Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images

Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and inform...

Full description

Saved in:
Bibliographic Details
Published inRadiology Vol. 284; no. 3; pp. 788 - 797
Main Authors Burns, Joseph E., Yao, Jianhua, Summers, Ronald M.
Format Journal Article
LanguageEnglish
Published United States Radiological Society of North America 01.09.2017
Subjects
Online AccessGet full text
ISSN0033-8419
1527-1315
1527-1315
DOI10.1148/radiol.2017162100

Cover

Abstract Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. RSNA, 2017 Online supplemental material is available for this article.
AbstractList We have designed and validated a fully automated quantitative system with which to detect and enumerate levels of thoracic and lumbar vertebral body compression fractures on CT images, determine Genant classification of compression severity and morphology, generate extended Genant scores for fracture lateralization, and measure bone attenuation.
Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. RSNA, 2017 Online supplemental material is available for this article.
Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. © RSNA, 2017 Online supplemental material is available for this article.Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and lumbar vertebral bodies on computed tomographic (CT) images. Materials and Methods Institutional review board approval was obtained, and informed consent was waived in this HIPAA-compliant retrospective study. A CT study set of 150 patients (mean age, 73 years; age range, 55-96 years; 92 women, 58 men) with (n = 75) and without (n = 75) compression fractures was assembled. All case patients were age and sex matched with control subjects. A total of 210 thoracic and lumbar vertebrae showed compression fractures and were electronically marked and classified by a radiologist. Prototype fully automated spinal segmentation and fracture detection software were then used to analyze the study set. System performance was evaluated with free-response receiver operating characteristic analysis. Results Sensitivity for detection or localization of compression fractures was 95.7% (201 of 210; 95% confidence interval [CI]: 87.0%, 98.9%), with a false-positive rate of 0.29 per patient. Additionally, sensitivity was 98.7% and specificity was 77.3% at case-based receiver operating characteristic curve analysis. Accuracy for classification by Genant type (anterior, middle, or posterior height loss) was 0.95 (107 of 113; 95% CI: 0.89, 0.98), with weighted κ of 0.90 (95% CI: 0.81, 0.99). Accuracy for categorization by Genant height loss grade was 0.68 (77 of 113; 95% CI: 0.59, 0.76), with a weighted κ of 0.59 (95% CI: 0.47, 0.71). The average bone attenuation for T12-L4 vertebrae was 146 HU ± 29 (standard deviation) in case patients and 173 HU ± 42 in control patients; this difference was statistically significant (P < .001). Conclusion An automated machine learning computer system was created to detect, anatomically localize, and categorize vertebral compression fractures at high sensitivity and with a low false-positive rate, as well as to calculate vertebral bone density, on CT images. © RSNA, 2017 Online supplemental material is available for this article.
Author Yao, Jianhua
Burns, Joseph E.
Summers, Ronald M.
Author_xml – sequence: 1
  givenname: Joseph E.
  surname: Burns
  fullname: Burns, Joseph E.
  organization: From the Department of Radiological Sciences, University of California-Irvine School of Medicine, Orange, Calif (J.E.B.); and Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Building 10, Room 1C224, MSC1182, Bethesda, MD 20892-1182 (J.Y., R.M.S.)
– sequence: 2
  givenname: Jianhua
  surname: Yao
  fullname: Yao, Jianhua
  organization: From the Department of Radiological Sciences, University of California-Irvine School of Medicine, Orange, Calif (J.E.B.); and Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Building 10, Room 1C224, MSC1182, Bethesda, MD 20892-1182 (J.Y., R.M.S.)
– sequence: 3
  givenname: Ronald M.
  surname: Summers
  fullname: Summers, Ronald M.
  organization: From the Department of Radiological Sciences, University of California-Irvine School of Medicine, Orange, Calif (J.E.B.); and Imaging Biomarkers and Computer-Aided Detection Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Building 10, Room 1C224, MSC1182, Bethesda, MD 20892-1182 (J.Y., R.M.S.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28301777$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEUhompsbdXf4AbM0s3U_kYBq4Lk3a02qSJm-qWMHCm0jBwBUZz_73c3lo_FsaEBDi8zzmH95ygoxADIPSc4FNCOvkqaeuiP6WYCNJTgvEjtCKcipYwwo_QCmPGWtmRzTE6yfkWY9JxKZ6gYypZZYRYodvPkAqMSfvmPNpdM8R5myBnF0NzkbQpS701Otj6HKB5CyG7snvdnC0lzrqAraECpuz1e9XgdYUnZ_RdqK7hurmc9Q3kp-jxpH2GZ_f7Gn26eHc9fGivPr6_HM6uWsM2m9KOmBnOO80ARtvZaTTTZA0zrJcgRkk56ydpQdiJ9xsqR1KPopeUip4QwQRbI3rIu4St3n3X3qttcrNOO0Ww2hunDsapX8ZV6M0B2i7jDNZAKNWTBzBqp_58Ce6LuonfFOey67t91Zf3CVL8ukAuanbZgPc6QFyyIlLI2mRXR7JGL36v9VDk51SqgBwEJsWcE0z_9QHxF2NcuRtCbdf5f5A_ALWZtTY
CitedBy_id crossref_primary_10_1016_j_semss_2021_100870
crossref_primary_10_1007_s00296_018_4139_5
crossref_primary_10_3390_jimaging10100244
crossref_primary_10_1007_s11657_021_00948_z
crossref_primary_10_1007_s00234_019_02286_x
crossref_primary_10_1016_j_spinee_2024_04_016
crossref_primary_10_3389_fsurg_2020_00054
crossref_primary_10_1155_2022_8747487
crossref_primary_10_7759_cureus_48078
crossref_primary_10_1016_j_arthro_2018_06_041
crossref_primary_10_1007_s00330_022_09354_6
crossref_primary_10_2214_AJR_19_21117
crossref_primary_10_3171_2022_1_FOCUS21745
crossref_primary_10_14341_probl12605
crossref_primary_10_3390_bioengineering11121264
crossref_primary_10_1002_mp_17072
crossref_primary_10_1016_j_jocd_2019_09_003
crossref_primary_10_1007_s42235_022_00234_9
crossref_primary_10_1016_j_media_2022_102646
crossref_primary_10_1016_j_rcl_2023_10_005
crossref_primary_10_1109_TBME_2023_3313126
crossref_primary_10_1007_s00330_020_06679_y
crossref_primary_10_12968_hmed_2018_79_12_676
crossref_primary_10_1177_2192568220961353
crossref_primary_10_1007_s10278_024_01135_5
crossref_primary_10_3390_diagnostics14020134
crossref_primary_10_3389_fphys_2023_1241370
crossref_primary_10_1016_j_wneu_2024_04_117
crossref_primary_10_1002_jsp2_1044
crossref_primary_10_1007_s00198_023_06903_7
crossref_primary_10_1148_radiol_2020200466
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_3390_bioengineering12010064
crossref_primary_10_1016_j_jot_2022_10_016
crossref_primary_10_14245_ns_1938388_194
crossref_primary_10_1002_oa_2845
crossref_primary_10_3390_diagnostics12102420
crossref_primary_10_1007_s43390_024_00952_6
crossref_primary_10_1007_s40618_024_02415_1
crossref_primary_10_1093_jbmr_zjae112
crossref_primary_10_3389_fendo_2021_778537
crossref_primary_10_1002_jbmr_4879
crossref_primary_10_1002_jbmr_4916
crossref_primary_10_1002_jcu_23321
crossref_primary_10_3174_ajnr_A7179
crossref_primary_10_1016_j_imu_2021_100596
crossref_primary_10_1177_20552076241279238
crossref_primary_10_1259_bjr_20180726
crossref_primary_10_3348_kjr_2021_0775
crossref_primary_10_1007_s00330_021_08284_z
crossref_primary_10_1038_s41598_019_49712_x
crossref_primary_10_1016_j_compbiomed_2018_05_011
crossref_primary_10_1097_01_CSS_0000831776_12602_30
crossref_primary_10_1016_j_ejrad_2022_110642
crossref_primary_10_14245_ns_2448388_194
crossref_primary_10_3390_electronics12092056
crossref_primary_10_1007_s00264_023_05722_z
crossref_primary_10_1186_s12891_023_06484_w
crossref_primary_10_20517_ais_2024_39
crossref_primary_10_1007_s11517_023_02805_2
crossref_primary_10_2106_JBJS_21_01305
crossref_primary_10_1007_s00330_018_5846_8
crossref_primary_10_2174_1573405617666210412142758
crossref_primary_10_1016_j_wneu_2020_03_029
crossref_primary_10_1002_advs_202002548
crossref_primary_10_3803_EnM_2021_1111
crossref_primary_10_1097_RCT_0000000000001726
crossref_primary_10_3390_jcm12144565
crossref_primary_10_1148_rg_2021200056
crossref_primary_10_1007_s00330_018_5680_z
crossref_primary_10_1007_s11042_023_14811_5
crossref_primary_10_1007_s40520_022_02124_w
crossref_primary_10_1007_s42600_023_00300_z
crossref_primary_10_1155_2022_1560438
crossref_primary_10_1136_postgradmedj_2022_141596
crossref_primary_10_1007_s00256_021_03782_z
crossref_primary_10_1002_jbmr_3849
crossref_primary_10_1111_os_13145
crossref_primary_10_1097_SCS_0000000000006069
crossref_primary_10_1007_s11914_022_00764_5
crossref_primary_10_1002_jbmr_4146
crossref_primary_10_1055_s_0043_1771037
crossref_primary_10_32604_cmc_2024_047379
crossref_primary_10_1007_s00586_023_07938_4
crossref_primary_10_1007_s00330_023_09713_x
crossref_primary_10_3390_diagnostics14070781
crossref_primary_10_3390_diagnostics14222477
crossref_primary_10_1590_0100_3984_2023_0102
crossref_primary_10_1227_NEU_0000000000001853
crossref_primary_10_1002_jbm4_10778
crossref_primary_10_1007_s00330_023_10394_9
crossref_primary_10_1038_s41597_021_01060_0
crossref_primary_10_1007_s10140_024_02278_2
crossref_primary_10_7759_cureus_51963
crossref_primary_10_1007_s00198_021_06169_x
crossref_primary_10_1016_j_crad_2025_106831
crossref_primary_10_1515_revneuro_2021_0101
crossref_primary_10_1016_j_clinimag_2021_08_009
crossref_primary_10_1016_j_crad_2025_106827
crossref_primary_10_1016_j_wneu_2021_05_080
crossref_primary_10_1016_j_yacr_2020_05_005
crossref_primary_10_3390_jcm12247730
crossref_primary_10_1016_j_wneu_2023_07_009
crossref_primary_10_1007_s00330_022_08956_4
crossref_primary_10_1186_s41747_021_00228_y
crossref_primary_10_1007_s00330_021_08247_4
crossref_primary_10_3174_ajnr_A7094
crossref_primary_10_1097_CORR_0000000000001685
crossref_primary_10_1371_journal_pdig_0000438
crossref_primary_10_1007_s00198_020_05710_8
crossref_primary_10_3390_diagnostics13162670
crossref_primary_10_1016_j_ejrad_2024_111714
crossref_primary_10_1016_j_ejrad_2023_110726
crossref_primary_10_1007_s00586_022_07121_1
crossref_primary_10_1148_ryai_2020190138
crossref_primary_10_1007_s00256_024_04684_6
crossref_primary_10_1016_j_ejrad_2024_111685
crossref_primary_10_1016_j_acra_2019_03_011
crossref_primary_10_1016_j_spinee_2021_10_020
crossref_primary_10_1148_ryai_230550
crossref_primary_10_1007_s00330_020_06845_2
Cites_doi 10.1007/s00198-006-0306-8
10.1016/S8756-3282(03)00241-2
10.1016/S8756-3282(03)00248-5
10.1007/s00198-005-2010-5
10.1007/s001980050284
10.1359/jbmr.080515
10.2214/ajr.183.4.1830949
10.1007/s00198-007-0413-1
10.1016/8756-3282(95)00258-4
10.7812/TPP/12-037
10.1007/BF01623272
10.1016/j.jocd.2015.08.010
10.1007/s00330-008-0899-8
10.2106/JBJS.J.00160
10.1016/j.ejrad.2007.12.001
10.1016/j.rcl.2010.02.018
10.1359/JBMR.041214
10.1016/j.bone.2005.04.003
10.4015/S1016237202000309
10.2106/JBJS.I.00919
10.1007/s00198-010-1293-3
10.1007/s00198-010-1290-6
10.1117/12.878055
10.1016/j.rcl.2010.02.020
10.1385/JCD:3:3:281
10.1007/s00198-007-0530-x
10.1117/12.911703
10.1007/s00330-013-3089-2
10.1097/RCT.0b013e3182032537
10.1359/JBMR.050314
ContentType Journal Article
Copyright 2017 by the Radiological Society of North America, Inc. 2017
Copyright_xml – notice: 2017 by the Radiological Society of North America, Inc. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1148/radiol.2017162100
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
EndPage 797
ExternalDocumentID oai:pubmedcentral.nih.gov:5584647
PMC5584647
28301777
10_1148_radiol_2017162100
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z01 CL040004
– fundername: ; ;
  grantid: 1Z01 CL040004
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
AAYXX
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ADBBV
AENEX
AENYM
AFFNX
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZVN
ZXP
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c399t-b03c554a3eebd4dfbcffdc3c368e7b82536f8de7df56928b1e7d7682276117373
IEDL.DBID UNPAY
ISSN 0033-8419
1527-1315
IngestDate Sun Oct 26 03:56:09 EDT 2025
Thu Aug 21 18:21:47 EDT 2025
Thu Sep 04 19:21:00 EDT 2025
Sat May 31 02:13:57 EDT 2025
Thu Apr 24 23:07:55 EDT 2025
Wed Oct 01 04:01:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-b03c554a3eebd4dfbcffdc3c368e7b82536f8de7df56928b1e7d7682276117373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: Guarantor of integrity of entire study, J.E.B.; study concepts/study design or data acquisition or data analysis/interpretation, all authors; manuscript drafting or manuscript revision for important intellectual content, all authors; approval of final version of submitted manuscript, all authors; agrees to ensure any questions related to the work are appropriately resolved, all authors; literature research, J.E.B.; clinical studies, J.E.B.; statistical analysis, J.Y.; and manuscript editing, all authors
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5584647
PMID 28301777
PQID 1878822403
PQPubID 23479
PageCount 10
ParticipantIDs unpaywall_primary_10_1148_radiol_2017162100
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5584647
proquest_miscellaneous_1878822403
pubmed_primary_28301777
crossref_primary_10_1148_radiol_2017162100
crossref_citationtrail_10_1148_radiol_2017162100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2017
Publisher Radiological Society of North America
Publisher_xml – name: Radiological Society of North America
References r3
r5
r6
r8
r9
r30
r10
r32
r31
r12
r34
r11
r33
r14
r13
r35
Lentle BC (r4) 2007; 58
r16
r15
American Society of Neurological Surgeons (r2) 2016
r17
r19
Wong CC (r7) 2013; 6
Predey TA (r18) 2002; 66
Yao J (r24) 2006
r21
r20
r23
r22
r25
r27
r26
r29
r28
r1
References_xml – ident: r8
  doi: 10.1007/s00198-006-0306-8
– ident: r10
  doi: 10.1016/S8756-3282(03)00241-2
– ident: r11
  doi: 10.1016/S8756-3282(03)00248-5
– ident: r16
  doi: 10.1007/s00198-005-2010-5
– volume: 58
  start-page: 27
  issue: 1
  year: 2007
  ident: r4
  publication-title: Can Assoc Radiol J
– ident: r22
  doi: 10.1007/s001980050284
– ident: r9
  doi: 10.1359/jbmr.080515
– ident: r3
  doi: 10.2214/ajr.183.4.1830949
– ident: r13
  doi: 10.1007/s00198-007-0413-1
– ident: r1
  doi: 10.1016/8756-3282(95)00258-4
– ident: r17
  doi: 10.7812/TPP/12-037
– ident: r20
  doi: 10.1007/BF01623272
– ident: r12
  doi: 10.1016/j.jocd.2015.08.010
– ident: r31
  doi: 10.1007/s00330-008-0899-8
– ident: r27
  doi: 10.2106/JBJS.J.00160
– ident: r32
  doi: 10.1016/j.ejrad.2007.12.001
– ident: r30
  doi: 10.1016/j.rcl.2010.02.018
– ident: r14
  doi: 10.1359/JBMR.041214
– ident: r29
  doi: 10.1016/j.bone.2005.04.003
– ident: r33
  doi: 10.4015/S1016237202000309
– ident: r28
  doi: 10.2106/JBJS.I.00919
– ident: r21
  doi: 10.1007/s00198-010-1293-3
– ident: r15
  doi: 10.1007/s00198-010-1290-6
– ident: r34
  doi: 10.1117/12.878055
– volume: 66
  start-page: 611
  issue: 4
  year: 2002
  ident: r18
  publication-title: Am Fam Physician
– ident: r19
  doi: 10.1016/j.rcl.2010.02.020
– ident: r23
  doi: 10.1385/JCD:3:3:281
– volume-title: American Society of Neurological Surgeons/Patient Information/Vertebral Compression Fractures
  year: 2016
  ident: r2
– ident: r5
  doi: 10.1007/s00198-007-0530-x
– ident: r35
  doi: 10.1117/12.911703
– ident: r25
  doi: 10.1007/s00330-013-3089-2
– ident: r26
  doi: 10.1097/RCT.0b013e3182032537
– start-page: 390
  volume-title: International Symposium on Biomedical Imaging (ISBI)
  year: 2006
  ident: r24
– volume: 6
  start-page: 205
  year: 2013
  ident: r7
  publication-title: J Multidiscip Healthc
– ident: r6
  doi: 10.1359/JBMR.050314
SSID ssj0014587
Score 2.605394
Snippet Purpose To create and validate a computer system with which to detect, localize, and classify compression fractures and measure bone density of thoracic and...
We have designed and validated a fully automated quantitative system with which to detect and enumerate levels of thoracic and lumbar vertebral body...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 788
SubjectTerms Aged
Aged, 80 and over
Bone Density - physiology
Female
Fractures, Compression - diagnostic imaging
Humans
Lumbar Vertebrae - diagnostic imaging
Lumbar Vertebrae - injuries
Male
Middle Aged
Original Research
Radiographic Image Interpretation, Computer-Assisted - methods
Retrospective Studies
Sensitivity and Specificity
Spinal Fractures - diagnostic imaging
Thoracic Vertebrae - diagnostic imaging
Thoracic Vertebrae - injuries
Tomography, X-Ray Computed - methods
Title Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images
URI https://www.ncbi.nlm.nih.gov/pubmed/28301777
https://www.proquest.com/docview/1878822403
https://pubmed.ncbi.nlm.nih.gov/PMC5584647
https://www.ncbi.nlm.nih.gov/pmc/articles/5584647
UnpaywallVersion submittedVersion
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-1315
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014587
  issn: 0033-8419
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB_OPVC_-H7UxxHBT0p326ZNun5bT5c7xUPkVs5PpXkUV7vZZa9F1r_eSdKurgfKQQtNk5aUmWZ-w_wyA_BcIibAswwFLn9hivAtFGjFw1SwSGVU5lXl2BYn7GiWvjvLzvYg7vfCONK-FPOhqRdDM__quJWrhRz1PLFRZk1myq_APssQfg9gf3bycfLFp1-kYZ66Yh62WmsY0zjrIpmI-kfrUs2XNtxgU8SgqxPt2qILAPMiT_Jaa1bl5kdZ138YoelN-NRP33NPvg_bRgzlz78yO17q-27BjQ6Skonvug172tyBqx-6oPtd-PZZrxsbX67J66XaELuEePasIVO7yarFFimNwm6jyRtLiW82r8ikbZaIh7XCW41jfBk3ytXhtAwlpxQEj8NTcrzAhe38Hsymb08Pj8KuREMoEdk0KFcqEZCUVGuhUlUJWVVKUklZrrlA75OyKleaqypj4yQXMV6ig5MknMUxp5zeh4HBuT0EkiumSk3HUZWWqaCRQGCpmUrGOlFcCBVA1AurkF3-cltGoy783uq88PItfss3gBfbR1Y-ece_Bj_rNaDAX8zGTUqjl-15Eec8d2RbGsADrxHb19n8aTHnPAC-oyvbATZ9924PSt2l8e4EHcDLrVb9f5aPLjX6MVy3Dc-JewKDZt3qpwiiGnGA7sPx-4Pu5_kFDWgdqw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPVBfzs_T-kUEn5Tutk2bZH1bT5dT8BC5lfOpNB_F1W522Ws51r_eSdqurgfKQQtNMy0pM838wvwyA_BCISbAswglTn9hivAtlOjFw1SySGdUibL0bIsTdjxLP5xlZ3sQ93thPGlfyfnQVouhnX_z3MrVQo16ntgocy4z5ddgn2UIvwewPzv5NPnapl-koUh9MQ9XrTWMaZx1kUxE_aN1oedLF25wKWJwqRPt-qJLAPMyT_JGY1fF5qKoqj-c0PQWfO6H33JPfgybWg7Vz78yO17p-27DQQdJyaTtugN7xt6F6x-7oPs9-P7FrGsXX67Im6XeEDeFtOxZS6Zuk1WDLVJYjd3WkLeOEl9vXpNJUy8RDxuNt2rP-LJeytfhdAwlbxQEj6NT8n6BE9v5fZhN350eHYddiYZQIbKpUa9UISApqDFSp7qUqiy1oooyYbjE1SdlpdCG6zJj40TIGC9xgZMknMUxp5wewsDi2B4CEZrpwtBxVKZFKmkkEVgappOxSTSXUgcQ9crKVZe_3JXRqPJ2b7XIW_3mv_UbwMvtI6s2ece_hJ_3FpDjL-biJoU1y-Y8jwUXnmxLA3jQWsT2dS5_Wsw5D4Dv2MpWwKXv3u1Brfs03p2iA3i1tar_j_LRlaQfw03XaDlxT2BQrxvzFEFULZ91v80vYRwcsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertebral+Body+Compression+Fractures+and+Bone+Density%3A+Automated+Detection+and+Classification+on+CT+Images&rft.jtitle=Radiology&rft.au=Burns%2C+Joseph+E.&rft.au=Yao%2C+Jianhua&rft.au=Summers%2C+Ronald+M.&rft.date=2017-09-01&rft.issn=0033-8419&rft.eissn=1527-1315&rft.volume=284&rft.issue=3&rft.spage=788&rft.epage=797&rft_id=info:doi/10.1148%2Fradiol.2017162100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1148_radiol_2017162100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8419&client=summon