Improving multi-population genomic prediction accuracy using multi-trait GBLUP models which incorporate global or local genetic correlation information
Abstract In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, sin...
Saved in:
Published in | Briefings in bioinformatics Vol. 25; no. 4 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
23.05.2024
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbae276 |
Cover
Abstract | Abstract
In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average). |
---|---|
AbstractList | In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average). In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average). Abstract In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average). |
Author | Tang, Hui Teng, Jun Zhai, Tingting Zhang, Xinyi Wang, Wenwen Wang, Dan Shang, Yingli Ning, Chao Zhang, Qin Zhao, Changheng |
Author_xml | – sequence: 1 givenname: Jun surname: Teng fullname: Teng, Jun email: tengjun0520@163.com – sequence: 2 givenname: Tingting surname: Zhai fullname: Zhai, Tingting email: zhaiting0520@163.com – sequence: 3 givenname: Xinyi surname: Zhang fullname: Zhang, Xinyi email: qzhang@sdau.edu.cn – sequence: 4 givenname: Changheng surname: Zhao fullname: Zhao, Changheng email: chzsdau@163.com – sequence: 5 givenname: Wenwen surname: Wang fullname: Wang, Wenwen email: wangwenwen@sdau.edu.cn – sequence: 6 givenname: Hui surname: Tang fullname: Tang, Hui email: tanghui@sdau.edu.cn – sequence: 7 givenname: Dan surname: Wang fullname: Wang, Dan email: wangd_18@163.com – sequence: 8 givenname: Yingli surname: Shang fullname: Shang, Yingli email: shangyl@sdau.edu.cn – sequence: 9 givenname: Chao orcidid: 0000-0001-8247-1700 surname: Ning fullname: Ning, Chao email: ningchao@sdau.edu.cn – sequence: 10 givenname: Qin orcidid: 0000-0002-7551-5020 surname: Zhang fullname: Zhang, Qin email: qzhang@sdau.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38856170$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhompsR-6cm9ITIyJGQuXGRhWjTZam9xEF3ZNGObMvTQMZ4SZmv4S_66091o_Fq54Aw_vOQfeY3IQMQIhzzl7y5kWp53vTrvOwkrJR-SI10pVNWvqgzstVdXUUhyS45yvGVsx1fIn5FC0bSO5Ykfkx-U4JbzxcUPHJcy-mnBagp09RrqBiKN3dErQe3e_ZZ1bknW3dMm_r8zJ-plevF9ffaEj9hAy_b71bkt9dJgmTHYGugnY2UAx0YCuiGIOczEvRIJ9QR8HTOO9fkoeDzZkeLZfT8jVxw9fzz9V688Xl-fv1pUTWs-V5XJlLeNKDWCHWg0ceAtS97LRTdtr6KWQCkSruvJWUuuhVwCWO90OQq0GcULOdr7T0o3QO4hlmmCm5Eebbg1ab_4-iX5rNnhjOOdSiLYuDq_3Dgm_LZBnM_rsIAQbAZdsBJMFbGohC_ryH_QalxTLfEZwJhhTmt1RL_5s6aGXX59WgDc7wCXMOcHwgHBm7iJhSiTMPhKFfrWjcZn-C_4EK_i7Yg |
Cites_doi | 10.1038/s41531-023-00504-1 10.1186/1297-9686-41-55 10.1186/s40104-020-00493-8 10.3168/jds.2007-0980 10.3168/jds.2014-8785 10.1038/ng.3594 10.1038/s41467-021-25768-0 10.3168/jds.2017-13366 10.1016/j.ajhg.2010.11.011 10.1111/age.13275 10.1038/s41588-022-01017-y 10.3168/jds.2013-7745 10.1186/1297-9686-41-51 10.1038/ng.3609 10.1111/jbg.12054 10.3168/jds.2010-3719 10.2527/jas.2012-5827 10.1038/s41467-023-36544-7 10.3168/jds.2008-1514 10.1146/annurev-animal-021815-111422 10.1038/ng.3595 10.1016/j.biopsych.2022.03.001 10.1016/j.ajhg.2018.07.015 10.3168/jds.2015-10609 10.1093/g3journal/jkab394 10.1016/j.ajhg.2017.09.022 10.3168/jds.2022-22277 10.1007/s11032-022-01326-4 10.1186/1297-9686-43-43 10.3168/jds.2011-5006 10.1111/jbg.12775 10.1186/s13059-021-02478-w 10.1093/bib/bbad407 10.1016/j.tplants.2017.08.011 10.1038/s41467-021-22334-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbae276 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC11163384 38856170 10_1093_bib_bbae276 10.1093/bib/bbae276 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFD1200900 – fundername: Shandong Provincial Natural Science Foundation grantid: ZR2020QC175 – fundername: Yangzhou University Interdisciplinary Research Foundation for Animal Science Discipline of Targeted Support grantid: yzuxk202016 – fundername: Project of Genetic Improvement for Agricultural Species of Shandong Province grantid: 2019LZGC011 – fundername: National Natural Science Foundation of China grantid: 32002172 – fundername: ; grantid: yzuxk202016 – fundername: ; grantid: 2019LZGC011; 2022LZGCQY007 – fundername: ; grantid: ZR2020QC175; ZR2020QC176 – fundername: ; grantid: 2021YFD1200900 – fundername: ; grantid: 32002172 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 77I 7X8 5PM |
ID | FETCH-LOGICAL-c399t-a162aa0177feaf47f1e18e69d65958d9ed6367e387b109699fd7eea1c98f372f3 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:32:51 EDT 2025 Thu Sep 04 17:04:26 EDT 2025 Fri Jul 25 09:41:14 EDT 2025 Thu Apr 03 07:07:45 EDT 2025 Tue Jul 01 02:58:55 EDT 2025 Wed Apr 02 07:03:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | MTGBLUP genomic prediction global genetic correlation multi-population local genetic correlation |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-a162aa0177feaf47f1e18e69d65958d9ed6367e387b109699fd7eea1c98f372f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8247-1700 0000-0002-7551-5020 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbae276 |
PMID | 38856170 |
PQID | 3103007906 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11163384 proquest_miscellaneous_3066335436 proquest_journals_3103007906 pubmed_primary_38856170 crossref_primary_10_1093_bib_bbae276 oup_primary_10_1093_bib_bbae276 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-May-23 |
PublicationDateYYYYMMDD | 2024-05-23 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2024 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Hayes (2024061011433937300_ref10) 2009; 41 Li (2024061011433937300_ref12) 2016; 99 Guo (2024061011433937300_ref25) 2021; 12 Reynolds (2024061011433937300_ref18) 2023; 9 VanRaden (2024061011433937300_ref35) 2009; 92 Pryce (2024061011433937300_ref6) 2011; 94 Davies (2024061011433937300_ref31) 2016; 48 Seyum (2024061011433937300_ref4) 2022; 42 Yang (2024061011433937300_ref22) 2011; 88 Browning (2024061011433937300_ref32) 2018; 103 Pravia (2024061011433937300_ref9) 2023; 140 Song (2024061011433937300_ref15) 2020; 11 Gerring (2024061011433937300_ref17) 2022; 92 Zhang (2024061011433937300_ref37) 2023; 13 Zhao (2024061011433937300_ref14) 2023; 54 Haile-Mariam (2024061011433937300_ref11) 2015; 98 Zhang (2024061011433937300_ref24) 2021; 22 Hickey (2024061011433937300_ref1) 2013; 130 Zou (2024061011433937300_ref30) 2022; 12 Calus (2024061011433937300_ref16) 2018; 101 Shi (2024061011433937300_ref23) 2017; 101 Teng (2024061011433937300_ref33) 2023; 106 Miao (2024061011433937300_ref20) 2023; 14 Zhang (2024061011433937300_ref27) 2023; 24 Bekele (2024061011433937300_ref38) 2023; 27 Garrick (2024061011433937300_ref34) 2009; 41 Werme (2024061011433937300_ref26) 2022; 54 Crossa (2024061011433937300_ref3) 2017; 22 Lund (2024061011433937300_ref36) 2011; 43 Falconer (2024061011433937300_ref13) 1996 VanRaden (2024061011433937300_ref21) 2008; 91 Parker (2024061011433937300_ref29) 2016; 48 Wiggans (2024061011433937300_ref2) 2017; 5 Bolormaa (2024061011433937300_ref8) 2013; 91 Legarra (2024061011433937300_ref7) 2014; 97 Nicod (2024061011433937300_ref28) 2016; 48 Olson (2024061011433937300_ref5) 2012; 95 Yang (2024061011433937300_ref19) 2021; 12 |
References_xml | – volume: 9 start-page: 70 year: 2023 ident: 2024061011433937300_ref18 article-title: Local genetic correlations exist among neurodegenerative and neuropsychiatric diseases publication-title: NPJ Parkinsons Dis doi: 10.1038/s41531-023-00504-1 – volume: 41 start-page: 55 year: 2009 ident: 2024061011433937300_ref34 article-title: Deregressing estimated breeding values and weighting information for genomic regression analyses publication-title: Genet Sel Evol doi: 10.1186/1297-9686-41-55 – volume: 11 start-page: 88 year: 2020 ident: 2024061011433937300_ref15 article-title: The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs publication-title: J Anim Sci Biotechnol doi: 10.1186/s40104-020-00493-8 – volume: 91 start-page: 4414 year: 2008 ident: 2024061011433937300_ref21 article-title: Efficient methods to compute genomic predictions publication-title: J Dairy Sci doi: 10.3168/jds.2007-0980 – volume: 98 start-page: 3443 year: 2015 ident: 2024061011433937300_ref11 article-title: Including overseas performance information in genomic evaluations of Australian dairy cattle publication-title: J Dairy Sci doi: 10.3168/jds.2014-8785 – start-page: 280 volume-title: Introduction to quantitative genetics year: 1996 ident: 2024061011433937300_ref13 – volume: 48 start-page: 965 year: 2016 ident: 2024061011433937300_ref31 article-title: Rapid genotype imputation from sequence without reference panels publication-title: Nat Genet doi: 10.1038/ng.3594 – volume: 12 start-page: 5641 year: 2021 ident: 2024061011433937300_ref19 article-title: Investigating the shared genetic architecture between multiple sclerosis and inflammatory bowel diseases publication-title: Nat Commun doi: 10.1038/s41467-021-25768-0 – volume: 101 start-page: 4279 year: 2018 ident: 2024061011433937300_ref16 article-title: Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection publication-title: J Dairy Sci doi: 10.3168/jds.2017-13366 – volume: 88 start-page: 76 year: 2011 ident: 2024061011433937300_ref22 article-title: GCTA: a tool for genome-wide complex trait analysis publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.11.011 – volume: 54 start-page: 45 year: 2023 ident: 2024061011433937300_ref14 article-title: The effect of high-density genotypic data and different methods on joint genomic prediction: a case study in large white pigs publication-title: Anim Genet doi: 10.1111/age.13275 – volume: 54 start-page: 274 year: 2022 ident: 2024061011433937300_ref26 article-title: An integrated framework for local genetic correlation analysis publication-title: Nat Genet doi: 10.1038/s41588-022-01017-y – volume: 97 start-page: 3200 year: 2014 ident: 2024061011433937300_ref7 article-title: Within- and across-breed genomic predictions and genomic relationships for western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Bearnaise publication-title: J Dairy Sci doi: 10.3168/jds.2013-7745 – volume: 41 start-page: 51 year: 2009 ident: 2024061011433937300_ref10 article-title: Accuracy of genomic breeding values in multi-breed dairy cattle populations publication-title: Genet Sel Evol doi: 10.1186/1297-9686-41-51 – volume: 48 start-page: 919 year: 2016 ident: 2024061011433937300_ref29 article-title: Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice publication-title: Nat Genet doi: 10.1038/ng.3609 – volume: 130 start-page: 331 year: 2013 ident: 2024061011433937300_ref1 article-title: Sequencing millions of animals for genomic selection 2.0 publication-title: J Anim Breed Genet doi: 10.1111/jbg.12054 – volume: 94 start-page: 2625 year: 2011 ident: 2024061011433937300_ref6 article-title: Short communication: genomic selection using a multi-breed, across-country reference population publication-title: J Dairy Sci doi: 10.3168/jds.2010-3719 – volume: 27 start-page: 8497453 year: 2023 ident: 2024061011433937300_ref38 article-title: Genomic regions and candidate genes associated with milk production traits in Holstein and its crossbred cattle: a review publication-title: Int J Genomics – volume: 91 start-page: 3088 year: 2013 ident: 2024061011433937300_ref8 article-title: Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle publication-title: J Anim Sci doi: 10.2527/jas.2012-5827 – volume: 14 start-page: 832 year: 2023 ident: 2024061011433937300_ref20 article-title: Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics publication-title: Nat Commun doi: 10.1038/s41467-023-36544-7 – volume: 92 start-page: 16 year: 2009 ident: 2024061011433937300_ref35 article-title: Invited review: reliability of genomic predictions for north American Holstein bulls publication-title: J Dairy Sci doi: 10.3168/jds.2008-1514 – volume: 5 start-page: 309 year: 2017 ident: 2024061011433937300_ref2 article-title: Genomic selection in dairy cattle: the USDA experience publication-title: Annu Rev Anim Biosci doi: 10.1146/annurev-animal-021815-111422 – volume: 48 start-page: 912 year: 2016 ident: 2024061011433937300_ref28 article-title: Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing publication-title: Nat Genet doi: 10.1038/ng.3595 – volume: 92 start-page: 583 year: 2022 ident: 2024061011433937300_ref17 article-title: A local genetic correlation analysis provides biological insights into the shared genetic architecture of psychiatric and substance use phenotypes publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2022.03.001 – volume: 103 start-page: 338 year: 2018 ident: 2024061011433937300_ref32 article-title: A one-penny imputed genome from next-generation reference panels publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2018.07.015 – volume: 99 start-page: 4574 year: 2016 ident: 2024061011433937300_ref12 article-title: Short communication: improving accuracy of predicting breeding values in Brazilian Holstein population by adding data from Nordic and French Holstein populations publication-title: J Dairy Sci doi: 10.3168/jds.2015-10609 – volume: 12 year: 2022 ident: 2024061011433937300_ref30 article-title: Analysis of independent cohorts of outbred CFW mice reveals novel loci for behavioral and physiological traits and identifies factors determining reproducibility publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkab394 – volume: 101 start-page: 737 year: 2017 ident: 2024061011433937300_ref23 article-title: Local genetic correlation gives insights into the shared genetic architecture of complex traits publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2017.09.022 – volume: 106 start-page: 2535 year: 2023 ident: 2024061011433937300_ref33 article-title: Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data publication-title: J Dairy Sci doi: 10.3168/jds.2022-22277 – volume: 42 start-page: 58 year: 2022 ident: 2024061011433937300_ref4 article-title: Genomic selection in tropical perennial crops and plantation trees: a review publication-title: Mol Breed doi: 10.1007/s11032-022-01326-4 – volume: 43 start-page: 43 year: 2011 ident: 2024061011433937300_ref36 article-title: A common reference population from four European Holstein populations increases reliability of genomic predictions publication-title: Genet Sel Evol doi: 10.1186/1297-9686-43-43 – volume: 95 start-page: 5378 year: 2012 ident: 2024061011433937300_ref5 article-title: Multibreed genomic evaluations using purebred Holsteins, jerseys, and Brown Swiss publication-title: J Dairy Sci doi: 10.3168/jds.2011-5006 – volume: 140 start-page: 508 year: 2023 ident: 2024061011433937300_ref9 article-title: Prediction ability of an alternative multi-trait genomic evaluation for residual feed intake publication-title: J Anim Breed Genet doi: 10.1111/jbg.12775 – volume: 22 start-page: 262 year: 2021 ident: 2024061011433937300_ref24 article-title: SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits publication-title: Genome Biol doi: 10.1186/s13059-021-02478-w – volume: 24 year: 2023 ident: 2024061011433937300_ref27 article-title: Benchmarking of local genetic correlation estimation methods using summary statistics from genome-wide association studies publication-title: Brief Bioinform doi: 10.1093/bib/bbad407 – volume: 13 year: 2023 ident: 2024061011433937300_ref37 article-title: Improving genomic prediction accuracy in the Chinese Holstein population by combining with the Nordic Holstein reference population publication-title: Animals (Basel) – volume: 22 start-page: 961 year: 2017 ident: 2024061011433937300_ref3 article-title: Genomic selection in plant breeding: methods, models, and perspectives publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.08.011 – volume: 12 start-page: 2033 year: 2021 ident: 2024061011433937300_ref25 article-title: Detecting local genetic correlations with scan statistics publication-title: Nat Commun doi: 10.1038/s41467-021-22334-6 |
SSID | ssj0020781 |
Score | 2.4076731 |
Snippet | Abstract
In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be... In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted.... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Accuracy Algorithms Correlation Datasets Genetics, Population - methods Genomics Genomics - methods Genotype Genotype-environment interactions Genotypes Humans Models, Genetic Population genetics Population studies Populations Predictions Problem Solving Protocol Quantitative Trait Loci |
Title | Improving multi-population genomic prediction accuracy using multi-trait GBLUP models which incorporate global or local genetic correlation information |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38856170 https://www.proquest.com/docview/3103007906 https://www.proquest.com/docview/3066335436 https://pubmed.ncbi.nlm.nih.gov/PMC11163384 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Business Source Ultimate customDbUrl: eissn: 1477-4054 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: AKVCP dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1477-4054 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: ABDBF dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: OVEED dateStart: 20080101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI7QJCQuiDeDAUHiWq1N2iY5AuIhxOvApN2qNA9tB7ppD6H9Ev4udttVDCG4VY2TVrEtO7H9mZCLWBuv89AEDowbHFB8HOjQykDYhDkQERvGWJz89Jze9-KHftKvE2Snv4TwFe_mw7yb59oxgcjaEfi3ILZvL_3mXIV4NVURkQgQ3b0uw_sxd8XwrBSzffMpf6ZGfrM1t1tks3YS6WXF1W2y5oodsl61jVzsks_mJoCW-YDBuOnCRRFz9X1o6HiCEZjylTZmPtFmQTHHfTkFW0PM6N3VY--Vlt1wpvRjMDQDimgNFbixoxVaCB1NaGnycHGseaQGW3rUH6yRV_F5j_Rub96u74O6wUJgwC-ZBTpKmdagk8I77WPhIxdJlyqLIIPSKmdTngrHpchhN1OlvBXO6cgo6blgnu-TVjEq3CGhoNbWMAOzvIy10wpEwDJmbKrA4iW6TS6Wu5-NKxyNrIp_8wyYlNVMapMz4MzfFJ0l17Ja3aZZ2SwtFCqE4fNmGBQFox-6cKM50KBzxZOYA81BxeTmO1zKBJHp20SusL8hQBDu1ZFiOCjBuMFWwLIyPvr3z4_JBgOPCFMPGO-Q1mwydyfg0czy0_Im4LSU6i_RjvrB |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+multi-population+genomic+prediction+accuracy+using+multi-trait+GBLUP+models+which+incorporate+global+or+local+genetic+correlation+information&rft.jtitle=Briefings+in+bioinformatics&rft.au=Teng%2C+Jun&rft.au=Zhai%2C+Tingting&rft.au=Zhang%2C+Xinyi&rft.au=Zhao%2C+Changheng&rft.date=2024-05-23&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=25&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbae276&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |