung
  fullname: Myung, Hyun
  email: hmyung@kaist.ac.kr
  organization: Director of Urban Robotics Lab. and a professor in the robotics program and Deptartment of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea
BookMark eNp9kcuK3DAQRUWYgfQ8fmBWWmZjR7L8kCCbMOQFA9kkZClkuWxXY0sdSe6hPyF_HfV0VlnMSgW6p6g6dUOunHdAyANnJWe8fb8vIT6bsmK8KZkqmWjekB2XnSjaTokrsmOq6Yqad_VbchPjnjHeMdbtyJ9fgNOcYKB7jy4VvYm5nrfVONrDbI7oAw1g_eQwoXfULJMPmOaVbhHdRL1bTnSAQ5oputGH1bzEckUX_1xYH1P-SLAsOIFL9IgD-CJu4Qi4LMZZoPEUE6x35Ho0S4T7f-8t-fn504_Hr8XT9y_fHj8-FVYolQorVS_qSvB27JUVTIFtJYd6bK0CCaZWkhnJh7FTvIe26Xg7CDmyykjDO8PFLXl36XsI_vcGMekVo4XzLOC3qLmsmroVTd3kqLxEbfAxBhi1xfSyXwoGF82ZPtvXe322r8_2NVM6289o9R96CLiacHod-nCBIO9_RAg6WoSsaMB8gqQHj6_hfwHSlaT8
CitedBy_id crossref_primary_10_1007_s11227_021_03772_x
crossref_primary_10_1007_s11042_022_13496_6
crossref_primary_10_1109_TBDATA_2017_2715815
crossref_primary_10_1016_j_eswa_2022_117451
crossref_primary_10_1007_s12652_020_02335_x
crossref_primary_10_3390_app10165453
crossref_primary_10_1109_ACCESS_2020_2982906
crossref_primary_10_1016_j_procs_2017_12_082
crossref_primary_10_1109_ACCESS_2020_3027892
crossref_primary_10_1134_S0361768823080066
crossref_primary_10_1155_2020_4358728
crossref_primary_10_3390_sym9060093
crossref_primary_10_1016_j_eswa_2019_112829
crossref_primary_10_1080_09613218_2020_1779020
crossref_primary_10_1007_s11042_021_11550_3
crossref_primary_10_1088_1742_6596_1661_1_012050
crossref_primary_10_1109_ACCESS_2021_3126629
crossref_primary_10_3390_en13236442
crossref_primary_10_1016_j_measen_2025_101871
crossref_primary_10_1109_JSYST_2023_3306380
crossref_primary_10_1002_ente_201901242
crossref_primary_10_1007_s10462_020_09904_8
crossref_primary_10_1016_j_enbuild_2020_109965
crossref_primary_10_3390_jsan9040046
crossref_primary_10_1111_exsy_12552
crossref_primary_10_1007_s11042_020_08885_8
crossref_primary_10_1016_j_eswa_2017_02_020
crossref_primary_10_1109_ACCESS_2019_2955387
crossref_primary_10_1007_s41870_023_01193_y
crossref_primary_10_1016_j_eswa_2019_04_031
crossref_primary_10_1109_JPROC_2017_2684460
crossref_primary_10_32604_csse_2023_028003
crossref_primary_10_1109_ACCESS_2019_2946912
crossref_primary_10_3390_s17040805
crossref_primary_10_1016_j_eswa_2017_09_029
crossref_primary_10_1016_j_eswa_2024_123264
Cites_doi 10.1023/A:1010933404324
10.1016/j.imavis.2009.11.014
10.1007/BF00994018
10.1109/TMM.2011.2120600
10.1145/2398356.2398381
10.1109/CC.2013.6571292
10.1109/TSMCB.2010.2044041
10.1016/j.cviu.2006.10.016
10.1023/A:1009715923555
10.1109/72.991427
10.1109/TSMCC.2007.893280
10.1109/TMM.2012.2225040
10.1109/TMM.2013.2246148
10.1109/TCYB.2013.2265378
10.1007/s11263-012-0516-9
10.1109/MMUL.2012.24
10.1016/j.eswa.2011.02.165
10.1016/j.imavis.2011.12.001
10.1109/TII.2011.2172450
10.1007/s11263-006-7934-5
10.1016/j.patrec.2014.04.011
10.1016/S0893-6080(99)00032-5
10.1016/j.cviu.2006.08.002
10.1145/2133366.2133371
10.1016/j.jvcir.2013.03.011
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.09.035
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 141
ExternalDocumentID 10_1016_j_eswa_2015_09_035
S0957417415006648
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
ACLOT
EFKBS
JQ2
L7M
L~C
L~D
~HD
ID FETCH-LOGICAL-c399t-c89b342316fb9c309ec681e4f6c9e8ea4980a81df791be65716d38f02a8a17a13
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Sun Sep 28 03:01:19 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Tue Jul 01 03:12:26 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Video-surveillance system
Human joint estimation
Behavior recognition
Human-computer interaction (HCI)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-c89b342316fb9c309ec681e4f6c9e8ea4980a81df791be65716d38f02a8a17a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5799-2026
PQID 1825463545
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1825463545
crossref_citationtrail_10_1016_j_eswa_2015_09_035
crossref_primary_10_1016_j_eswa_2015_09_035
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_09_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-01
2016-03-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Biswas, Basu (bib0005) 2011
Hsu, Lin (bib0021) 2002; 13
Escalera (bib0016) 2012
Xu, Lee (bib0053) 2012
Poppe (bib0033) 2010; 28
OpenNI. Openni nite.
Wu, Shao (bib0051) 2014
Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore (bib0040) 2011
Toshev, Szegedy (bib0047) 2014
Fan, Tian, Wang, Ming, Shi, Jin (bib0017) 2015
Sigalas, Baltzakis, Trahanias (bib0042) 2010
Aggarwal, Xia (bib0001) 2014; 48
Burges (bib0010) 1998; 2
Wu, Konrad, Ishwar (bib0052) 2013
Hernández-Vela, Zlateva, Marinov, Reyes, Radeva, Dimov (bib0020) 2012
Alpaydin (bib0003) 2004
Aizerman, Braverman, Rozoner (bib0002) 1964; 25
Yang, Jang, Beh, Han, Ko (bib0054) 2012
Zhang (bib0056) 2012; 19
Boykov, Veksler (bib0007) 2006
Amari, Wu (bib0004) 1999; 12
Buys, Cagniart, Baksheev, De Laet, De Schutter, Pantofaru (bib0011) 2014; 25
Freedman, B., Shpunt, A., Machline, M., & Arieli, Y. (2008). Depth mapping using projected patterns. WO Patent 2,008,120,217.
Wang, Liu, Wu, Yuan (bib0050) 2012
Rogez, Rihan, Orrite-Uruñuela, Torr (bib0037) 2012; 99
iPi Soft LLC (2011). Motion capture for the masses.
Plagemann, Ganapathi, Koller, Thrun (bib0031) 2010
Ren, Yuan, Meng, Zhang (bib0035) 2013; 15
Liu, Shao (bib0025) 2013
Breiman (bib0009) 2001; 45
Shotton, Sharp, Kipman, Fitzgibbon, Finocchio, Blake (bib0041) 2013; 56
Moeslund, Hilton, Krüger (bib0029) 2006; 104
Yang, Zicheng, Hong (bib0055) 2013; 10
Jain, Subramanian, Das, Mittal (bib0023) 2011
Reale, Canavan, Yin, Hu, Hung (bib0034) 2011; 13
Poppe (bib0032) 2007; 108
Visutsak, Prachumrak (bib0049) 2011; 5
Cortes, Vapnik (bib0014) 1995; 20
Boykov, Funka-Lea (bib0006) 2006; 70
Schwarz, Mkhitaryan, Mateus, Navab (bib0038) 2012; 30
Dubey, Ni, Moulin (bib0015) 2012
Song, Demirdjian, Davis (bib0045) 2012; 2
Sheasby, Warrell, Zhang, Crook, Torr (bib0039) 2012
Celebi, Aydin, Temiz, Arici (bib0013) 2013
Han, Shao, Xu, Shotton (bib0019) 2013; 43
Straka, Hauswiesner, Rüther, Bischof (bib0046) 2011
Lai, Konrad, Ishwar (bib0024) 2012
Castro, Delgado, Medina, Ruiz-Lozano (bib0012) 2011; 38
Song, Chandra, Torresen (bib0044) 2013
Microsoft. Kinect for windows.
Mitra, Acharya (bib0028) 2007; 37
Megavannan, Agarwal, Babu (bib0026) 2012
Jain, Tompson, LeCun, Bregler (bib0022) 2014
Zhang, Soon Seah, Kwang Quah, Sun (bib0057) 2013; 15
Tran, Trivedi (bib0048) 2012; 8
Accessed 09.10.15.
del Rincón, Makris, Uruñuela, Nebel (bib0036) 2011; 41
Boykov, Jolly (bib0008) 2001
Zhang (10.1016/j.eswa.2015.09.035_bib0057) 2013; 15
Sigalas (10.1016/j.eswa.2015.09.035_bib0042) 2010
Dubey (10.1016/j.eswa.2015.09.035_bib0015) 2012
Song (10.1016/j.eswa.2015.09.035_bib0044) 2013
Megavannan (10.1016/j.eswa.2015.09.035_bib0026) 2012
Yang (10.1016/j.eswa.2015.09.035_bib0055) 2013; 10
Tran (10.1016/j.eswa.2015.09.035_bib0048) 2012; 8
Schwarz (10.1016/j.eswa.2015.09.035_bib0038) 2012; 30
Castro (10.1016/j.eswa.2015.09.035_bib0012) 2011; 38
Fan (10.1016/j.eswa.2015.09.035_bib0017) 2015
Visutsak (10.1016/j.eswa.2015.09.035_bib0049) 2011; 5
Wu (10.1016/j.eswa.2015.09.035_bib0051) 2014
Reale (10.1016/j.eswa.2015.09.035_bib0034) 2011; 13
Burges (10.1016/j.eswa.2015.09.035_bib0010) 1998; 2
Amari (10.1016/j.eswa.2015.09.035_bib0004) 1999; 12
Hernández-Vela (10.1016/j.eswa.2015.09.035_bib0020) 2012
Buys (10.1016/j.eswa.2015.09.035_bib0011) 2014; 25
Jain (10.1016/j.eswa.2015.09.035_bib0022) 2014
Hsu (10.1016/j.eswa.2015.09.035_bib0021) 2002; 13
Wang (10.1016/j.eswa.2015.09.035_bib0050) 2012
Aggarwal (10.1016/j.eswa.2015.09.035_bib0001) 2014; 48
Boykov (10.1016/j.eswa.2015.09.035_bib0008) 2001
Sheasby (10.1016/j.eswa.2015.09.035_bib0039) 2012
Zhang (10.1016/j.eswa.2015.09.035_bib0056) 2012; 19
Straka (10.1016/j.eswa.2015.09.035_bib0046) 2011
Ren (10.1016/j.eswa.2015.09.035_bib0035) 2013; 15
Poppe (10.1016/j.eswa.2015.09.035_bib0032) 2007; 108
10.1016/j.eswa.2015.09.035_bib0043
Aizerman (10.1016/j.eswa.2015.09.035_bib0002) 1964; 25
10.1016/j.eswa.2015.09.035_bib0027
Song (10.1016/j.eswa.2015.09.035_bib0045) 2012; 2
Biswas (10.1016/j.eswa.2015.09.035_bib0005) 2011
Jain (10.1016/j.eswa.2015.09.035_bib0023) 2011
Lai (10.1016/j.eswa.2015.09.035_bib0024) 2012
Toshev (10.1016/j.eswa.2015.09.035_bib0047) 2014
Boykov (10.1016/j.eswa.2015.09.035_bib0007) 2006
Poppe (10.1016/j.eswa.2015.09.035_bib0033) 2010; 28
10.1016/j.eswa.2015.09.035_bib0030
Shotton (10.1016/j.eswa.2015.09.035_bib0041) 2013; 56
Celebi (10.1016/j.eswa.2015.09.035_bib0013) 2013
Plagemann (10.1016/j.eswa.2015.09.035_bib0031) 2010
Yang (10.1016/j.eswa.2015.09.035_bib0054) 2012
Cortes (10.1016/j.eswa.2015.09.035_bib0014) 1995; 20
Moeslund (10.1016/j.eswa.2015.09.035_bib0029) 2006; 104
Breiman (10.1016/j.eswa.2015.09.035_bib0009) 2001; 45
10.1016/j.eswa.2015.09.035_bib0018
Escalera (10.1016/j.eswa.2015.09.035_bib0016) 2012
Boykov (10.1016/j.eswa.2015.09.035_bib0006) 2006; 70
Liu (10.1016/j.eswa.2015.09.035_bib0025) 2013
del Rincón (10.1016/j.eswa.2015.09.035_bib0036) 2011; 41
Alpaydin (10.1016/j.eswa.2015.09.035_bib0003) 2004
Wu (10.1016/j.eswa.2015.09.035_bib0052) 2013
Shotton (10.1016/j.eswa.2015.09.035_bib0040) 2011
Xu (10.1016/j.eswa.2015.09.035_bib0053) 2012
Rogez (10.1016/j.eswa.2015.09.035_bib0037) 2012; 99
Han (10.1016/j.eswa.2015.09.035_bib0019) 2013; 43
Mitra (10.1016/j.eswa.2015.09.035_bib0028) 2007; 37
References_xml – volume: 5
  start-page: 713
  year: 2011
  end-page: 721
  ident: bib0049
  article-title: Geodesic-based skeleton smoothing
  publication-title: International Journal of Mathematical Models and Methods in Applied Sciences
– volume: 25
  start-page: 39
  year: 2014
  end-page: 52
  ident: bib0011
  article-title: An adaptable system for RGB-D based human body detection and pose estimation
  publication-title: Journal of Visual Communication and Image Representation
– volume: 99
  start-page: 25
  year: 2012
  end-page: 52
  ident: bib0037
  article-title: Fast human pose detection using randomized hierarchical cascades of rejectors
  publication-title: International Journal of Computer Vision
– start-page: 1653
  year: 2014
  end-page: 1660
  ident: bib0047
  article-title: DeepPose: human pose estimation via deep neural networks
  publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
– year: 2004
  ident: bib0003
  publication-title: Introduction to machine learning
– start-page: 1493
  year: 2013
  end-page: 1500
  ident: bib0025
  article-title: Learning discriminative representations from RGB-D video data
  publication-title: Proceedings of the twenty-third international joint conference on artificial intelligence
– start-page: 77
  year: 2012
  end-page: 79
  ident: bib0053
  article-title: Gesture recognition based on 2D and 3D feature by using Kinect device
  publication-title: Proceedings of international conference on information security and assurance (ISA)
– start-page: 1
  year: 2011
  end-page: 12
  ident: bib0046
  article-title: Skeletal graph based human pose estimation in real-time
  publication-title: Proceedings of British machine vision conference (BMVC)
– start-page: 620
  year: 2013
  end-page: 625
  ident: bib0013
  article-title: Gesture recognition using skeleton data with weighted dynamic time warping
  publication-title: Proceedings of international conference on computer vision theory and applications (VISAPP)
– start-page: 1
  year: 2012
  end-page: 5
  ident: bib0026
  article-title: Human action recognition using depth maps
  publication-title: Proceedings of the international conference on signal processing and communications (SPCOM)
– volume: 28
  start-page: 976
  year: 2010
  end-page: 990
  ident: bib0033
  article-title: A survey on vision-based human action recognition
  publication-title: Image and Vision Computing
– volume: 10
  start-page: 93
  year: 2013
  end-page: 103
  ident: bib0055
  article-title: RGB-depth feature for 3D human activity recognition
  publication-title: China Communications
– volume: 15
  start-page: 1110
  year: 2013
  end-page: 1120
  ident: bib0035
  article-title: Robust part-based hand gesture recognition using Kinect sensor
  publication-title: IEEE Transactions on Multimedia
– start-page: 1
  year: 2012
  end-page: 12
  ident: bib0039
  article-title: Simultaneous human segmentation, depth and pose estimation via dual decomposition
  publication-title: Proceedings of British machine vision conference, student workshop (BMVW)
– volume: 2
  start-page: 1
  year: 2012
  end-page: 28
  ident: bib0045
  article-title: Continuous body and hand gesture recognition for natural human-computer interaction
  publication-title: ACM Transactions on Interactive Intelligent Systems (TiiS)
– reference: OpenNI. Openni nite.
– volume: 108
  start-page: 4
  year: 2007
  end-page: 18
  ident: bib0032
  article-title: Vision-based human motion analysis: an overview
  publication-title: Computer Vision and Image Understanding
– volume: 13
  start-page: 474
  year: 2011
  end-page: 486
  ident: bib0034
  article-title: A multi-gesture interaction system using a 3-D iris disk model for gaze estimation and an active appearance model for 3-D hand pointing
  publication-title: IEEE Transactions on Multimedia
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0009
  article-title: Random forests
  publication-title: Machine Learning
– start-page: 726
  year: 2012
  end-page: 732
  ident: bib0020
  article-title: Graph cuts optimization for multi-limb human segmentation in depth maps
  publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0014
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 70
  start-page: 109
  year: 2006
  end-page: 131
  ident: bib0006
  article-title: Graph cuts and efficient ND image segmentation
  publication-title: International Journal of Computer Vision
– volume: 38
  start-page: 11182
  year: 2011
  end-page: 11192
  ident: bib0012
  article-title: Intelligent surveillance system with integration of heterogeneous information for intrusion detection
  publication-title: Expert Systems with Applications
– volume: 56
  start-page: 116
  year: 2013
  end-page: 124
  ident: bib0041
  article-title: Real-time human pose recognition in parts from single depth images
  publication-title: Communications of the ACM Magazine
– reference: Freedman, B., Shpunt, A., Machline, M., & Arieli, Y. (2008). Depth mapping using projected patterns. WO Patent 2,008,120,217.
– start-page: 1
  year: 2011
  end-page: 8
  ident: bib0040
  article-title: Real-time human pose recognition in parts from single depth images
  publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
– start-page: 227
  year: 2011
  end-page: 238
  ident: bib0023
  article-title: Real-time upper-body human pose estimation using a depth camera
  publication-title: Proceedings of the international conference on computer vision/computer graphics collaboration techniques
– volume: 25
  start-page: 821
  year: 1964
  end-page: 837
  ident: bib0002
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Automation and Remote Control
– start-page: 5424
  year: 2010
  end-page: 5429
  ident: bib0042
  article-title: Gesture recognition based on arm tracking for human-robot interaction
  publication-title: Proceedings of IEEE/rsj international conference on intelligent robots and systems (IROS)
– start-page: 185
  year: 2012
  end-page: 188
  ident: bib0024
  article-title: A gesture-driven computer interface using Kinect
  publication-title: Proceedings of the IEEE southwest symposium on image analysis and interpretation (SSIAI)
– volume: 30
  start-page: 217
  year: 2012
  end-page: 226
  ident: bib0038
  article-title: Human skeleton tracking from depth data using geodesic distances and optical flow
  publication-title: Image and Vision Computing
– start-page: 2956
  year: 2013
  end-page: 2963
  ident: bib0044
  article-title: An ant learning algorithm for gesture recognition with one-instance training
  publication-title: Proceedings of IEEE congress on evolutionary computation (CEC)
– volume: 8
  start-page: 178
  year: 2012
  end-page: 187
  ident: bib0048
  article-title: 3-D posture and gesture recognition for interactivity in smart spaces
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 37
  start-page: 311
  year: 2007
  end-page: 324
  ident: bib0028
  article-title: Gesture recognition: a survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications & Reviews
– reference: Accessed 09.10.15.
– volume: 104
  start-page: 90
  year: 2006
  end-page: 126
  ident: bib0029
  article-title: A survey of advances in vision-based human motion capture and analysis
  publication-title: Computer Vision and Image Understanding
– start-page: 302
  year: 2014
  end-page: 315
  ident: bib0022
  article-title: Modeep: a deep learning framework using motion features for human pose estimation
  publication-title: Proceedings of the 12th asian conference on computer vision
– start-page: 105
  year: 2001
  end-page: 112
  ident: bib0008
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images
  publication-title: Proceedings of IEEE international conference on computer vision (ICCV)
– start-page: 297
  year: 2012
  end-page: 298
  ident: bib0054
  article-title: Gesture recognition using depth-based hand tracking for contactless controller application
  publication-title: Proceedings of IEEE international conference on consumer electronics (ICCE)
– start-page: 2371
  year: 2013
  end-page: 2375
  ident: bib0052
  article-title: Dynamic time warping for gesture-based user identification and authentication with Kinect
  publication-title: Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP)
– start-page: 100
  year: 2011
  end-page: 103
  ident: bib0005
  article-title: Gesture recognition using Microsoft Kinect®
  publication-title: Proceedings of international conference on automation, robotics and applications (ICARA)
– volume: 41
  start-page: 26
  year: 2011
  end-page: 37
  ident: bib0036
  article-title: Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– start-page: 3108
  year: 2010
  end-page: 3113
  ident: bib0031
  article-title: Real-time identification and localization of body parts from depth images
  publication-title: IEEE international conference on robotics and automation (ICRA)
– start-page: 350
  year: 2015
  end-page: 356
  ident: bib0017
  article-title: 3D human behavior recognition based on spatiotemporal texture features
  publication-title: Proceedings of international conference on human system interactions (HSI)
– reference: iPi Soft LLC (2011). Motion capture for the masses.
– year: 2006
  ident: bib0007
  publication-title: Graph cuts in vision and graphics: Theories and applications
– reference: Microsoft. Kinect for windows.
– volume: 43
  start-page: 1318
  year: 2013
  end-page: 1334
  ident: bib0019
  article-title: Enhanced computer vision with microsoft kinect sensor: a review
  publication-title: IEEE Transactions on Cybernetics
– volume: 15
  start-page: 106
  year: 2013
  end-page: 119
  ident: bib0057
  article-title: GPU-accelerated real-time tracking of full-body motion with multi-layer search
  publication-title: IEEE Transactions on Multimedia
– volume: 12
  start-page: 783
  year: 1999
  end-page: 789
  ident: bib0004
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Networks
– start-page: 282
  year: 2012
  end-page: 292
  ident: bib0016
  article-title: Human behavior analysis from depth maps
  publication-title: International conference on articulated motion and deformable objects
– volume: 19
  start-page: 4
  year: 2012
  end-page: 10
  ident: bib0056
  article-title: Microsoft Kinect sensor and its effect
  publication-title: IEEE Multimedia
– start-page: 1290
  year: 2012
  end-page: 1297
  ident: bib0050
  article-title: Mining actionlet ensemble for action recognition with depth cameras
  publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 48
  start-page: 70
  year: 2014
  end-page: 80
  ident: bib0001
  article-title: Human activity recognition from 3D data: A review
  publication-title: Pattern Recognition Letters
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib0010
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
– start-page: 724
  year: 2014
  end-page: 731
  ident: bib0051
  article-title: Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition
  publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib0021
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Transactions on Neural Networks
– start-page: 106
  year: 2012
  end-page: 113
  ident: bib0015
  article-title: A depth camera based fall recognition system for the elderly
  publication-title: Proceedings of international conference on image analysis and recognition
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2015.09.035_bib0009
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– start-page: 227
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0023
  article-title: Real-time upper-body human pose estimation using a depth camera
– ident: 10.1016/j.eswa.2015.09.035_bib0030
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0039
  article-title: Simultaneous human segmentation, depth and pose estimation via dual decomposition
– start-page: 100
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0005
  article-title: Gesture recognition using Microsoft Kinect®
– start-page: 297
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0054
  article-title: Gesture recognition using depth-based hand tracking for contactless controller application
– start-page: 620
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0013
  article-title: Gesture recognition using skeleton data with weighted dynamic time warping
– ident: 10.1016/j.eswa.2015.09.035_bib0043
– volume: 28
  start-page: 976
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2015.09.035_bib0033
  article-title: A survey on vision-based human action recognition
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2009.11.014
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2015.09.035_bib0014
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 13
  start-page: 474
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0034
  article-title: A multi-gesture interaction system using a 3-D iris disk model for gaze estimation and an active appearance model for 3-D hand pointing
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2011.2120600
– year: 2004
  ident: 10.1016/j.eswa.2015.09.035_bib0003
– start-page: 105
  year: 2001
  ident: 10.1016/j.eswa.2015.09.035_bib0008
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images
– start-page: 724
  year: 2014
  ident: 10.1016/j.eswa.2015.09.035_bib0051
  article-title: Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition
– start-page: 77
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0053
  article-title: Gesture recognition based on 2D and 3D feature by using Kinect device
– volume: 56
  start-page: 116
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0041
  article-title: Real-time human pose recognition in parts from single depth images
  publication-title: Communications of the ACM Magazine
  doi: 10.1145/2398356.2398381
– volume: 10
  start-page: 93
  issue: 7
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0055
  article-title: RGB-depth feature for 3D human activity recognition
  publication-title: China Communications
  doi: 10.1109/CC.2013.6571292
– start-page: 2371
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0052
  article-title: Dynamic time warping for gesture-based user identification and authentication with Kinect
– volume: 41
  start-page: 26
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0036
  article-title: Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2010.2044041
– volume: 108
  start-page: 4
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2015.09.035_bib0032
  article-title: Vision-based human motion analysis: an overview
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2006.10.016
– start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0046
  article-title: Skeletal graph based human pose estimation in real-time
– start-page: 1653
  year: 2014
  ident: 10.1016/j.eswa.2015.09.035_bib0047
  article-title: DeepPose: human pose estimation via deep neural networks
– start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0040
  article-title: Real-time human pose recognition in parts from single depth images
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0026
  article-title: Human action recognition using depth maps
– start-page: 350
  year: 2015
  ident: 10.1016/j.eswa.2015.09.035_bib0017
  article-title: 3D human behavior recognition based on spatiotemporal texture features
– start-page: 726
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0020
  article-title: Graph cuts optimization for multi-limb human segmentation in depth maps
– start-page: 282
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0016
  article-title: Human behavior analysis from depth maps
– year: 2006
  ident: 10.1016/j.eswa.2015.09.035_bib0007
– ident: 10.1016/j.eswa.2015.09.035_bib0018
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.eswa.2015.09.035_bib0010
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2015.09.035_bib0021
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991427
– volume: 37
  start-page: 311
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2015.09.035_bib0028
  article-title: Gesture recognition: a survey
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications & Reviews
  doi: 10.1109/TSMCC.2007.893280
– volume: 15
  start-page: 106
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0057
  article-title: GPU-accelerated real-time tracking of full-body motion with multi-layer search
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2012.2225040
– start-page: 1290
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0050
  article-title: Mining actionlet ensemble for action recognition with depth cameras
– start-page: 5424
  year: 2010
  ident: 10.1016/j.eswa.2015.09.035_bib0042
  article-title: Gesture recognition based on arm tracking for human-robot interaction
– volume: 25
  start-page: 821
  year: 1964
  ident: 10.1016/j.eswa.2015.09.035_bib0002
  article-title: Theoretical foundations of the potential function method in pattern recognition learning
  publication-title: Automation and Remote Control
– volume: 15
  start-page: 1110
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0035
  article-title: Robust part-based hand gesture recognition using Kinect sensor
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2013.2246148
– volume: 43
  start-page: 1318
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0019
  article-title: Enhanced computer vision with microsoft kinect sensor: a review
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2265378
– volume: 99
  start-page: 25
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0037
  article-title: Fast human pose detection using randomized hierarchical cascades of rejectors
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0516-9
– start-page: 2956
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0044
  article-title: An ant learning algorithm for gesture recognition with one-instance training
– volume: 19
  start-page: 4
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0056
  article-title: Microsoft Kinect sensor and its effect
  publication-title: IEEE Multimedia
  doi: 10.1109/MMUL.2012.24
– volume: 38
  start-page: 11182
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0012
  article-title: Intelligent surveillance system with integration of heterogeneous information for intrusion detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.165
– volume: 30
  start-page: 217
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0038
  article-title: Human skeleton tracking from depth data using geodesic distances and optical flow
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2011.12.001
– volume: 8
  start-page: 178
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0048
  article-title: 3-D posture and gesture recognition for interactivity in smart spaces
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2011.2172450
– start-page: 106
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0015
  article-title: A depth camera based fall recognition system for the elderly
– volume: 70
  start-page: 109
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2015.09.035_bib0006
  article-title: Graph cuts and efficient ND image segmentation
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-006-7934-5
– ident: 10.1016/j.eswa.2015.09.035_bib0027
– volume: 5
  start-page: 713
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2015.09.035_bib0049
  article-title: Geodesic-based skeleton smoothing
  publication-title: International Journal of Mathematical Models and Methods in Applied Sciences
– volume: 48
  start-page: 70
  year: 2014
  ident: 10.1016/j.eswa.2015.09.035_bib0001
  article-title: Human activity recognition from 3D data: A review
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2014.04.011
– volume: 12
  start-page: 783
  issue: 6
  year: 1999
  ident: 10.1016/j.eswa.2015.09.035_bib0004
  article-title: Improving support vector machine classifiers by modifying kernel functions
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 104
  start-page: 90
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2015.09.035_bib0029
  article-title: A survey of advances in vision-based human motion capture and analysis
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2006.08.002
– volume: 2
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0045
  article-title: Continuous body and hand gesture recognition for natural human-computer interaction
  publication-title: ACM Transactions on Interactive Intelligent Systems (TiiS)
  doi: 10.1145/2133366.2133371
– start-page: 1493
  year: 2013
  ident: 10.1016/j.eswa.2015.09.035_bib0025
  article-title: Learning discriminative representations from RGB-D video data
– start-page: 3108
  year: 2010
  ident: 10.1016/j.eswa.2015.09.035_bib0031
  article-title: Real-time identification and localization of body parts from depth images
– volume: 25
  start-page: 39
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2015.09.035_bib0011
  article-title: An adaptable system for RGB-D based human body detection and pose estimation
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2013.03.011
– start-page: 302
  year: 2014
  ident: 10.1016/j.eswa.2015.09.035_bib0022
  article-title: Modeep: a deep learning framework using motion features for human pose estimation
– start-page: 185
  year: 2012
  ident: 10.1016/j.eswa.2015.09.035_bib0024
  article-title: A gesture-driven computer interface using Kinect
SSID ssj0017007
Score 2.4036224
Snippet •Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing...
Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Algorithms
Behavior recognition
Computing costs
Geodesy
Graphs
Human
Human behavior
Human joint estimation
Human-computer interaction (HCI)
Recognition
Three dimensional
Video-surveillance system
Title Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system
URI https://dx.doi.org/10.1016/j.eswa.2015.09.035
https://www.proquest.com/docview/1825463545
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wsX3ojyqIzEDZmNdx3HPlYV1QKiF6jozXISp021xKvdLBUX7vxrZmJnJZDogVsS2ZHlsecbj2e-AXidlVJ673KuVFFz6eSMO1SBXFA-ly61EiX5IT-dqcW5_HCRX-zByZgLQ2GVSfdHnT5o6_RlmmZzumrb6Wc0DhAOCREJN6Xeh4MZor2ewMHx-4-Ls91lQpHFrGlsz6lDyp2JYV5-c0P0QyKPdKf5v_DpL009wM_pfbib7EZ2HIf2APZ89xDujTUZWNqij-DX18HX6Wt2Hdqu54RSNRsq8bExJZ_tooZCx9zyMqzb_uoboxD4Sxa65Q9W-1V_xRKp6tAMn9gy3PAqbHrW7ng8e0Z5fIFvtuvvngoY4SBYZId-DOen776cLHgqt8ArtFJ6XmlTEh-gUE1pqnlmfKW08LJRlfHaO2l05tC8bQojSq9yPGnVc91kM6edKJyYP4FJFzr_FJifN35WS43HX0p-NSV5uzKFpmldmCJXhyDGSbZV4iKnkhhLOwadXVsSjCXB2MxYFMwhvNn1WUUmjltb56Ps7B_rySJU3Nrv1ShoixuNbk9c58N2Y0UsHYAW57P__PdzuINvKkawvYBJv976l2jS9OUR7L_9KY7Swv0NRS736g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvfVBQ6QsjcausjXcdxz4iVLS89lJQuVlO4kDQNl7tZkH8hP7rzsTOSlQqh96ixI4sjz0zHs_3DSEHSS6EczZlUmYlE1aMmAUVyDjiuVSuJM8xDnkxlZMrcXqdXm-Qox4Lg2mVUfcHnd5p6_hmGGdzOK_r4Q9wDsAcokVEuynUC7IpsKj1gGwenpxNpuvLhCwJqGloz7BDxM6ENC-3fED6IZ4GutP0X_bpL03dmZ_jt-R19BvpYRjaO7Lhmi3ypq_JQOMWfU9-_-xina6kd75uWoZWqqRdJT7aQ_LpOmvIN9TObvyibm9_UUyBv6G-mT3S0s3bWxpJVbtm8ERn_oEVftnSes3j2VLE8Xm2XC3uHRYwgkHQwA69Ta6Ov18eTVgst8AK8FJaViidIx8gl1Wui3GiXSEVd6KShXbKWaFVYsG9rTLNcydTOGmVY1UlI6sszywf75BB4xv3gVA3rtyoFAqOvwh-1TlGuxIJrmmZ6SyVu4T3k2yKyEWOJTFmpk86uzMoGIOCMYk2IJhd8m3dZx6YOJ5tnfayM0_WkwFT8Wy__V7QBjYa3p7YxvnV0vBQOgA8zo__-e898nJyeXFuzk-mZ5_IK_giQzbbZzJoFyv3BdybNv8al-8fHU750A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+joint-based+human+behavior+recognition+algorithm+using+only+depth+information+for+low-cost+intelligent+video-surveillance+system&rft.jtitle=Expert+systems+with+applications&rft.au=Kima%2C+Hanguen&rft.au=Leea%2C+Sangwon&rft.au=Kima%2C+Youngjae&rft.au=Leeb%2C+Serin&rft.date=2016-03-01&rft.issn=0957-4174&rft.volume=45&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1016%2Fj.eswa.2015.09.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon