Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images
Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and inform...
        Saved in:
      
    
          | Published in | Radiology Vol. 284; no. 3; pp. 788 - 797 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Radiological Society of North America
    
        01.09.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0033-8419 1527-1315 1527-1315  | 
| DOI | 10.1148/radiol.2017162100 | 
Cover
| Abstract | Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images.
RSNA, 2017 Online supplemental material is available for this article. | 
    
|---|---|
| AbstractList | We have designed and validated a fully automated quantitative system with which to detect and enumerate levels of thoracic and lumbar vertebral body compression fractures on CT images, determine Genant classification of compression severity and morphology, generate extended Genant scores for fracture lateralization, and measure bone attenuation. Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. RSNA, 2017 Online supplemental material is available for this article. Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. © RSNA, 2017 Online supplemental material is available for this article.Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. © RSNA, 2017 Online supplemental material is available for this article.  | 
    
| Author | Yao, Jianhua Burns, Joseph E. Summers, Ronald M.  | 
    
| Author_xml | – sequence: 1 givenname: Joseph E. surname: Burns fullname: Burns, Joseph E. organization: From the Department of Radiological Sciences, University of California-Irvine School of Medicine, Orange, Calif (J.E.B.); and Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Building 10, Room 1C224, MSC1182, Bethesda, MD 20892-1182 (J.Y., R.M.S.) – sequence: 2 givenname: Jianhua surname: Yao fullname: Yao, Jianhua organization: From the Department of Radiological Sciences, University of California-Irvine School of Medicine, Orange, Calif (J.E.B.); and Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Building 10, Room 1C224, MSC1182, Bethesda, MD 20892-1182 (J.Y., R.M.S.) – sequence: 3 givenname: Ronald M. surname: Summers fullname: Summers, Ronald M. organization: From the Department of Radiological Sciences, University of California-Irvine School of Medicine, Orange, Calif (J.E.B.); and Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Building 10, Room 1C224, MSC1182, Bethesda, MD 20892-1182 (J.Y., R.M.S.)  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28301777$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU1vFSEUhompsbdXf4AbM0s3U_kYBq4Lk3a02qSJm-qWMHCm0jBwBUZz_73c3lo_FsaEBDi8zzmH95ygoxADIPSc4FNCOvkqaeuiP6WYCNJTgvEjtCKcipYwwo_QCmPGWtmRzTE6yfkWY9JxKZ6gYypZZYRYodvPkAqMSfvmPNpdM8R5myBnF0NzkbQpS701Otj6HKB5CyG7snvdnC0lzrqAraECpuz1e9XgdYUnZ_RdqK7hurmc9Q3kp-jxpH2GZ_f7Gn26eHc9fGivPr6_HM6uWsM2m9KOmBnOO80ARtvZaTTTZA0zrJcgRkk56ydpQdiJ9xsqR1KPopeUip4QwQRbI3rIu4St3n3X3qttcrNOO0Ww2hunDsapX8ZV6M0B2i7jDNZAKNWTBzBqp_58Ce6LuonfFOey67t91Zf3CVL8ukAuanbZgPc6QFyyIlLI2mRXR7JGL36v9VDk51SqgBwEJsWcE0z_9QHxF2NcuRtCbdf5f5A_ALWZtTY | 
    
| CitedBy_id | crossref_primary_10_1016_j_semss_2021_100870 crossref_primary_10_1007_s00296_018_4139_5 crossref_primary_10_3390_jimaging10100244 crossref_primary_10_1007_s11657_021_00948_z crossref_primary_10_1007_s00234_019_02286_x crossref_primary_10_1016_j_spinee_2024_04_016 crossref_primary_10_3389_fsurg_2020_00054 crossref_primary_10_1155_2022_8747487 crossref_primary_10_7759_cureus_48078 crossref_primary_10_1016_j_arthro_2018_06_041 crossref_primary_10_1007_s00330_022_09354_6 crossref_primary_10_2214_AJR_19_21117 crossref_primary_10_3171_2022_1_FOCUS21745 crossref_primary_10_14341_probl12605 crossref_primary_10_3390_bioengineering11121264 crossref_primary_10_1002_mp_17072 crossref_primary_10_1016_j_jocd_2019_09_003 crossref_primary_10_1007_s42235_022_00234_9 crossref_primary_10_1016_j_media_2022_102646 crossref_primary_10_1016_j_rcl_2023_10_005 crossref_primary_10_1109_TBME_2023_3313126 crossref_primary_10_1007_s00330_020_06679_y crossref_primary_10_12968_hmed_2018_79_12_676 crossref_primary_10_1177_2192568220961353 crossref_primary_10_1007_s10278_024_01135_5 crossref_primary_10_3390_diagnostics14020134 crossref_primary_10_3389_fphys_2023_1241370 crossref_primary_10_1016_j_wneu_2024_04_117 crossref_primary_10_1002_jsp2_1044 crossref_primary_10_1007_s00198_023_06903_7 crossref_primary_10_1148_radiol_2020200466 crossref_primary_10_1002_jbmr_4292 crossref_primary_10_3390_bioengineering12010064 crossref_primary_10_1016_j_jot_2022_10_016 crossref_primary_10_14245_ns_1938388_194 crossref_primary_10_1002_oa_2845 crossref_primary_10_3390_diagnostics12102420 crossref_primary_10_1007_s43390_024_00952_6 crossref_primary_10_1007_s40618_024_02415_1 crossref_primary_10_1093_jbmr_zjae112 crossref_primary_10_3389_fendo_2021_778537 crossref_primary_10_1002_jbmr_4879 crossref_primary_10_1002_jbmr_4916 crossref_primary_10_1002_jcu_23321 crossref_primary_10_3174_ajnr_A7179 crossref_primary_10_1016_j_imu_2021_100596 crossref_primary_10_1177_20552076241279238 crossref_primary_10_1259_bjr_20180726 crossref_primary_10_3348_kjr_2021_0775 crossref_primary_10_1007_s00330_021_08284_z crossref_primary_10_1038_s41598_019_49712_x crossref_primary_10_1016_j_compbiomed_2018_05_011 crossref_primary_10_1097_01_CSS_0000831776_12602_30 crossref_primary_10_1016_j_ejrad_2022_110642 crossref_primary_10_14245_ns_2448388_194 crossref_primary_10_3390_electronics12092056 crossref_primary_10_1007_s00264_023_05722_z crossref_primary_10_1186_s12891_023_06484_w crossref_primary_10_20517_ais_2024_39 crossref_primary_10_1007_s11517_023_02805_2 crossref_primary_10_2106_JBJS_21_01305 crossref_primary_10_1007_s00330_018_5846_8 crossref_primary_10_2174_1573405617666210412142758 crossref_primary_10_1016_j_wneu_2020_03_029 crossref_primary_10_1002_advs_202002548 crossref_primary_10_3803_EnM_2021_1111 crossref_primary_10_1097_RCT_0000000000001726 crossref_primary_10_3390_jcm12144565 crossref_primary_10_1148_rg_2021200056 crossref_primary_10_1007_s00330_018_5680_z crossref_primary_10_1007_s11042_023_14811_5 crossref_primary_10_1007_s40520_022_02124_w crossref_primary_10_1007_s42600_023_00300_z crossref_primary_10_1155_2022_1560438 crossref_primary_10_1136_postgradmedj_2022_141596 crossref_primary_10_1007_s00256_021_03782_z crossref_primary_10_1002_jbmr_3849 crossref_primary_10_1111_os_13145 crossref_primary_10_1097_SCS_0000000000006069 crossref_primary_10_1007_s11914_022_00764_5 crossref_primary_10_1002_jbmr_4146 crossref_primary_10_1055_s_0043_1771037 crossref_primary_10_32604_cmc_2024_047379 crossref_primary_10_1007_s00586_023_07938_4 crossref_primary_10_1007_s00330_023_09713_x crossref_primary_10_3390_diagnostics14070781 crossref_primary_10_3390_diagnostics14222477 crossref_primary_10_1590_0100_3984_2023_0102 crossref_primary_10_1227_NEU_0000000000001853 crossref_primary_10_1002_jbm4_10778 crossref_primary_10_1007_s00330_023_10394_9 crossref_primary_10_1038_s41597_021_01060_0 crossref_primary_10_1007_s10140_024_02278_2 crossref_primary_10_7759_cureus_51963 crossref_primary_10_1007_s00198_021_06169_x crossref_primary_10_1016_j_crad_2025_106831 crossref_primary_10_1515_revneuro_2021_0101 crossref_primary_10_1016_j_clinimag_2021_08_009 crossref_primary_10_1016_j_crad_2025_106827 crossref_primary_10_1016_j_wneu_2021_05_080 crossref_primary_10_1016_j_yacr_2020_05_005 crossref_primary_10_3390_jcm12247730 crossref_primary_10_1016_j_wneu_2023_07_009 crossref_primary_10_1007_s00330_022_08956_4 crossref_primary_10_1186_s41747_021_00228_y crossref_primary_10_1007_s00330_021_08247_4 crossref_primary_10_3174_ajnr_A7094 crossref_primary_10_1097_CORR_0000000000001685 crossref_primary_10_1371_journal_pdig_0000438 crossref_primary_10_1007_s00198_020_05710_8 crossref_primary_10_3390_diagnostics13162670 crossref_primary_10_1016_j_ejrad_2024_111714 crossref_primary_10_1016_j_ejrad_2023_110726 crossref_primary_10_1007_s00586_022_07121_1 crossref_primary_10_1148_ryai_2020190138 crossref_primary_10_1007_s00256_024_04684_6 crossref_primary_10_1016_j_ejrad_2024_111685 crossref_primary_10_1016_j_acra_2019_03_011 crossref_primary_10_1016_j_spinee_2021_10_020 crossref_primary_10_1148_ryai_230550 crossref_primary_10_1007_s00330_020_06845_2  | 
    
| Cites_doi | 10.1007/s00198-006-0306-8 10.1016/S8756-3282(03)00241-2 10.1016/S8756-3282(03)00248-5 10.1007/s00198-005-2010-5 10.1007/s001980050284 10.1359/jbmr.080515 10.2214/ajr.183.4.1830949 10.1007/s00198-007-0413-1 10.1016/8756-3282(95)00258-4 10.7812/TPP/12-037 10.1007/BF01623272 10.1016/j.jocd.2015.08.010 10.1007/s00330-008-0899-8 10.2106/JBJS.J.00160 10.1016/j.ejrad.2007.12.001 10.1016/j.rcl.2010.02.018 10.1359/JBMR.041214 10.1016/j.bone.2005.04.003 10.4015/S1016237202000309 10.2106/JBJS.I.00919 10.1007/s00198-010-1293-3 10.1007/s00198-010-1290-6 10.1117/12.878055 10.1016/j.rcl.2010.02.020 10.1385/JCD:3:3:281 10.1007/s00198-007-0530-x 10.1117/12.911703 10.1007/s00330-013-3089-2 10.1097/RCT.0b013e3182032537 10.1359/JBMR.050314  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 by the Radiological Society of North America, Inc. 2017 | 
    
| Copyright_xml | – notice: 2017 by the Radiological Society of North America, Inc. 2017 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1148/radiol.2017162100 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1527-1315 | 
    
| EndPage | 797 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:5584647 PMC5584647 28301777 10_1148_radiol_2017162100  | 
    
| Genre | Journal Article Research Support, N.I.H., Intramural  | 
    
| GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z01 CL040004 – fundername: ; ; grantid: 1Z01 CL040004  | 
    
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL AAYXX ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ADBBV AENEX AENYM AFFNX AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ W8F WH7 WOQ X7M YQI YQJ ZGI ZVN ZXP AFOSN CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c399t-b03c554a3eebd4dfbcffdc3c368e7b82536f8de7df56928b1e7d7682276117373 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0033-8419 1527-1315  | 
    
| IngestDate | Sun Oct 26 03:56:09 EDT 2025 Thu Aug 21 18:21:47 EDT 2025 Thu Sep 04 19:21:00 EDT 2025 Sat May 31 02:13:57 EDT 2025 Thu Apr 24 23:07:55 EDT 2025 Wed Oct 01 04:01:40 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c399t-b03c554a3eebd4dfbcffdc3c368e7b82536f8de7df56928b1e7d7682276117373 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: Guarantor of integrity of entire study, J.E.B.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; literature research, J.E.B.; clinical studies, J.E.B.; statistical analysis, J.Y.; and manuscript editing, all authors  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5584647 | 
    
| PMID | 28301777 | 
    
| PQID | 1878822403 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1148_radiol_2017162100 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584647 proquest_miscellaneous_1878822403 pubmed_primary_28301777 crossref_primary_10_1148_radiol_2017162100 crossref_citationtrail_10_1148_radiol_2017162100  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-09-01 | 
    
| PublicationDateYYYYMMDD | 2017-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Radiology | 
    
| PublicationTitleAlternate | Radiology | 
    
| PublicationYear | 2017 | 
    
| Publisher | Radiological Society of North America | 
    
| Publisher_xml | – name: Radiological Society of North America | 
    
| References | r3 r5 r6 r8 r9 r30 r10 r32 r31 r12 r34 r11 r33 r14 r13 r35 Lentle BC (r4) 2007; 58 r16 r15 American Society of Neurological Surgeons (r2) 2016 r17 r19 Wong CC (r7) 2013; 6 Predey TA (r18) 2002; 66 Yao J (r24) 2006 r21 r20 r23 r22 r25 r27 r26 r29 r28 r1  | 
    
| References_xml | – ident: r8 doi: 10.1007/s00198-006-0306-8 – ident: r10 doi: 10.1016/S8756-3282(03)00241-2 – ident: r11 doi: 10.1016/S8756-3282(03)00248-5 – ident: r16 doi: 10.1007/s00198-005-2010-5 – volume: 58 start-page: 27 issue: 1 year: 2007 ident: r4 publication-title: Can Assoc Radiol J – ident: r22 doi: 10.1007/s001980050284 – ident: r9 doi: 10.1359/jbmr.080515 – ident: r3 doi: 10.2214/ajr.183.4.1830949 – ident: r13 doi: 10.1007/s00198-007-0413-1 – ident: r1 doi: 10.1016/8756-3282(95)00258-4 – ident: r17 doi: 10.7812/TPP/12-037 – ident: r20 doi: 10.1007/BF01623272 – ident: r12 doi: 10.1016/j.jocd.2015.08.010 – ident: r31 doi: 10.1007/s00330-008-0899-8 – ident: r27 doi: 10.2106/JBJS.J.00160 – ident: r32 doi: 10.1016/j.ejrad.2007.12.001 – ident: r30 doi: 10.1016/j.rcl.2010.02.018 – ident: r14 doi: 10.1359/JBMR.041214 – ident: r29 doi: 10.1016/j.bone.2005.04.003 – ident: r33 doi: 10.4015/S1016237202000309 – ident: r28 doi: 10.2106/JBJS.I.00919 – ident: r21 doi: 10.1007/s00198-010-1293-3 – ident: r15 doi: 10.1007/s00198-010-1290-6 – ident: r34 doi: 10.1117/12.878055 – volume: 66 start-page: 611 issue: 4 year: 2002 ident: r18 publication-title: Am Fam Physician – ident: r19 doi: 10.1016/j.rcl.2010.02.020 – ident: r23 doi: 10.1385/JCD:3:3:281 – volume-title: American Society of Neurological Surgeons/Patient Information/Vertebral Compression Fractures year: 2016 ident: r2 – ident: r5 doi: 10.1007/s00198-007-0530-x – ident: r35 doi: 10.1117/12.911703 – ident: r25 doi: 10.1007/s00330-013-3089-2 – ident: r26 doi: 10.1097/RCT.0b013e3182032537 – start-page: 390 volume-title: International Symposium on Biomedical Imaging (ISBI) year: 2006 ident: r24 – volume: 6 start-page: 205 year: 2013 ident: r7 publication-title: J Multidiscip Healthc – ident: r6 doi: 10.1359/JBMR.050314  | 
    
| SSID | ssj0014587 | 
    
| Score | 2.605394 | 
    
| Snippet | Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and... We have designed and validated a fully automated quantitative system with which to detect and enumerate levels of thoracic and lumbar vertebral body...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 788 | 
    
| SubjectTerms | Aged Aged, 80 and over Bone Density - physiology Female Fractures, Compression - diagnostic imaging Humans Lumbar Vertebrae - diagnostic imaging Lumbar Vertebrae - injuries Male Middle Aged Original Research Radiographic Image Interpretation, Computer-Assisted - methods Retrospective Studies Sensitivity and Specificity Spinal Fractures - diagnostic imaging Thoracic Vertebrae - diagnostic imaging Thoracic Vertebrae - injuries Tomography, X-Ray Computed - methods  | 
    
| Title | Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28301777 https://www.proquest.com/docview/1878822403 https://pubmed.ncbi.nlm.nih.gov/PMC5584647 https://www.ncbi.nlm.nih.gov/pmc/articles/5584647  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 284 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1527-1315 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014587 issn: 0033-8419 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB_OPVC_-H7UxxHBT0p326ZNun5bT5c7xUPkVs5PpXkUV7vZZa9F1r_eSdKurgfKQQtNk5aUmWZ-w_wyA_BcIibAswwFLn9hivAtFGjFw1SwSGVU5lXl2BYn7GiWvjvLzvYg7vfCONK-FPOhqRdDM__quJWrhRz1PLFRZk1myq_APssQfg9gf3bycfLFp1-kYZ66Yh62WmsY0zjrIpmI-kfrUs2XNtxgU8SgqxPt2qILAPMiT_Jaa1bl5kdZ138YoelN-NRP33NPvg_bRgzlz78yO17q-27BjQ6Skonvug172tyBqx-6oPtd-PZZrxsbX67J66XaELuEePasIVO7yarFFimNwm6jyRtLiW82r8ikbZaIh7XCW41jfBk3ytXhtAwlpxQEj8NTcrzAhe38Hsymb08Pj8KuREMoEdk0KFcqEZCUVGuhUlUJWVVKUklZrrlA75OyKleaqypj4yQXMV6ig5MknMUxp5zeh4HBuT0EkiumSk3HUZWWqaCRQGCpmUrGOlFcCBVA1AurkF3-cltGoy783uq88PItfss3gBfbR1Y-ece_Bj_rNaDAX8zGTUqjl-15Eec8d2RbGsADrxHb19n8aTHnPAC-oyvbATZ9924PSt2l8e4EHcDLrVb9f5aPLjX6MVy3Dc-JewKDZt3qpwiiGnGA7sPx-4Pu5_kFDWgdqw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPVBfzs_T-kUEn5Tutk2bZH1bT5dT8BC5lfOpNB_F1W522Ws51r_eSdqurgfKQQtNMy0pM838wvwyA_BCISbAswglTn9hivAtlOjFw1SySGdUibL0bIsTdjxLP5xlZ3sQ93thPGlfyfnQVouhnX_z3MrVQo16ntgocy4z5ddgn2UIvwewPzv5NPnapl-koUh9MQ9XrTWMaZx1kUxE_aN1oedLF25wKWJwqRPt-qJLAPMyT_JGY1fF5qKoqj-c0PQWfO6H33JPfgybWg7Vz78yO17p-27DQQdJyaTtugN7xt6F6x-7oPs9-P7FrGsXX67Im6XeEDeFtOxZS6Zuk1WDLVJYjd3WkLeOEl9vXpNJUy8RDxuNt2rP-LJeytfhdAwlbxQEj6NT8n6BE9v5fZhN350eHYddiYZQIbKpUa9UISApqDFSp7qUqiy1oooyYbjE1SdlpdCG6zJj40TIGC9xgZMknMUxp5wewsDi2B4CEZrpwtBxVKZFKmkkEVgappOxSTSXUgcQ9crKVZe_3JXRqPJ2b7XIW_3mv_UbwMvtI6s2ece_hJ_3FpDjL-biJoU1y-Y8jwUXnmxLA3jQWsT2dS5_Wsw5D4Dv2MpWwKXv3u1Brfs03p2iA3i1tar_j_LRlaQfw03XaDlxT2BQrxvzFEFULZ91v80vYRwcsg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertebral+Body+Compression+Fractures+and+Bone+Density%3A+Automated+Detection+and+Classification+on+CT+Images&rft.jtitle=Radiology&rft.au=Burns%2C+Joseph+E.&rft.au=Yao%2C+Jianhua&rft.au=Summers%2C+Ronald+M.&rft.date=2017-09-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=284&rft.issue=3&rft.spage=788&rft.epage=797&rft_id=info:doi/10.1148%2Fradiol.2017162100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2017162100 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon |