Particle Swarm Optimization-Based Approach for Optic Disc Segmentation

Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly dis...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 24; no. 6; p. 796
Main Authors Yi, Junyan, Ran, Ya, Yang, Gang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.06.2022
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e24060796

Cover

Abstract Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work.
AbstractList Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work.
Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work.Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for optic disc segmentation is proposed, considering the fact that the current public fundus datasets do not have enough images and are unevenly distributed. The particle swarm optimization algorithm has been proved to be a good tool to deal with various extreme value problems, which requires little data and does not require pre-training. In this paper, the segmentation problem is converted to a set of extreme value problems. The scheme performs data preprocessing based on the features of the fundus map, reduces noise on the picture, and simplifies the search space for particles. The search space is divided into multiple sub-search spaces according to the number of subgroups, and the particles inside the subgroups search for the optimal solution in their respective sub-search spaces. The gradient values are used to calculate the fitness of particles and contours. The entire group is divided into some subgroups. Every particle flies in their exploration for the best solution. During the iteration, particles are not only influenced by local and global optimal solutions but also additionally attracted by particles between adjacent subgroups. By collaboration and information sharing, the particles are capable of obtaining accurate disc segmentation. This method has been tested with the Drishti-GS and RIM-ONE V3 dataset. Compared to several state-of-the-art methods, the proposed method substantially improves the optic disc segmentation results on the tested datasets, which demonstrates the superiority of the proposed work.
Author Ran, Ya
Yi, Junyan
Yang, Gang
AuthorAffiliation 1 Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; yijunyan@bucea.edu.cn (J.Y.); 2108110019009@stu.bucea.edu.cn (Y.R.)
2 Information School, Renmin University of China, Beijing 100080, China
AuthorAffiliation_xml – name: 2 Information School, Renmin University of China, Beijing 100080, China
– name: 1 Department of Computer Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; yijunyan@bucea.edu.cn (J.Y.); 2108110019009@stu.bucea.edu.cn (Y.R.)
Author_xml – sequence: 1
  givenname: Junyan
  orcidid: 0000-0002-8819-8642
  surname: Yi
  fullname: Yi, Junyan
– sequence: 2
  givenname: Ya
  surname: Ran
  fullname: Ran, Ya
– sequence: 3
  givenname: Gang
  orcidid: 0000-0003-0765-6769
  surname: Yang
  fullname: Yang, Gang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35741517$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaZJpF_0DxdBNGnCjhyVbm0KaNm0gkELatbh6eKLBtlzZTkh_fTXjyZCE0pWE7qfDOeceor0udA6htwR_ZEziE0cLLHApxQt0QLCUecEw3nt030eHw7DCmDJKxCu0z3hZEE7KA3T-A-LoTeOy6zuIbXbVj771f2D0ocs_w-Bsdtr3MYC5yeoQN3OTffGDya7dsnXduEFfo5c1NIN7sz0X6Nf5159n3_PLq28XZ6eXuWFSjjnQQmvJdCEK4ypjLKdUa10xQa2ztCK64kXJpRVCMlZDyU1ZVwAGamJri9kCXcy6NsBK9dG3EO9VAK82DyEu1TaPYmsppomoa1twLIFpXFaSci5IhZP8Ah3PWlPXw_0dNM1OkGC1Llbtik3wpxnuJ906a1LwCM0TB08nnb9Ry3CrJKVUyLXzo61ADL8nN4yqTSW6poHOhWlQVFQEs2R6jb5_hq7CFLvUa6JKWdJCSp6od48d7aw87DYBH2bAxDAM0dX_jXfyjDV-3mwK45t__PgLOnrBFQ
CitedBy_id crossref_primary_10_3233_THC_230310
crossref_primary_10_1016_j_compbiomed_2022_106067
crossref_primary_10_1016_j_cmpbup_2025_100180
crossref_primary_10_1088_1361_6560_ad11a4
crossref_primary_10_3390_app132111953
Cites_doi 10.1109/TPAMI.2012.120
10.1109/ACCESS.2017.2723320
10.1109/NaBIC.2011.6089659
10.1016/j.bspc.2020.102004
10.1016/j.mcna.2021.01.004
10.1016/j.eswa.2019.03.009
10.1136/bjo.82.10.1118
10.1016/j.ophtha.2014.11.030
10.1109/TMI.2018.2791488
10.1186/s13673-014-0004-z
10.1109/ICAIBD.2019.8837025
10.1038/s41598-018-33013-w
10.1109/ICICIC.2007.209
10.1007/978-3-540-68240-0_2
10.3390/sym10040087
10.1117/1.3115362
10.1097/00055735-200404000-00004
10.1109/ACCESS.2019.2906082
10.1109/TIP.2004.823821
10.1016/j.procs.2014.11.060
10.1007/978-1-84882-935-0
10.1109/ISBI.2014.6867807
10.1109/34.295913
10.1155/2015/568363
10.1109/CSO.2009.420
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/e24060796
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_385473b16ffd4509a3b0789255618093
10.3390/e24060796
PMC9222690
35741517
10_3390_e24060796
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62031003
– fundername: Beijing Natural Science Foundation
  grantid: 4192029
– fundername: Science and Technology Project of Beijing Municipal Commission of Education
  grantid: KM202010016011
– fundername: National Natural Science Foundation of China
  grantid: 61871020
– fundername: Beijing University of Civil Engineering and Architecture
  grantid: X18064
– fundername: National Natural Science Foundation of China
  grantid: 61871020; 62031003
– fundername: Scientific Research Foundation of Beijing University of Civil Engineering and Architecture
  grantid: 00331613002
– fundername: Beijing Municipal Commission of Education
  grantid: KM202010016011
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
CH8
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c399t-a24bb93b464ce8ccd522bbb8362ded281b854759d66933fa75c7f8aacaf1dfd03
IEDL.DBID UNPAY
ISSN 1099-4300
IngestDate Fri Oct 03 12:52:06 EDT 2025
Sun Oct 26 03:54:46 EDT 2025
Tue Sep 30 17:00:39 EDT 2025
Thu Oct 02 09:49:42 EDT 2025
Fri Jul 25 11:50:23 EDT 2025
Mon Jul 21 05:58:22 EDT 2025
Thu Oct 16 04:47:04 EDT 2025
Thu Apr 24 23:01:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords optic disc segmentation
subgroups
particle swarm optimization
exploration area
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-a24bb93b464ce8ccd522bbb8362ded281b854759d66933fa75c7f8aacaf1dfd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8819-8642
0000-0003-0765-6769
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1099-4300/24/6/796/pdf?version=1654670516
PMID 35741517
PQID 2679724995
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_385473b16ffd4509a3b0789255618093
unpaywall_primary_10_3390_e24060796
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9222690
proquest_miscellaneous_2681033850
proquest_journals_2679724995
pubmed_primary_35741517
crossref_primary_10_3390_e24060796
crossref_citationtrail_10_3390_e24060796
PublicationCentury 2000
PublicationDate 20220608
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 6
  year: 2022
  text: 20220608
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Pruthi (ref_3) 2020; 60
Shibata (ref_12) 2018; 8
Brandt (ref_6) 2004; 15
ref_14
Thakur (ref_29) 2019; 127
Fu (ref_9) 2018; 37
ref_10
ref_31
Kang (ref_4) 2021; 105
ref_30
ref_17
Zahoor (ref_18) 2017; 5
Xu (ref_16) 2020; 62
Adams (ref_33) 1994; 16
Akiba (ref_13) 2019; 60
Ruben (ref_5) 1998; 82
Xydeas (ref_20) 2004; 13
Khalid (ref_23) 2014; 42
Ahmed (ref_19) 2015; 2015
ref_25
ref_24
ref_22
ref_21
Lan (ref_15) 2019; 7
ref_1
Gonzalez (ref_32) 2009; 14
Lima (ref_7) 2018; 78
ref_28
ref_27
Barkana (ref_2) 2015; 122
ref_26
ref_8
Achanta (ref_11) 2012; 34
References_xml – volume: 62
  start-page: 309
  year: 2020
  ident: ref_16
  article-title: Image Interpolation via Gaussian-Sinc Interpolators with Partition of Unity
  publication-title: Comput. Mater. Contin.
– ident: ref_30
– volume: 34
  start-page: 2274
  year: 2012
  ident: ref_11
  article-title: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.120
– volume: 5
  start-page: 12293
  year: 2017
  ident: ref_18
  article-title: Fast optic disc segmentation in retina using polar transform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2723320
– ident: ref_26
– ident: ref_24
  doi: 10.1109/NaBIC.2011.6089659
– volume: 60
  start-page: 102004
  year: 2020
  ident: ref_3
  article-title: Optic Cup segmentation from retinal fundus images using Glowworm Swarm Optimization for glaucoma detection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102004
– volume: 105
  start-page: 493
  year: 2021
  ident: ref_4
  article-title: Glaucoma
  publication-title: Med. Clin. N. Am.
  doi: 10.1016/j.mcna.2021.01.004
– volume: 127
  start-page: 308
  year: 2019
  ident: ref_29
  article-title: Optic disc and optic cup segmentation from retinal images using hybrid approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.03.009
– volume: 82
  start-page: 1118
  year: 1998
  ident: ref_5
  article-title: Vertical cup/disc ratio in relation to optic disc size: Its value in the assessment of the glaucoma suspect
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.82.10.1118
– ident: ref_14
– volume: 122
  start-page: e40
  year: 2015
  ident: ref_2
  article-title: Reply to: Tham et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis Ophthalmology 2014, 121, 2081–2090
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.11.030
– volume: 37
  start-page: 1597
  year: 2018
  ident: ref_9
  article-title: Joint Optic Disc and Cup Segmentation Based on Multi-label Deep Network and Polar Transformation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2791488
– ident: ref_17
  doi: 10.1186/s13673-014-0004-z
– ident: ref_1
  doi: 10.1109/ICAIBD.2019.8837025
– volume: 8
  start-page: 14665
  year: 2018
  ident: ref_12
  article-title: Development of a deep residual learning algorithm to screen for glaucoma from fundus photography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33013-w
– ident: ref_25
– ident: ref_28
  doi: 10.1109/ICICIC.2007.209
– volume: 60
  start-page: 1298
  year: 2019
  ident: ref_13
  article-title: Evaluation of glaucoma diagnosis machine learning models based on color optical coherence tomography and color fundus images
  publication-title: Investig. Ophthalmol. Vis. Sci.
– ident: ref_8
  doi: 10.1007/978-3-540-68240-0_2
– ident: ref_10
  doi: 10.3390/sym10040087
– volume: 14
  start-page: 029901
  year: 2009
  ident: ref_32
  article-title: Digital image processing, third edition
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3115362
– volume: 15
  start-page: 85
  year: 2004
  ident: ref_6
  article-title: Corneal thickness in glaucoma screening, diagnosis, and management
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/00055735-200404000-00004
– volume: 7
  start-page: 40625
  year: 2019
  ident: ref_15
  article-title: A hierarchical sorting swarm optimizer for large-scale optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906082
– volume: 78
  start-page: 1
  year: 2018
  ident: ref_7
  article-title: Glaucoma diagnosis in fundus eye images using diversity indexes
  publication-title: Multimed. Tools Appl.
– volume: 13
  start-page: 228
  year: 2004
  ident: ref_20
  article-title: Gradient-based multiresolution image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.823821
– volume: 42
  start-page: 255
  year: 2014
  ident: ref_23
  article-title: Fuzzy c-Means (FCM) for Optic Cup and Disc Segmentation with Morphological Operation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.11.060
– ident: ref_31
  doi: 10.1007/978-1-84882-935-0
– ident: ref_22
– ident: ref_21
  doi: 10.1109/ISBI.2014.6867807
– volume: 16
  start-page: 641
  year: 1994
  ident: ref_33
  article-title: Seeded region growing
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.295913
– volume: 2015
  start-page: 1
  year: 2015
  ident: ref_19
  article-title: Optic Disc and Optic Cup Segmentation Methodologies for Glaucoma Image Detection: A Survey
  publication-title: J. Ophthalmol.
  doi: 10.1155/2015/568363
– ident: ref_27
  doi: 10.1109/CSO.2009.420
SSID ssj0023216
Score 2.305704
Snippet Fundus segmentation is an important step in the diagnosis of ophthalmic diseases, especially glaucoma. A modified particle swarm optimization algorithm for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 796
SubjectTerms Algorithms
Coordinate transformations
Datasets
Deep learning
exploration area
Extreme values
Glaucoma
Image segmentation
Medical personnel
optic disc segmentation
Optimization
Particle swarm optimization
Searching
Subgroups
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSsRAEG3Ei15EcYsbcTl4CSbpLJ3jjDqI4AIqeAtdvagwkxGdQfx7q5KeMIOKF6_pJhSv0tR7SeoVY0cqtxCj7Aq4AQgSE5lAcAsBmBRouLVNJPU7X11nFw_J5WP6ODXqi_4Ja-yBG-BOuKDpuBBl1uoEq5vkQA7p5JxF1lO1z2coiomYclKLx1HW-AhxFPUnhupWmJMz_1T1qU36f2KW33-QXBhXr_LzQ_b7U9Wnt8yWHG30O024K2zOVKusd-vC9-8-5NvAv8HjP3B9lUEXy5P2O84y3EduWq8r_-zlXfl35mnguo6qNfbQO78_vQjcXIRAIZ0YBTJOAAoOSZYoI5TSyKEAQGAt0kbHSEQJs7TQWVZwbmWeYkaElEraSFsd8nU2Xw0rs8l8VEtGWMBExai0sDRFgATRoqbRklpwPXY8watUzjScZlf0SxQPBG3ZQuuxg3bra-OU8dOmLoHebiBz6_oCprx0mJV_pdxjO5OUle7EvZdxlhc5askCY95vl_Gs0AcQWZnhmPaIKERNnoYe22gy3EbCU-JWUe6xfCb3M6HOrlQvz7Ufd4EcKyvwnoftU_I7Alv_gcA2W4ypDYPeBokdNj96G5tdJEcj2KvPwReVUwqV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB7RcGgvqBV9LIVqaXvoxSK73uehQqQlQkhNUSkSt5XHD0BKNmlIhPrvO7PxbolKua6tlTVje77P9nwD8FHnDmOiXUJaRJHYyIpCOhRoU-Ti1i5RnO_8bZSdXCSnl-nlBozaXBh-Vtnuic1Gbaaaz8gP4iwvc-IKZXo4-yW4ahTfrrYlNJQvrWA-NxJjT2AzZmWsHmwOjkdnPzoKJuMoW-kLSSL7B5bjWT9nxf57UakR738Icf77cPLpsp6p33dqPL4XlYbPYcvDyfBo5f8XsGHrbRie-fkQnt-p-ST8TtvCxOdbigGFLRMeeSnxkDBr067Drze3Ojy3VxOfjVS_hIvh8c8vJ8LXSxCaYMZCqDhBLCUmWaJtobUhbIWIBcUoY01MALVIWd7PZFkppVN5Sp4qlNLKRcaZvnwFvXpa2zcQEouyhUNyYEwMjEJWhAQcHXEdozg1N4BPrb0q7cXEuabFuCJSwaatOtMG8L7rOlspaDzUacBG7zqw6HXzYTq_qrzNKsnDlxhlzpmEgI6SyGL5LKLGKmQygN3WZZVfibfV33kTwH7XTGuIL0ZUbadL7lNEfeLqaT-A1ysPdyORKWOuKA8gX_P92lDXW-qb60anuyTslZX0zw_dLPm_BXYeH_xbeBZz4gWf_xS70FvMl3aP4NAC3_k5_gehHArK
  priority: 102
  providerName: ProQuest
Title Particle Swarm Optimization-Based Approach for Optic Disc Segmentation
URI https://www.ncbi.nlm.nih.gov/pubmed/35741517
https://www.proquest.com/docview/2679724995
https://www.proquest.com/docview/2681033850
https://pubmed.ncbi.nlm.nih.gov/PMC9222690
https://www.mdpi.com/1099-4300/24/6/796/pdf?version=1654670516
https://doaj.org/article/385473b16ffd4509a3b0789255618093
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: HH5
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: KQ8
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: GX1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QEuPMQru0sVHgcu2SZx4iQn1MJ2V0iUiqVSOUW2Yy8VbVr1wQp-PTOJG21hkRCXHOJJNPGMM9_Yns8Ar1RiZIhpl8e0lF6kA-2lzEhP6ljS4dYmElTv_GHIz8fR-0k8sRNua7utElPxafWTplUbL2K-3w2jLu8mGe8uC_Pmu51JqgpxEvQqfgBtHiMWb0F7PBz1vlRLnPbZmk6IYW7f1RS-_IQI-q8FoYqr_yaA-ec-ydvbcil-XInZ7FoQGtyDfKd-vffk28l2I0_Uz9-YHf__--7DXYtP3V7tUA_gli4fwmBkHcy9uBKrufsR_zNzW8Dp9TEOFm7PcpO7CIKrduW-m66Ve6Ev57a8qXwE48Hp57fnnj2AwVOIWzaeCCMpMyYjHimdKlUgWJNSphj0Cl2EiHjTmPgCC84zxoxIYjR9KoQSJihM4bPH0CoXpX4KLqZlOjUSPSLElA5jYCARiRpMngpBtb4OvN5ZJFeWnZwOyZjlmKWQ8fLGeA68aESXNSXHTUJ9MmsjQCza1Y3F6jK3fZYzUp_JgBtTRIicBJPEvk-sbERrxhw43jlFbof2Og95kiWYtGao8_OmGQclrbSIUi-2JJMGPib_se_Ak9qHGk1YTCAuSBxI9rxrT9X9lnL6tSL-zhDM8Qzf-bLxw7_3wOE_SR3BnZAKOmheKT2G1ma11c8QZm1kBw7SwVkH2v3T4ehTp5qswOvZJOjYUfYLWnYl7A
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RONBLBerLLaXuS-rFwvb6eUCIFKJQIEUFJG5mnxQpcUIeivhz_W3MOGuXqLQ3rt7Vaj07u_N9Xs83AJ9lakSItMtjWggv0oH2MmaEJ3QsqLi1iTjlOx93k8559P0ivliC33UuDP1WWZ-J1UGtBpK-kW-FSZqnyBXyeGd441HVKLpdrUtocFtaQW1XEmM2seNQ386Qwo23D_Zwvb-EYXv_7FvHs1UGPInBeeLxMBIiZyJKIqkzKRUiEiFEhie70ipEWJfFJIqnkgTJv-FpjO-XcS65CZRRPsNxn8BKxKIcyd9Ka7978rOhfCwMkrmeEWO5v6UpfvopVQi4FwWrYgEPIdy_f9RcnZZDfjvjvd69KNheg2cWvrq7c39bhyVdPof2ifU_93TGR333Bx5DfZvf6bUwTCp310qXu4iRq3bp7l2PpXuqr_o2-6l8AeePYrmXsFwOSv0aXGRtOjMCHSZExochMhAIVA1yK8UpFdiBr7W9CmnFy6mGRq9AEkOmLRrTOvCx6TqcK3Y81KlFRm86kMh29WAwuiqszQpG02ciSIxREQIrzgSJ85NoG6meMQc26iUr7M4fF3_81IEPTTPuWbqI4aUeTKlPFvgMh_cdeDVf4WYmLCaMF6QOpAtrvzDVxZby-lelC54j1ktyHPNT4yX_tsCb_0_-Pax2zo6PiqOD7uFbeBpS0gd9e8o2YHkymup3CMUmYtP6uwuXj73F7gASpkmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BTNQXovFWQay3xJdm206vD4aAawVRJEES3spckWS3u-4lG_4av45z2mllI_rGa2cymZ45M-f72jnfAXgnUyNCpF0e00J4kQ60lzEjPKFjQcWtTcQp3_n7QbJ7HH09iU9W4LLNhaFrle2ZWB_UaiTpG3kvTNI8Ra6Qxz1jr0Uc9out8W-PKkjRn9a2nEbjIvv6YoH0bfpxr49r_T4Mi88_P-16tsKAJzEwzzweRkLkTERJJHUmpUI0IoTI8FRXWoUI6bKYBPFUkiDxNzyN8d0yziU3gTLKZzjuHbibkoo7ZakXXzqyx8IgaZSMGMv9nqbI6adUG-Ba_KvLBNyEbf--onl_Xo35xYIPBtfiX_EQ1ixwdbcbT3sEK7p6DMWh9Tz3aMEnQ_cHHkBDm9np7WCAVO62FS13ER3X7dLtn0-le6TPhjbvqXoCx7dit6ewWo0q_Rxc5Gs6MwJdJUSuh8ExEAhRDbIqxSkJ2IEPrb1KaWXLqXrGoET6QqYtO9M68KbrOm60Om7qtENG7zqQvHb9YDQ5K63NSkbTZyJIjFERQirOBMnyk1wb6Z0xBzbaJSvtnp-WfzzUgdddM-5W-gXDKz2aU58s8BkO7zvwrFnhbiYsJnQXpA6kS2u_NNXllur8V60IniPKS3Ic823nJf-2wIv_T_4V3MONVX7bO9hfhwchZXvQR6dsA1Znk7l-iRhsJjZrZ3fh9LZ31xUYv0ca
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ALD_EKLCg8Dly8edixkxPqAtUKiWWlpdJyivxcKtq06oMV_HpmEjfawiIhrvW0mmbGme-zPZ8JeWWk1znQLsqc1pS7zNGSeU21KzRebu25wn7nj8fiaMw_nBVnYcFtFY5VAhWftC9p3LWhnKVpkvNEJLISycL6N9_DSlLbiCMhq8R1sicKwOIDsjc-Phl-abc4w3c7OSEG3D5xWL5SiQL9l4pQq9V_FcD885zkjU2zUD8u1HR6qQiNbpN663539uTbwWatD8zP35Qd____3SG3Aj6Nh11C3SXXXHOPjE5CgsWnF2o5iz_Be2YWGjjpIdRBGw-DNnkMILgdN_G7ycrEp-58FtqbmvtkPHr_-e0RDRcwUAO4ZU1VzrWumOaCG1caYwGsaa1LKHrW2RwQb1mgXqAVomLMK1lA6EuljPKZ9TZlD8igmTfuEYmBlrnSa8iIHCgd1MBMAxL1QJ6swl7fiLzeRqQ2QZ0cL8mY1sBSMHh1H7yIvOhNF50kx1VGhxjW3gBVtNsP5svzOjyzmqH7TGfCe8sBOSmmUX0fVdlQ1oxFZH-bFHWY2qs6F7KSQFor8Pl5PwyTEndaVOPmG7QpsxTIf5FG5GGXQ70nrEAQl8mIyJ3s2nF1d6SZfG2FvysAc6KC33zZ5-Hfn8Djf7J6Qm7m2NCB60rlPhmslxv3FGDWWj8Lc-kXw_whhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimization-Based+Approach+for+Optic+Disc+Segmentation&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Junyan+Yi&rft.au=Ya+Ran&rft.au=Gang+Yang&rft.date=2022-06-08&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=24&rft.issue=6&rft.spage=796&rft_id=info:doi/10.3390%2Fe24060796&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_385473b16ffd4509a3b0789255618093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon