Optimal Coordinated Control of Multi-Renewable-to-Hydrogen Production System for Hydrogen Fueling Stations
Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend of transition to a H 2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H 2 production eff...
Saved in:
Published in | IEEE transactions on industry applications Vol. 58; no. 2; pp. 2728 - 2739 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0093-9994 1939-9367 |
DOI | 10.1109/TIA.2021.3093841 |
Cover
Abstract | Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend of transition to a H 2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H 2 production efficiency for renewable-dominated hydrogen fueling stations (HFSs). In this method, the aqueous electrolysis of native biomass can be powered by wind and solar generations based on electrochemical effects, and both electrolysis current and temperature are taken into account for facilitating on-site H 2 production and reducing the electricity consumption. Moreover, a capsule network based H 2 demand forecasting model is formulated to estimate the gas load for HFS by extracting the underlying spatial features and temporal dependencies of traffic flows in the transportation network. Furthermore, a hierarchical coordinated control strategy is developed to suppress high fluctuations in electrolysis current caused by volatility of wind and solar outputs based on model predictive control framework. Comparative studies validate the superior performance of the proposed methodology over the power-to-gas scheme on electrolysis efficiency and economic benefits. |
---|---|
AbstractList | Under the pressure of climate change, the demands for alternative green hydrogen (H2) production methods have been on the rise to conform to the global trend of transition to a H2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H2 production efficiency for renewable-dominated hydrogen fueling stations (HFSs). In this method, the aqueous electrolysis of native biomass can be powered by wind and solar generations based on electrochemical effects, and both electrolysis current and temperature are taken into account for facilitating on-site H2 production and reducing the electricity consumption. Moreover, a capsule network based H2 demand forecasting model is formulated to estimate the gas load for HFS by extracting the underlying spatial features and temporal dependencies of traffic flows in the transportation network. Furthermore, a hierarchical coordinated control strategy is developed to suppress high fluctuations in electrolysis current caused by volatility of wind and solar outputs based on model predictive control framework. Comparative studies validate the superior performance of the proposed methodology over the power-to-gas scheme on electrolysis efficiency and economic benefits. Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend of transition to a H 2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H 2 production efficiency for renewable-dominated hydrogen fueling stations (HFSs). In this method, the aqueous electrolysis of native biomass can be powered by wind and solar generations based on electrochemical effects, and both electrolysis current and temperature are taken into account for facilitating on-site H 2 production and reducing the electricity consumption. Moreover, a capsule network based H 2 demand forecasting model is formulated to estimate the gas load for HFS by extracting the underlying spatial features and temporal dependencies of traffic flows in the transportation network. Furthermore, a hierarchical coordinated control strategy is developed to suppress high fluctuations in electrolysis current caused by volatility of wind and solar outputs based on model predictive control framework. Comparative studies validate the superior performance of the proposed methodology over the power-to-gas scheme on electrolysis efficiency and economic benefits. |
Author | Zhou, Bin Chung, Chi Yung Or, Siu Wing Voropai, Nikolai Zhang, Kuan Li, Canbing |
Author_xml | – sequence: 1 givenname: Kuan surname: Zhang fullname: Zhang, Kuan email: zhankuan1994@qq.com organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Bin orcidid: 0000-0002-1376-4531 surname: Zhou fullname: Zhou, Bin email: binzhou@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Siu Wing orcidid: 0000-0003-2536-5658 surname: Or fullname: Or, Siu Wing email: eeswor@polyu.edu.hk organization: Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong – sequence: 4 givenname: Canbing orcidid: 0000-0001-9116-7487 surname: Li fullname: Li, Canbing email: licanbing@sjtu.edu.cn organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Chi Yung orcidid: 0000-0001-6607-2240 surname: Chung fullname: Chung, Chi Yung email: c.y.chung@usask.ca organization: Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada – sequence: 6 givenname: Nikolai surname: Voropai fullname: Voropai, Nikolai email: voropai@isem.irk.ru organization: Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia |
BookMark | eNp9kM1rwkAQxZdioWp7L_QS6Dl2N7uJmaNIrYLFUu055GNWVuKu3d1Q_O-bEPHQQ08zzLw3j_mNyEAbjYQ8MjphjMLLbjWbRDRiE06Bp4LdkCEDDiHwZDogQ9pOQwAQd2Tk3IFSJmImhuSwOXl1zOtgboytlM49Vm2vvTV1YGTw3tRehZ-o8Scvagy9CZfnypo96uDDmqopvTI62J6dx2MgjQ2u60WDtdL7YOvzTuPuya3Ma4cPlzomX4vX3XwZrjdvq_lsHZYcwIcgKLKE5VVKZSWiuKxoXFIOcjrFqZCSF0XO0lgUsShTgETKNEp4Sou4YLyQCR-T5_7uyZrvBp3PDqaxuo3MWiF0QKKoVdFeVVrjnEWZnWwLwp4zRrOOaNYSzTqi2YVoa0n-WErV_-Ztrur_jE-9USHiNQdEkgJn_Be2hIXx |
CODEN | ITIACR |
CitedBy_id | crossref_primary_10_3389_fenrg_2022_852520 crossref_primary_10_1109_OAJPE_2022_3204216 crossref_primary_10_3389_fenrg_2021_770342 crossref_primary_10_3389_fenrg_2021_806263 crossref_primary_10_3389_fenrg_2021_824691 crossref_primary_10_1016_j_scs_2022_104176 crossref_primary_10_3389_fenrg_2021_809254 crossref_primary_10_1088_1742_6596_2835_1_012016 crossref_primary_10_1016_j_epsr_2024_110520 crossref_primary_10_1016_j_renene_2025_122386 crossref_primary_10_3389_fenrg_2021_768340 crossref_primary_10_1016_j_ijhydene_2024_10_426 crossref_primary_10_3389_fenrg_2021_738857 crossref_primary_10_3389_fenrg_2022_903768 crossref_primary_10_1109_TII_2022_3178429 crossref_primary_10_3389_fenrg_2022_869844 crossref_primary_10_1016_j_energy_2022_125018 crossref_primary_10_3389_fenrg_2022_862653 crossref_primary_10_3389_fenrg_2021_807590 crossref_primary_10_3389_fenrg_2022_903765 crossref_primary_10_3389_fenrg_2021_835397 crossref_primary_10_3389_fenrg_2022_888161 crossref_primary_10_1007_s10668_024_05066_7 crossref_primary_10_1016_j_est_2024_112590 crossref_primary_10_3389_fenrg_2021_742304 crossref_primary_10_3389_fenrg_2022_943189 crossref_primary_10_1109_TSTE_2024_3422133 crossref_primary_10_1109_TIE_2023_3327528 crossref_primary_10_1002_ep_14038 crossref_primary_10_3389_fenrg_2022_871772 crossref_primary_10_1016_j_ijhydene_2024_11_318 crossref_primary_10_3389_fenrg_2021_809024 crossref_primary_10_1016_j_seta_2024_103923 crossref_primary_10_3389_fenrg_2022_881081 crossref_primary_10_1016_j_ijhydene_2023_06_059 crossref_primary_10_3389_fenrg_2022_889325 crossref_primary_10_1109_TIA_2024_3462698 crossref_primary_10_3390_en16124694 crossref_primary_10_1016_j_ijhydene_2023_04_064 crossref_primary_10_1109_TR_2022_3177045 crossref_primary_10_3389_fenrg_2021_831249 crossref_primary_10_1038_s41598_024_61192_2 crossref_primary_10_3389_fenrg_2021_772027 crossref_primary_10_3389_fenrg_2022_858969 crossref_primary_10_1109_ACCESS_2022_3223476 crossref_primary_10_1016_j_ijhydene_2024_10_281 crossref_primary_10_3389_fenrg_2021_813617 crossref_primary_10_3389_fenrg_2022_846741 crossref_primary_10_3390_electronics12194166 crossref_primary_10_3389_fenrg_2022_893492 crossref_primary_10_3389_fenrg_2021_785420 crossref_primary_10_3389_fenrg_2022_848966 crossref_primary_10_32604_ee_2022_019284 crossref_primary_10_1016_j_segan_2023_101259 crossref_primary_10_3389_fenrg_2022_889355 crossref_primary_10_1016_j_ijhydene_2024_04_255 crossref_primary_10_3389_fenrg_2021_781774 crossref_primary_10_1016_j_ijhydene_2022_09_269 crossref_primary_10_3389_fenrg_2022_902779 crossref_primary_10_1016_j_energy_2025_135011 crossref_primary_10_1049_enc2_12083 crossref_primary_10_3389_fenrg_2021_770372 crossref_primary_10_3389_fenrg_2021_811964 crossref_primary_10_3389_fenrg_2022_902892 crossref_primary_10_3389_fenrg_2022_909520 crossref_primary_10_3390_rsee1010002 crossref_primary_10_1109_TSG_2022_3154611 crossref_primary_10_1016_j_apenergy_2024_124170 crossref_primary_10_3389_fenrg_2022_822021 crossref_primary_10_1016_j_jpowsour_2025_236510 crossref_primary_10_1038_s41598_025_85639_2 crossref_primary_10_1063_5_0225378 crossref_primary_10_3389_fenrg_2022_844474 crossref_primary_10_1016_j_renene_2025_122555 crossref_primary_10_3389_fenrg_2021_727364 crossref_primary_10_3389_fenrg_2022_884920 crossref_primary_10_3389_fenrg_2022_875790 crossref_primary_10_1016_j_ijhydene_2023_04_117 crossref_primary_10_3389_fenrg_2022_857261 crossref_primary_10_3389_fenrg_2021_773805 crossref_primary_10_3389_fenrg_2022_901906 crossref_primary_10_3389_fenrg_2022_885461 crossref_primary_10_3389_fenrg_2022_902722 crossref_primary_10_3389_fenrg_2021_760105 crossref_primary_10_3389_fenrg_2022_848905 crossref_primary_10_3389_fenrg_2022_900503 crossref_primary_10_3389_fenrg_2021_786439 crossref_primary_10_1109_TIA_2024_3522508 crossref_primary_10_3389_fenrg_2021_735294 crossref_primary_10_3389_fenrg_2021_839108 crossref_primary_10_3389_fenrg_2022_865151 crossref_primary_10_3389_fenrg_2022_902486 crossref_primary_10_3389_fenrg_2022_968910 |
Cites_doi | 10.1109/TPWRS.2020.2989533 10.1109/TSTE.2020.2975609 10.1109/TSTE.2020.2970078 10.1016/j.ijepes.2020.106040 10.1109/TITS.2020.2984813 10.1039/C5EE03019F 10.1016/j.energy.2020.119384 10.1021/acssuschemeng.8b01701 10.1186/s41601-019-0147-z 10.1016/j.ijhydene.2019.10.014 10.1016/j.rser.2019.109292 10.1016/j.enconman.2020.113240 10.1016/j.ijhydene.2016.11.142 10.1039/D0SE01149E 10.1039/C8TA03741H 10.1016/j.cjche.2020.11.005 10.1109/TIA.2020.3037264 10.1109/TEC.2010.2066977 10.1109/TII.2019.2926779 10.1016/j.jclepro.2019.118345 10.1109/TIA.2020.2993760 10.1016/j.jpowsour.2016.03.074 10.1093/amrx/abq002 10.1109/TIA.2019.2904927 10.1016/j.enconman.2021.113910 10.1109/TIA.2021.3076020 10.1016/j.rser.2017.09.003 10.1126/science.aad4998 10.1016/j.ijhydene.2020.11.047 10.1021/acscatal.9b04099 10.1016/j.eng.2020.02.021 10.1016/j.elecom.2019.01.016 10.1016/j.jpowsour.2020.227810 10.1109/TITS.2018.2797697 10.1021/acssuschemeng.0c01054 10.1016/j.rser.2018.04.067 10.1109/MELE.2017.2784631 10.1109/TSG.2017.2703126 10.1109/TSG.2020.3025082 10.1109/TSG.2018.2863247 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TIA.2021.3093841 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9367 |
EndPage | 2739 |
ExternalDocumentID | 10_1109_TIA_2021_3093841 9468931 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Rail Transit Electrification and Automation Engineering Technology Research Center grantid: K-BBY1 – fundername: Research Grants Council of the HKSAR Government grantid: R5020-18 – fundername: National Natural Science Foundation of China grantid: 51877072 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c399t-940e161ad80fd425cd05c039f77e74ff3bba1854b54c8996ff826380b5b13bf63 |
IEDL.DBID | RIE |
ISSN | 0093-9994 |
IngestDate | Mon Jun 30 10:19:50 EDT 2025 Tue Jul 01 01:05:52 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Wed Aug 27 02:22:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c399t-940e161ad80fd425cd05c039f77e74ff3bba1854b54c8996ff826380b5b13bf63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6607-2240 0000-0003-2536-5658 0000-0002-1376-4531 0000-0001-9116-7487 |
OpenAccessLink | http://ira.lib.polyu.edu.hk/bitstream/10397/93389/1/Or_Optimal_Coordinated_Control.pdf |
PQID | 2639936722 |
PQPubID | 85463 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2639936722 crossref_primary_10_1109_TIA_2021_3093841 crossref_citationtrail_10_1109_TIA_2021_3093841 ieee_primary_9468931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on industry applications |
PublicationTitleAbbrev | TIA |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref16 ref19 ref18 gielen (ref7) 2018 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 ref40 park (ref38) 2013 |
References_xml | – ident: ref31 doi: 10.1109/TPWRS.2020.2989533 – ident: ref19 doi: 10.1109/TSTE.2020.2975609 – ident: ref20 doi: 10.1109/TSTE.2020.2970078 – ident: ref39 doi: 10.1016/j.ijepes.2020.106040 – ident: ref33 doi: 10.1109/TITS.2020.2984813 – ident: ref12 doi: 10.1039/C5EE03019F – ident: ref4 doi: 10.1016/j.energy.2020.119384 – ident: ref11 doi: 10.1021/acssuschemeng.8b01701 – ident: ref40 doi: 10.1186/s41601-019-0147-z – ident: ref32 doi: 10.1016/j.ijhydene.2019.10.014 – ident: ref2 doi: 10.1016/j.rser.2019.109292 – ident: ref21 doi: 10.1016/j.enconman.2020.113240 – ident: ref13 doi: 10.1016/j.ijhydene.2016.11.142 – ident: ref27 doi: 10.1039/D0SE01149E – ident: ref17 doi: 10.1039/C8TA03741H – ident: ref29 doi: 10.1016/j.cjche.2020.11.005 – year: 2013 ident: ref38 publication-title: Fundamentals of Engineering Economics – ident: ref41 doi: 10.1109/TIA.2020.3037264 – ident: ref30 doi: 10.1109/TEC.2010.2066977 – ident: ref16 doi: 10.1109/TII.2019.2926779 – ident: ref23 doi: 10.1016/j.jclepro.2019.118345 – ident: ref3 doi: 10.1109/TIA.2020.2993760 – ident: ref25 doi: 10.1016/j.jpowsour.2016.03.074 – ident: ref36 doi: 10.1093/amrx/abq002 – ident: ref42 doi: 10.1109/TIA.2019.2904927 – ident: ref22 doi: 10.1016/j.enconman.2021.113910 – ident: ref6 doi: 10.1109/TIA.2021.3076020 – ident: ref8 doi: 10.1016/j.rser.2017.09.003 – ident: ref26 doi: 10.1126/science.aad4998 – ident: ref5 doi: 10.1016/j.ijhydene.2020.11.047 – ident: ref24 doi: 10.1021/acscatal.9b04099 – ident: ref10 doi: 10.1016/j.eng.2020.02.021 – ident: ref28 doi: 10.1016/j.elecom.2019.01.016 – ident: ref18 doi: 10.1016/j.jpowsour.2020.227810 – ident: ref34 doi: 10.1109/TITS.2018.2797697 – ident: ref14 doi: 10.1021/acssuschemeng.0c01054 – ident: ref9 doi: 10.1016/j.rser.2018.04.067 – ident: ref1 doi: 10.1109/MELE.2017.2784631 – ident: ref37 doi: 10.1109/TSG.2017.2703126 – year: 2018 ident: ref7 article-title: Hydrogen from renewable power technology outlook for the energy transition – ident: ref35 doi: 10.1109/TSG.2020.3025082 – ident: ref15 doi: 10.1109/TSG.2018.2863247 |
SSID | ssj0014514 |
Score | 2.6393201 |
Snippet | Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend... Under the pressure of climate change, the demands for alternative green hydrogen (H2) production methods have been on the rise to conform to the global trend... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2728 |
SubjectTerms | Aqueous electrolysis Biomass Climate change Comparative studies Economic forecasting Electricity consumption Electrochemical processes Electrolysis Electrolytes Energy management Feature extraction Fluctuations Green products hybrid energy system Hydrogen hydrogen economy hydrogen filling station (HFS) Hydrogen production Predictive control Production Production methods Transportation networks |
Title | Optimal Coordinated Control of Multi-Renewable-to-Hydrogen Production System for Hydrogen Fueling Stations |
URI | https://ieeexplore.ieee.org/document/9468931 https://www.proquest.com/docview/2639936722 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9367 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014514 issn: 0093-9994 databaseCode: RIE dateStart: 19720101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qSQ_u4riRgxfBzKRpmrTHYXAYhVFxAW9lsoHbVLSD6K_3Je0UN8RboUkJfC9539e3BKF9qS2NbKIJU1IQbnhMFI01iQRTmmphlfYR3eGpGFzzk5vkZgYdNrUw1tqQfGbb_jHE8k2hJ_5XWSfjAtwraJ1ZKbOqVquJGPC6jzcodAKkh09DkjTrXB13QQiyqO2jfimPvrigcKfKj4M4eJf-EhpO11Ulldy3J6Vq6_dvLRv_u_BltFjTTNyt7GIFzdjxKlr41HxwDd2dwWnxCIN6BQjQ2zGQToN7VeY6LhwOpbnkAs7CV19eRcqCDN7McwEWh8-rPrGAKa5anmPgvrh53Z-EKnd8WcX5X9bRdf_oqjcg9c0LRANhKUnGqQUqODIpdQZ2tTY00TTOnJRWcudipUbg6LlKuAbBJpwDlRKnVCUqipUT8QaaGxdju4kwM0nKZEZH3MU8FUoJoBhGc_iutCC_W6gzBSPXdVtyfzvGQx7kCc1ygC_38OU1fC100Mx4qlpy_DF2zaPRjKuBaKGdKd55vWdfchbImpCMbf0-axvNM1_8EDLQdtBc-Tyxu0BJSrUXbPED7SfdxQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6axgPwMC4bWtkAP_CChFvHcezkcaqoOlgHglbqW1TfpN2aqU2Fxq_n2Ekjbpp4ixQ7svQd-3xfzsUAb5VxLHGZoVwrSYUVKdUsNTSRXBtmpNMmRHQn53I8Ex_n2XwH3ne1MM65mHzm-uExxvJtZTbhV9mgEBLdK2qdBxmqCtVUa3UxA9F28kaNTpH2iG1QkhWD6ekJSkGe9EPcLxfJb04o3qry11Ec_cvoCUy2K2vSSq76m1r3zY8_mjb-79Kfwl5LNMlJYxnPYMctn8PjX9oP7sPlZzwvbnDQsEIJerFE2mnJsMldJ5UnsTiXfsXT8HsosKJ1Rcd3dlWhzZEvTadYRJU0Tc8Jsl_SvR5tYp07-dZE-tcHMBt9mA7HtL17gRqkLDUtBHNIBhc2Z97ivjaWZYalhVfKKeF9qvUCXb3QmTAo2aT3qFPSnOlMJ6n2Mn0Bu8tq6Q6BcJvlXBVsIXwqcqm1RJJhjcDvKocCvAeDLRilaRuTh_sxrssoUFhRInxlgK9s4evBu27GbdOU456x-wGNblwLRA-Ot3iX7a5dlzzSNak4f_nvWW_g4Xg6OSvPTs8_HcEjHkohYj7aMezWq417hQSl1q-jXf4EvDnhFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Coordinated+Control+of+Multi-Renewable-to-Hydrogen+Production+System+for+Hydrogen+Fueling+Stations&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Zhang%2C+Kuan&rft.au=Zhou%2C+Bin&rft.au=Or%2C+Siu+Wing&rft.au=Li%2C+Canbing&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=0093-9994&rft.volume=58&rft.issue=2&rft.spage=2728&rft.epage=2739&rft_id=info:doi/10.1109%2FTIA.2021.3093841&rft.externalDocID=9468931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon |