Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system
•Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing platform.•The proposed system can be used with any subject instantly without pre-calibration.•Experiments to verify the proposed algorithms have been...
Saved in:
Published in | Expert systems with applications Vol. 45; pp. 131 - 141 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2015.09.035 |
Cover
Abstract | •Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing platform.•The proposed system can be used with any subject instantly without pre-calibration.•Experiments to verify the proposed algorithms have been conducted.
Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful monitoring systems for dangerous situations irrespective of lighting conditions in buildings or production facilities. To robustly recognize emergency actions or hazardous situations of workers at a production facility, we present human joint estimation and behavior recognition algorithms that solely use depth information in this paper. To estimate human joints on a low cost computing platform, we propose a human joint estimation algorithm that integrates a geodesic graph and a support vector machine (SVM). The human feature points are extracted within a range of geodesic distance from a geodesic graph. The geodesic graph is used for optimizing the estimation result. The SVM-based human joint estimator uses randomly selected human features to reduce computation. Body parts that typically involve many motions are then estimated by the geodesic distance value. The proposed algorithm can work for any human without calibration, and thus the system can be used with any subject immediately even with a low cost computing platform. In the case of the behavior recognition algorithm, the algorithm should have a simple behavior registration process, and it also should be robust to environmental changes. To meet these goals, we propose a template matching-based behavior recognition algorithm. Our method creates a behavior template set that consists of weighted human joint data with scale and rotation invariant properties. A single behavior template consists of the joint information that is estimated per frame. Additionally, we propose adaptive template rejection and a sliding window filter to prevent misrecognition between similar behaviors. The human joint estimation and behavior recognition algorithms are evaluated individually through several experiments and the performance is proven through a comparison with other algorithms. The experimental results show that our method performs well and is applicable in real environments. |
---|---|
AbstractList | Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful monitoring systems for dangerous situations irrespective of lighting conditions in buildings or production facilities. To robustly recognize emergency actions or hazardous situations of workers at a production facility, we present human joint estimation and behavior recognition algorithms that solely use depth information in this paper. To estimate human joints on a low cost computing platform, we propose a human joint estimation algorithm that integrates a geodesic graph and a support vector machine (SVM). The human feature points are extracted within a range of geodesic distance from a geodesic graph. The geodesic graph is used for optimizing the estimation result. The SVM-based human joint estimator uses randomly selected human features to reduce computation. Body parts that typically involve many motions are then estimated by the geodesic distance value. The proposed algorithm can work for any human without calibration, and thus the system can be used with any subject immediately even with a low cost computing platform. In the case of the behavior recognition algorithm, the algorithm should have a simple behavior registration process, and it also should be robust to environmental changes. To meet these goals, we propose a template matching-based behavior recognition algorithm. Our method creates a behavior template set that consists of weighted human joint data with scale and rotation invariant properties. A single behavior template consists of the joint information that is estimated per frame. Additionally, we propose adaptive template rejection and a sliding window filter to prevent misrecognition between similar behaviors. The human joint estimation and behavior recognition algorithms are evaluated individually through several experiments and the performance is proven through a comparison with other algorithms. The experimental results show that our method performs well and is applicable in real environments. •Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing platform.•The proposed system can be used with any subject instantly without pre-calibration.•Experiments to verify the proposed algorithms have been conducted. Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful monitoring systems for dangerous situations irrespective of lighting conditions in buildings or production facilities. To robustly recognize emergency actions or hazardous situations of workers at a production facility, we present human joint estimation and behavior recognition algorithms that solely use depth information in this paper. To estimate human joints on a low cost computing platform, we propose a human joint estimation algorithm that integrates a geodesic graph and a support vector machine (SVM). The human feature points are extracted within a range of geodesic distance from a geodesic graph. The geodesic graph is used for optimizing the estimation result. The SVM-based human joint estimator uses randomly selected human features to reduce computation. Body parts that typically involve many motions are then estimated by the geodesic distance value. The proposed algorithm can work for any human without calibration, and thus the system can be used with any subject immediately even with a low cost computing platform. In the case of the behavior recognition algorithm, the algorithm should have a simple behavior registration process, and it also should be robust to environmental changes. To meet these goals, we propose a template matching-based behavior recognition algorithm. Our method creates a behavior template set that consists of weighted human joint data with scale and rotation invariant properties. A single behavior template consists of the joint information that is estimated per frame. Additionally, we propose adaptive template rejection and a sliding window filter to prevent misrecognition between similar behaviors. The human joint estimation and behavior recognition algorithms are evaluated individually through several experiments and the performance is proven through a comparison with other algorithms. The experimental results show that our method performs well and is applicable in real environments. |
Author | Lee, Dongsung Ju, Jinsun Myung, Hyun Kim, Hanguen Kim, Youngjae Lee, Serin Lee, Sangwon |
Author_xml | – sequence: 1 givenname: Hanguen surname: Kim fullname: Kim, Hanguen email: sskhk05@kaist.ac.kr organization: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea – sequence: 2 givenname: Sangwon surname: Lee fullname: Lee, Sangwon email: lsw618@gmail.com organization: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea – sequence: 3 givenname: Youngjae surname: Kim fullname: Kim, Youngjae email: david-kim@kaist.ac.kr organization: Urban Robotics Laboratory (URL), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea – sequence: 4 givenname: Serin surname: Lee fullname: Lee, Serin email: serin.lee@gmail.com organization: Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore – sequence: 5 givenname: Dongsung surname: Lee fullname: Lee, Dongsung email: dslee.lee@samsung.com organization: Image & Video Research Group, Samsung S1 Cooperation, 168 S1 Building, Soonhwa-dong, Joong-gu, Seoul 100-773, Republic of Korea – sequence: 6 givenname: Jinsun surname: Ju fullname: Ju, Jinsun email: jinsun.ju@samsung.com organization: Image & Video Research Group, Samsung S1 Cooperation, 168 S1 Building, Soonhwa-dong, Joong-gu, Seoul 100-773, Republic of Korea – sequence: 7 givenname: Hyun orcidid: 0000-0002-5799-2026 surname: Myung fullname: Myung, Hyun email: hmyung@kaist.ac.kr organization: Director of Urban Robotics Lab. and a professor in the robotics program and Deptartment of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373–1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Republic of Korea |
BookMark | eNp9kcuK3DAQRUWYgfQ8fmBWWmZjR7L8kCCbMOQFA9kkZClkuWxXY0sdSe6hPyF_HfV0VlnMSgW6p6g6dUOunHdAyANnJWe8fb8vIT6bsmK8KZkqmWjekB2XnSjaTokrsmOq6Yqad_VbchPjnjHeMdbtyJ9fgNOcYKB7jy4VvYm5nrfVONrDbI7oAw1g_eQwoXfULJMPmOaVbhHdRL1bTnSAQ5oputGH1bzEckUX_1xYH1P-SLAsOIFL9IgD-CJu4Qi4LMZZoPEUE6x35Ho0S4T7f-8t-fn504_Hr8XT9y_fHj8-FVYolQorVS_qSvB27JUVTIFtJYd6bK0CCaZWkhnJh7FTvIe26Xg7CDmyykjDO8PFLXl36XsI_vcGMekVo4XzLOC3qLmsmroVTd3kqLxEbfAxBhi1xfSyXwoGF82ZPtvXe322r8_2NVM6289o9R96CLiacHod-nCBIO9_RAg6WoSsaMB8gqQHj6_hfwHSlaT8 |
CitedBy_id | crossref_primary_10_1007_s11227_021_03772_x crossref_primary_10_1007_s11042_022_13496_6 crossref_primary_10_1109_TBDATA_2017_2715815 crossref_primary_10_1016_j_eswa_2022_117451 crossref_primary_10_1007_s12652_020_02335_x crossref_primary_10_3390_app10165453 crossref_primary_10_1109_ACCESS_2020_2982906 crossref_primary_10_1016_j_procs_2017_12_082 crossref_primary_10_1109_ACCESS_2020_3027892 crossref_primary_10_1134_S0361768823080066 crossref_primary_10_1155_2020_4358728 crossref_primary_10_3390_sym9060093 crossref_primary_10_1016_j_eswa_2019_112829 crossref_primary_10_1080_09613218_2020_1779020 crossref_primary_10_1007_s11042_021_11550_3 crossref_primary_10_1088_1742_6596_1661_1_012050 crossref_primary_10_1109_ACCESS_2021_3126629 crossref_primary_10_3390_en13236442 crossref_primary_10_1016_j_measen_2025_101871 crossref_primary_10_1109_JSYST_2023_3306380 crossref_primary_10_1002_ente_201901242 crossref_primary_10_1007_s10462_020_09904_8 crossref_primary_10_1016_j_enbuild_2020_109965 crossref_primary_10_3390_jsan9040046 crossref_primary_10_1111_exsy_12552 crossref_primary_10_1007_s11042_020_08885_8 crossref_primary_10_1016_j_eswa_2017_02_020 crossref_primary_10_1109_ACCESS_2019_2955387 crossref_primary_10_1007_s41870_023_01193_y crossref_primary_10_1016_j_eswa_2019_04_031 crossref_primary_10_1109_JPROC_2017_2684460 crossref_primary_10_32604_csse_2023_028003 crossref_primary_10_1109_ACCESS_2019_2946912 crossref_primary_10_3390_s17040805 crossref_primary_10_1016_j_eswa_2017_09_029 crossref_primary_10_1016_j_eswa_2024_123264 |
Cites_doi | 10.1023/A:1010933404324 10.1016/j.imavis.2009.11.014 10.1007/BF00994018 10.1109/TMM.2011.2120600 10.1145/2398356.2398381 10.1109/CC.2013.6571292 10.1109/TSMCB.2010.2044041 10.1016/j.cviu.2006.10.016 10.1023/A:1009715923555 10.1109/72.991427 10.1109/TSMCC.2007.893280 10.1109/TMM.2012.2225040 10.1109/TMM.2013.2246148 10.1109/TCYB.2013.2265378 10.1007/s11263-012-0516-9 10.1109/MMUL.2012.24 10.1016/j.eswa.2011.02.165 10.1016/j.imavis.2011.12.001 10.1109/TII.2011.2172450 10.1007/s11263-006-7934-5 10.1016/j.patrec.2014.04.011 10.1016/S0893-6080(99)00032-5 10.1016/j.cviu.2006.08.002 10.1145/2133366.2133371 10.1016/j.jvcir.2013.03.011 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2015.09.035 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 141 |
ExternalDocumentID | 10_1016_j_eswa_2015_09_035 S0957417415006648 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD ACLOT EFKBS JQ2 L7M L~C L~D ~HD |
ID | FETCH-LOGICAL-c399t-c89b342316fb9c309ec681e4f6c9e8ea4980a81df791be65716d38f02a8a17a13 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Sun Sep 28 03:01:19 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Tue Jul 01 03:12:26 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Video-surveillance system Human joint estimation Behavior recognition Human-computer interaction (HCI) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-c89b342316fb9c309ec681e4f6c9e8ea4980a81df791be65716d38f02a8a17a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5799-2026 |
PQID | 1825463545 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1825463545 crossref_citationtrail_10_1016_j_eswa_2015_09_035 crossref_primary_10_1016_j_eswa_2015_09_035 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_09_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-01 2016-03-00 20160301 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Biswas, Basu (bib0005) 2011 Hsu, Lin (bib0021) 2002; 13 Escalera (bib0016) 2012 Xu, Lee (bib0053) 2012 Poppe (bib0033) 2010; 28 OpenNI. Openni nite. Wu, Shao (bib0051) 2014 Shotton, Fitzgibbon, Cook, Sharp, Finocchio, Moore (bib0040) 2011 Toshev, Szegedy (bib0047) 2014 Fan, Tian, Wang, Ming, Shi, Jin (bib0017) 2015 Sigalas, Baltzakis, Trahanias (bib0042) 2010 Aggarwal, Xia (bib0001) 2014; 48 Burges (bib0010) 1998; 2 Wu, Konrad, Ishwar (bib0052) 2013 Hernández-Vela, Zlateva, Marinov, Reyes, Radeva, Dimov (bib0020) 2012 Alpaydin (bib0003) 2004 Aizerman, Braverman, Rozoner (bib0002) 1964; 25 Yang, Jang, Beh, Han, Ko (bib0054) 2012 Zhang (bib0056) 2012; 19 Boykov, Veksler (bib0007) 2006 Amari, Wu (bib0004) 1999; 12 Buys, Cagniart, Baksheev, De Laet, De Schutter, Pantofaru (bib0011) 2014; 25 Freedman, B., Shpunt, A., Machline, M., & Arieli, Y. (2008). Depth mapping using projected patterns. WO Patent 2,008,120,217. Wang, Liu, Wu, Yuan (bib0050) 2012 Rogez, Rihan, Orrite-Uruñuela, Torr (bib0037) 2012; 99 iPi Soft LLC (2011). Motion capture for the masses. Plagemann, Ganapathi, Koller, Thrun (bib0031) 2010 Ren, Yuan, Meng, Zhang (bib0035) 2013; 15 Liu, Shao (bib0025) 2013 Breiman (bib0009) 2001; 45 Shotton, Sharp, Kipman, Fitzgibbon, Finocchio, Blake (bib0041) 2013; 56 Moeslund, Hilton, Krüger (bib0029) 2006; 104 Yang, Zicheng, Hong (bib0055) 2013; 10 Jain, Subramanian, Das, Mittal (bib0023) 2011 Reale, Canavan, Yin, Hu, Hung (bib0034) 2011; 13 Poppe (bib0032) 2007; 108 Visutsak, Prachumrak (bib0049) 2011; 5 Cortes, Vapnik (bib0014) 1995; 20 Boykov, Funka-Lea (bib0006) 2006; 70 Schwarz, Mkhitaryan, Mateus, Navab (bib0038) 2012; 30 Dubey, Ni, Moulin (bib0015) 2012 Song, Demirdjian, Davis (bib0045) 2012; 2 Sheasby, Warrell, Zhang, Crook, Torr (bib0039) 2012 Celebi, Aydin, Temiz, Arici (bib0013) 2013 Han, Shao, Xu, Shotton (bib0019) 2013; 43 Straka, Hauswiesner, Rüther, Bischof (bib0046) 2011 Lai, Konrad, Ishwar (bib0024) 2012 Castro, Delgado, Medina, Ruiz-Lozano (bib0012) 2011; 38 Song, Chandra, Torresen (bib0044) 2013 Microsoft. Kinect for windows. Mitra, Acharya (bib0028) 2007; 37 Megavannan, Agarwal, Babu (bib0026) 2012 Jain, Tompson, LeCun, Bregler (bib0022) 2014 Zhang, Soon Seah, Kwang Quah, Sun (bib0057) 2013; 15 Tran, Trivedi (bib0048) 2012; 8 Accessed 09.10.15. del Rincón, Makris, Uruñuela, Nebel (bib0036) 2011; 41 Boykov, Jolly (bib0008) 2001 Zhang (10.1016/j.eswa.2015.09.035_bib0057) 2013; 15 Sigalas (10.1016/j.eswa.2015.09.035_bib0042) 2010 Dubey (10.1016/j.eswa.2015.09.035_bib0015) 2012 Song (10.1016/j.eswa.2015.09.035_bib0044) 2013 Megavannan (10.1016/j.eswa.2015.09.035_bib0026) 2012 Yang (10.1016/j.eswa.2015.09.035_bib0055) 2013; 10 Tran (10.1016/j.eswa.2015.09.035_bib0048) 2012; 8 Schwarz (10.1016/j.eswa.2015.09.035_bib0038) 2012; 30 Castro (10.1016/j.eswa.2015.09.035_bib0012) 2011; 38 Fan (10.1016/j.eswa.2015.09.035_bib0017) 2015 Visutsak (10.1016/j.eswa.2015.09.035_bib0049) 2011; 5 Wu (10.1016/j.eswa.2015.09.035_bib0051) 2014 Reale (10.1016/j.eswa.2015.09.035_bib0034) 2011; 13 Burges (10.1016/j.eswa.2015.09.035_bib0010) 1998; 2 Amari (10.1016/j.eswa.2015.09.035_bib0004) 1999; 12 Hernández-Vela (10.1016/j.eswa.2015.09.035_bib0020) 2012 Buys (10.1016/j.eswa.2015.09.035_bib0011) 2014; 25 Jain (10.1016/j.eswa.2015.09.035_bib0022) 2014 Hsu (10.1016/j.eswa.2015.09.035_bib0021) 2002; 13 Wang (10.1016/j.eswa.2015.09.035_bib0050) 2012 Aggarwal (10.1016/j.eswa.2015.09.035_bib0001) 2014; 48 Boykov (10.1016/j.eswa.2015.09.035_bib0008) 2001 Sheasby (10.1016/j.eswa.2015.09.035_bib0039) 2012 Zhang (10.1016/j.eswa.2015.09.035_bib0056) 2012; 19 Straka (10.1016/j.eswa.2015.09.035_bib0046) 2011 Ren (10.1016/j.eswa.2015.09.035_bib0035) 2013; 15 Poppe (10.1016/j.eswa.2015.09.035_bib0032) 2007; 108 10.1016/j.eswa.2015.09.035_bib0043 Aizerman (10.1016/j.eswa.2015.09.035_bib0002) 1964; 25 10.1016/j.eswa.2015.09.035_bib0027 Song (10.1016/j.eswa.2015.09.035_bib0045) 2012; 2 Biswas (10.1016/j.eswa.2015.09.035_bib0005) 2011 Jain (10.1016/j.eswa.2015.09.035_bib0023) 2011 Lai (10.1016/j.eswa.2015.09.035_bib0024) 2012 Toshev (10.1016/j.eswa.2015.09.035_bib0047) 2014 Boykov (10.1016/j.eswa.2015.09.035_bib0007) 2006 Poppe (10.1016/j.eswa.2015.09.035_bib0033) 2010; 28 10.1016/j.eswa.2015.09.035_bib0030 Shotton (10.1016/j.eswa.2015.09.035_bib0041) 2013; 56 Celebi (10.1016/j.eswa.2015.09.035_bib0013) 2013 Plagemann (10.1016/j.eswa.2015.09.035_bib0031) 2010 Yang (10.1016/j.eswa.2015.09.035_bib0054) 2012 Cortes (10.1016/j.eswa.2015.09.035_bib0014) 1995; 20 Moeslund (10.1016/j.eswa.2015.09.035_bib0029) 2006; 104 Breiman (10.1016/j.eswa.2015.09.035_bib0009) 2001; 45 10.1016/j.eswa.2015.09.035_bib0018 Escalera (10.1016/j.eswa.2015.09.035_bib0016) 2012 Boykov (10.1016/j.eswa.2015.09.035_bib0006) 2006; 70 Liu (10.1016/j.eswa.2015.09.035_bib0025) 2013 del Rincón (10.1016/j.eswa.2015.09.035_bib0036) 2011; 41 Alpaydin (10.1016/j.eswa.2015.09.035_bib0003) 2004 Wu (10.1016/j.eswa.2015.09.035_bib0052) 2013 Shotton (10.1016/j.eswa.2015.09.035_bib0040) 2011 Xu (10.1016/j.eswa.2015.09.035_bib0053) 2012 Rogez (10.1016/j.eswa.2015.09.035_bib0037) 2012; 99 Han (10.1016/j.eswa.2015.09.035_bib0019) 2013; 43 Mitra (10.1016/j.eswa.2015.09.035_bib0028) 2007; 37 |
References_xml | – volume: 5 start-page: 713 year: 2011 end-page: 721 ident: bib0049 article-title: Geodesic-based skeleton smoothing publication-title: International Journal of Mathematical Models and Methods in Applied Sciences – volume: 25 start-page: 39 year: 2014 end-page: 52 ident: bib0011 article-title: An adaptable system for RGB-D based human body detection and pose estimation publication-title: Journal of Visual Communication and Image Representation – volume: 99 start-page: 25 year: 2012 end-page: 52 ident: bib0037 article-title: Fast human pose detection using randomized hierarchical cascades of rejectors publication-title: International Journal of Computer Vision – start-page: 1653 year: 2014 end-page: 1660 ident: bib0047 article-title: DeepPose: human pose estimation via deep neural networks publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) – year: 2004 ident: bib0003 publication-title: Introduction to machine learning – start-page: 1493 year: 2013 end-page: 1500 ident: bib0025 article-title: Learning discriminative representations from RGB-D video data publication-title: Proceedings of the twenty-third international joint conference on artificial intelligence – start-page: 77 year: 2012 end-page: 79 ident: bib0053 article-title: Gesture recognition based on 2D and 3D feature by using Kinect device publication-title: Proceedings of international conference on information security and assurance (ISA) – start-page: 1 year: 2011 end-page: 12 ident: bib0046 article-title: Skeletal graph based human pose estimation in real-time publication-title: Proceedings of British machine vision conference (BMVC) – start-page: 620 year: 2013 end-page: 625 ident: bib0013 article-title: Gesture recognition using skeleton data with weighted dynamic time warping publication-title: Proceedings of international conference on computer vision theory and applications (VISAPP) – start-page: 1 year: 2012 end-page: 5 ident: bib0026 article-title: Human action recognition using depth maps publication-title: Proceedings of the international conference on signal processing and communications (SPCOM) – volume: 28 start-page: 976 year: 2010 end-page: 990 ident: bib0033 article-title: A survey on vision-based human action recognition publication-title: Image and Vision Computing – volume: 10 start-page: 93 year: 2013 end-page: 103 ident: bib0055 article-title: RGB-depth feature for 3D human activity recognition publication-title: China Communications – volume: 15 start-page: 1110 year: 2013 end-page: 1120 ident: bib0035 article-title: Robust part-based hand gesture recognition using Kinect sensor publication-title: IEEE Transactions on Multimedia – start-page: 1 year: 2012 end-page: 12 ident: bib0039 article-title: Simultaneous human segmentation, depth and pose estimation via dual decomposition publication-title: Proceedings of British machine vision conference, student workshop (BMVW) – volume: 2 start-page: 1 year: 2012 end-page: 28 ident: bib0045 article-title: Continuous body and hand gesture recognition for natural human-computer interaction publication-title: ACM Transactions on Interactive Intelligent Systems (TiiS) – reference: OpenNI. Openni nite. – volume: 108 start-page: 4 year: 2007 end-page: 18 ident: bib0032 article-title: Vision-based human motion analysis: an overview publication-title: Computer Vision and Image Understanding – volume: 13 start-page: 474 year: 2011 end-page: 486 ident: bib0034 article-title: A multi-gesture interaction system using a 3-D iris disk model for gaze estimation and an active appearance model for 3-D hand pointing publication-title: IEEE Transactions on Multimedia – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0009 article-title: Random forests publication-title: Machine Learning – start-page: 726 year: 2012 end-page: 732 ident: bib0020 article-title: Graph cuts optimization for multi-limb human segmentation in depth maps publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0014 article-title: Support-vector networks publication-title: Machine Learning – volume: 70 start-page: 109 year: 2006 end-page: 131 ident: bib0006 article-title: Graph cuts and efficient ND image segmentation publication-title: International Journal of Computer Vision – volume: 38 start-page: 11182 year: 2011 end-page: 11192 ident: bib0012 article-title: Intelligent surveillance system with integration of heterogeneous information for intrusion detection publication-title: Expert Systems with Applications – volume: 56 start-page: 116 year: 2013 end-page: 124 ident: bib0041 article-title: Real-time human pose recognition in parts from single depth images publication-title: Communications of the ACM Magazine – reference: Freedman, B., Shpunt, A., Machline, M., & Arieli, Y. (2008). Depth mapping using projected patterns. WO Patent 2,008,120,217. – start-page: 1 year: 2011 end-page: 8 ident: bib0040 article-title: Real-time human pose recognition in parts from single depth images publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) – start-page: 227 year: 2011 end-page: 238 ident: bib0023 article-title: Real-time upper-body human pose estimation using a depth camera publication-title: Proceedings of the international conference on computer vision/computer graphics collaboration techniques – volume: 25 start-page: 821 year: 1964 end-page: 837 ident: bib0002 article-title: Theoretical foundations of the potential function method in pattern recognition learning publication-title: Automation and Remote Control – start-page: 5424 year: 2010 end-page: 5429 ident: bib0042 article-title: Gesture recognition based on arm tracking for human-robot interaction publication-title: Proceedings of IEEE/rsj international conference on intelligent robots and systems (IROS) – start-page: 185 year: 2012 end-page: 188 ident: bib0024 article-title: A gesture-driven computer interface using Kinect publication-title: Proceedings of the IEEE southwest symposium on image analysis and interpretation (SSIAI) – volume: 30 start-page: 217 year: 2012 end-page: 226 ident: bib0038 article-title: Human skeleton tracking from depth data using geodesic distances and optical flow publication-title: Image and Vision Computing – start-page: 2956 year: 2013 end-page: 2963 ident: bib0044 article-title: An ant learning algorithm for gesture recognition with one-instance training publication-title: Proceedings of IEEE congress on evolutionary computation (CEC) – volume: 8 start-page: 178 year: 2012 end-page: 187 ident: bib0048 article-title: 3-D posture and gesture recognition for interactivity in smart spaces publication-title: IEEE Transactions on Industrial Informatics – volume: 37 start-page: 311 year: 2007 end-page: 324 ident: bib0028 article-title: Gesture recognition: a survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications & Reviews – reference: Accessed 09.10.15. – volume: 104 start-page: 90 year: 2006 end-page: 126 ident: bib0029 article-title: A survey of advances in vision-based human motion capture and analysis publication-title: Computer Vision and Image Understanding – start-page: 302 year: 2014 end-page: 315 ident: bib0022 article-title: Modeep: a deep learning framework using motion features for human pose estimation publication-title: Proceedings of the 12th asian conference on computer vision – start-page: 105 year: 2001 end-page: 112 ident: bib0008 article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images publication-title: Proceedings of IEEE international conference on computer vision (ICCV) – start-page: 297 year: 2012 end-page: 298 ident: bib0054 article-title: Gesture recognition using depth-based hand tracking for contactless controller application publication-title: Proceedings of IEEE international conference on consumer electronics (ICCE) – start-page: 2371 year: 2013 end-page: 2375 ident: bib0052 article-title: Dynamic time warping for gesture-based user identification and authentication with Kinect publication-title: Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP) – start-page: 100 year: 2011 end-page: 103 ident: bib0005 article-title: Gesture recognition using Microsoft Kinect® publication-title: Proceedings of international conference on automation, robotics and applications (ICARA) – volume: 41 start-page: 26 year: 2011 end-page: 37 ident: bib0036 article-title: Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – start-page: 3108 year: 2010 end-page: 3113 ident: bib0031 article-title: Real-time identification and localization of body parts from depth images publication-title: IEEE international conference on robotics and automation (ICRA) – start-page: 350 year: 2015 end-page: 356 ident: bib0017 article-title: 3D human behavior recognition based on spatiotemporal texture features publication-title: Proceedings of international conference on human system interactions (HSI) – reference: iPi Soft LLC (2011). Motion capture for the masses. – year: 2006 ident: bib0007 publication-title: Graph cuts in vision and graphics: Theories and applications – reference: Microsoft. Kinect for windows. – volume: 43 start-page: 1318 year: 2013 end-page: 1334 ident: bib0019 article-title: Enhanced computer vision with microsoft kinect sensor: a review publication-title: IEEE Transactions on Cybernetics – volume: 15 start-page: 106 year: 2013 end-page: 119 ident: bib0057 article-title: GPU-accelerated real-time tracking of full-body motion with multi-layer search publication-title: IEEE Transactions on Multimedia – volume: 12 start-page: 783 year: 1999 end-page: 789 ident: bib0004 article-title: Improving support vector machine classifiers by modifying kernel functions publication-title: Neural Networks – start-page: 282 year: 2012 end-page: 292 ident: bib0016 article-title: Human behavior analysis from depth maps publication-title: International conference on articulated motion and deformable objects – volume: 19 start-page: 4 year: 2012 end-page: 10 ident: bib0056 article-title: Microsoft Kinect sensor and its effect publication-title: IEEE Multimedia – start-page: 1290 year: 2012 end-page: 1297 ident: bib0050 article-title: Mining actionlet ensemble for action recognition with depth cameras publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) – volume: 48 start-page: 70 year: 2014 end-page: 80 ident: bib0001 article-title: Human activity recognition from 3D data: A review publication-title: Pattern Recognition Letters – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib0010 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining and Knowledge Discovery – start-page: 724 year: 2014 end-page: 731 ident: bib0051 article-title: Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition publication-title: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib0021 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Transactions on Neural Networks – start-page: 106 year: 2012 end-page: 113 ident: bib0015 article-title: A depth camera based fall recognition system for the elderly publication-title: Proceedings of international conference on image analysis and recognition – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eswa.2015.09.035_bib0009 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – start-page: 227 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0023 article-title: Real-time upper-body human pose estimation using a depth camera – ident: 10.1016/j.eswa.2015.09.035_bib0030 – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0039 article-title: Simultaneous human segmentation, depth and pose estimation via dual decomposition – start-page: 100 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0005 article-title: Gesture recognition using Microsoft Kinect® – start-page: 297 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0054 article-title: Gesture recognition using depth-based hand tracking for contactless controller application – start-page: 620 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0013 article-title: Gesture recognition using skeleton data with weighted dynamic time warping – ident: 10.1016/j.eswa.2015.09.035_bib0043 – volume: 28 start-page: 976 issue: 6 year: 2010 ident: 10.1016/j.eswa.2015.09.035_bib0033 article-title: A survey on vision-based human action recognition publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2009.11.014 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.eswa.2015.09.035_bib0014 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 13 start-page: 474 issue: 3 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0034 article-title: A multi-gesture interaction system using a 3-D iris disk model for gaze estimation and an active appearance model for 3-D hand pointing publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2011.2120600 – year: 2004 ident: 10.1016/j.eswa.2015.09.035_bib0003 – start-page: 105 year: 2001 ident: 10.1016/j.eswa.2015.09.035_bib0008 article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images – start-page: 724 year: 2014 ident: 10.1016/j.eswa.2015.09.035_bib0051 article-title: Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition – start-page: 77 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0053 article-title: Gesture recognition based on 2D and 3D feature by using Kinect device – volume: 56 start-page: 116 issue: 1 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0041 article-title: Real-time human pose recognition in parts from single depth images publication-title: Communications of the ACM Magazine doi: 10.1145/2398356.2398381 – volume: 10 start-page: 93 issue: 7 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0055 article-title: RGB-depth feature for 3D human activity recognition publication-title: China Communications doi: 10.1109/CC.2013.6571292 – start-page: 2371 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0052 article-title: Dynamic time warping for gesture-based user identification and authentication with Kinect – volume: 41 start-page: 26 issue: 1 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0036 article-title: Tracking human position and lower body parts using Kalman and particle filters constrained by human biomechanics publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2010.2044041 – volume: 108 start-page: 4 issue: 1 year: 2007 ident: 10.1016/j.eswa.2015.09.035_bib0032 article-title: Vision-based human motion analysis: an overview publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2006.10.016 – start-page: 1 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0046 article-title: Skeletal graph based human pose estimation in real-time – start-page: 1653 year: 2014 ident: 10.1016/j.eswa.2015.09.035_bib0047 article-title: DeepPose: human pose estimation via deep neural networks – start-page: 1 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0040 article-title: Real-time human pose recognition in parts from single depth images – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0026 article-title: Human action recognition using depth maps – start-page: 350 year: 2015 ident: 10.1016/j.eswa.2015.09.035_bib0017 article-title: 3D human behavior recognition based on spatiotemporal texture features – start-page: 726 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0020 article-title: Graph cuts optimization for multi-limb human segmentation in depth maps – start-page: 282 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0016 article-title: Human behavior analysis from depth maps – year: 2006 ident: 10.1016/j.eswa.2015.09.035_bib0007 – ident: 10.1016/j.eswa.2015.09.035_bib0018 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.eswa.2015.09.035_bib0010 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009715923555 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 10.1016/j.eswa.2015.09.035_bib0021 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.991427 – volume: 37 start-page: 311 issue: 3 year: 2007 ident: 10.1016/j.eswa.2015.09.035_bib0028 article-title: Gesture recognition: a survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications & Reviews doi: 10.1109/TSMCC.2007.893280 – volume: 15 start-page: 106 issue: 1 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0057 article-title: GPU-accelerated real-time tracking of full-body motion with multi-layer search publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2012.2225040 – start-page: 1290 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0050 article-title: Mining actionlet ensemble for action recognition with depth cameras – start-page: 5424 year: 2010 ident: 10.1016/j.eswa.2015.09.035_bib0042 article-title: Gesture recognition based on arm tracking for human-robot interaction – volume: 25 start-page: 821 year: 1964 ident: 10.1016/j.eswa.2015.09.035_bib0002 article-title: Theoretical foundations of the potential function method in pattern recognition learning publication-title: Automation and Remote Control – volume: 15 start-page: 1110 issue: 5 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0035 article-title: Robust part-based hand gesture recognition using Kinect sensor publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2013.2246148 – volume: 43 start-page: 1318 issue: 5 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0019 article-title: Enhanced computer vision with microsoft kinect sensor: a review publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2265378 – volume: 99 start-page: 25 issue: 1 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0037 article-title: Fast human pose detection using randomized hierarchical cascades of rejectors publication-title: International Journal of Computer Vision doi: 10.1007/s11263-012-0516-9 – start-page: 2956 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0044 article-title: An ant learning algorithm for gesture recognition with one-instance training – volume: 19 start-page: 4 issue: 2 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0056 article-title: Microsoft Kinect sensor and its effect publication-title: IEEE Multimedia doi: 10.1109/MMUL.2012.24 – volume: 38 start-page: 11182 issue: 9 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0012 article-title: Intelligent surveillance system with integration of heterogeneous information for intrusion detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.165 – volume: 30 start-page: 217 issue: 3 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0038 article-title: Human skeleton tracking from depth data using geodesic distances and optical flow publication-title: Image and Vision Computing doi: 10.1016/j.imavis.2011.12.001 – volume: 8 start-page: 178 issue: 1 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0048 article-title: 3-D posture and gesture recognition for interactivity in smart spaces publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2011.2172450 – start-page: 106 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0015 article-title: A depth camera based fall recognition system for the elderly – volume: 70 start-page: 109 issue: 2 year: 2006 ident: 10.1016/j.eswa.2015.09.035_bib0006 article-title: Graph cuts and efficient ND image segmentation publication-title: International Journal of Computer Vision doi: 10.1007/s11263-006-7934-5 – ident: 10.1016/j.eswa.2015.09.035_bib0027 – volume: 5 start-page: 713 issue: 4 year: 2011 ident: 10.1016/j.eswa.2015.09.035_bib0049 article-title: Geodesic-based skeleton smoothing publication-title: International Journal of Mathematical Models and Methods in Applied Sciences – volume: 48 start-page: 70 year: 2014 ident: 10.1016/j.eswa.2015.09.035_bib0001 article-title: Human activity recognition from 3D data: A review publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2014.04.011 – volume: 12 start-page: 783 issue: 6 year: 1999 ident: 10.1016/j.eswa.2015.09.035_bib0004 article-title: Improving support vector machine classifiers by modifying kernel functions publication-title: Neural Networks doi: 10.1016/S0893-6080(99)00032-5 – volume: 104 start-page: 90 issue: 2 year: 2006 ident: 10.1016/j.eswa.2015.09.035_bib0029 article-title: A survey of advances in vision-based human motion capture and analysis publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2006.08.002 – volume: 2 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0045 article-title: Continuous body and hand gesture recognition for natural human-computer interaction publication-title: ACM Transactions on Interactive Intelligent Systems (TiiS) doi: 10.1145/2133366.2133371 – start-page: 1493 year: 2013 ident: 10.1016/j.eswa.2015.09.035_bib0025 article-title: Learning discriminative representations from RGB-D video data – start-page: 3108 year: 2010 ident: 10.1016/j.eswa.2015.09.035_bib0031 article-title: Real-time identification and localization of body parts from depth images – volume: 25 start-page: 39 issue: 1 year: 2014 ident: 10.1016/j.eswa.2015.09.035_bib0011 article-title: An adaptable system for RGB-D based human body detection and pose estimation publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2013.03.011 – start-page: 302 year: 2014 ident: 10.1016/j.eswa.2015.09.035_bib0022 article-title: Modeep: a deep learning framework using motion features for human pose estimation – start-page: 185 year: 2012 ident: 10.1016/j.eswa.2015.09.035_bib0024 article-title: A gesture-driven computer interface using Kinect |
SSID | ssj0017007 |
Score | 2.4036224 |
Snippet | •Human joint estimation and behavior recognition algorithms are presented.•Only depth information is used and can be executed on a low cost computing... Recent advances in 3D depth sensors have created many opportunities for security, surveillance, and entertainment. The 3D depth sensors provide more powerful... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Algorithms Behavior recognition Computing costs Geodesy Graphs Human Human behavior Human joint estimation Human-computer interaction (HCI) Recognition Three dimensional Video-surveillance system |
Title | Weighted joint-based human behavior recognition algorithm using only depth information for low-cost intelligent video-surveillance system |
URI | https://dx.doi.org/10.1016/j.eswa.2015.09.035 https://www.proquest.com/docview/1825463545 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wsX3ojyqIzEDZmNdx3HPlYV1QKiF6jozXISp021xKvdLBUX7vxrZmJnJZDogVsS2ZHlsecbj2e-AXidlVJ673KuVFFz6eSMO1SBXFA-ly61EiX5IT-dqcW5_HCRX-zByZgLQ2GVSfdHnT5o6_RlmmZzumrb6Wc0DhAOCREJN6Xeh4MZor2ewMHx-4-Ls91lQpHFrGlsz6lDyp2JYV5-c0P0QyKPdKf5v_DpL009wM_pfbib7EZ2HIf2APZ89xDujTUZWNqij-DX18HX6Wt2Hdqu54RSNRsq8bExJZ_tooZCx9zyMqzb_uoboxD4Sxa65Q9W-1V_xRKp6tAMn9gy3PAqbHrW7ng8e0Z5fIFvtuvvngoY4SBYZId-DOen776cLHgqt8ArtFJ6XmlTEh-gUE1pqnlmfKW08LJRlfHaO2l05tC8bQojSq9yPGnVc91kM6edKJyYP4FJFzr_FJifN35WS43HX0p-NSV5uzKFpmldmCJXhyDGSbZV4iKnkhhLOwadXVsSjCXB2MxYFMwhvNn1WUUmjltb56Ps7B_rySJU3Nrv1ShoixuNbk9c58N2Y0UsHYAW57P__PdzuINvKkawvYBJv976l2jS9OUR7L_9KY7Swv0NRS736g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocmgvfVBQ6QsjcausjXcdxz4iVLS89lJQuVlO4kDQNl7tZkH8hP7rzsTOSlQqh96ixI4sjz0zHs_3DSEHSS6EczZlUmYlE1aMmAUVyDjiuVSuJM8xDnkxlZMrcXqdXm-Qox4Lg2mVUfcHnd5p6_hmGGdzOK_r4Q9wDsAcokVEuynUC7IpsKj1gGwenpxNpuvLhCwJqGloz7BDxM6ENC-3fED6IZ4GutP0X_bpL03dmZ_jt-R19BvpYRjaO7Lhmi3ypq_JQOMWfU9-_-xina6kd75uWoZWqqRdJT7aQ_LpOmvIN9TObvyibm9_UUyBv6G-mT3S0s3bWxpJVbtm8ERn_oEVftnSes3j2VLE8Xm2XC3uHRYwgkHQwA69Ta6Ov18eTVgst8AK8FJaViidIx8gl1Wui3GiXSEVd6KShXbKWaFVYsG9rTLNcydTOGmVY1UlI6sszywf75BB4xv3gVA3rtyoFAqOvwh-1TlGuxIJrmmZ6SyVu4T3k2yKyEWOJTFmpk86uzMoGIOCMYk2IJhd8m3dZx6YOJ5tnfayM0_WkwFT8Wy__V7QBjYa3p7YxvnV0vBQOgA8zo__-e898nJyeXFuzk-mZ5_IK_giQzbbZzJoFyv3BdybNv8al-8fHU750A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+joint-based+human+behavior+recognition+algorithm+using+only+depth+information+for+low-cost+intelligent+video-surveillance+system&rft.jtitle=Expert+systems+with+applications&rft.au=Kima%2C+Hanguen&rft.au=Leea%2C+Sangwon&rft.au=Kima%2C+Youngjae&rft.au=Leeb%2C+Serin&rft.date=2016-03-01&rft.issn=0957-4174&rft.volume=45&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1016%2Fj.eswa.2015.09.035&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |