Particle Swarm Optimization-Based Approach for Optic Disc Segmentation
Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly dis...
Saved in:
| Published in | Entropy (Basel, Switzerland) Vol. 24; no. 6; p. 796 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
08.06.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1099-4300 1099-4300 |
| DOI | 10.3390/e24060796 |
Cover
| Abstract | Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work. |
|---|---|
| AbstractList | Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work. Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work.Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work. |
| Author | Ran, Ya Yi, Junyan Yang, Gang |
| AuthorAffiliation | 1 Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; yijunyan@bucea.edu.cn (J.Y.); 2108110019009@stu.bucea.edu.cn (Y.R.) 2 Information School, Renmin University of China, Beijing 100080, China |
| AuthorAffiliation_xml | – name: 2 Information School, Renmin University of China, Beijing 100080, China – name: 1 Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; yijunyan@bucea.edu.cn (J.Y.); 2108110019009@stu.bucea.edu.cn (Y.R.) |
| Author_xml | – sequence: 1 givenname: Junyan orcidid: 0000-0002-8819-8642 surname: Yi fullname: Yi, Junyan – sequence: 2 givenname: Ya surname: Ran fullname: Ran, Ya – sequence: 3 givenname: Gang orcidid: 0000-0003-0765-6769 surname: Yang fullname: Yang, Gang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35741517$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtr3DAUhUVJaZJpF_0DxdBNGnCjhyVbm0KaNm0gkELatbh6eKLBtlzZTkh_fTXjyZCE0pWE7qfDOeceor0udA6htwR_ZEziE0cLLHApxQt0QLCUecEw3nt030eHw7DCmDJKxCu0z3hZEE7KA3T-A-LoTeOy6zuIbXbVj771f2D0ocs_w-Bsdtr3MYC5yeoQN3OTffGDya7dsnXduEFfo5c1NIN7sz0X6Nf5159n3_PLq28XZ6eXuWFSjjnQQmvJdCEK4ypjLKdUa10xQa2ztCK64kXJpRVCMlZDyU1ZVwAGamJri9kCXcy6NsBK9dG3EO9VAK82DyEu1TaPYmsppomoa1twLIFpXFaSci5IhZP8Ah3PWlPXw_0dNM1OkGC1Llbtik3wpxnuJ906a1LwCM0TB08nnb9Ry3CrJKVUyLXzo61ADL8nN4yqTSW6poHOhWlQVFQEs2R6jb5_hq7CFLvUa6JKWdJCSp6od48d7aw87DYBH2bAxDAM0dX_jXfyjDV-3mwK45t__PgLOnrBFQ |
| CitedBy_id | crossref_primary_10_3233_THC_230310 crossref_primary_10_1016_j_compbiomed_2022_106067 crossref_primary_10_1016_j_cmpbup_2025_100180 crossref_primary_10_1088_1361_6560_ad11a4 crossref_primary_10_3390_app132111953 |
| Cites_doi | 10.1109/TPAMI.2012.120 10.1109/ACCESS.2017.2723320 10.1109/NaBIC.2011.6089659 10.1016/j.bspc.2020.102004 10.1016/j.mcna.2021.01.004 10.1016/j.eswa.2019.03.009 10.1136/bjo.82.10.1118 10.1016/j.ophtha.2014.11.030 10.1109/TMI.2018.2791488 10.1186/s13673-014-0004-z 10.1109/ICAIBD.2019.8837025 10.1038/s41598-018-33013-w 10.1109/ICICIC.2007.209 10.1007/978-3-540-68240-0_2 10.3390/sym10040087 10.1117/1.3115362 10.1097/00055735-200404000-00004 10.1109/ACCESS.2019.2906082 10.1109/TIP.2004.823821 10.1016/j.procs.2014.11.060 10.1007/978-1-84882-935-0 10.1109/ISBI.2014.6867807 10.1109/34.295913 10.1155/2015/568363 10.1109/CSO.2009.420 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/e24060796 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_385473b16ffd4509a3b0789255618093 10.3390/e24060796 PMC9222690 35741517 10_3390_e24060796 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62031003 – fundername: Beijing Natural Science Foundation grantid: 4192029 – fundername: Science and Technology Project of Beijing Municipal Commission of Education grantid: KM202010016011 – fundername: National Natural Science Foundation of China grantid: 61871020 – fundername: Beijing University of Civil Engineering and Architecture grantid: X18064 – fundername: National Natural Science Foundation of China grantid: 61871020; 62031003 – fundername: Scientific Research Foundation of Beijing University of Civil Engineering and Architecture grantid: 00331613002 – fundername: Beijing Municipal Commission of Education grantid: KM202010016011 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A CH8 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c399t-a24bb93b464ce8ccd522bbb8362ded281b854759d66933fa75c7f8aacaf1dfd03 |
| IEDL.DBID | UNPAY |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:52:06 EDT 2025 Sun Oct 26 03:54:46 EDT 2025 Tue Sep 30 17:00:39 EDT 2025 Thu Oct 02 09:49:42 EDT 2025 Fri Jul 25 11:50:23 EDT 2025 Mon Jul 21 05:58:22 EDT 2025 Thu Oct 16 04:47:04 EDT 2025 Thu Apr 24 23:01:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | optic disc segmentation subgroups particle swarm optimization exploration area |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-a24bb93b464ce8ccd522bbb8362ded281b854759d66933fa75c7f8aacaf1dfd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8819-8642 0000-0003-0765-6769 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/24/6/796/pdf?version=1654670516 |
| PMID | 35741517 |
| PQID | 2679724995 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_385473b16ffd4509a3b0789255618093 unpaywall_primary_10_3390_e24060796 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9222690 proquest_miscellaneous_2681033850 proquest_journals_2679724995 pubmed_primary_35741517 crossref_primary_10_3390_e24060796 crossref_citationtrail_10_3390_e24060796 |
| PublicationCentury | 2000 |
| PublicationDate | 20220608 |
| PublicationDateYYYYMMDD | 2022-06-08 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220608 day: 8 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Pruthi (ref_3) 2020; 60 Shibata (ref_12) 2018; 8 Brandt (ref_6) 2004; 15 ref_14 Thakur (ref_29) 2019; 127 Fu (ref_9) 2018; 37 ref_10 ref_31 Kang (ref_4) 2021; 105 ref_30 ref_17 Zahoor (ref_18) 2017; 5 Xu (ref_16) 2020; 62 Adams (ref_33) 1994; 16 Akiba (ref_13) 2019; 60 Ruben (ref_5) 1998; 82 Xydeas (ref_20) 2004; 13 Khalid (ref_23) 2014; 42 Ahmed (ref_19) 2015; 2015 ref_25 ref_24 ref_22 ref_21 Lan (ref_15) 2019; 7 ref_1 Gonzalez (ref_32) 2009; 14 Lima (ref_7) 2018; 78 ref_28 ref_27 Barkana (ref_2) 2015; 122 ref_26 ref_8 Achanta (ref_11) 2012; 34 |
| References_xml | – volume: 62 start-page: 309 year: 2020 ident: ref_16 article-title: Image Interpolation via Gaussian-Sinc Interpolators with Partition of Unity publication-title: Comput. Mater. Contin. – ident: ref_30 – volume: 34 start-page: 2274 year: 2012 ident: ref_11 article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 5 start-page: 12293 year: 2017 ident: ref_18 article-title: Fast optic disc segmentation in retina using polar transform publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2723320 – ident: ref_26 – ident: ref_24 doi: 10.1109/NaBIC.2011.6089659 – volume: 60 start-page: 102004 year: 2020 ident: ref_3 article-title: Optic Cup segmentation from retinal fundus images using Glowworm Swarm Optimization for glaucoma detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102004 – volume: 105 start-page: 493 year: 2021 ident: ref_4 article-title: Glaucoma publication-title: Med. Clin. N. Am. doi: 10.1016/j.mcna.2021.01.004 – volume: 127 start-page: 308 year: 2019 ident: ref_29 article-title: Optic disc and optic cup segmentation from retinal images using hybrid approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.03.009 – volume: 82 start-page: 1118 year: 1998 ident: ref_5 article-title: Vertical cup/disc ratio in relation to optic disc size: Its value in the assessment of the glaucoma suspect publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.82.10.1118 – ident: ref_14 – volume: 122 start-page: e40 year: 2015 ident: ref_2 article-title: Reply to: Tham et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis Ophthalmology 2014, 121, 2081–2090 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.11.030 – volume: 37 start-page: 1597 year: 2018 ident: ref_9 article-title: Joint Optic Disc and Cup Segmentation Based on Multi-label Deep Network and Polar Transformation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2791488 – ident: ref_17 doi: 10.1186/s13673-014-0004-z – ident: ref_1 doi: 10.1109/ICAIBD.2019.8837025 – volume: 8 start-page: 14665 year: 2018 ident: ref_12 article-title: Development of a deep residual learning algorithm to screen for glaucoma from fundus photography publication-title: Sci. Rep. doi: 10.1038/s41598-018-33013-w – ident: ref_25 – ident: ref_28 doi: 10.1109/ICICIC.2007.209 – volume: 60 start-page: 1298 year: 2019 ident: ref_13 article-title: Evaluation of glaucoma diagnosis machine learning models based on color optical coherence tomography and color fundus images publication-title: Investig. Ophthalmol. Vis. Sci. – ident: ref_8 doi: 10.1007/978-3-540-68240-0_2 – ident: ref_10 doi: 10.3390/sym10040087 – volume: 14 start-page: 029901 year: 2009 ident: ref_32 article-title: Digital image processing, third edition publication-title: J. Biomed. Opt. doi: 10.1117/1.3115362 – volume: 15 start-page: 85 year: 2004 ident: ref_6 article-title: Corneal thickness in glaucoma screening, diagnosis, and management publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/00055735-200404000-00004 – volume: 7 start-page: 40625 year: 2019 ident: ref_15 article-title: A hierarchical sorting swarm optimizer for large-scale optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906082 – volume: 78 start-page: 1 year: 2018 ident: ref_7 article-title: Glaucoma diagnosis in fundus eye images using diversity indexes publication-title: Multimed. Tools Appl. – volume: 13 start-page: 228 year: 2004 ident: ref_20 article-title: Gradient-based multiresolution image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2004.823821 – volume: 42 start-page: 255 year: 2014 ident: ref_23 article-title: Fuzzy c-Means (FCM) for Optic Cup and Disc Segmentation with Morphological Operation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.11.060 – ident: ref_31 doi: 10.1007/978-1-84882-935-0 – ident: ref_22 – ident: ref_21 doi: 10.1109/ISBI.2014.6867807 – volume: 16 start-page: 641 year: 1994 ident: ref_33 article-title: Seeded region growing publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.295913 – volume: 2015 start-page: 1 year: 2015 ident: ref_19 article-title: Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey publication-title: J. Ophthalmol. doi: 10.1155/2015/568363 – ident: ref_27 doi: 10.1109/CSO.2009.420 |
| SSID | ssj0023216 |
| Score | 2.305704 |
| Snippet | Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 796 |
| SubjectTerms | Algorithms Coordinate transformations Datasets Deep learning exploration area Extreme values Glaucoma Image segmentation Medical personnel optic disc segmentation Optimization Particle swarm optimization Searching Subgroups |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSsRAEG3Ei15EcYsbcTl4CSbpLJ3jjDqI4AIqeAtdvagwkxGdQfx7q5KeMIOKF6_pJhSv0tR7SeoVY0cqtxCj7Aq4AQgSE5lAcAsBmBRouLVNJPU7X11nFw_J5WP6ODXqi_4Ja-yBG-BOuKDpuBBl1uoEq5vkQA7p5JxF1lO1z2coiomYclKLx1HW-AhxFPUnhupWmJMz_1T1qU36f2KW33-QXBhXr_LzQ_b7U9Wnt8yWHG30O024K2zOVKusd-vC9-8-5NvAv8HjP3B9lUEXy5P2O84y3EduWq8r_-zlXfl35mnguo6qNfbQO78_vQjcXIRAIZ0YBTJOAAoOSZYoI5TSyKEAQGAt0kbHSEQJs7TQWVZwbmWeYkaElEraSFsd8nU2Xw0rs8l8VEtGWMBExai0sDRFgATRoqbRklpwPXY8watUzjScZlf0SxQPBG3ZQuuxg3bra-OU8dOmLoHebiBz6_oCprx0mJV_pdxjO5OUle7EvZdxlhc5askCY95vl_Gs0AcQWZnhmPaIKERNnoYe22gy3EbCU-JWUe6xfCb3M6HOrlQvz7Ufd4EcKyvwnoftU_I7Alv_gcA2W4ypDYPeBokdNj96G5tdJEcj2KvPwReVUwqV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcGgvqBV9LIVqaXvoxSK73uehQqQlQkhNUSkSt5XHD0BKNmlIhPrvO7PxbolKua6tlTVje77P9nwD8FHnDmOiXUJaRJHYyIpCOhRoU-Ti1i5RnO_8bZSdXCSnl-nlBozaXBh-Vtnuic1Gbaaaz8gP4iwvc-IKZXo4-yW4ahTfrrYlNJQvrWA-NxJjT2AzZmWsHmwOjkdnPzoKJuMoW-kLSSL7B5bjWT9nxf57UakR738Icf77cPLpsp6p33dqPL4XlYbPYcvDyfBo5f8XsGHrbRie-fkQnt-p-ST8TtvCxOdbigGFLRMeeSnxkDBr067Drze3Ojy3VxOfjVS_hIvh8c8vJ8LXSxCaYMZCqDhBLCUmWaJtobUhbIWIBcUoY01MALVIWd7PZFkppVN5Sp4qlNLKRcaZvnwFvXpa2zcQEouyhUNyYEwMjEJWhAQcHXEdozg1N4BPrb0q7cXEuabFuCJSwaatOtMG8L7rOlspaDzUacBG7zqw6HXzYTq_qrzNKsnDlxhlzpmEgI6SyGL5LKLGKmQygN3WZZVfibfV33kTwH7XTGuIL0ZUbadL7lNEfeLqaT-A1ysPdyORKWOuKA8gX_P92lDXW-qb60anuyTslZX0zw_dLPm_BXYeH_xbeBZz4gWf_xS70FvMl3aP4NAC3_k5_gehHArK priority: 102 providerName: ProQuest |
| Title | Particle Swarm Optimization-Based Approach for Optic Disc Segmentation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35741517 https://www.proquest.com/docview/2679724995 https://www.proquest.com/docview/2681033850 https://pubmed.ncbi.nlm.nih.gov/PMC9222690 https://www.mdpi.com/1099-4300/24/6/796/pdf?version=1654670516 https://doaj.org/article/385473b16ffd4509a3b0789255618093 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: HH5 dateStart: 19990101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QEuPMQru0sVHgcu2SZx4iQn1MJ2V0iUiqVSOUW2Yy8VbVr1wQp-PTOJG21hkRCXHOJJNPGMM9_Yns8Ar1RiZIhpl8e0lF6kA-2lzEhP6ljS4dYmElTv_GHIz8fR-0k8sRNua7utElPxafWTplUbL2K-3w2jLu8mGe8uC_Pmu51JqgpxEvQqfgBtHiMWb0F7PBz1vlRLnPbZmk6IYW7f1RS-_IQI-q8FoYqr_yaA-ec-ydvbcil-XInZ7FoQGtyDfKd-vffk28l2I0_Uz9-YHf__--7DXYtP3V7tUA_gli4fwmBkHcy9uBKrufsR_zNzW8Dp9TEOFm7PcpO7CIKrduW-m66Ve6Ev57a8qXwE48Hp57fnnj2AwVOIWzaeCCMpMyYjHimdKlUgWJNSphj0Cl2EiHjTmPgCC84zxoxIYjR9KoQSJihM4bPH0CoXpX4KLqZlOjUSPSLElA5jYCARiRpMngpBtb4OvN5ZJFeWnZwOyZjlmKWQ8fLGeA68aESXNSXHTUJ9MmsjQCza1Y3F6jK3fZYzUp_JgBtTRIicBJPEvk-sbERrxhw43jlFbof2Og95kiWYtGao8_OmGQclrbSIUi-2JJMGPib_se_Ak9qHGk1YTCAuSBxI9rxrT9X9lnL6tSL-zhDM8Qzf-bLxw7_3wOE_SR3BnZAKOmheKT2G1ma11c8QZm1kBw7SwVkH2v3T4ehTp5qswOvZJOjYUfYLWnYl7A |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONBLBerLLaXuS-rFwvb6eUCIFKJQIEUFJG5mnxQpcUIeivhz_W3MOGuXqLQ3rt7Vaj07u_N9Xs83AJ9lakSItMtjWggv0oH2MmaEJ3QsqLi1iTjlOx93k8559P0ivliC33UuDP1WWZ-J1UGtBpK-kW-FSZqnyBXyeGd441HVKLpdrUtocFtaQW1XEmM2seNQ386Qwo23D_Zwvb-EYXv_7FvHs1UGPInBeeLxMBIiZyJKIqkzKRUiEiFEhie70ipEWJfFJIqnkgTJv-FpjO-XcS65CZRRPsNxn8BKxKIcyd9Ka7978rOhfCwMkrmeEWO5v6UpfvopVQi4FwWrYgEPIdy_f9RcnZZDfjvjvd69KNheg2cWvrq7c39bhyVdPof2ifU_93TGR333Bx5DfZvf6bUwTCp310qXu4iRq3bp7l2PpXuqr_o2-6l8AeePYrmXsFwOSv0aXGRtOjMCHSZExochMhAIVA1yK8UpFdiBr7W9CmnFy6mGRq9AEkOmLRrTOvCx6TqcK3Y81KlFRm86kMh29WAwuiqszQpG02ciSIxREQIrzgSJ85NoG6meMQc26iUr7M4fF3_81IEPTTPuWbqI4aUeTKlPFvgMh_cdeDVf4WYmLCaMF6QOpAtrvzDVxZby-lelC54j1ktyHPNT4yX_tsCb_0_-Pax2zo6PiqOD7uFbeBpS0gd9e8o2YHkymup3CMUmYtP6uwuXj73F7gASpkmA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BTNQXovFWQay3xJdm206vD4aAawVRJEES3spckWS3u-4lG_4av45z2mllI_rGa2cymZ45M-f72jnfAXgnUyNCpF0e00J4kQ60lzEjPKFjQcWtTcQp3_n7QbJ7HH09iU9W4LLNhaFrle2ZWB_UaiTpG3kvTNI8Ra6Qxz1jr0Uc9out8W-PKkjRn9a2nEbjIvv6YoH0bfpxr49r_T4Mi88_P-16tsKAJzEwzzweRkLkTERJJHUmpUI0IoTI8FRXWoUI6bKYBPFUkiDxNzyN8d0yziU3gTLKZzjuHbibkoo7ZakXXzqyx8IgaZSMGMv9nqbI6adUG-Ba_KvLBNyEbf--onl_Xo35xYIPBtfiX_EQ1ixwdbcbT3sEK7p6DMWh9Tz3aMEnQ_cHHkBDm9np7WCAVO62FS13ER3X7dLtn0-le6TPhjbvqXoCx7dit6ewWo0q_Rxc5Gs6MwJdJUSuh8ExEAhRDbIqxSkJ2IEPrb1KaWXLqXrGoET6QqYtO9M68KbrOm60Om7qtENG7zqQvHb9YDQ5K63NSkbTZyJIjFERQirOBMnyk1wb6Z0xBzbaJSvtnp-WfzzUgdddM-5W-gXDKz2aU58s8BkO7zvwrFnhbiYsJnQXpA6kS2u_NNXllur8V60IniPKS3Ic823nJf-2wIv_T_4V3MONVX7bO9hfhwchZXvQR6dsA1Znk7l-iRhsJjZrZ3fh9LZ31xUYv0ca |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ALD_EKLCg8Dly8edixkxPqAtUKiWWlpdJyivxcKtq06oMV_HpmEjfawiIhrvW0mmbGme-zPZ8JeWWk1znQLsqc1pS7zNGSeU21KzRebu25wn7nj8fiaMw_nBVnYcFtFY5VAhWftC9p3LWhnKVpkvNEJLISycL6N9_DSlLbiCMhq8R1sicKwOIDsjc-Phl-abc4w3c7OSEG3D5xWL5SiQL9l4pQq9V_FcD885zkjU2zUD8u1HR6qQiNbpN663539uTbwWatD8zP35Qd____3SG3Aj6Nh11C3SXXXHOPjE5CgsWnF2o5iz_Be2YWGjjpIdRBGw-DNnkMILgdN_G7ycrEp-58FtqbmvtkPHr_-e0RDRcwUAO4ZU1VzrWumOaCG1caYwGsaa1LKHrW2RwQb1mgXqAVomLMK1lA6EuljPKZ9TZlD8igmTfuEYmBlrnSa8iIHCgd1MBMAxL1QJ6swl7fiLzeRqQ2QZ0cL8mY1sBSMHh1H7yIvOhNF50kx1VGhxjW3gBVtNsP5svzOjyzmqH7TGfCe8sBOSmmUX0fVdlQ1oxFZH-bFHWY2qs6F7KSQFor8Pl5PwyTEndaVOPmG7QpsxTIf5FG5GGXQ70nrEAQl8mIyJ3s2nF1d6SZfG2FvysAc6KC33zZ5-Hfn8Djf7J6Qm7m2NCB60rlPhmslxv3FGDWWj8Lc-kXw_whhg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimization-Based+Approach+for+Optic+Disc+Segmentation&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Junyan+Yi&rft.au=Ya+Ran&rft.au=Gang+Yang&rft.date=2022-06-08&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=6&rft.spage=796&rft_id=info:doi/10.3390%2Fe24060796&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_385473b16ffd4509a3b0789255618093 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |