Improving multi-population genomic prediction accuracy using multi-trait GBLUP models which incorporate global or local genetic correlation information

Abstract In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, sin...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 25; no. 4
Main Authors Teng, Jun, Zhai, Tingting, Zhang, Xinyi, Zhao, Changheng, Wang, Wenwen, Tang, Hui, Wang, Dan, Shang, Yingli, Ning, Chao, Zhang, Qin
Format Journal Article
LanguageEnglish
Published England Oxford University Press 23.05.2024
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbae276

Cover

Abstract Abstract In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).
AbstractList In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).
In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).
Abstract In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).
Author Tang, Hui
Teng, Jun
Zhai, Tingting
Zhang, Xinyi
Wang, Wenwen
Wang, Dan
Shang, Yingli
Ning, Chao
Zhang, Qin
Zhao, Changheng
Author_xml – sequence: 1
  givenname: Jun
  surname: Teng
  fullname: Teng, Jun
  email: tengjun0520@163.com
– sequence: 2
  givenname: Tingting
  surname: Zhai
  fullname: Zhai, Tingting
  email: zhaiting0520@163.com
– sequence: 3
  givenname: Xinyi
  surname: Zhang
  fullname: Zhang, Xinyi
  email: qzhang@sdau.edu.cn
– sequence: 4
  givenname: Changheng
  surname: Zhao
  fullname: Zhao, Changheng
  email: chzsdau@163.com
– sequence: 5
  givenname: Wenwen
  surname: Wang
  fullname: Wang, Wenwen
  email: wangwenwen@sdau.edu.cn
– sequence: 6
  givenname: Hui
  surname: Tang
  fullname: Tang, Hui
  email: tanghui@sdau.edu.cn
– sequence: 7
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  email: wangd_18@163.com
– sequence: 8
  givenname: Yingli
  surname: Shang
  fullname: Shang, Yingli
  email: shangyl@sdau.edu.cn
– sequence: 9
  givenname: Chao
  orcidid: 0000-0001-8247-1700
  surname: Ning
  fullname: Ning, Chao
  email: ningchao@sdau.edu.cn
– sequence: 10
  givenname: Qin
  orcidid: 0000-0002-7551-5020
  surname: Zhang
  fullname: Zhang, Qin
  email: qzhang@sdau.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38856170$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsR-6cm9ITIyJGQuXGRhWjTZam9xEF3ZNGObMvTQMZ4SZmv4S_66091o_Fq54Aw_vOQfeY3IQMQIhzzl7y5kWp53vTrvOwkrJR-SI10pVNWvqgzstVdXUUhyS45yvGVsx1fIn5FC0bSO5Ykfkx-U4JbzxcUPHJcy-mnBagp09RrqBiKN3dErQe3e_ZZ1bknW3dMm_r8zJ-plevF9ffaEj9hAy_b71bkt9dJgmTHYGugnY2UAx0YCuiGIOczEvRIJ9QR8HTOO9fkoeDzZkeLZfT8jVxw9fzz9V688Xl-fv1pUTWs-V5XJlLeNKDWCHWg0ceAtS97LRTdtr6KWQCkSruvJWUuuhVwCWO90OQq0GcULOdr7T0o3QO4hlmmCm5Eebbg1ab_4-iX5rNnhjOOdSiLYuDq_3Dgm_LZBnM_rsIAQbAZdsBJMFbGohC_ryH_QalxTLfEZwJhhTmt1RL_5s6aGXX59WgDc7wCXMOcHwgHBm7iJhSiTMPhKFfrWjcZn-C_4EK_i7Yg
Cites_doi 10.1038/s41531-023-00504-1
10.1186/1297-9686-41-55
10.1186/s40104-020-00493-8
10.3168/jds.2007-0980
10.3168/jds.2014-8785
10.1038/ng.3594
10.1038/s41467-021-25768-0
10.3168/jds.2017-13366
10.1016/j.ajhg.2010.11.011
10.1111/age.13275
10.1038/s41588-022-01017-y
10.3168/jds.2013-7745
10.1186/1297-9686-41-51
10.1038/ng.3609
10.1111/jbg.12054
10.3168/jds.2010-3719
10.2527/jas.2012-5827
10.1038/s41467-023-36544-7
10.3168/jds.2008-1514
10.1146/annurev-animal-021815-111422
10.1038/ng.3595
10.1016/j.biopsych.2022.03.001
10.1016/j.ajhg.2018.07.015
10.3168/jds.2015-10609
10.1093/g3journal/jkab394
10.1016/j.ajhg.2017.09.022
10.3168/jds.2022-22277
10.1007/s11032-022-01326-4
10.1186/1297-9686-43-43
10.3168/jds.2011-5006
10.1111/jbg.12775
10.1186/s13059-021-02478-w
10.1093/bib/bbad407
10.1016/j.tplants.2017.08.011
10.1038/s41467-021-22334-6
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbae276
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC11163384
38856170
10_1093_bib_bbae276
10.1093/bib/bbae276
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFD1200900
– fundername: Shandong Provincial Natural Science Foundation
  grantid: ZR2020QC175
– fundername: Yangzhou University Interdisciplinary Research Foundation for Animal Science Discipline of Targeted Support
  grantid: yzuxk202016
– fundername: Project of Genetic Improvement for Agricultural Species of Shandong Province
  grantid: 2019LZGC011
– fundername: National Natural Science Foundation of China
  grantid: 32002172
– fundername: ;
  grantid: yzuxk202016
– fundername: ;
  grantid: 2019LZGC011; 2022LZGCQY007
– fundername: ;
  grantid: ZR2020QC175; ZR2020QC176
– fundername: ;
  grantid: 2021YFD1200900
– fundername: ;
  grantid: 32002172
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
77I
7X8
5PM
ID FETCH-LOGICAL-c399t-a162aa0177feaf47f1e18e69d65958d9ed6367e387b109699fd7eea1c98f372f3
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:32:51 EDT 2025
Thu Sep 04 17:04:26 EDT 2025
Fri Jul 25 09:41:14 EDT 2025
Thu Apr 03 07:07:45 EDT 2025
Tue Jul 01 02:58:55 EDT 2025
Wed Apr 02 07:03:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords MTGBLUP
genomic prediction
global genetic correlation
multi-population
local genetic correlation
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-a162aa0177feaf47f1e18e69d65958d9ed6367e387b109699fd7eea1c98f372f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8247-1700
0000-0002-7551-5020
OpenAccessLink https://dx.doi.org/10.1093/bib/bbae276
PMID 38856170
PQID 3103007906
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163384
proquest_miscellaneous_3066335436
proquest_journals_3103007906
pubmed_primary_38856170
crossref_primary_10_1093_bib_bbae276
oup_primary_10_1093_bib_bbae276
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-May-23
PublicationDateYYYYMMDD 2024-05-23
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Hayes (2024061011433937300_ref10) 2009; 41
Li (2024061011433937300_ref12) 2016; 99
Guo (2024061011433937300_ref25) 2021; 12
Reynolds (2024061011433937300_ref18) 2023; 9
VanRaden (2024061011433937300_ref35) 2009; 92
Pryce (2024061011433937300_ref6) 2011; 94
Davies (2024061011433937300_ref31) 2016; 48
Seyum (2024061011433937300_ref4) 2022; 42
Yang (2024061011433937300_ref22) 2011; 88
Browning (2024061011433937300_ref32) 2018; 103
Pravia (2024061011433937300_ref9) 2023; 140
Song (2024061011433937300_ref15) 2020; 11
Gerring (2024061011433937300_ref17) 2022; 92
Zhang (2024061011433937300_ref37) 2023; 13
Zhao (2024061011433937300_ref14) 2023; 54
Haile-Mariam (2024061011433937300_ref11) 2015; 98
Zhang (2024061011433937300_ref24) 2021; 22
Hickey (2024061011433937300_ref1) 2013; 130
Zou (2024061011433937300_ref30) 2022; 12
Calus (2024061011433937300_ref16) 2018; 101
Shi (2024061011433937300_ref23) 2017; 101
Teng (2024061011433937300_ref33) 2023; 106
Miao (2024061011433937300_ref20) 2023; 14
Zhang (2024061011433937300_ref27) 2023; 24
Bekele (2024061011433937300_ref38) 2023; 27
Garrick (2024061011433937300_ref34) 2009; 41
Werme (2024061011433937300_ref26) 2022; 54
Crossa (2024061011433937300_ref3) 2017; 22
Lund (2024061011433937300_ref36) 2011; 43
Falconer (2024061011433937300_ref13) 1996
VanRaden (2024061011433937300_ref21) 2008; 91
Parker (2024061011433937300_ref29) 2016; 48
Wiggans (2024061011433937300_ref2) 2017; 5
Bolormaa (2024061011433937300_ref8) 2013; 91
Legarra (2024061011433937300_ref7) 2014; 97
Nicod (2024061011433937300_ref28) 2016; 48
Olson (2024061011433937300_ref5) 2012; 95
Yang (2024061011433937300_ref19) 2021; 12
References_xml – volume: 9
  start-page: 70
  year: 2023
  ident: 2024061011433937300_ref18
  article-title: Local genetic correlations exist among neurodegenerative and neuropsychiatric diseases
  publication-title: NPJ Parkinsons Dis
  doi: 10.1038/s41531-023-00504-1
– volume: 41
  start-page: 55
  year: 2009
  ident: 2024061011433937300_ref34
  article-title: Deregressing estimated breeding values and weighting information for genomic regression analyses
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-41-55
– volume: 11
  start-page: 88
  year: 2020
  ident: 2024061011433937300_ref15
  article-title: The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs
  publication-title: J Anim Sci Biotechnol
  doi: 10.1186/s40104-020-00493-8
– volume: 91
  start-page: 4414
  year: 2008
  ident: 2024061011433937300_ref21
  article-title: Efficient methods to compute genomic predictions
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2007-0980
– volume: 98
  start-page: 3443
  year: 2015
  ident: 2024061011433937300_ref11
  article-title: Including overseas performance information in genomic evaluations of Australian dairy cattle
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2014-8785
– start-page: 280
  volume-title: Introduction to quantitative genetics
  year: 1996
  ident: 2024061011433937300_ref13
– volume: 48
  start-page: 965
  year: 2016
  ident: 2024061011433937300_ref31
  article-title: Rapid genotype imputation from sequence without reference panels
  publication-title: Nat Genet
  doi: 10.1038/ng.3594
– volume: 12
  start-page: 5641
  year: 2021
  ident: 2024061011433937300_ref19
  article-title: Investigating the shared genetic architecture between multiple sclerosis and inflammatory bowel diseases
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25768-0
– volume: 101
  start-page: 4279
  year: 2018
  ident: 2024061011433937300_ref16
  article-title: Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2017-13366
– volume: 88
  start-page: 76
  year: 2011
  ident: 2024061011433937300_ref22
  article-title: GCTA: a tool for genome-wide complex trait analysis
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.11.011
– volume: 54
  start-page: 45
  year: 2023
  ident: 2024061011433937300_ref14
  article-title: The effect of high-density genotypic data and different methods on joint genomic prediction: a case study in large white pigs
  publication-title: Anim Genet
  doi: 10.1111/age.13275
– volume: 54
  start-page: 274
  year: 2022
  ident: 2024061011433937300_ref26
  article-title: An integrated framework for local genetic correlation analysis
  publication-title: Nat Genet
  doi: 10.1038/s41588-022-01017-y
– volume: 97
  start-page: 3200
  year: 2014
  ident: 2024061011433937300_ref7
  article-title: Within- and across-breed genomic predictions and genomic relationships for western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Bearnaise
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2013-7745
– volume: 41
  start-page: 51
  year: 2009
  ident: 2024061011433937300_ref10
  article-title: Accuracy of genomic breeding values in multi-breed dairy cattle populations
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-41-51
– volume: 48
  start-page: 919
  year: 2016
  ident: 2024061011433937300_ref29
  article-title: Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice
  publication-title: Nat Genet
  doi: 10.1038/ng.3609
– volume: 130
  start-page: 331
  year: 2013
  ident: 2024061011433937300_ref1
  article-title: Sequencing millions of animals for genomic selection 2.0
  publication-title: J Anim Breed Genet
  doi: 10.1111/jbg.12054
– volume: 94
  start-page: 2625
  year: 2011
  ident: 2024061011433937300_ref6
  article-title: Short communication: genomic selection using a multi-breed, across-country reference population
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2010-3719
– volume: 27
  start-page: 8497453
  year: 2023
  ident: 2024061011433937300_ref38
  article-title: Genomic regions and candidate genes associated with milk production traits in Holstein and its crossbred cattle: a review
  publication-title: Int J Genomics
– volume: 91
  start-page: 3088
  year: 2013
  ident: 2024061011433937300_ref8
  article-title: Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle
  publication-title: J Anim Sci
  doi: 10.2527/jas.2012-5827
– volume: 14
  start-page: 832
  year: 2023
  ident: 2024061011433937300_ref20
  article-title: Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics
  publication-title: Nat Commun
  doi: 10.1038/s41467-023-36544-7
– volume: 92
  start-page: 16
  year: 2009
  ident: 2024061011433937300_ref35
  article-title: Invited review: reliability of genomic predictions for north American Holstein bulls
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2008-1514
– volume: 5
  start-page: 309
  year: 2017
  ident: 2024061011433937300_ref2
  article-title: Genomic selection in dairy cattle: the USDA experience
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-021815-111422
– volume: 48
  start-page: 912
  year: 2016
  ident: 2024061011433937300_ref28
  article-title: Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing
  publication-title: Nat Genet
  doi: 10.1038/ng.3595
– volume: 92
  start-page: 583
  year: 2022
  ident: 2024061011433937300_ref17
  article-title: A local genetic correlation analysis provides biological insights into the shared genetic architecture of psychiatric and substance use phenotypes
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2022.03.001
– volume: 103
  start-page: 338
  year: 2018
  ident: 2024061011433937300_ref32
  article-title: A one-penny imputed genome from next-generation reference panels
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2018.07.015
– volume: 99
  start-page: 4574
  year: 2016
  ident: 2024061011433937300_ref12
  article-title: Short communication: improving accuracy of predicting breeding values in Brazilian Holstein population by adding data from Nordic and French Holstein populations
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2015-10609
– volume: 12
  year: 2022
  ident: 2024061011433937300_ref30
  article-title: Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkab394
– volume: 101
  start-page: 737
  year: 2017
  ident: 2024061011433937300_ref23
  article-title: Local genetic correlation gives insights into the shared genetic architecture of complex traits
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.09.022
– volume: 106
  start-page: 2535
  year: 2023
  ident: 2024061011433937300_ref33
  article-title: Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2022-22277
– volume: 42
  start-page: 58
  year: 2022
  ident: 2024061011433937300_ref4
  article-title: Genomic selection in tropical perennial crops and plantation trees: a review
  publication-title: Mol Breed
  doi: 10.1007/s11032-022-01326-4
– volume: 43
  start-page: 43
  year: 2011
  ident: 2024061011433937300_ref36
  article-title: A common reference population from four European Holstein populations increases reliability of genomic predictions
  publication-title: Genet Sel Evol
  doi: 10.1186/1297-9686-43-43
– volume: 95
  start-page: 5378
  year: 2012
  ident: 2024061011433937300_ref5
  article-title: Multibreed genomic evaluations using purebred Holsteins, jerseys, and Brown Swiss
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2011-5006
– volume: 140
  start-page: 508
  year: 2023
  ident: 2024061011433937300_ref9
  article-title: Prediction ability of an alternative multi-trait genomic evaluation for residual feed intake
  publication-title: J Anim Breed Genet
  doi: 10.1111/jbg.12775
– volume: 22
  start-page: 262
  year: 2021
  ident: 2024061011433937300_ref24
  article-title: SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02478-w
– volume: 24
  year: 2023
  ident: 2024061011433937300_ref27
  article-title: Benchmarking of local genetic correlation estimation methods using summary statistics from genome-wide association studies
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad407
– volume: 13
  year: 2023
  ident: 2024061011433937300_ref37
  article-title: Improving genomic prediction accuracy in the Chinese Holstein population by combining with the Nordic Holstein reference population
  publication-title: Animals (Basel)
– volume: 22
  start-page: 961
  year: 2017
  ident: 2024061011433937300_ref3
  article-title: Genomic selection in plant breeding: methods, models, and perspectives
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.08.011
– volume: 12
  start-page: 2033
  year: 2021
  ident: 2024061011433937300_ref25
  article-title: Detecting local genetic correlations with scan statistics
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22334-6
SSID ssj0020781
Score 2.4076731
Snippet Abstract In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be...
In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted....
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Correlation
Datasets
Genetics, Population - methods
Genomics
Genomics - methods
Genotype
Genotype-environment interactions
Genotypes
Humans
Models, Genetic
Population genetics
Population studies
Populations
Predictions
Problem Solving Protocol
Quantitative Trait Loci
Title Improving multi-population genomic prediction accuracy using multi-trait GBLUP models which incorporate global or local genetic correlation information
URI https://www.ncbi.nlm.nih.gov/pubmed/38856170
https://www.proquest.com/docview/3103007906
https://www.proquest.com/docview/3066335436
https://pubmed.ncbi.nlm.nih.gov/PMC11163384
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Business Source Ultimate
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: AKVCP
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1477-4054
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: ABDBF
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: OVEED
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI7QJCQuiDeDAUHiWq1N2iY5AuIhxOvApN2qNA9tB7ppD6H9Ev4udttVDCG4VY2TVrEtO7H9mZCLWBuv89AEDowbHFB8HOjQykDYhDkQERvGWJz89Jze9-KHftKvE2Snv4TwFe_mw7yb59oxgcjaEfi3ILZvL_3mXIV4NVURkQgQ3b0uw_sxd8XwrBSzffMpf6ZGfrM1t1tks3YS6WXF1W2y5oodsl61jVzsks_mJoCW-YDBuOnCRRFz9X1o6HiCEZjylTZmPtFmQTHHfTkFW0PM6N3VY--Vlt1wpvRjMDQDimgNFbixoxVaCB1NaGnycHGseaQGW3rUH6yRV_F5j_Rub96u74O6wUJgwC-ZBTpKmdagk8I77WPhIxdJlyqLIIPSKmdTngrHpchhN1OlvBXO6cgo6blgnu-TVjEq3CGhoNbWMAOzvIy10wpEwDJmbKrA4iW6TS6Wu5-NKxyNrIp_8wyYlNVMapMz4MzfFJ0l17Ja3aZZ2SwtFCqE4fNmGBQFox-6cKM50KBzxZOYA81BxeTmO1zKBJHp20SusL8hQBDu1ZFiOCjBuMFWwLIyPvr3z4_JBgOPCFMPGO-Q1mwydyfg0czy0_Im4LSU6i_RjvrB
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+multi-population+genomic+prediction+accuracy+using+multi-trait+GBLUP+models+which+incorporate+global+or+local+genetic+correlation+information&rft.jtitle=Briefings+in+bioinformatics&rft.au=Teng%2C+Jun&rft.au=Zhai%2C+Tingting&rft.au=Zhang%2C+Xinyi&rft.au=Zhao%2C+Changheng&rft.date=2024-05-23&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=25&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbae276&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon