Optimal Coordinated Control of Multi-Renewable-to-Hydrogen Production System for Hydrogen Fueling Stations

Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend of transition to a H 2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H 2 production eff...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industry applications Vol. 58; no. 2; pp. 2728 - 2739
Main Authors Zhang, Kuan, Zhou, Bin, Or, Siu Wing, Li, Canbing, Chung, Chi Yung, Voropai, Nikolai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0093-9994
1939-9367
DOI10.1109/TIA.2021.3093841

Cover

Abstract Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend of transition to a H 2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H 2 production efficiency for renewable-dominated hydrogen fueling stations (HFSs). In this method, the aqueous electrolysis of native biomass can be powered by wind and solar generations based on electrochemical effects, and both electrolysis current and temperature are taken into account for facilitating on-site H 2 production and reducing the electricity consumption. Moreover, a capsule network based H 2 demand forecasting model is formulated to estimate the gas load for HFS by extracting the underlying spatial features and temporal dependencies of traffic flows in the transportation network. Furthermore, a hierarchical coordinated control strategy is developed to suppress high fluctuations in electrolysis current caused by volatility of wind and solar outputs based on model predictive control framework. Comparative studies validate the superior performance of the proposed methodology over the power-to-gas scheme on electrolysis efficiency and economic benefits.
AbstractList Under the pressure of climate change, the demands for alternative green hydrogen (H2) production methods have been on the rise to conform to the global trend of transition to a H2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H2 production efficiency for renewable-dominated hydrogen fueling stations (HFSs). In this method, the aqueous electrolysis of native biomass can be powered by wind and solar generations based on electrochemical effects, and both electrolysis current and temperature are taken into account for facilitating on-site H2 production and reducing the electricity consumption. Moreover, a capsule network based H2 demand forecasting model is formulated to estimate the gas load for HFS by extracting the underlying spatial features and temporal dependencies of traffic flows in the transportation network. Furthermore, a hierarchical coordinated control strategy is developed to suppress high fluctuations in electrolysis current caused by volatility of wind and solar outputs based on model predictive control framework. Comparative studies validate the superior performance of the proposed methodology over the power-to-gas scheme on electrolysis efficiency and economic benefits.
Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend of transition to a H 2 society. This article proposes a multirenewable-to-hydrogen production method to enhance the green H 2 production efficiency for renewable-dominated hydrogen fueling stations (HFSs). In this method, the aqueous electrolysis of native biomass can be powered by wind and solar generations based on electrochemical effects, and both electrolysis current and temperature are taken into account for facilitating on-site H 2 production and reducing the electricity consumption. Moreover, a capsule network based H 2 demand forecasting model is formulated to estimate the gas load for HFS by extracting the underlying spatial features and temporal dependencies of traffic flows in the transportation network. Furthermore, a hierarchical coordinated control strategy is developed to suppress high fluctuations in electrolysis current caused by volatility of wind and solar outputs based on model predictive control framework. Comparative studies validate the superior performance of the proposed methodology over the power-to-gas scheme on electrolysis efficiency and economic benefits.
Author Zhou, Bin
Chung, Chi Yung
Or, Siu Wing
Voropai, Nikolai
Zhang, Kuan
Li, Canbing
Author_xml – sequence: 1
  givenname: Kuan
  surname: Zhang
  fullname: Zhang, Kuan
  email: zhankuan1994@qq.com
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0002-1376-4531
  surname: Zhou
  fullname: Zhou, Bin
  email: binzhou@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Siu Wing
  orcidid: 0000-0003-2536-5658
  surname: Or
  fullname: Or, Siu Wing
  email: eeswor@polyu.edu.hk
  organization: Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong
– sequence: 4
  givenname: Canbing
  orcidid: 0000-0001-9116-7487
  surname: Li
  fullname: Li, Canbing
  email: licanbing@sjtu.edu.cn
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Chi Yung
  orcidid: 0000-0001-6607-2240
  surname: Chung
  fullname: Chung, Chi Yung
  email: c.y.chung@usask.ca
  organization: Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK, Canada
– sequence: 6
  givenname: Nikolai
  surname: Voropai
  fullname: Voropai, Nikolai
  email: voropai@isem.irk.ru
  organization: Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
BookMark eNp9kM1rwkAQxZdioWp7L_QS6Dl2N7uJmaNIrYLFUu055GNWVuKu3d1Q_O-bEPHQQ08zzLw3j_mNyEAbjYQ8MjphjMLLbjWbRDRiE06Bp4LdkCEDDiHwZDogQ9pOQwAQd2Tk3IFSJmImhuSwOXl1zOtgboytlM49Vm2vvTV1YGTw3tRehZ-o8Scvagy9CZfnypo96uDDmqopvTI62J6dx2MgjQ2u60WDtdL7YOvzTuPuya3Ma4cPlzomX4vX3XwZrjdvq_lsHZYcwIcgKLKE5VVKZSWiuKxoXFIOcjrFqZCSF0XO0lgUsShTgETKNEp4Sou4YLyQCR-T5_7uyZrvBp3PDqaxuo3MWiF0QKKoVdFeVVrjnEWZnWwLwp4zRrOOaNYSzTqi2YVoa0n-WErV_-Ztrur_jE-9USHiNQdEkgJn_Be2hIXx
CODEN ITIACR
CitedBy_id crossref_primary_10_3389_fenrg_2022_852520
crossref_primary_10_1109_OAJPE_2022_3204216
crossref_primary_10_3389_fenrg_2021_770342
crossref_primary_10_3389_fenrg_2021_806263
crossref_primary_10_3389_fenrg_2021_824691
crossref_primary_10_1016_j_scs_2022_104176
crossref_primary_10_3389_fenrg_2021_809254
crossref_primary_10_1088_1742_6596_2835_1_012016
crossref_primary_10_1016_j_epsr_2024_110520
crossref_primary_10_1016_j_renene_2025_122386
crossref_primary_10_3389_fenrg_2021_768340
crossref_primary_10_1016_j_ijhydene_2024_10_426
crossref_primary_10_3389_fenrg_2021_738857
crossref_primary_10_3389_fenrg_2022_903768
crossref_primary_10_1109_TII_2022_3178429
crossref_primary_10_3389_fenrg_2022_869844
crossref_primary_10_1016_j_energy_2022_125018
crossref_primary_10_3389_fenrg_2022_862653
crossref_primary_10_3389_fenrg_2021_807590
crossref_primary_10_3389_fenrg_2022_903765
crossref_primary_10_3389_fenrg_2021_835397
crossref_primary_10_3389_fenrg_2022_888161
crossref_primary_10_1007_s10668_024_05066_7
crossref_primary_10_1016_j_est_2024_112590
crossref_primary_10_3389_fenrg_2021_742304
crossref_primary_10_3389_fenrg_2022_943189
crossref_primary_10_1109_TSTE_2024_3422133
crossref_primary_10_1109_TIE_2023_3327528
crossref_primary_10_1002_ep_14038
crossref_primary_10_3389_fenrg_2022_871772
crossref_primary_10_1016_j_ijhydene_2024_11_318
crossref_primary_10_3389_fenrg_2021_809024
crossref_primary_10_1016_j_seta_2024_103923
crossref_primary_10_3389_fenrg_2022_881081
crossref_primary_10_1016_j_ijhydene_2023_06_059
crossref_primary_10_3389_fenrg_2022_889325
crossref_primary_10_1109_TIA_2024_3462698
crossref_primary_10_3390_en16124694
crossref_primary_10_1016_j_ijhydene_2023_04_064
crossref_primary_10_1109_TR_2022_3177045
crossref_primary_10_3389_fenrg_2021_831249
crossref_primary_10_1038_s41598_024_61192_2
crossref_primary_10_3389_fenrg_2021_772027
crossref_primary_10_3389_fenrg_2022_858969
crossref_primary_10_1109_ACCESS_2022_3223476
crossref_primary_10_1016_j_ijhydene_2024_10_281
crossref_primary_10_3389_fenrg_2021_813617
crossref_primary_10_3389_fenrg_2022_846741
crossref_primary_10_3390_electronics12194166
crossref_primary_10_3389_fenrg_2022_893492
crossref_primary_10_3389_fenrg_2021_785420
crossref_primary_10_3389_fenrg_2022_848966
crossref_primary_10_32604_ee_2022_019284
crossref_primary_10_1016_j_segan_2023_101259
crossref_primary_10_3389_fenrg_2022_889355
crossref_primary_10_1016_j_ijhydene_2024_04_255
crossref_primary_10_3389_fenrg_2021_781774
crossref_primary_10_1016_j_ijhydene_2022_09_269
crossref_primary_10_3389_fenrg_2022_902779
crossref_primary_10_1016_j_energy_2025_135011
crossref_primary_10_1049_enc2_12083
crossref_primary_10_3389_fenrg_2021_770372
crossref_primary_10_3389_fenrg_2021_811964
crossref_primary_10_3389_fenrg_2022_902892
crossref_primary_10_3389_fenrg_2022_909520
crossref_primary_10_3390_rsee1010002
crossref_primary_10_1109_TSG_2022_3154611
crossref_primary_10_1016_j_apenergy_2024_124170
crossref_primary_10_3389_fenrg_2022_822021
crossref_primary_10_1016_j_jpowsour_2025_236510
crossref_primary_10_1038_s41598_025_85639_2
crossref_primary_10_1063_5_0225378
crossref_primary_10_3389_fenrg_2022_844474
crossref_primary_10_1016_j_renene_2025_122555
crossref_primary_10_3389_fenrg_2021_727364
crossref_primary_10_3389_fenrg_2022_884920
crossref_primary_10_3389_fenrg_2022_875790
crossref_primary_10_1016_j_ijhydene_2023_04_117
crossref_primary_10_3389_fenrg_2022_857261
crossref_primary_10_3389_fenrg_2021_773805
crossref_primary_10_3389_fenrg_2022_901906
crossref_primary_10_3389_fenrg_2022_885461
crossref_primary_10_3389_fenrg_2022_902722
crossref_primary_10_3389_fenrg_2021_760105
crossref_primary_10_3389_fenrg_2022_848905
crossref_primary_10_3389_fenrg_2022_900503
crossref_primary_10_3389_fenrg_2021_786439
crossref_primary_10_1109_TIA_2024_3522508
crossref_primary_10_3389_fenrg_2021_735294
crossref_primary_10_3389_fenrg_2021_839108
crossref_primary_10_3389_fenrg_2022_865151
crossref_primary_10_3389_fenrg_2022_902486
crossref_primary_10_3389_fenrg_2022_968910
Cites_doi 10.1109/TPWRS.2020.2989533
10.1109/TSTE.2020.2975609
10.1109/TSTE.2020.2970078
10.1016/j.ijepes.2020.106040
10.1109/TITS.2020.2984813
10.1039/C5EE03019F
10.1016/j.energy.2020.119384
10.1021/acssuschemeng.8b01701
10.1186/s41601-019-0147-z
10.1016/j.ijhydene.2019.10.014
10.1016/j.rser.2019.109292
10.1016/j.enconman.2020.113240
10.1016/j.ijhydene.2016.11.142
10.1039/D0SE01149E
10.1039/C8TA03741H
10.1016/j.cjche.2020.11.005
10.1109/TIA.2020.3037264
10.1109/TEC.2010.2066977
10.1109/TII.2019.2926779
10.1016/j.jclepro.2019.118345
10.1109/TIA.2020.2993760
10.1016/j.jpowsour.2016.03.074
10.1093/amrx/abq002
10.1109/TIA.2019.2904927
10.1016/j.enconman.2021.113910
10.1109/TIA.2021.3076020
10.1016/j.rser.2017.09.003
10.1126/science.aad4998
10.1016/j.ijhydene.2020.11.047
10.1021/acscatal.9b04099
10.1016/j.eng.2020.02.021
10.1016/j.elecom.2019.01.016
10.1016/j.jpowsour.2020.227810
10.1109/TITS.2018.2797697
10.1021/acssuschemeng.0c01054
10.1016/j.rser.2018.04.067
10.1109/MELE.2017.2784631
10.1109/TSG.2017.2703126
10.1109/TSG.2020.3025082
10.1109/TSG.2018.2863247
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIA.2021.3093841
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9367
EndPage 2739
ExternalDocumentID 10_1109_TIA_2021_3093841
9468931
Genre orig-research
GrantInformation_xml – fundername: National Rail Transit Electrification and Automation Engineering Technology Research Center
  grantid: K-BBY1
– fundername: Research Grants Council of the HKSAR Government
  grantid: R5020-18
– fundername: National Natural Science Foundation of China
  grantid: 51877072
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-940e161ad80fd425cd05c039f77e74ff3bba1854b54c8996ff826380b5b13bf63
IEDL.DBID RIE
ISSN 0093-9994
IngestDate Mon Jun 30 10:19:50 EDT 2025
Tue Jul 01 01:05:52 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Wed Aug 27 02:22:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-940e161ad80fd425cd05c039f77e74ff3bba1854b54c8996ff826380b5b13bf63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6607-2240
0000-0003-2536-5658
0000-0002-1376-4531
0000-0001-9116-7487
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/93389/1/Or_Optimal_Coordinated_Control.pdf
PQID 2639936722
PQPubID 85463
PageCount 12
ParticipantIDs proquest_journals_2639936722
crossref_primary_10_1109_TIA_2021_3093841
crossref_citationtrail_10_1109_TIA_2021_3093841
ieee_primary_9468931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industry applications
PublicationTitleAbbrev TIA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
gielen (ref7) 2018
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
ref40
park (ref38) 2013
References_xml – ident: ref31
  doi: 10.1109/TPWRS.2020.2989533
– ident: ref19
  doi: 10.1109/TSTE.2020.2975609
– ident: ref20
  doi: 10.1109/TSTE.2020.2970078
– ident: ref39
  doi: 10.1016/j.ijepes.2020.106040
– ident: ref33
  doi: 10.1109/TITS.2020.2984813
– ident: ref12
  doi: 10.1039/C5EE03019F
– ident: ref4
  doi: 10.1016/j.energy.2020.119384
– ident: ref11
  doi: 10.1021/acssuschemeng.8b01701
– ident: ref40
  doi: 10.1186/s41601-019-0147-z
– ident: ref32
  doi: 10.1016/j.ijhydene.2019.10.014
– ident: ref2
  doi: 10.1016/j.rser.2019.109292
– ident: ref21
  doi: 10.1016/j.enconman.2020.113240
– ident: ref13
  doi: 10.1016/j.ijhydene.2016.11.142
– ident: ref27
  doi: 10.1039/D0SE01149E
– ident: ref17
  doi: 10.1039/C8TA03741H
– ident: ref29
  doi: 10.1016/j.cjche.2020.11.005
– year: 2013
  ident: ref38
  publication-title: Fundamentals of Engineering Economics
– ident: ref41
  doi: 10.1109/TIA.2020.3037264
– ident: ref30
  doi: 10.1109/TEC.2010.2066977
– ident: ref16
  doi: 10.1109/TII.2019.2926779
– ident: ref23
  doi: 10.1016/j.jclepro.2019.118345
– ident: ref3
  doi: 10.1109/TIA.2020.2993760
– ident: ref25
  doi: 10.1016/j.jpowsour.2016.03.074
– ident: ref36
  doi: 10.1093/amrx/abq002
– ident: ref42
  doi: 10.1109/TIA.2019.2904927
– ident: ref22
  doi: 10.1016/j.enconman.2021.113910
– ident: ref6
  doi: 10.1109/TIA.2021.3076020
– ident: ref8
  doi: 10.1016/j.rser.2017.09.003
– ident: ref26
  doi: 10.1126/science.aad4998
– ident: ref5
  doi: 10.1016/j.ijhydene.2020.11.047
– ident: ref24
  doi: 10.1021/acscatal.9b04099
– ident: ref10
  doi: 10.1016/j.eng.2020.02.021
– ident: ref28
  doi: 10.1016/j.elecom.2019.01.016
– ident: ref18
  doi: 10.1016/j.jpowsour.2020.227810
– ident: ref34
  doi: 10.1109/TITS.2018.2797697
– ident: ref14
  doi: 10.1021/acssuschemeng.0c01054
– ident: ref9
  doi: 10.1016/j.rser.2018.04.067
– ident: ref1
  doi: 10.1109/MELE.2017.2784631
– ident: ref37
  doi: 10.1109/TSG.2017.2703126
– year: 2018
  ident: ref7
  article-title: Hydrogen from renewable power technology outlook for the energy transition
– ident: ref35
  doi: 10.1109/TSG.2020.3025082
– ident: ref15
  doi: 10.1109/TSG.2018.2863247
SSID ssj0014514
Score 2.6393201
Snippet Under the pressure of climate change, the demands for alternative green hydrogen (H 2 ) production methods have been on the rise to conform to the global trend...
Under the pressure of climate change, the demands for alternative green hydrogen (H2) production methods have been on the rise to conform to the global trend...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2728
SubjectTerms Aqueous electrolysis
Biomass
Climate change
Comparative studies
Economic forecasting
Electricity consumption
Electrochemical processes
Electrolysis
Electrolytes
Energy management
Feature extraction
Fluctuations
Green products
hybrid energy system
Hydrogen
hydrogen economy
hydrogen filling station (HFS)
Hydrogen production
Predictive control
Production
Production methods
Transportation networks
Title Optimal Coordinated Control of Multi-Renewable-to-Hydrogen Production System for Hydrogen Fueling Stations
URI https://ieeexplore.ieee.org/document/9468931
https://www.proquest.com/docview/2639936722
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9367
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014514
  issn: 0093-9994
  databaseCode: RIE
  dateStart: 19720101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA7qSQ_u4riRgxfBzKRpmrTHYXAYhVFxAW9lsoHbVLSD6K_3Je0UN8RboUkJfC9539e3BKF9qS2NbKIJU1IQbnhMFI01iQRTmmphlfYR3eGpGFzzk5vkZgYdNrUw1tqQfGbb_jHE8k2hJ_5XWSfjAtwraJ1ZKbOqVquJGPC6jzcodAKkh09DkjTrXB13QQiyqO2jfimPvrigcKfKj4M4eJf-EhpO11Ulldy3J6Vq6_dvLRv_u_BltFjTTNyt7GIFzdjxKlr41HxwDd2dwWnxCIN6BQjQ2zGQToN7VeY6LhwOpbnkAs7CV19eRcqCDN7McwEWh8-rPrGAKa5anmPgvrh53Z-EKnd8WcX5X9bRdf_oqjcg9c0LRANhKUnGqQUqODIpdQZ2tTY00TTOnJRWcudipUbg6LlKuAbBJpwDlRKnVCUqipUT8QaaGxdju4kwM0nKZEZH3MU8FUoJoBhGc_iutCC_W6gzBSPXdVtyfzvGQx7kCc1ygC_38OU1fC100Mx4qlpy_DF2zaPRjKuBaKGdKd55vWdfchbImpCMbf0-axvNM1_8EDLQdtBc-Tyxu0BJSrUXbPED7SfdxQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6axgPwMC4bWtkAP_CChFvHcezkcaqoOlgHglbqW1TfpN2aqU2Fxq_n2Ekjbpp4ixQ7svQd-3xfzsUAb5VxLHGZoVwrSYUVKdUsNTSRXBtmpNMmRHQn53I8Ex_n2XwH3ne1MM65mHzm-uExxvJtZTbhV9mgEBLdK2qdBxmqCtVUa3UxA9F28kaNTpH2iG1QkhWD6ekJSkGe9EPcLxfJb04o3qry11Ec_cvoCUy2K2vSSq76m1r3zY8_mjb-79Kfwl5LNMlJYxnPYMctn8PjX9oP7sPlZzwvbnDQsEIJerFE2mnJsMldJ5UnsTiXfsXT8HsosKJ1Rcd3dlWhzZEvTadYRJU0Tc8Jsl_SvR5tYp07-dZE-tcHMBt9mA7HtL17gRqkLDUtBHNIBhc2Z97ivjaWZYalhVfKKeF9qvUCXb3QmTAo2aT3qFPSnOlMJ6n2Mn0Bu8tq6Q6BcJvlXBVsIXwqcqm1RJJhjcDvKocCvAeDLRilaRuTh_sxrssoUFhRInxlgK9s4evBu27GbdOU456x-wGNblwLRA-Ot3iX7a5dlzzSNak4f_nvWW_g4Xg6OSvPTs8_HcEjHkohYj7aMezWq417hQSl1q-jXf4EvDnhFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Coordinated+Control+of+Multi-Renewable-to-Hydrogen+Production+System+for+Hydrogen+Fueling+Stations&rft.jtitle=IEEE+transactions+on+industry+applications&rft.au=Zhang%2C+Kuan&rft.au=Zhou%2C+Bin&rft.au=Or%2C+Siu+Wing&rft.au=Li%2C+Canbing&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=0093-9994&rft.volume=58&rft.issue=2&rft.spage=2728&rft.epage=2739&rft_id=info:doi/10.1109%2FTIA.2021.3093841&rft.externalDocID=9468931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0093-9994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0093-9994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0093-9994&client=summon